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A unified model for binocular fusion and depth perception 

Jian Ding *, Dennis M. Levi 
School of Optometry and the Helen Wills Neuroscience Institute, University of California, Berkeley, Berkeley, CA 94720-2020, United States   

A R T I C L E  I N F O   
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A B S T R A C T   

We describe a new unified model to explain both binocular fusion and depth perception, over a broad range of 
depths. At each location, the model consists of an array of paired spatial frequency filters, with different relative 
horizontal shifts (position disparity) and interocular phase disparities of 0, 90, ±180, or − 90◦. The paired filters 
with different spatial profiles (non-zero phase disparity) compute interocular misalignment and provide phase- 
disparity energy (binocular fusion energy) to drive selection of the appropriate filters along the position disparity 
space until the misalignment is eliminated and sensory fusion is achieved locally. The paired filters with identical 
spatial profiles (0 phase disparity) compute the position-disparity energy. After sensory fusion, the combination 
of position and possible residual phase disparity energies is calculated for binocular depth perception. Binocular 
fusion occurs at multiple scales following a coarse-to-fine process. At a given location, the apparent depth is the 
weighted sum of fusion shifts combined with residual phase disparity in all spatial-frequency channels, and the 
weights depend on stimulus spatial frequency and stimulus contrast. To test the theory, we measured disparity 
minimum and maximum thresholds (Dmin and Dmax) at three spatial frequencies and with different intraocular 
contrast levels. The stimuli were Random-Gabor-Patch (RGP) stereograms consisting of Gabor patches with 
random positions and phases, but with a fixed spatial frequency. The two eyes viewed identical arrays of patches 
except that one eye’s array could be shifted horizontally and could differ in contrast. Our experiments and 
modeling reveal two contrast normalization mechanisms: (1) Energy Normalization (EN): Binocular energy is 
normalized with monocular energy after the site of binocular combination. This predicts constant Dmin 
thresholds when varying stimulus contrast in the two eyes; (2) DSKL model Interocular interactions: Monocular 
contrasts are normalized before the binocular combination site through interocular contrast gain-control and 
gain-enhancement mechanisms. This predicts contrast dependent Dmax thresholds. We tested a range of models 
and found that a model consisting of a second-order pathway with DSKL interocular interactions and a first-order 
pathway with EN at each spatial-frequency band can account for both the Dmin and Dmax data very well. 
Simulations show that the model makes reasonable predictions of suprathreshold depth perception.   

1. Introduction 

Although we have two eyes, we seldom perceive two images under 
normal viewing conditions. Instead, we almost always see a single sharp 
3D image. Binocular disparity (the differences in image locations of an 
object seen by the two eyes, resulting from the eyes’ horizontal sepa
ration) provides the cue to the brain to align the two eyes’ images at 
each location and to compute depth. However, little is known about how 
the brain achieves the remarkable feat of fusing the two 2D images to 
construct a 3D percept. Motor fusion, through vergence eye movements, 
aligns the two eyes images globally, but this is not sufficient for binoc
ular depth perception (stereopsis). Binocular depth perception requires 
an interocular matching mechanism to match the two eyes images. 

Traditional matching mechanisms used features, e.g., zero-crossings 
(Marr & Poggio, 1979), or maximum interocular correlation (Max 
operation) (Filippini & Banks, 2009; Fleet, Wagner & Heeger, 1996) to 
precisely match the two eyes images. However, false matches often 
occur (Fleet et al., 1996; Qian, 1994) and late-stage operations are 
required to improve matching performance (Filippini & Banks, 2009; 
Fleet et al., 1996). Furthermore, false matches occur more frequently 
with the Max operation than with real V1 neurons (Henriksen, Tanabe & 
Cumming, 2016). 

Recently, more advanced matching strategies have been proposed. 
Tanabe et al (2011) revealed suppressive mechanisms in monkey V1 that 
help to solve the stereo correspondence problem. Read and Cumming 
(2007) found that phase-disparity neurons tend to be more strongly 
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activated by false matches, and may act as ‘lie detectors’, enabling the 
true correspondence to be deduced by a process of elimination. They 
noted that matching regions of a real image contain no phase disparity 
and took advantage of this fact to develop a robust matching strategy for 
solving the correspondence problem. However, based on optimal in
formation encoding, Goncalves and Welchman (2017) showed that 
formulating the problem as identifying ‘‘correct matches’’ is suboptimal. 
They proposed an alternative approach that mixes disparity detection 
with ‘‘proscription’’: exploiting dissimilar features to provide evidence 
against unlikely interpretations, and demonstrated the role of these 
“what not” responses in a neural network optimized extraction of depth 
in natural images. 

Indeed, these matching mechanisms seem to reverse causation, 
because “correct matches” might be the result of perfect binocular 
fusion. Binocular fusion is a process of reducing interocular misalign
ment of monocular outputs to achieve single binocular vision with 
misalignment below a threshold. Beyond this threshold, a binocularly 
combined image might be diplopic (possibly accompanied by suppres
sion of one of the two images) or locally blurred. Although global 
alignment can be achieved by fusional vergence eye movements (motor 
fusion), it is still unclear how to achieve local alignments when the two 
eyes’ images have multiple disparities. 

Binocular fusion and depth perception might be accomplished by 
different mechanisms. Indeed, we can perceive depth even when 
binocular fusion fails (McKee & Verghese, 2002; Richards, 1971; Schor 
& Wood, 1983) and persons who are stereo-blind might be able to 
perform binocular fusion (Richards, 1970). These suggest that binocular 
fusion might require a separate mechanism that reduces misregistration 
of the two eyes’ images, resulting in (1) a correct match (a single image) 
with a perfect alignment (perfect fusion) of the monocular outputs with 
or without depth perception, or (2) diplopia and a large misalignment 
(failure of fusion) with or without depth perception. However, based on 
a matching mechanism, it is unclear how to evaluate depth perception 
when the two eyes’ images are misregistered. 

In the present paper we propose and test a new unified model to 
explain both binocular fusion and depth perception over a broad range 
of depths. An earlier version of this model without a fusion mechanism 
has been previously published in abstract form (Ding & Levi, 2016a). 
That model assumed a Max operator to select peak energy to compute 
stimulus disparity and a depth-disparity function to transfer disparity to 
depth perception. More recently, we used the same model to explain 
depth perception at suprathreshold levels (Ding & Levi, 2019). How
ever, this model failed to accurately predict the reduced depth percep
tion at large disparities near the disparity maximum threshold (Dmax), 
when the two eyes’ images are mismatched. To fit experimental data, we 
assumed an ideal Max operator without any mismatch even at large 
disparities near Dmax to detect stimulus disparity, and a depth-disparity 
function (the product of a disparity power function and an exponential 
decay function) was used to model the reduced depth performance near 
Dmax threshold. The model provided a reasonable fit to the data, but 
with an implausible mechanism. 

The current study includes rich new psychophysical data using 
Random Gabor Patch Stereograms (RGP) and an expanded unified 
model that includes a binocular fusion mechanism as a solution to the 
correspondence problem. The unified model provides an evaluation of 
reduced depth perception of mismatched inputs (diplopic images) when 
fusion fails at large disparities, thus accounting for the full range of 
binocular single vision from Dmin to Dmax. (In Discussion we consider 
whether the visual system actually needs sensory fusion mechanism for 
depth perception if it is able to measure a stimulus disparity without 
considering fusion). 

In previous studies (Ding, Klein & Levi, 2013a, 2013b), we proposed 
a binocular combination model with a binocular fusion mechanism to 
explain 2D binocular combination of sinewave gratings with different 
phases. The model assumes that phase disparity energy is calculated as 
binocular fusion energy for motor/sensory fusion to remap the two eyes’ 

inputs to realign them until phase disparity is eliminated. The model 
successfully predicts that the binocular contrast combination is inde
pendent of monocular phase differences at high contrast (Baker, Wallis, 
Georgeson & Meese, 2012; Ding et al., 2013b; Huang, Zhou, Zhou & Lu, 
2010), but is dependent on the phase difference at low contrast levels 
(Baker et al., 2012; Ding et al., 2013b). This is because, at high contrast, 
the binocular fusion energy is sufficient to realign the two eyes’ images 
resulting in phase-independent binocular contrast perception, while at 
low contrast levels, the fusion energy is not sufficient to realign them, 
resulting in phase-dependent binocular contrast perception. In the cur
rent study, we elaborated this binocular fusion mechanism into a unified 
model for 3D depth perception and integrate it into the depth model to 
realign the two eyes images under a 3D view. To the best of our 
knowledge, to date this binocular fusion mechanism has not been 
addressed directly by physiological studies. 

Motor fusion (vergence eye movements) brings the two eyes’ images 
into global alignment; however, binocular sensory fusion is necessary 
for local alignment when the images have multiple disparities. Both 
share the common primary stimulus—binocular disparity. With sensory 
fusion, small vergence errors (fixation disparity, FD) can occur without 
diplopia (Fogt & Jones, 1998; Ukwade, 2000), and misaligned (non
corresponding) retinal images are perceived as single as long as they are 
within Panum’s area (Panum, 1858), i.e., to any given retinal point in 
one eye there corresponds a small group of points in the other eye. 
Fixation disparity can be measured objectively using eye movement 
recording (Fogt & Jones, 1998; Hyson, Julesz & Fender, 1983) or sub
jectively by aligning nonius lines (Fogt & Jones, 1998; McKee & Levi, 
1987; Schor, Wood & Ogawa, 1984; Ukwade, 2000). Hyson et al. (1983) 
recorded vergence eye movements while their observers viewed a 
random-dot stereogram and misaligned the stereo images by moving 
them apart until fusion was lost. They found that the vergence error, the 
difference between image separation and eye vergence, could be as large 
as 3◦. They postulated that neural remapping occurs during sensory 
fusion that compensates for the retinal misalignment. Fogt and Jones 
(1998) compared fixation disparity obtained by objective and subjective 
methods by measuring FD as a function of forced vergence. They found 
that the slope of the objective FD curve was significantly greater than the 
subjective FD curve, indicating an alteration in retinal correspondence. 
Based on objective measurement of human cyclofusional response, 
Kertesz and Jones (1970) found that the maximum fused vertical 
disparity introduced by the cyclofusional stimulus for various peripheral 
angles of the retinas was close to, but always less than, the disparity 
threshold for diplopia values obtained by Volkman. 

However, beyond these observations, very little is known about 
sensory fusion or neural remapping. Here, we used a conceptual schema 
to demonstrate a sensory fusion mechanism that we propose for binoc
ular vision. 

2. A conceptual schema for sensory fusion 

Poggio and Fischer (1977) classified disparity-selective neurons into 
four types: a) tuned excitatory (TE) neurons, the most common type, are 
excited over a narrow range of stimulus disparities around the fixation 
plane often with inhibitory flanks nearer and farther, and they typically 
received a balanced binocular input; b) tuned inhibitory (TI) neurons 
whose responses are suppressed by small disparities of either direction 
(i.e., for targets fairly close to the fixation plane), but respond weakly to 
large disparities of either direction, hence the suggestion that they are 
defined by receptive fields in anti-phase arrangement; c) near neurons 
(NEAR), which responded well to crossed disparities and are suppressed 
by uncrossed disparities; d) far neurons (FAR), the opposite of NEAR 
neurons. However, later studies showed a continuum of tuning types of 
disparity-selective neurons (Prince, Cumming & Parker, 2002); many 
neurons have intermediate tuning types. Studies in cat and non-human 
primate V1 have shown that most disparity-selective neurons are hybrid, 
with both preferred phase and position disparities (Anzai, Ohzawa & 
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Freeman, 1997, 1999; Livingstone & Tsao, 1999; Prince et al., 2002; 
Tsao, Conway & Livingstone, 2003). In fact, each disparity-selective 
neuron has both preferred phase and position disparities; a pure posi
tion disparity neuron has a preferred phase disparity = 0 and a pure 
phase disparity neuron has a preferred position disparity = 0. 

Based on these facts, Fig. 1 illustrates a conceptual schema for sen
sory fusion and depth perception in one spatial-frequency channel 
projected to the xz plane. The vertical (y-axis not shown) is orthogonal 
to the paper plane (xz-plane). The x-axis represents the horizontal 
dimension and indicates the fixation plane (position disparity u = 0). 
The z-axis represents position disparity (horizontal relative shift of 
paired filters). The blue and red horizontal bars represent two vertical 
Gabor patches presented to the left (LE) and right (RE) eyes respectively. 
They are not overlaid with each other in the fixation plane (u = 0), but 
have a stimulus disparity of d. Horizontal space is sampled by LE (blue 
open boxes) and RE (red open boxes) vertical spatial-frequency filters 
(only partial filters are shown). At each location, both position and 
phase disparities are sampled by paired filters. The phase disparity is 
sampled at 0 (TE), 90 (NEAR), ±180 (TI), and − 90 (FAR) phase degree 
at each location and each position disparity. However, for clarity, we 
only show paired filters at location × = 0 for each position-disparity 
plane (inside a thick black box). For example, in the fixation plane, at 
location × = 0, there are four pairs of filters with TE, NEAR, TI, and FAR 
tuning curves, preferred at 0◦, 90◦, ±180o, and − 90◦ phase disparity 
respectively. In the position disparity plane u, all four pairs of filters (TE, 
NEAR, TI and FAR) have a preferred position disparity of u. We define a 
depth sensor to be an array of paired filters with different position dis
parities and different phase disparities at one location in the 2D xy 
plane. At any one time and one location, the system selectively reads out 
the outputs of the paired filters only in one position disparity plane as 
the depth sensor’s output. 

As shown in Fig. 1, when the two eyes are presented with input 
images with uncrossed disparity d, the FAR (with preferred − 90◦ phase 

disparity) neuron in the fixation plane at × = 0 detects the uncrossed 
misalignment. To reduce the misalignment of monocular outputs, the 
system’s readout is shifted from the paired filters in the fixation plane (0 
position disparity) to those in an uncrossed position disparity plane. This 
shift of readout of depth sensor’s output from one to another position 
disparity plane is defined as sensory readout shift, or simply sensory shift. 
The shift continues until the misalignment (or phase disparity) of 
monocular outputs is eliminated (when u = d), at which the pair with 0- 
phase disparity reaches the maximum correlation, and the pairs with 90, 
±180 and − 90 phase disparites becomes uncorrelated or anti- 
correlated. The 2D monocular outputs of the paired filters with 0- 
phase disparity at u = d plane are perfectly aligned (fused pair in 
Fig. 1). However, if the phase disparity energy is not sufficient at the 
fixation plane, e.g., at a larger stimulus disparity and/or low stimulus 
contrast, the sensory fusion process might stop at u = u1 < d before 
reaching the target-depth plane (u = d). This will produce diplopic 
images with a horizontal separation of d - u1 and a reduced depth 
perception given by u1 . 

Our model assumes that there are multiple overlapping depth sensors 
at different locations and scales across the visual field. They compete 
with each other, and the one with the minimum misalignment and 
maximum correlation after the fusion process wins the competition. 
Typically a depth sensor based on the appropriate corresponding inputs, 
e.g., the one at x  = 0 in Fig. 1, wins the competition. However, false 
matches might occur especially when phase disparity energy is not 
sufficient at low stimulus contrast or with a large stimulus disparity. 

The blue and red dashed lines in Fig. 1 indicate the local visual di
rections at x  = 0 in the left and right eyes respectively. The z-axis in
dicates the visual direction for the cyclopean eye (CE). Each depth 
sensor has its own visual directions in the left, right and cyclopean eyes, 
which should follow the geometric constraints of stereovision. For 
example, if a depth target is directly in front of the LE, the LE’s local 
visual direction is orthogonal to the x-axis, i.e., local sensory fusion is 

Fig. 1. A schema for sensory fusion in one spatial-frequency pathway. The schema is a projection onto the xz-plane. The vertical y-axis (not shown) is orthorgonal to 
the paper (xz-plane). The z-axis represents the relative shift of the selected paired filters (position disparity). Blue and red open boxes represent the LE’s and RE’s 
vertical spatial frequency filters respectively. The blue and red solid bars represent vertical Gabor patches presented to the LE and RE, respectively, in the fixation 
plane with stimulus disparity d. Paired filters are inside a solid black box with different relative shifts (position disparities). The fused pair has a relative shift of d that 
gives depth perception, and the fused paired filters with 0 phase disparity outputs locally aligned 2D images. The blue and red dashed lines indicate the local visual 
directions at x  = 0 in the LE and RE respectively, and the z-axis indicates the visual direction of the cyclopean eye (CE). 
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achieved by shifting the readout to the location of the matching filter of 
the RE, without shifting that of the LE. 

Because disparity space may not be sufficiently sampled, even for the 
best matching pair, phase disparity might not be eliminated completely, 
i.e., the binocular fusion might not be prefect if the depth samples are 
not sufficient. To get accurate depth information, after the fusion pro
cess, the residual phase disparity is measured to estimate the relative 
depth of a target to the position disparity plane, i.e., the final perceived 
depth is the combination of position and phase disparities after sensory 
fusion. 

3. Contrast normalization 

Several models have been proposed to explain binocular combina
tion based on interocular contrast gain-control (Ding et al., 2013b; Ding 
& Levi, 2016b; 2017; Ding & Sperling, 2006, 2007; Georgeson, Wallis, 
Meese & Baker, 2016; Huang et al., 2010; Meese, Georgeson & Baker, 
2006; Yehezkel, Ding, Sterkin, Polat & Levi, 2016), and some of these 
have been extended to stereovision (Ding & Levi, 2016a; Hou, Huang, 
Liang, Zhou & Lu, 2013). Previously, we (Ding et al., 2013b) compared 
multiple normalization mechanisms in binocular combination. We 
found that all of them can explain binocular contrast combination, but 
normalization mechanisms with contrast values or responses as inputs to 
the models, e.g., the two-stage model (Meese, Georgeson et al., 2006), 
need to be revised by including the spatial domain in order to address 
phase combination. For the same reason, they need to be revised to 
address depth perception. Based on interocular contrast gain control 
(Ding & Sperling, 2006), Hou et al (2013) proposed a multi-pathway 
contrast gain-control model (MCM) to explain both binocular combi
nation and stereovision. The model simultaneously accounts for Dmin 
disparity thresholds and cyclopean contrast perception of dynamic 
random dot stereograms (dRDS). However, the MCM did not address the 
correspondence problem or Dmax thresholds. Based on studies in 
anesthetized cats, Ohzawa and Freeman (1994) suggested that a single 
gain control mechanism is not sufficient to account for the properties 
exhibited by cortical neurons, and there appear to be at least two 
mechanisms of contrast gain control either before or after binocular 
convergence. Later, the same group reported that contrast gain re
ductions occur primarily at a monocular site, before convergence of 

information from the two eyes (Truchard, Ohzawa & Freeman, 2000). In 
this study we address contrast normalization in depth perception based 
on interocular interactions before the site of binocular combination 
(Ding & Sperling, 2006; Ding, Klein, & Levi, 2013a; 2013b), and energy 
normalization after binocular combination (EN: binocular energy is 
normalized by monocular energy). 

In the present study, we measured both minimum and maximum 
disparity thresholds (Dmin & Dmax) psychophysically using Random 
Gabor Patch (RGP) Stereograms when stimulus contrast differed in the 
two eyes. We developed a depth model with a binocular fusion mech
anism including two different contrast normalizations to explain both 
Dmin and Dmax threshold data. We compare a number of different 
models of depth perception and show that in order to evaluate the 
reduced depth perception of diplopic images when fusion fails at large 
disparities, and therefore predict Dmax threshold data, the model needs 
a fusion mechanism. Without a fusion mechanism, conventional human 
vision models fail to provide a reasonable explanation of Dmax, even 
with acceptable model assumptions. 

4. Methods. 

Stimuli. Random-Gabor-Patch (RGP) stereograms (Fig. 2), in which 
vertical Gabor patches with random positions and phases, but with a 
fixed spatial frequency, were used as stimuli. RGP stereograms provide 
stereo signals in a narrow spatial frequency-and-orientation channel 
without monocular depth cues. The two eyes have identical arrays of 
patches except that one eye’s array can be shifted horizontally, and they 
can differ in contrast. The jth Gabor patch pair is given by 

IjL = mLe−

(

x− xj −
d
2

)2

+(y− yj)
2

2σ2 cos
(

ω
(

x − xj −
d
2

)

+ θj

)

(1)  

IjR = mRe−

(

x− xj+
d
2

)2

+(y− yj)
2

2σ2 cos
(

ω
(

x − xj +
d
2

)

+ θj

)

(2) 

To produce an RGP stereogram, a large square (14.1x14.1 deg2) was 
divided into 18x18 small grids. Each grid contains a Gabor patch with ω 

Fig. 2. Random-Gabor-patch stereograms. Gabor patches had random positions and phases, but with a fixed spatial frequency. The two eyes had two identical arrays 
of patches except that one eye’s array could be shifted horizontally, and they could differ in contrast. 
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= 3 cpd and σ = 0.167 deg and its position randomly distributed (with 
equal distribution) inside (gridwidth – σ) × (gridwidth – σ) area. Along 
the grid border, two patches could be partially overlapped. Stimulus 
disparity was produced by horizontally shifting the two eyes’ images by 
equal amounts (=half the stimulus disparity) but in reversed directions. 
A circular shift was made to maintain stereogram size constant. A ste
reogram given by Eqs. (1) and (2) can produce a sub-pixel disparity 
accurately because the perceived position of a Gabor patch depends on 
its centroid of light distribution (Aiba & Morgan, 1985; Georgeson, 
Freeman & Scott-Samuel, 1996). 

Observers were asked to judge the depth of the entire array, either 
near or far, relative to the central fixation point. For RGP stereograms 
containing smaller Gabor patches with ω = 6 cpd and σ = 0.083 deg, the 
big square (14.1x14.1 deg2) was divided into 36x36 small grids. For RGP 
stereograms containing larger Gabor patches with ω = 1.5 cpd and σ =

0.333 deg, the big square (14.1x14.1 deg2) was divided into 9x9 small 
grids. 

The stimulus duration was 107 ms. For 1.5 and 3 cpd spatial fre
quencies, we tested five base contrasts (the higher contrast in the two 
eyes): 0.96, 0.48, 0.24, 0.12, and 0.06, and for 6 cpd spatial frequency, 
we tested four base contrasts: 0.96, 0.48, 0.24 and 0.12. Stimuli were 
presented on a 22-inch NEC MultiSync CRT monitor with a 1920x1440 
spatial pixel resolution and 75 Hz vertical refresh rate. The experiments 
were controlled by a Mac Mini running Matlab (MathWorks, Inc.) with 
the Psychophysics Toolbox extensions (Brainard, 1997; Pelli, 1997). A 
special circuit (Li, Lu, Xu, Jin & Zhou, 2003) was used to yield 14 bits 
gray-scale levels, which ensured sub-pixel accuracy in the rending of 
binocular disparity even at low contrast. Gamma correction was applied 
and verified by measuring 10 luminance levels using a Minolta LS-110 
photometer. The luminance of the monitor with all pixels set to the 
minimum value was 0.2 cd/m2; the luminance with all pixels set to the 
maximum value was 74.2 cd/m2. Displays were viewed in a mirror 
stereoscope and positioned optically 68 cm from the observer. 

4.1. Psychometric functions 

We modeled the psychometric function as the sum of two cumulative 
Gaussian distribution functions, one rising for Dmin and the other falling 
for Dmax when disparity increases. Fig. 3 shows sample psychometric 
functions (40 trials per point: 20 trials for crossed and 20 trials for 
uncrossed disparity) when the spatial frequency was 3 cpd, the base 
contrast (the higher of two eyes’ contrasts) was 0.96 and the interocular 
contrast ratios were 0.125, 0.25, 0.5, 0.71 and 1 as labeled on the right 
side of the figure. Stereo performance was best for both Dmin and Dmax 
when the two eyes had identical contrast. Please note that Dmax is a 
measure of the collapse of depth perception, not of the failure of fusion. 

4.2. Observers 

Three observers with normal or corrected to normal vision signed the 
written consent forms and participated in the experiment. The data were 
averaged across the three observers. The experiments were conducted in 
accordance with the Declaration of Helsinki and the ethical permission 
for the study was given by Institutional Review Board (IRB) for the 
University of California, Berkeley. 

5. Model 

In the following, we first develop simple models for either phase or 
position disparity with either of two contrast normalization mecha
nisms: (1) Energy normalization (EN) after the binocular site: binocular 
energy is normalized by monocular energy; (2) Interocular contrast 
gain-controls and gain-enhancement before the binocular site (DSKL 
contrast normalization) (Ding & Sperling 2006; Ding et al., 2013b): the 
two eyes inputs first mutually suppress and enhance each other and then 
the binocular energy is calculated. Next, we develop a model with a 
conventional Max operator to explain both Dmin and Dmax thresholds. 

Fig. 3. Examples of psychometric functions. Probability of correct response as a function of binocular disparity. Stimulus spatial frequency was 3 cpd, the base 
contrast (the higher of two eyes’ contrasts) was 0.96. The interocular contrast ratios were 0.125, 0.25, 0.5, 0.71 and 1 as labeled on the right side. The smooth curves 
are the best fit of two cumulative Gaussian functions, one for Dmin and one for Dmax. The threshold Dmin and Dmax values are the disparities that result in 75% 
correct responses. 
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Finally, we propose models for binocular fusion, and develop the unified 
model with both position and phase disparity detectors and binocular 
fusion mechanisms. In this section we provide a brief description of each 
model. Specific details and equations are provided in Appendices A and 
B. 

5.1. A model with EN for phase disparity 

As shown in Fig. 4A, the two eyes’ images first go through two 
quadrature pairs of spatial filters. Each pair has filters with symmetric 
(even) and asymmetric (odd) profiles in the LE and RE, respectively. 
Linear binocular summation of the outputs of the paired filters is 
squared to produce binocular energy (BE). The FAR pair with an even 
filter in the LE and an odd filter in the RE outputs BE for uncrossed 
disparities, and the NEAR pair with the reversed order of filters outputs 
BE for crossed disparities. The difference of BE of two pairs (FAR - 
NEAR) is normalized by the monocular energies (EN: energy normali
zation) to give normalized binocular energy (NBE) with its baseline 
removed by the difference operation. NBE is proportional to the stimulus 
disparity in the range of − 90 to 90 phase degrees with a positive 
response for uncrossed and a negative response for crossed disparity. 
The NBE is integrated over space and time through late-stage filters to 
output phase disparity energy for depth perception. This model is similar 
to the energy model (Adelson & Bergen, 1985) and the Reichardt de
tector (Reichardt, 1961; Van Santen & Sperling, 1984) for motion 
perception and the energy model for feature detection (Morrone & Burr, 
1988). This model has a disparity-tuning curve similar to the models 
based on binocular energy neurons that have non-zero phase disparity 
preference (Fleet et al., 1996; Ohzawa, DeAngelis & Freeman, 1990; 
Qian & Zhu, 1997), except that the model binocular energy neuron for 
phase disparity has a positive baseline, and always has a positive output. 

The phase disparity energy provides a good estimation of stimulus 
disparity when its absolute value is sufficiently small. Besides estimating 
the absolute value of disparity, the phase disparity energy can also 
detect the direction of disparity, with one quadrature pair (FAR) 
detecting uncrossed and the other (NEAR) detecting crossed stimulus 
disparity. The output phase disparity energy is given by Eq. A4, 

5.2. A model with EN for position disparity 

When stimulus disparity further increases beyond 90 phase degrees, 
the output of the phase disparity model (Fig. 4A) decreases and reaches 
zero at 180 phase degrees. A relative horizontal shift of the paired spatial 
filters is required for depth perception. Fig. 4B shows a depth perception 
model for position disparity. The two eyes’ images first go through two 
pairs of spatial filters, the paired filters with identical spatial profiles 
(TE: tuned excitatory) but shifted relatively (u) in horizontal position. 
One pair of filters has identical symmetric profiles and the other pair has 
identical asymmetric profiles. Linear binocular summation of the out
puts of the paired filters is squared to produce binocular energy (BE). 
The summation of BE of two TE pairs is normalized by the monocular 
energies (EN: energy normalization) to output the normalized BE (NBE) 
for depth perception. This model has a similar structure to models based 
on binocular energy neurons (Fleet et al., 1996, Ohzawa et al., 1990, 
Qian & Zhu, 1997). 

Unlike the phase disparity detector, the NBE in the position disparity 
detector is not proportional to stimulus disparity and does not reflect its 
direction, but reaches the maximum when the relative shift of paired 
filters matches the stimulus disparity, either crossed or uncrossed. An 
extra operation is needed to search for the matched pair to estimate both 
the absolute value and direction of stimulus disparity. At a given loca
tion, the NBEs are calculated at multiple relative shifts (position 
disparity), either crossed or uncrossed, and the Max operation per
formed across the range of position disparities in both directions to 
select the peak NBE to estimate both maximum interocular correlation 
and stimulus disparity (the value and direction). The maximum 

correlation and matched position disparity are further translated into 
local position disparity energy by a depth-disparity power function, 
which is proportional to both the maximum correlation and the esti
mated disparity, giving a positive response for an uncrossed disparity 
and a negative response for a crossed disparity. After integration over 
space and time through late-stage filters, the model outputs the position 
disparity energy for depth perception. We note that to improve its 
matching performance, the Max operator typically follows the late-stage 
filters or operations in the literature (Filippini & Banks, 2009, Fleet 
et al., 1996). However, in this study, we assumed an ideal Max operator 
without any false matching and placed it before the late-stage filters. 
Because we did not have data to test the late-stage filters in this study, 
for simplicity, we did not put them in the following model diagrams. 

5.3. Depth models with DSKL contrast normalizations 

Ding et al. (2013) proposed five nested gain-control-gain- 
enhancement models (DSKL models) to explain binocular contrast and 
phase combination. They further elaborated their model to explain 
binocular combination of luminance profiles (Ding & Levi 2017). Here, 
we expand these models for depth perception. Unlike energy normali
zation after the site of binocular combination, the DSKL model nor
malizes monocular contrast before the binocular site (Fig. 4C), which 
successfully predicts contrast-dependent depth perception (Ding & Levi, 
2016a; Hou et al., 2013). As shown in Fig. 4C, in a narrow spatial- 
frequency band, the LE’s signal (Black) is gain-controlled (Blue) and 
gain-enhanced (Red) by the RE’s total contrast energy (TCE), which is a 
weighted summation over spatial-frequency bands. The RE’s gain- 
control (Blue) and gain-enhancement (Red) of the LE are gain- 
controlled by the LE’s TCE. For simplicity, Fig. 4C shows a half of the 
DSKL circuit for the LE’s normalization; the other half, for the RE’s 
normalization, has a symmetric structure. After normalization, the two 
eyes’ signals are linearly combined and squared to produce BE. Simi
larly, the BE of the other pair is calculated. The combination of BEs of 
the two pairs is output for depth perception. Other aspects of the model 
are similar to Fig. 4A for phase disparity, or to Fig. 4B for position 
disparity. 

5.4. A unified model with Max operator for both Dmin and Dmax 

To explain both Dmin and Dmax thresholds, we developed a unified 
model with a Max operator. The model assumes a depth-disparity 
function, which is the product of a disparity power function and a 
disparity exponential decay function, initially increasing with disparity 
and then decreasing exponentially with further increases in disparity. An 
earlier version of this model was presented by Ding & Levi (2016a) and 
was further tested at supra threshold levels over the whole range of 
stimulus disparities (Ding & Levi 2019). 

Because our modeling (see section of Model fitting results) showed 
that Dmin and Dmax have different contrast normalization mechanisms, 
we developed a unified model with both first- and second-order path
ways, each with a different contrast normalization mechanism, as shown 
in Fig. 5. In the first-order pathway, the two eyes images pass through 
two pairs of first-stage spatial-frequency filters, each pair of filters with 
identical in profile (TE) but shifted in horizontal position (position 
disparity). The summation of BE of two TE pairs is normalized by 
monocular energy and goes through a maximum (MAX) operator for 
estimating the maximum correlation and selecting the matched position 
disparity, and then goes through a depth disparity function to compute 
local position disparity energy. 

Previous studies (Ding & Levi, 2017, Zhou, Georgeson & Hess, 2014) 
showed that the second-order signals (contrast modulations) were first 
normalized based on first-order contrast energy before binocular com
bination, and that the rectification occurs before the binocular site 
because the second-order binocular combination is independent of 
interocular correlation of first-order carries (Ding & Levi, 2017, Zhou 

J. Ding and D.M. Levi                                                                                                                                                                                                                         



Vision Research 180 (2021) 11–36

17

Fig. 4. Models. (A). A depth perception model for phase disparity with energy normalization. In each spatial frequency channel, the two-eyes’ images first go 
through two pairs (FAR and NEAR) of filters. The paired filters are in the same position in each eye (no position disparity) but differ in phase by − 90◦ (FAR) for one 
pair and 90◦ (NEAR) for the other pair. Linear binocular summation of the outputs of the paired filters is squared to produce binocular energy (BE). The difference of 
BE of two pairs (FAR - NEAR) is normalized by the monocular energies and is integrated over space and time through later-stage filters to output phase disparity 
energy for depth perception. The spatial-frequency modulation transfer function (sFMTF) is included to reflect the fact that the phase disparity energy varies with 
spatial frequency. (B). A depth perception model for position disparity with energy normalization. The model has a similar structure to the phase-disparity detector in 
(A) except that the paired filters are in different positions in the two eyes (position disparity) but with identical phase (TE: no phase disparity). The Max operator 
selects the peak of the normalized binocular energy (NBE) to estimate maximum correlation and stimulus disparity (either crossed or uncrossed), which is further 
translated into depth information by a depth-disparity power function and is integrated over space and time through late-stage filters. (C) A depth perception model 
for position disparity with DSKL contrast normalization. The contrast normalization is performed before binocular combination through a DSKL circuit (details see 
Appendix B and (Ding et al., 2013b)). For simplicity, only partial model with a half of DSKL circuit is shown. The other half of DSKL is symmetric, and the other parts 
of the model are similar to (B). 
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et al., 2014). Zhou, Georgeson & Hess (2014) reported linear binocular 
summation of second-order contrast modulation when the first-order 
contrast remains constant, which can be explained by the contrast- 
weighted summation model, a simplified DSKL model (see Appendix 
B). Ding & Levi (2017) expanded the DSKL model to explain both the 
first- and second-order binocular combination and tested it measuring 
second-order binocular combination when first-order contrast varied in 
the two eyes. 

In the present study, we propose DSKL interocular interactions 
(Fig. 4C) as the contrast normalization mechanism in the second-order 
pathway for depth perception. As shown in Fig. 5, the two eyes’ out
puts from first-stage filters go through the DSKL circuit for contrast 
normalization before the binocular site. After rectification, the two eyes’ 
second-order contrast modulations go through two pairs of second-stage 
spatial-frequency filters, each pair of filters with identical profiles (TE) 
but shifted in horizontal position. The summation of BE of the two TE 
pairs goes through the MAX operator and a depth-disparity function to 
output second-order position disparity energy. Except for the DSKL 
contrast normalization and the disparity decay in depth-disparity 
function, the model’s second-order disparity detector is similar to the 
second-stage convergence model proposed by Tanaka & Ohzawa (2006) 
to explain their physiology data, and the second-order energy model for 
binocular disparity in natural images (Hibbard, Goutcher & Hunter, 
2016). There are also some close similarities between the present model 
for binocular combination of second-order modulations (Fig. 5) and the 
model of Georgeson & Schofield (2016). 

For simplicity to fit real data, we assume an ideal Max operator that 
always selectively reads out a pair of filters with a relative horizontal 

shift that matches the stimulus disparity for depth perception, and a 
depth-disparity decay function to interpret decreasing depth perfor
mance at large stimulus disparities. This contradicts the idea that the 
Max operator usually fails to select the correct match at large stimulus 
disparities, resulting in diplopic images (McKee & Verghese, 2002, 
Richards, 1971, Schor & Wood, 1983) and poor depth performance. In 
the following, we propose a sensory fusion mechanism to solve this 
contradiction. 

5.5. 3D binocular fusion mechanism 

In previous studies we (Ding, Klein, and Levi, 2013a and 2013b) 
proposed the DSKL model with a 2D binocular fusion mechanism to 
explain binocular phase and contrast combination. Here, we elaborate 
this 2D mechanism to 3D binocular fusion, as a mechanism to solve the 
correspondence problem in depth perception. 

For simplicity, we remove the base line from the binocular energy, 
which is equivalent to calculation of cross correlation (CC). Fig. 6A 
shows CC vectors in the complex plane. The positive real part of CC 
(RC+) reflects 0◦ phase disparity energy with TE tuning type, which is 
calculated by the paired filters with identical spatial profiles. The 
negative real part of CC (RC-) reflects ± 180◦ phase disparity energy 
with TI tuning type, which is calculated by the paired filters with anti
correlated spatial profiles. The positive imaginary part of CC (IC+) re
flects 90◦ phase disparity energy with NEAR tuning type, and the 
negative imaginary part of CC (IC-) reflects − 90◦ phase disparity energy 
with FAR tuning type. IC+ and IC- are calculated by the paired filters 
with orthogonal spatial profiles. A depth sensor comprises an array of 

Fig. 5. A unified model with Max operator for both Dmin and Dmax. In the first-order pathway, the two eyes images pass through two TE pairs of first-stage spatial- 
frequency filters, each pair of filters with identical in profile but shifted in horizontal position (position disparity). The summation of BE of two TE pairs is normalized 
by monocular energy and goes through a maximum (MAX) operator for estimating the maximum correlation and selecting the matched position disparity, and then 
goes through a depth disparity function to compute local position disparity energy. In the second-order pathway, the two eyes’ outputs of first-stage filters go through 
the DSKL circuit for contrast normalization before the binocular site. After rectification, the two eyes’ second-order contrast modulations go through two TE pairs of 
second-stage spatial-frequency filters. The summation of BE of two TE pairs goes through the MAX operator and a depth-disparity function to output for second-order 
position disparity energy. A depth-disparity function is the product of a disparity power function and a disparity exponential decay function, initially increasing with 
disparity and then decreasing exponentially with further increases in disparity. 
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pairs, sampling both position and phase disparities. At each position 
disparity, there are four phase disparity detectors, TE, NEAR, TI and 
FAR, to calculate RC+, IC+, RC- and IC-. As shown in Fig. 6A, in the 
fixation plane, there are four pairs with no relative horizontal shift to 
calculate RC+, IC+, RC- and IC-. We assume that the phase disparity 
energy IC+ (NEAR) drives convergence shift to rotate CC1 and CC2, and 
the phase disparity energy IC- (FAR) drives divergence shift to rotate 
CC3 and CC4 to the positive real axis (0 phase disparity). When the two 
eyes are presented with images with stimulus disparity d (in phase 

degrees), which have cross-correlation of CC1 (0◦ < d ≤ 90◦) in the 
fixation plane, the IC+ drives motor/sensory fusion to reduce the 
misalignment of monocular outputs, i.e., shifting the input CC1 vector 
(of the two eyes’ images) to align it with the positive real axis (motor 
fusion) or by shifting (selecting) the depth sensor’s output along the 
position disparity dimension (see Fig. 1), from the fixation plan (the 
output of four pairs with no position disparity is the sensor’s output), to 
align it with CC1 where the output of a different set of four pairs with 
position disparity of d is the sensor’s output (sensory fusion). In short, 
motor fusion rotates a CC vector to align it with the axis, while sensory 
fusion rotates the axis to align it with a CC vector. This motor/sensory 
fusion system has a negative feedback loop to reduce the misalignment 
of monocular outputs, as shown in Fig. 6B. The initial stimulus disparity 
d provides an initial driving force to make a fusion shift u, resulting in a 
reduced misalignment d-u with less driving force. Under the steady state, 
we have u = A(d-u), i.e., 

u =
A

1 + A
d (3)  

where A is the binocular fusion force, which is proportional to phase 
disparity energy in the fixation plane. When A≫1 at high stimulus 
contrast and long duration, the system achieves perfect fusion with 
u ≈ d. When A≪1 at low stimulus contrast and/or short duration, no 
fusion shift occurs with u ≈ 0. 

When stimulus disparity 90◦ < d < 180◦ (CC2 in Fig. 6A), the phase 
disparity energy RC- (TI) has a positive output. The combination of RC- 

and IC+ drives CC2 first to 90◦ misalignment to eliminate RC-, and then 
IC+ drives it to align it with the positive real axis. However, when d =
180◦, the system reaches an unstable equilibrium without shifting di
rection because IC+ = IC- = 0. Whenever deviating from d = 180◦ to d <
180◦, e.g., because of noise, the fusion process resumes. A similar pro
cedure is performed to fuse CC3 (-180◦ < d < -90◦) and CC4 (-90◦ ≤ d <
0◦) but in the opposite direction. When stimulus disparity d > 180◦, 
binocular fusion fails, driving a CC vector to a wrong direction. In this 
current version of the fusion mechanism, binocular fusion has a half- 
cycle limit in a narrow-pass spatial-frequency band. However, under a 
coarse-to-fine process (Marr & Poggio, 1979), fusion can be achieved 
beyond the half-cycle limit. For example, when stimulus disparity is 
360◦ phase degrees at a small scale, the same stimulus will have a 
disparity of only 90◦ phase degrees at a 4x larger scale. After rotation at 
the larger scale, the misalignment might be reduced to<180◦ phase 
degrees at a smaller scale. 

When u = d + n*360◦ (n = 0,±1,±2⋯), the system reaches a stable 
equilibrium where the interocular misalignment reaches a local mini
mum and the interocular correlation reaches a local maximum. The 
system always goes back to a stable equilibrium when deviating off it 
because of noise. When u = d + (2n + 1)*180◦ (n = 0,±1,±2⋯), the 
system reaches an unstable equilibrium, where the two eyes’ images 
become anticorrelated, a local maximum misalignment without fusion 
shifting direction. The system shifts away from an unstable equilibrium 
whenever deviating off it. However, the system might remain unstable if 
the fusion force is not sufficient to shift it to the next stable equilibrium. 
Only the equilibrium of u = d is a real match, and all other equilibria are 
false matches. 

Binocular difference channels (Cohn & Lasley, 1976, Georgeson 
et al., 2016, Kingdom, Jennings & Georgeson, 2018, May, Zhaoping & 
Hibbard, 2012) could provide 180-degree position/phase disparity 
detectors. 

Fig. 6C shows CC simulations, RC (Eq. A7) (blue in Fig. 6C) and IC 
(Eq. A8) (red in Fig. 6C) as functions of stimulus disparity, after filtering 
random-dots stereograms with paired filters (Eqs. A1 and A2). The 
colored markers indicate the simulation points and smooth colored 
curves are the best fits (Eqs. A9 and A10). The CC disparity decay is 
indicated by the dashed black curves. When using RGP stereograms as 
stimuli, the CC simulation is similar as in Fig. 6C. 

Fig. 6. Binocular fusion mechanism. (A) Cross correlations (CC) represented in 
the complex plane. In a narrow spatial-frequency band, an interocular cross- 
correlation can be represented in a complex plane with its real axis (RC: real 
part of CC) as the correlation output of paired filters with identical spatial 
profile, and its imaginary axis (IC: imaginary part of CC) as the correlation 
output of paired filters with orthogonal spatial profiles. The angle of a CC is the 
stimulus disparity d in phase degree unit. (B) A binocular fusion process with a 
negative feedback loop. A motor/sensory shift u is made to reduce the 
misalignment of monocular outputs until the final misalignment d - u is less 
than a threshold. (C) Interocular cross-correlation in a narrow spatial-frequency 
band when using random-dots stereograms as input stimuli. 
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5.6. A depth model with first-order sensory fusion mechanism. 

In the following, we develop models (Figs. 7 and 8) with 0◦-phase 
(TE: position disparity detectors) and 90◦-phase disparity detectors 
(NEAR and FAR) for fitting our experimental data. A depth model 
including 180-degree phase disparity detectors (TI) is too complex for 
modeling because both TI and NEAR/FAR detectors drive sensory fusion 
shifts and their coefficients might be partially dependent on each other 
for modeling and therefore could not be obtained reliably with only 
threshold data. 

If a pair of 2D images has only a single disparity, perfect alignment 
can be achieved by motor fusion alone (based on absolute disparity) if 
the stimulus duration is sufficiently long. However, with multiple dis
parities, sensory fusion is necessary to align the pair of 2D images 
locally. Fig. 7 shows the depth model with a sensory fusion mechanism 
in a first-order pathway. The two eyes’ images first go through four pairs 
of luminance filters, two TE pairs with identical spatial profiles for po
sition disparity, and NEAR and FAR pairs with orthogonal profiles for 
phase disparity. After binocular combination, binocular energy is 
normalized by monocular energy. The phase disparity detector (FAR - 
NEAR) is similar to Fig. 4A including late-stage filters for integration 
over space and time (not shown in Fig. 7). The position disparity de
tector (TE), also including late-stage filters (not shown in Fig. 7), has a 
fusion mechanism to search for a position disparity that matches with 
stimulus disparity without using the Max operator. 

Sensory fusion occurs when the relative shift (u, the position 
disparity) of the paired filters equals the stimulus disparity (d). At the 

sensory-fused plane (u = d), the outputs of the paired filters with iden
tical profiles (TE) are aligned with each other locally, giving locally- 
fused 2D images, and their relative shift u gives depth perception (D), 
while the outputs of the paired filters with orthogonal profiles (NEAR 
and FAR) are uncorrelated (i.e., no phase disparity). However, when u is 
close, but not equal to d, the non-zero phase disparity energy shifts all 
pairs of paired filters simultaneously until u = d to align the two eyes 
images locally at depth D. At low stimulus contrast and/or short stimulus 
duration and/or large stimulus disparity, the fusion energy is not suffi
cient for perfect fusion, and the model uses the phase disparity energy to 
estimate the difference between stimulus disparity and position 
disparity, i.e., d – u, after fusion. This estimation is accurate if d – u is 
sufficient small but has an error at a large difference especially when d – 
u > 90 phase degree, at which diplopia or local blur might occur, and 
depth perception might decrease. The disparity decay in the depth- 
disparity function, assumed in the convention model (Fig. 5), can be 
explained by weak fusion energy at large stimulus disparities. In the 
model with the fusion mechanism (Fig. 7), the relative shift of the paired 
filters is transferred to position disparity energy by a depth-disparity 
power function, with a positive response for an uncrossed disparity 
and a negative response for a crossed disparity. Depth is perceived based 
on the combination of position and phase disparity energies after the 
fusion process. In general, phase disparity energy might have different 
coefficients for the fusion mechanism and depth perception. We include 
a model parameter ϕ to reflect this difference (Fig. 7). 

Sensory fusion has quite often been described as a coarse-to-fine 
process (Marr & Poggio, 1979): it occurs at a large scale first to 

Fig. 7. A depth model with first-order sensory fusion mechanism. The two eyes’ images first go through four pairs of luminance filters, two pairs (TE) for position 
disparity and two pairs (NEAR and FAR) for phase disparity. After binocular combination, the binocular energy is normalized by monocular energy. The phase 
disparity energy is assumed to shift the two eyes’ paired filters relatively until phase disparities is eliminated (sensory fusion). After sensory fusion, the combination 
of position and possible residual phase disparity energies is calculated for depth perception. The spatial-frequency modulation transfer function (sFMTF) is included 
to reflect the fact that the disparity energy varies with spatial frequency. The coefficient ϕ is included with phase-disparity energy for depth perception. Late-stage 
filters are not shown for simplicity. 
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coarsely align the two images, and then at a smaller scale(s) to achieve 
fine alignment. Sensory fusion transfers the phase disparity energy in the 
fixation plane to the position disparity energy in a depth plane at each 
location for local depth perception. However, we are not clear whether 
the disparity energy is conserved (the summation of phase and position 
disparity energies remains constant) during the sensory fusion process. 

5.7. A depth model with second-order sensory fusion mechanism 

Fig. 8 shows the depth model with a sensory fusion mechanism in a 
second-order pathway. Except for the DSKL contrast normalization and 
sensory fusion mechanism, the second-order position and phase 
disparity detectors are similar to the second-stage convergence model 
proposed by Tanaka & Ohzawa (2006) for explaining their physiological 
data, and the second-order energy model for binocular disparity in 
natural images (Hibbard et al., 2016). After going through the first-stage 
spatial-frequency filters, the two eyes’ images go through the DSKL 
circuit (Ding et al., 2013b) for contrast normalization before the 
binocular site. After rectification before the binocular site, the two eyes’ 
second-order signals (contrast modulations) pass through four pairs of 
second-stage filters, paired filters with identical spatial profiles (TE) for 
second-order position disparity and paired filters with orthogonal pro
files (NEAR and FAR) for second-order phase disparity. After binocular 
combination, the second-order phase disparity energy (FAR - NEAR) is 
first integrated over space and time through late-stage filters (Not shown 
in Fig. 8) and then drives sensory fusion of both first- and second-stage 
filters until the second-order phase disparity eliminated. In the fused 

second-order position disparity plane, both first- and second-stage 
paired filters have the same relative shift to the fixation plane. After 
the second-order sensory fusion, the combination of second-order po
sition and possible residual phase disparity energies is calculated for 
second-order depth perception, and the first-order pathway initiates 
first-order sensory fusion to align two eyes’ images at a smaller scale and 
to estimate the relative depth to the second-order depth plane. This is 
the typical coarse-to-fine process of sensory fusion. 

5.8. A depth model with motor fusion mechanism 

A large binocular disparity typically results in vergence eye move
ment to realign the two images to achieve binocular motor fusion. 
Generally speaking, multiple spatial-frequency channels are involved in 
motor fusion. However, for our RGP stereograms, the biggest driving 
force comes from a second-order spatial-frequency channel whose 
spatial wavelength is ~ 5–10 times the stimulus spatial wavelength 
(Ding & Levi 2020). The model structure is similar to the model with 
second- and first-order sensory fusion (Figs. 7 and 8) except that both 
second and first-order fusion energies drive vergence eye-movements to 
align the two eyes’ images globally. Unlike sensory fusion which follows 
a coarse-to-fine process for local fusion at different scales, motor fusion 
is a global process driven by total global fusion energy summed over 
space and time across spatial-frequency channels. 

Base on efficient coding and task learning of the joint development of 
stereo disparity perception and vergence eye movements, Zhao et al. 
(2012) developed a model that, through motor fusion, drives absolute 

Fig. 8. A second-order sensory fusion mechanism. After going through the first-stage spatial-frequency filters, the two eyes’ images go through the DSKL circuit for 
contrast normalization before the binocular site. After the rectification, the two eyes’ second-order signals (contrast modulations) go through four pairs of second- 
stage filters, two TE pairs for second-order position disparity and both NEAR and FAR pairs for second-order phase disparity. The second-order phase-disparity energy 
(FAR - NEAR) is assumed to shift both first- and second-stage filters relatively until the second-order phase disparity is eliminated (second-order sensory fusion). After 
second-order sensory fusion, the combination of second-order position and possible residual phase disparity energies is calculated for second-order depth perception, 
and the first-order pathway begins to align the two eyes images in a smaller scale and to estimate the relative depth to the second-order depth plane. The spatial- 
frequency modulation transfer function (sFMTF) is included to reflect the fact that the second-order disparity energy varies with spatial frequency. The coefficient ϕ is 
included with phase-disparity energy for depth perception. 
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disparity towards zero. Our fusion mechanism also seeks to reduce 
estimated absolute disparity to zero through motor fusion driven by 
fusion energy at all spatial-frequency scales. At a large disparity, outside 
of the half-cycle limit of a small scale, the fusion energy at a large scale is 
the main force for driving motor fusion. After the disparity is reduced to 
within the half-cycle limit, the fusion energy at both large and small 
scales drives motor fusion. After further reducing disparity, the phase 
disparity at the large scale becomes very small, and the fusion energy at 
the small scale becomes the main force driving the absolute disparity 
towards zero. 

Our Nonius alignment experiments showed that at least two path
ways (one second- and one first-order pathways) are involved with 
vergence eye movements when using RGP stereograms (Fig. 2) as stimuli 
(Ding & Levi 2020). In this study, because we did not have sufficient 
data to test this model (our stimulus duration is too short for motor 
vergence), we do not elaborate it in detail. 

5.9. Full model with sensory fusion mechanism 

Fig. 9 shows the full model with multiple scales and with either 

second- or first-order sensory fusion for each scale. For simplicity, model 
details (e.g., contrast normalizations) are not shown. The two eyes’ 
images first go through multiple scale spatial-frequency filters and then 
go through both phase and position disparity detectors on each scale. 
The large-scale (LS) phase disparity detector detects a LS misalignment 
(phase-disparity energy), which drives a sensory readout shift (a LS 
position disparity) of all scales’ filters relative to the fixation plane to 
reduce the LS misalignment. In other words, the output of a depth sensor 
is selected for readout from the fixation plane to the LS position disparity 
plane that is sampled by all scales’ filters. The medium-scale (MS) phase 
disparity detector (not shown in Fig. 9) detects a MS misalignment, 
which drives a sensory shift (a MS position disparity) of all filters with 
scales not larger than the MS, relative to the LS position-disparity plane 
to reduce the MS misalignment. In general, there are multiple medium 
scales, but here we only describe one of them. The small-scale (SS) phase 
disparity detector detects a SS misalignment, which drives a sensory 
shift (a SS position disparity) of the SS filters relative to the MS position- 
disparity plane to reduce the SS misalignment. After sensory fusion, at 
each scale, the position disparity energy is measured by the position 
disparity detector and combined with the residual phase disparity 

Fig. 9. Full model with sensory fusion mechanism. After going through spatial-frequency filters over multiple spatial scales, the two eyes’ images go through phase 
and position disparity detectors of all scales. The large-scale (LS) phase disparity detector detects a LS misalignment (phase-disparity energy), which drives a sensory 
shift (a LS position disparity) of all scales’ filters, relative to the fixation plane, to reduce the LS misalignment. The medium-scale (MS) phase disparity detector (not 
shown) detects a MS misalignment, which drives a sensory shift (a MS position disparity) of all filters with scales not larger than the MS, relative to the LS position- 
disparity plane, to reduce the MS misalignment. The small-scale (SS) phase disparity detector detects a SS misalignment, which drives a sensory shift (a SS position 
disparity) of the SS filters, relative to the MS position-disparity plane, to reduce the SS misalignment. Then, at each scale, the position disparity energy is measured by 
the position disparity detector and combined with the residual phase disparity energy for depth perception. The total disparity energy is a weighted summation across 
all scales. 
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energy for depth perception. The total disparity energy is a weighted 
summation across all scales. 

Although we described this process stage by stage, all detectors 
might work simultaneously. When images are presented to the two eyes 
in the fixation plane, the position disparity detectors at all scales detect 
zero position disparity and the phase disparity detectors at all scales 
output phase disparity energy for both depth perception and sensory 
fusion. At a large stimulus disparity (within half limit of LS sensory 
fusion, but out of half-limits of MS and SS sensory fusion), phase dis
parities might have different directions at different scales (i.e., their 
combination might give ambiguous depth perception), and only LS 
sensory fusion reduces the misalignment, by selectively shifting the 
signals for readout from sensors in the fixation plane to those in the LS 
position disparity plane where the MS and SS detectors continue the 
process of fusion and depth perception. Therefore, depth perception first 
appears ambiguous, then clear on a coarse scale and then on a fine scale, 
following a coarse-to-fine process. However, at a small stimulus 
disparity, the combined phase disparity energy of all scales might give a 
reliable depth perception before sensory fusion, and the SS sensory 
fusion might occur without the LS sensory shift. 

5.10. Full model with sensory fusion mechanism for RGP stereograms 

For simplicity, we developed the full model for RGP stereograms 

with a single scale for second-order sensory fusion (~4–8 times the 
stimulus spatial wavelength) and a single scale for first-order sensory 
fusion (with the same scale as the stimulus) to explain both Dmin and 
Dmax thresholds. In the following, we provide some of the formulae that 
we used in the modeling. Their derivations are described in Appendices 
A and B. For an RGP stereogram with stimulus disparity d (Eqs. (1) and 
(2)), based on CC simulation (Fig. 6C), the second-order fusion energy 
with DSKL contrast normalization mechanism is given by: 

F̂ ω2nd = hω2nd m̂L m̂Rsin
(ω

a
d
)

exp
(

−
|d|
τ2nd

)

+N (0, σN) (4)  

where ω is the stimulus spatial frequency, m̂L and m̂R are equivalent 
contrast (Eqs. B1-B5) after DSKL contrast normalization, and a is the 
spatial scale factor of first- and second-stage filters, and τ2nd is the 
disparity decay constant. Because of the decay of fusion energy, depth 
perception decreases at large stimulus disparities. The decay of second- 
order fusion energy gives a reasonable explanation for Dmax threshold. 

The second-order sensory shift uω2nd is given by Eq. (3) with A =
⃒
⃒
⃒
⃒F̂ ω2nd

⃒
⃒
⃒
⃒

q
. Here, we note that the fusion energy should go through a 

temporal filter to be integrated over time to calculate the fusion force A. 
However, because the stimulus duration was constant in this study, the 
effect of the temporal filter is assumed to be constant, which was also 
included in the coefficient hω2nd of the channel. 

The position disparity energy produced by the second-order sensory 
shift is given by: 

D̂ω2nd = kp
ω2nd

sign
(
uω2nd

)⃒
⃒uω2nd

⃒
⃒p m̂L m̂Rcos

(ω
a
(
d − uω2nd

) )
exp

(

−

⃒
⃒d − uω2nd

⃒
⃒

τ2nd

)

+N (0, σN) (5) 

After second-order sensory fusion, the second-order phase disparity 
energy for depth perception is given by: 

D̂
ϕ

ω2nd = ϕω2nd
hω2nd m̂L m̂Rsin

(ω
a
(
d − uω2nd

) )
exp

(

−

⃒
⃒d − uω2nd

⃒
⃒

τ2nd

)

+N (0, σN)

(6) 

and the first-order sensory fusion energy is given by: 

F̂ ω1st = hω1st

mLmR

Z2 +m2
L +m2

R
sin

(
ω
(
d − uω2nd

))
exp

(

−

⃒
⃒d − uω2nd

⃒
⃒

τ1st

)

+N (0,σN)

(7) 

and the sensory shift uω1st is given by Eq. (3) with A =
⃒
⃒F ω1st

⃒
⃒q. The 

position disparity energy produced by first-order sensory shift is given 
by: 

After first-order sensory fusion, the first-order phase disparity energy 
for depth perception is given by:  

The total fusion energy is given by: 

F̂ ω = F̂ ω2nd + F̂ ω1st +N (0, σN) (10) 

The total position disparity energy is given by: 

D̂ω = D̂ω2nd + D̂ω1st +N (0, σN) (11) 

The total disparity energy for depth perception is given by: 

D̂
tot

ω = D̂ω2nd + D̂
ϕ

ω2nd + D̂ω1st + D̂
ϕ

ω1st +N (0, σN) (12) 

For simplicity, we assume σN = 1. The threshold Dmax is defined as 

the disparity at which mean
(
F̂ ω

)
= σN = 1. The threshold Dmin is 

defined as the disparity at which mean
(

D̂
tot

ω

)
= σN = 1. 

6. Modeling 

6.1. F-test for comparison of nested models 

If Model a is nested within Model b, the F-test that tests whether 
Model b significantly improves data fitting is given by, 

Fa,b =

χ2(a)− χ2(b)
ν(a)− ν(b)

χ2(b)
ν(b)

(13) 

D̂ω1st = kp
ω1st

sign
(
uω1st

)⃒
⃒uω1st

⃒
⃒p mLmR

Z2 + m2
L + m2

R
cos

(
ω
(
d − uω2nd − uω1st

) )
exp

(

−

⃒
⃒d − uω2nd − uω1st

⃒
⃒

τ1st

)

+N (0, σN) (8)   

D̂
ϕ

ω1st = ϕω1st
hω1st

mLmR

Z2 + m2
L + m2

R
sin

(
ω
(
d − uω2nd − uω1st

) )
exp

(

−

⃒
⃒d − uω2nd − uω1st

⃒
⃒

τ1st

)

+N (0, σN) (9)   
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where χ2 is the residual sum of square in the least squares fitting and ν is 
the number of degrees of freedom. Eq. (13) compares the variance be
tween models a and b with the variance inside model b and has F dis
tribution with [ν(a) − ν(b), ν(b)] degree of freedom. When the F value is 
large enough, Model a can be rejected at a small false-rejection proba
bility p(F). 

6.2. The AIC for comparison of different models 

We used the Akaike Information Criterion (AIC), a measure of the 
relative goodness of fit of a statistical model developed by Akaike 
(1974), to compare different models. Let K be the number of estimated 
parameters in the model and LMax be the maximized value of the like
lihood function for the model, AIC is defined as AIC = 2K − 2lnLMax. 
Assuming that the errors are normally distributed and independent, 
after ignoring the constant term, AIC is given by 

AIC = Nln
(

χ2

N

)

+ 2K (14) 

where χ2 is the residual sum of square in the least squares fitting and 
N is the number of observed data points. To give a greater penalty for 
additional parameters, Burnham and Anderson (2002) recommended 
the AIC with a correction for finite sample sizes (AICc), which is given 
by, 

AICc = AIC+
2K(K + 1)
N − K − 1

(15) 

For the set of R models, the one with the lowest AICc score is most 
likely to be the best model of those considered. The relative likelihood of 
model i is proportional to exp( − 0.5Δi), where Δi is the AICc difference 
between model i and the best model (with the lowest AICc). Given the 
data and the set of R models, the relative likelihood or Akaike weight is 
given by (Burnham and Anderson, 2002): 

wi =
exp(− 0.5Δi)

∑R
r=1exp(− 0.5Δr)

(16) 

The AIC allows one to decide which model, of those considered in the 
analysis, is most likely to be the ’best’ one - meaning closest in 
information-theoretic terms to an unknown ’true’ model that is not (and 
could not be) in the set of models considered. Putting it another way, if 
none of the models is any good, picking the model with the lowest AICc 
will not identify a good model, and certainly not a ’correct’ one, just the 
least-worst model (thanks to an anonymous Reviewer). In summary, the 
chosen model is the one that minimizes the Kullback-Leibler distance 
between the model and the truth over the set of models considered 
(Burnham and Anderson, 2002). 

7. Experimental results 

The data in the subsequent figures were averaged across the two eyes 
and across the three observers. Fig. 10 illustrates the data in two 
different ways: (1) the Dmin threshold as a function of interocular 
contrast ratio at each base contrast (the higher contrast in the two eyes) 
(Fig. 10A), and (2) the Dmin threshold as a function of monocular 
contrast in one eye when the other eye’s contrast is fixed (colored curves 
in Fig. 10B), or as a function of binocular contrast when the two eyes 

have identical contrast (the thick black curve in Fig. 10B). The Dmin 
thresholds are specified either in phase degrees (Left y-axis) or in arcsecs 
(Right y-axis). A high degree of scale invariance can be observed across 
spatial-frequency channels. 

We found that, at a given base contrast (the higher contrast in the 
two eyes) in Fig. 10A, the best performance (the lowest threshold) oc
curs when two eyes have identical contrast, i.e., at contrast ratio = 1. 
Performance decreases when one eye’s contrast decreases and the other 
eye’s contrast is fixed (colored curves in Fig. 10B). More interestingly, 
performance also decreases when only one eye’s contrast increases, the 
stereo contrast paradox (Cormack, Stevenson & Landers, 1997, Halpern 
& Blake, 1988, Legge & Gu, 1989, Schor & Heckmann, 1989), as indi
cated by the black vertical dashed line in the top panel of Fig. 10B, where 
the best performance occurs when the two eyes’ contrasts are identical 
at 0.12 (the thick black circle), and decreases when only one eye’s 
contrast increases to 0.24 (blue square), and further decreases when that 
eye’s contrast further increases to 0.48 (cyan diamond), and to 0.96 (red 
cross). In Fig. 10B, all colored points (asymmetric contrast in the two 
eyes) were above (poorer performance) the thick black curve (identical 
contrast in the two eyes). The more asymmetric the two eye’s contrast 
levels, the poorer the performance. However, when stimulus contrast 
decreased binocularly (the thick black circles of Fig. 10B), performance 
first increased (threshold decreased) and then decreased slightly (top two 
panels at spatial frequencies of 1.5 and 3.0 cpd) or remained constant 
(bottom panel at spatial frequency of 6.0 cpd). This can be explained by 
the model with both first- and second-order fusion mechanisms (the 
thick black curves)(see model simulation Fig. 13D), although the EN 
contrast normalization in the first-order pathway predicts constant 
performance and the DSKL contrast normalization in the second-order 
pathway predicts monotonic decreasing performance when stimulus 
contrast decreased binocularly. 

Like the Dmin threshold, the Dmax thresholds are specified either in 
phase degrees (Left y-axis) or in arcsecs (Right y-axis) in Fig. 11. A high 
degree of scale invariance can be observed across spatial-frequency 
channels. At a given base contrast (Fig. 11A), the best Dmax perfor
mance (the highest Dmax threshold) occurs when two eyes’ contrast is 
identical, i.e., at contrast ratio = 1. Performance decreases (Dmax 
threshold decreases) when one eye’s contrast decreases, and the other 
eye’s contrast is fixed (colored curves in Fig. 11B). However, unlike the 
Dmin threshold, the Dmax performance monotonically decreases when 
the contrast decreases binocularly. This cannot be explained by the 
model with EN normalization mechanism (see Model fitting results). In 
Fig. 11B, colored points (asymmetric contrast in the two eyes) are either 
on both sides of, or overlapped with the thick black curve (identical 
contrast in the two eyes), i.e., the performance for asymmetric contrast 
in the two eyes is not always poorer than that for symmetric contrast in 
the two eyes; the stereo contrast paradox was not observed in Dmax 
thresholds. The model with DSKL interocular interactions before the 
binocular site provides the best fit to the Dmax threshold data (see 
Model fitting results). 

Please note that, when the spatial frequency was 6 cpd and the base 
contrast was 12% (Left bottom plot in Figs. 10 and 11), the data was 
reduced to only one point when the two eyes’ contrasts were identical, 
because the task was impossible for our participants at unequal-contrast 
conditions. The model prediction is indicated by a short horizontal green 
line. 
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Fig. 10. Results of the minimum disparity threshold (Dmin). A. The Dmin disparity threshold as a function of interocular contrast ratio when the base contrast was 
0.96 (red), 0.48 (cyan), 0.24 (blue), 0.12 (green), or 0.06 (magenta). B. The Dmin threshold as a function of one eye contrast when the other eye’s contrast was fixed 
at 96% (red), 48% (cyan), 24% (blue), 12% (green), or 6% (magenta). The thick black circles indicate the performance when the two eyes contrast was identical. The 
smooth curves are the best fit of the full model with both first- (Fig. 7) and second-order sensory (Fig. 8) fusion mechanisms. The thick black curves are the model 
prediction when the contrast was identical in the two eyes. The left y-axis is specified in phase-degrees, and the right y-axis in arcsecs. Error bars represent ± 1 
standard error. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 
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8. Model fitting results 

8.1. Phase- vs. Position disparity models for Dmin threshold 

The phase-disparity model with an EN mechanism (PhaEN) as shown 
in Eq. A11 has five parameters for three spatial-frequency channels: 
three coefficients hω of sFMTF, one energy-normalization threshold Z, 
and one disparity-decay constant τ. The full PhaEN model (PhaEN 3) can 
be simplified to be three nested models PhaEN 1–3. When the stimulus 
disparity is much smaller than the scale of the filter profile, the disparity 

exponential decay can be ignored and the model can be simplified to be 
one with four parameters (PhaEN 2): three coefficients hω of sFMTF and 
one energy-normalization threshold Z. The simplest one (PhaEN 1) only 
has three coefficients hω with Z = 0. 

Table 1 shows chi square values for model fitting and statistical 
comparisons of three nested phase-disparity models (PhaEN 1–3), in 
which a previous model is nested within its successor. The comparison of 
two neighboring models was made through an F-test with the F value 
given in the row of the second and subsequent models (F-test and its p- 
value are only shown for the average data). Adding an energy- 

Fig. 11. Results of the maximum disparity threshold (Dmax). A. The Dmax threshold as a function of interocular contrast ratio when the base contrast was 0.96 (red), 
0.48 (cyan), 0.24 (blue), 0.12 (green), or 0.06 (magenta). B. The Dmax threshold as a function of one eye contrast when the other eye’s contrast was fixed at 96% 
(red), 48% (cyan), 24% (blue), 12% (green), or 6% (magenta). The thick black circles indicate the performance when the two eyes contrast was identical. The smooth 
curves are the best fit of the full model with both first- (Fig. 7) and second-order sensory (Fig. 8) fusion mechanisms. The thick black curves are the model prediction 
when the contrast was identical in the two eyes. The left y-axis is specified in phase-degrees, and the right y-axis in arcsecs. Error bars represent ± 1 standard error. 
(For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 
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normalization threshold Z in the PhaEN 2 model achieved a significant 
improvement in data fitting; the PhaEN 1 model could be rejected with a 
very small (<0.001) probability of false rejection. However, because 
Dmin thresholds are much smaller than the filters’ profile scales, adding 
a disparity exponential decay (PhaEN 3) did not improve model fitting. 
AICc scores are also shown for the average data and the ‘best’ model is 
the one with the lowest AICc score. The Akaike weight (Aw), the relative 
likelihood of a model being the ’best’ one in a set of models considered, 
is given in the last column. The PhaEN 2 model is the best one with 
61.6% Akaike weight, and the Akaike weights of other two models are 
<22%. 

The position-disparity model with an energy normalization mecha
nism (PosEN) as shown in Eq. A13 has five parameters for three spatial- 
frequency channels: three coefficients kω of sFMTF, one energy- 
normalization threshold Z, and one power parameter p in depth- 
disparity power function. The full PosEN model (PosEN 3) can be 
simplified to be three nested models PosEN 1–3. Assuming a linear 
depth-disparity function, i.e., p = 1, the full model is simplified to be the 
PosEN 2 model. The simplest one (PosEN 1) has only three coefficients, 
kω with Z = 0 and p = 1. When stimulus disparity is sufficiently small, 
the phase-disparity model is almost equivalent to the position-disparity 
model with a linear depth-disparity function (p = 1), i.e., PhaEN 1 ≈
PosEN 1 and PhaEN 2 ≈ PosEN 2. However, as shown in Tables 1 and 2, 
the PosEN models provide much better fits than the PhaEN models, 
respectively. With a depth-disparity power function (p ≈ 2 for the best 
fit), the PosEN 3 model further significantly improves data fitting. 

Based on the modeling statistics, the position disparity model pro
vides a much better account for Dmin threshold than the phase disparity 
model; however in biological visual systems, phase disparity detectors 
play an important role in estimating stimulus disparity (DeAngelis, 
Ohzawa & Freeman, 1991, Ohzawa et al., 1990, Qian, 1994, Qian & 
Zhu, 1997, Sanger, 1988, Tsai & Victor, 2003). In the position disparity 
model (Fig. 4B), an ideal Max operator without any false matches is 
assumed, and the model has sufficient samples in position disparity 
space, while in a biological visual system, false matches often occur, and 
samples of position disparity are limited. A system with only position 
disparity detectors might have no paired filters with position disparity 
exactly matching a stimulus disparity, an interpolation has to be per
formed to estimate the stimulus disparity (Fleet et al., 1996). However, a 
system with only phase disparity detectors will make large errors or even 
fail to estimate large stimulus disparities (Fleet et al., 1996). A combi
nation of position and phase disparity detectors provide a continuous 
measurement of stimulus disparity, as proposed in Figs. 7 and 8. 

8.2. DSKL contrast normalization fails to predict Dmin threshold 

To test whether interocular interactions before the site of binocular 
combination can predict Dmin thresholds, we developed the position- 
disparity model with five nested DSKL contrast normalizations (see 
Appendix B), PosDSKL 1–5, as shown in Eq. A16. The modeling statistics 
are also shown in Table 2 comparing with PosEN 1–3. Because a depth 
model with DSKL predicts that the depth performance increases with 
stimulus contrast, it fails to predict Dmin thresholds that are basically 
constant while varying stimulus contrast. Based on AIC analysis, the 
PosEN 3 model is the best one with 100% Akaike weight. 

8.3. Testing DSKL contrast normalization for Dmax threshold 

Dmax thresholds depend on stimulus contrast, which can be 
explained by DSKL contrast normalization (Ding & Levi 2016a). Table 3 
shows statistical comparisons of five nested DSKL normalizations (see 
Appendix B) in the model with second-order phase-disparity energy for 
sensory fusion (Eq. (4): PhaDSKL 1–5), in which a previous model is 
nested within its successor. Without gain-control of gain-enhancement, 
i.e., β = 0, the PhaDSKL model 5 (the equivalent contrast in Eq. (4) is 
given by Eq. B5) is simplified to be the PhaDSKL model 4 (the equivalent 

contrast is given by Eq. B4), and without gain-enhancement, i.e., the 
gain-enhancement threshold ge = ∞, the PhaDSKL model 4 is further 
simplified to be the PhaDSKL model 3 (the equivalent contrast is given 
by Eq. B3). When the double gain-controls are symmetric, i.e., α = 1, the 
PhaDSKL model 3 is simplified to be the PhaDSKL model 2 (the equiv
alent contrast is given by Eq. B2), and when the gain-control threshold 
gc = 0, the PhaDSKL model 2 is further simplified to be the PhaDSKL 
model 1 (the equivalent contrast is given by Eq. B1). The comparison of 
two neighboring models was made through an F-test with the F value 
given in the row of the second and subsequent models (F-test and its p- 
value are only shown for the average data). Except for the PhaDSKL 1 
model, the other four models fit the Dmax threshold very well. Based on 
AIC analysis, the best one is the PhaDSKL 3 model without interocular 
enhancement. However, based on chi-square analysis, adding inter
ocular enhancement in the PhaDSKL 5 model significantly improved 
model fitting. 

8.4. Energy normalization fails to predict Dmax threshold 

To test whether the energy normalization (EN) can predict Dmax 
thresholds, we developed the model for the second-order phase- 
disparity energy with energy normalization. As shown in Table 3, energy 
normalization fails to explain Dmax thresholds with 0.00% Akaike 
weight; it does not predict contrast dependent Dmax thresholds. 

8.5. Testing the full model for both Dmin and Dmax thresholds 

Based on the statistical analysis of modeling of Dmin and Dmax 
thresholds separately (above), we developed the full model (Eqs. 10–12) 
with one second- and one first-order pathway for each spatial-frequency 
band. In the second-order pathway with DSKL (Fig. 8), the second-order 
fusion energy drives second-order sensory fusion and the depth 
perception is based on the combination of second-order position and 
phase disparity energies. In the first-order pathway with EN (Fig. 7), the 
first-order fusion energy drives first-order sensory fusion at each loca
tion where the combination of first-order position and phase disparity 
energies is calculated for its relative local depth to the second-order 
depth plane. The total fusion energy (Eq. (10)) determines the 
maximum disparity threshold Dmax, and the total disparity energy (Eq. 
(12)), the combination of position and phase disparity energies, de
termines the minimum disparity threshold Dmin. However, to simplify 
modeling, we assumed unlimited samples in the position disparity space, 
i.e., there exist paired filters with position disparities exactly matching 
the sensory fusion shift. With almost-perfect sensory fusion at small 
disparities (near Dmin threshold), the model’s depth estimate depends 
mainly on position disparity. Indeed, our modeling shows that including 
phase disparity energy for Dmin thresholds did not improve fitting 
performance significantly. Therefore, we used the total position 
disparity energy (Eq. (11)) in the full model to explain Dmin thresholds. 
We note that, in a biological visual system with limited disparity sam
ples, phase disparity energy might play an important role in depth 
perception. 

Tables 4a and 4b shows the best parameters of the full model for 
three spatial-frequency bands (1.5, 3, and 6 cpd). For each spatial fre
quency band, the full model has a total of 14 parameters. The second- 
order phase-disparity detector for second-order sensory fusion has 9 
parameters: 5 DSKL parameters (gc, α, γ, ge/gc, β) + 1 second-to-first- 
order scale factor (a) + 1 coefficient of sFMTF (h2nd) + 1 disparity decay 
constant (τ) + 1 power parameter for sensory fusion (q). The second- 
order position-disparity detector has 9 parameters: 7 parameters 
shared with the second-order phase-disparity detector (5 DSKL param
eters + 1 second-to-first-order scale factor + 1 disparity decay constant) 
+ 1 coefficient of sFMTF (k2nd) + 1 disparity power parameter (p). The 
first-order phase-disparity detector for first-order sensory fusion has 4 
parameters: 2 parameter shared with the second-order pathway 
(disparity decay constant τ and power parameter for sensory fusion q) +
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1 energy-normalization threshold (Z) + 1 coefficient of sFMTF (h1st). The 
first-order position-disparity detector has 4 parameters: 2 parameters 
shared with the second-order pathway (disparity decay constant τ and 
disparity power parameter p) + 1 parameter shared with the first-order 
phase detector (energy-normalization threshold Z) + 1 coefficient of 
sFMTF (k1st). Adding one more spatial-frequency band, the model only 
needs extra coefficients for sFMTF and a second-to-first-order scale 
factor (a) for that band. All other parameters are shared across the 
spatial-frequency bands. For three spatial-frequency bands, the full 
model has 20 parameters. 

Similar to Table 3, Table 5 shows the model fitting statistics for five- 
nested DSKL contrast normalizations in the second-order pathway of the 
full model (FulMod 1–5). The first-order pathway always uses EN2 
contrast normalization. Again, we found, based on AIC analysis, the best 
fitting model is the full model with DSKL 3 (FulMod 3) without inter
ocular enhancement. However, based on chi-square analysis, adding 
interocular enhancement in FulMod 5 significantly improved the model 
fitting. 

In the full model, we used fusion energy to predict Dmax, and po
sition disparity energy to predict Dmin. However, the other combina
tions cannot be excluded without further tests. Therefore, we tested all 
four combinations with DSKL 3: (1) fusion energy for both Dmin and 
Dmax (fusDmin-fusDmax); (2) position disparity energy for both Dmin 
and Dmax (posDmin-posDmax); (3) fusion energy for Dmin and position 
disparity for Dmax (fusDmin-posDmax); (4) fusion energy for Dmax and 
position disparity energy for Dmin (FulMod 3: posDmin-fusDmax). To 
test phase disparity energy for model depth perception, we also tested 
(5) total disparity energy (Eq. (12)) for both Dmin and Dmax (totDmin- 
totDmax); and (6) fusion energy for Dmax and total disparity energy (Eq. 
(12)) for Dmin (totDmin-fusDmax). Table 6 also shows modeling sta
tistics for a conventional model (ModMax) with a Max operator (Fig. 5). 

The best fit is given by the combination of posDmin-fusDmax that is 
included in the full model (72.1% Akaike weight). Including phase 
disparity energy for depth perception, the model totDmin-fusDmax 
failed to improve fitting significantly (27.9% Akaike weight). Howev
er, including phase disparity energy, the model totDmin-totDmax 
significantly improves fitting if comparing with the model posDmin- 
posDmax. The other combinations and the conventional model of 
Fig. 5 have a 0.0% Akaike weight. Most likely, the Dmin threshold re
flects the disparity detection limitation while the Dmax threshold is due 
to a binocular fusion limit. 

9. Discussion 

We have formulated and tested a new model that provides a unified 
explanation of binocular fusion and depth perception. In this model, a 
binocular fusion mechanism reduces intereocular misalignment by 
shifting the input images to depth sensors (motor fusion) and/or by 
selecting to read out the output of depth sensors that are shifted along 
the position disparity dimension (Fig. 1) toward the images (sensory 
fusion), while a depth perception mechanism evaluates depth percep
tion based on position disparity and possibly residual phase disparity in 
a fused plane for a single image or in an unfused plane for a diplopic 
image. 

9.1. Postion and phase disparities 

In the physiological literature, there is clear evidence that both phase 
and position disparity neurons are present in cortical area V1 (DeAngelis 
et al., 1991, Ohzawa et al., 1990). Read & Cumming (2007) asked: “Why 
does the brain devote computational resources to encoding disparity 
twice over, once through position and once through phase?” Indeed, a 

Table 1 
Phase-disparity models with EN for Dmin.   

Np  N  KD LJ JW Average 
χ2  χ2/ν  χ2  χ2/ν  χ2  χ2/ν  χ2  χ2/ν  F-test p(F) AICc Aw 

PhaEN 1 3 49  97.1  1.87  187.1  3.40  183.4  3.53  200.2  4.09    78.9  21.6% 
PhaEN 2 4 48  84.1  1.65  182.7  3.38  172.6  3.38  183.3  3.82 4.43 0.000  76.8  61.6% 
PhaEN 3 5 47  84.1  1.68  182.7  3.45  172.6  3.45  183.3  3.90 0 1  79.4  16.8% 

AICc: Akaike Information Criterion with a correction; Aw: Akaike weight 

Table 2 
Position-disparity models with EN or DSKL for Dmin.   

Np  N  KD LJ JW Average 
χ2  χ2/ν  χ2  χ2/ν  χ2  χ2/ν  χ2  χ2/ν  F-test p(F) AICc Aw 

PosEN 1 3 49  81.1  1.56  140.7  2.56  172.7  3.32  163.2  3.33    68.3 0.00% 
PosEN 2 4 48  72.1  1.41  137.6  2.55  165.0  3.24  153.1  3.19 3.17 0.000  67.5 0.00% 
PosEN 3 5 47  47.3  0.95  71.6  1.35  121.4  2.43  74.3  1.58 49.8 0.000  32.4 100% 
PosDSKL 1 5 47  176.5  3.53  309.1  5.83  281.9  5.64  538.5  11.5    135.4 0.00% 
PosDSKL 2 6 46  87.6  1.79  136.8  2.63  183.8  3.75  257.2  5.59 50.3 0.000  99.7 0.00% 
PosDSKL 3 7 45  55.1  1.15  89.0  1.74  89.1  1.86  102.5  2.28 67.9 0.000  54.6 0.00% 
PosDSKL 4 8 44  55.1  1.17  89.0  1.78  88.4  1.88  102.5  2.33 0 1  57.6 0.00% 
PosDSKL 5 9 43  52.5  1.14  89.0  1.82  88.4  1.92  102.5  2.38 0 1  60.7 0.00% 

AICc: Akaike Information Criterion with a correction; Aw: Akaike weight 

Table 3 
Phase-disparity models with DSKL or EN for Dmax.   

Np  ν  KD LJ JW Average 

χ2  χ2/ν  χ2  χ2/ν  χ2  χ2/ν  χ2  χ2/ν  F-test p(F) AICc Aw 

PhaDSKL 1 8 44  114.8  2.44  975.2  19.5  866.9  18.4  690.8  15.7    156.8  0.00% 

PhaDSKL 2 9 43  87.5  1.90  148.8  3.04  99.6  2.16  78.9  1.84 333.5 0.000  47.1  34.3% 

PhaDSKL 3 10 42  79.6  1.77  147.0  3.06  99.4  2.21  73.7  1.75 2.96 0.000  46.7  41.9% 

PhaDSKL 4 11 41  78.9  1.79  145.7  3.10  99.4  2.26  73.7  1.80 0 1  50.1  7.6% 

PhaDSKL 5 12 40  78.3  1.82  141.0  3.06  93.6  2.18  66.8  1.67 0 0.01  48.6  16.2% 

PhaEN 1 7 45  602.0  12.5  718.0  14.1  658.3  13.7  581.2  12.9    144.7  0.00% 

PhaEN 2 8 44  315.1  6.70  352.5  7.05  313.2  6.66  326.3  7.42 33.6 0.000  117.8  0.00%  
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pure phase detector can estimate stimulus disparity within a half-cycle 
limit in one spatial-frequency band (Qian, 1994, Qian & Zhu, 1997, 
Sanger, 1988), and combined pure phase detectors at multiple scales can 
estimate disparity over a large disparity range (Sanger, 1988, Tsai & 
Victor, 2003). However, because the outputs of paired filters with phase 
disparity are not aligned with each other, it is not clear how to align 2D 
images for the system with pure phase disparity detectors. On the other 
hand, pure position disparity detectors can also estimate stimulus dis
parities over a large disparity range (e.g., Fig. 5) (Fleet et al., 1996) if the 
correspondence problem is already solved. Obviously, the brain uses two 
coding systems for 3D perception (Fleet et al., 1996), but it is unclear 
how they work together. Based on optimal information encoding, 
Goncalves and Welchman (2017) found that hybrid encoding of com
bined phase and position shifts conveys more information than either 
pure phase or position encoding. Although their individual model units 
are not specialized to identify the same feature in the two images, the 
aggregate readout activity classifies depth with high accuracy. However, 
it is not clear how their model evaluates the reduced depth perception 
systematically and predicts the Dmax threshold when the stimulus 
disparity increases beyond the point where their model loses its ability 
to give an accurate measurement. Although this does not imply that 
their model could not be modified to account for Dmax threshold, 
currently, there is no unified theory to account for both Dmin and Dmax 
thresholds for the present study. Unlike exploiting dissimilar features to 

provide evidence against unlikely interpretations (Goncalves & Welch
man, 2017), we used a different strategy with a sensory fusion mecha
nism to reduce interocular misalignment (or dissimilar features), which 
systematically evaluates the reduced depth perception of diplopic im
ages (see Figs. 13 and 14) and successfully predicts our Dmax threshold 
data. We proposed two separate mechanisms based on two coding sys
tems, one measuring misalignment, an offset of monocular outputs, for 
binocular fusion and the other measuring disparity, an offset of 
monocular inputs, for depth perception. 

In order to achieve a sharp 3D view, we proposed a model with 
hybrid neurons (Fleet et al., 1996) with both preferred position and 
phase disparities (Fig. 1). In a position disparity plane (TE, NEAR, FAR, 
and TI neurons with the same position disparity), if phase-disparity 
detectors (NEAR, FAR, or TI neurons) have positive outputs (misalign
ment), the system selects local depth sensors shifted along position 
disparity space to reduce the misalignment until it becomes less than a 
threshold, which transfers the phase disparity to position disparity. In a 
fused plane with a fused position disparity, the 2D perception is based on 
the outputs of paired filters with 0 phase disparity (TE) and the depth 
perception is based on the fused position disparity and possible residual 
phase disparity in the fused plane. If fusion energy is not sufficient at low 
stimulus contrast and/or at large stimulus disparity, fusion might not be 
completely accomplished and halts in an unfused plane, in which the 2D 
outputs of any paired filters are misaligned resulting in a local blurred 

Table 4a 
Full model parameters.  

EN DSKL Scale factor Decay Fusion 
power 

Disp power 

Z gc  α  γ  ge/gc  β  a1  a2  a3  τ/λ  q  p  

0.053 ±
0.007 

0.123 ±
0.007 

0.575 ±
0.070 

2.443 ±
0.148 

3.550 ±
1.229 

1.816 ±
0.742 

4.729 ±
0.367 

5.473 ±
0.426 

6.524 ±
0.613 

0.221 ±
0.046 

0.745 ±
0.243 

1.881 ±
0.242 

λ: wavelength of Gabor patches (=600, 1200, or 2400 arcsecs). 

Table 4b 
Coefficients of sFMTF in the full model.  

First-order sensory fusion energy First-order position-disparity energy Second-order pathway 

h1st1  h1st2  h1st3  k1st1  k1st2  k1st3  h2nd/h1st  k2nd/k1st  

26.13 ± 12.29 27.20 ± 12.53 18.74 ± 8.90 0.040 ± 0.012 0.079 ± 0.025 0.090 ± 0.028 42.77 ± 14.74 1.54 ± 0.74 

sFMTF: spatial-frequency modulation transfer function. Standard errors of model parameters are also given. 

Table 5 
Test five nested DSKLs in the second-order pathway of the full model.   

Np  ν  KD LJ JW Average 

χ2  χ2/ν  χ2  χ2/ν  χ2  χ2/ν  χ2  χ2/ν  F-test p(F) AICc Aw 

FulMod 1 16 88  271.9  2.89  174.8  1.75  305.9  3.25  178.2  2.02    97.1  0.0% 
FulMod 2 17 87  165.9  1.78  174.8  1.77  208.5  2.24  146.5  1.68  18.8 0.000  79.7  0.0% 
FulMod 3 18 86  115.7  1.26  174.8  1.78  208.5  2.27  110.7  1.29  27.8 0.000  53.5  57.3% 
FulMod 4 19 85  114.0  1.25  174.8  1.80  208.5  2.29  110.6  1.30  0.077 1  56.5  12.8% 
FulMod 5 20 84  93.1  1.03  174.6  1.82  191.1  2.12  105.5  1.26  2.07 0.000  54.8  29.9%  

Table 6 
Test four combinations of phase and position disparity energies for Dmin and Dmax.   

Np  ν  KD LJ JW Average 

χ2  χ2/ν  χ2  χ2/ν  χ2  χ2/ν  χ2  χ2/ν  F-test p(F) AICc Aw 

ModMax 13 91  266.3  2.75  253.8  2.46  216.4  2.23  198.1  2.18    99.8  0.0% 
fusDmin-fusDmax 13 91  273.4  2.82  386.5  3.75  400.1  4.13  365.0  4.01    163.3  0.0% 
fusDmin-posDmax 18 86  746.8  8.12  925.2  9.44  353.4  3.84  777.9  9.05    256.3  0.0% 
posDmin-posDmax 18 86  363.4  3.95  168.5  1.72  208.8  2.27  158.4  1.84    90.8  0.0% 
totDmin-totDmax 19 85  150.6  1.65  166.7  1.72  172.0  1.89  129.9  1.53  18.6  0.000  73.2  0.0% 
posDmin-fusDmax (FulMod 3) 18 86  115.7  1.26  174.8  1.78  208.5  2.27  110.7  1.29    53.5  72.1% 
totDmin-fusDmax 19 85  104.7  1.15  172.7  1.78  164.8  1.81  109.4  1.29  1.01  0.48  55.4  27.9%  
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binocular view or even diplopia, and depth perception is based on the 
unfused position disparity and the phase disparity in the unfused plane. 

9.2. Possible roles for binocular difference channels in depth perception 

Although binocular difference channels have been studied previ
ously (Cohn & Lasley, 1976, Georgeson et al., 2016, Kingdom et al., 
2018, May et al., 2012), their role in binocular vision is still unclear. Li 
and Atick (1994) proposed a depth perception theory that encoded both 
the sum and the difference of the two eyes images for stereovision, in 
order to increase coding efficiency. May et al (2012) provided 
convincing evidence for the existence of binocular difference channels in 
human vison to support the theory. Here, we argue that binocular dif
ference channels might also play a role in binocular fusion, acting as 
180-degree phase disparity detectors to compute interocular misalign
ment and provide fusion energy when phase disparity > 90 or < -90◦. 
The combination of three phase disparity detectors of 90, − 90 and 
180◦is able to detect any misalignment and make binocular fusion in the 
range of − 180 ~ 180 phase degrees at a given spatial scale. 

9.3. Local cross-correlation model 

The local cross-correlation model has been proposed to explain both 
the disparity-gradient limit and the stereo-resolution limit (Allenmark & 
Read, 2010, Banks, Gepshtein & Landy, 2004, Filippini & Banks, 2009). 
The model is closely based on the known physiology and is able to 
explain important aspects of human stereo depth perception. The model 
consists of a local Gaussian window for cross-correlation, with its central 
position shifted in the visual space. The stimulus disparity is estimated 
either by a Max operator, searching for the maximum correlation across 
all horizontal window positions, or by a template matching process 
(Allenmark & Read, 2010). Because V1 receptive fields appear to prefer 
uniform disparity (Nienborg, Bridge, Parker & Cumming, 2004), the 
model assumes constant disparity measurement within the window, 
which makes the window size a limit for both disparity-gradient and 
stereo-resolution (Allenmark & Read, 2010, Filippini & Banks, 2009). 
However, although the model predicts important differences in the 
ability to detect disparity gratings with square-wave vs. sine-wave 
profiles, there seems to be little or no difference between the detect
ability of square- and sine-wave disparity gratings for human subjects 
(Allenmark & Read, 2010). In particular, the model can detect square- 
wave gratings up to much higher disparity amplitudes than sine-wave 
gratings, which is not consistent with human data (Allenmark & Read, 
2010). 

This local cross-correlation model is similar to our model in Fig. 5, 
except without disparity-decay at large disparities. If one considers the 
RGP stereogram (Fig. 2) used in our experiment to be a square-wave 
disparity grating with 0 spatial frequency, installing a disparity-decay 
function (Fig. 5) prevents the system from detecting much higher 
disparity amplitudes than our experimental data, and therefore provides 
a reasonable explanation for Dmax thresholds. Our sensory fusion 
mechanism provides a satisfactory explanation of this disparity-decay at 
large stimulus disparities (See Fig. 13). 

9.4. Binocular sensory fusion is a solution for the correspondence problem 

To solve the binocular correspondence problem, traditional models 
typically sample multiple points in disparity space, and select the one 
with the maximum binocular energy to estimate stimulus disparity for 
depth perception (Filippini & Banks, 2009, Fleet et al., 1996). However, 
the stimulus disparity may not agree exactly with the preferred disparity 
of any one neuron in the population. Interpolation between the samples 
must be performed to find the peak in the binocular energy function 
(Fleet et al., 1996), which requires sufficient disparity samples over a 
large range. However, studies of awake, behaving monkeys found that 
disparities near zero were most densely represented, and seldom found 

preferred disparities>12′ (crossed or uncrossed) for eccentricities within 
2 degrees of the fovea (Poggio & Fischer, 1977). 

In this study, we proposed binocular fusion mechanisms to solve the 
correspondence problem. Unlike a traditional matching process (Fili
ppini & Banks, 2009, Fleet et al., 1996, Julesz, 1971, Marr & Poggio, 
1979), which uses feature matches or maximum correlation to search for 
corresponding inputs, our fusion mechanism uses a negative feedback 
loop to reduce the two eyes’ misalignments. Correct matches are the 
outcome of perfect fusion. When the matching process fails, it is difficult 
to evaluate the reduced depth perception of mismatched inputs, and we 
assumed a depth disparity-decay function (Fig. 5) to explain the reduced 
depth perception. With a fusion mechanism, however, even when fusion 
fails, the reduced depth perception of unfused inputs (diplopic images) 
can be evaluated by the model (e.g., Figs. 7 and 8). 

Fig. 12 shows a possible diagramatic conceptual scheme (not 
generated by a model) for binocular fusion and depth perception under a 
coarse-to-fine process (Marr & Poggio, 1979), using a depth surface with 
multiple fronto-parrallel depth planes (0th-order depth planes), i.e., 
local stimulus disparity remains constant in the surface. The X-axis 
represents horizontal binocular disparity and the Y-axis represents the 
vertical dimension. A target depth surface (indicated by bold black lines) 
is presented in front of a fixation point (black cross) (Fig. 12A). Around 
the fixation point, the disparity space is sampled at large (magenta box), 
middle (blue box) and small (red bars) scales (not all samples are 
shown). At each scale, one position (0 phase disparity) and three phase 
disparity energies of 90, − 90 and ± 180◦are calculated at each position 
disparity. The central magenta box represents four pairs of vertical 
frequency filters with 0, 90, ±180, and − 90 phase disparities (overlaid 
with each other). At a large scale (LS), one pair of filters with identical 
phases (idLS paired filters) computes position disparity energy and the 
other three, with misaligned phases (misLS paired filters), calculate 
phase disparity energy. Similarly, one blue box represents four pairs of 
filters at middle scale (MS), and one vertical red bar represents four pairs 
of filters at a small scale (SS). 

Positive phase-disparity energy drives either motor or sensory shifts 
(see Fig. 1) to reduce its amount until it is eliminated. Perfect fusion is 
achieved when no positive phase-disparity energy is detected. In Fig. 12, 
the stimulus disparity is labled with MS phase degrees. The positive LS 
phase disparity energies (motor-fusion energy) drive vergence eye 
movements to align the two eyes images globally. After motor fusion 
(Fig. 12B), the target surface is shifted by vergence to the place without 
LS phase disparity, i.e, achieving global alignment of the target surface, 
at which the idLS paired filters have identical outputs and reach the 
maximum interocular correlation. The vergence motor shift uM de
termines the global depth of the target surface relative to the fixation 
point. However, at middle and small scales, the target surface is still 
misaligned locally. We postulated a sensory fusion mechanism (see 
Fig. 1) to selectively read out depth sensors in the two eyes’ that are 
locally aligned with the input images. In Fig. 12B, the MS phase disparty 
energies (calculated by the central misMS paired filters) shifts the 
readout to MS paired filters that are relatively aligned with the input 
depth surface. After MS sensory fusion (Fig. 12C), the readout of central 
MS paired filters is shifted to the positions where the idMS paired filters 
have identical outputs and reach the maximum interocular correlation. 
The MS sensory readout shifts calculate the MS local depth relative to 
the global depth. After MS sensory fusion at the middle scale (Fig. 12C), 
some locations of the depth surface are already aligned in the two eyes at 
a small scale (no positive SS phase-disparity energy is detected at these 
locations) (indicated by bold red bars), and others are still mis-aligned 
(indicated by thin red bars) and need further sensory fusion at a small 
scale. After SS sensory fusion, the two eyes images are perfectly aligned 
at all three spatial scales (Fig. 12D). The SS sensory readout shifts 
compute the SS depth relative to the MS depth surface. At each location, 
the apparent depth is a weighted summation of a motor shift, sensory 
readout shifts and possible residual phase disparity if fusion is not per
fect. The weights depend on stimulus contrast and spatial frequency. 
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9.5. Does false matching play a role in Dmax thresholds? 

If Dmax depends on the probability of false matches, the limit would 
be near half of the mean distance between pattern elements (e.g., Gabor 
patches or dots) (Eagle & Rogers, 1996, Morgan, 1992), at which the 
false-matching probability reaches 50%. However, most of our Dmax 
data (Fig. 11) are above this half mean distance limit (=420 Gabor phase 
degrees in a RGP stereogram as shown in Fig. 2). At high contrast, the 
Dmax thresholds are even greater than the mean distance (=840 Gabor 
phase degrees). Obviously, in the present study, the false matching of 
neighboring patches does not play a role in Dmax thresholds, because 
the fine detail spacing is removed by the second-order spatial filter with 
a larger scale (wavelength = 1703 ~ 2347 Gabor phase degrees, i.e., the 
scale factor a = 4.73 ~ 6.52, see Tables 4a and b) than the mean dis
tance. In previous studies on the maximum spatial displacement 

detectable (Dmax) for random-dot kinematograms (Eagle & Rogers, 
1996, Eagle & Rogers, 1997, Morgan, 1992), the Dmax remains rela
tively constant when the mean distance increases up to the scale of a 
spatial-frequency filter, and further increasing the mean distance 
beyond the filter’s spatial scale, the Dmax increases with the mean 
distance – suggesting possible false matching of neighbor elements. 
Based on the fusion mechanism, the present study revealed that the 
weighted summation of the half-cycles of second- and first-order filters 
is the limit for depth perception, and the weights (≤1) depends on both 
stimulus spatial frequency and contrast. It may be informative to test the 
model at a mean distance larger than the scale of the second-order filter 
to see if false matching might play a role in Dmax thresholds at such 
large mean distances. 

Fig. 12. A diagramatic schema for binocular fusion mechanisms with a multiple fronto-parrallel depth surface (0th-order depth plane). (A) A depth surface 
(indicated by bold black lines) is presented in the front of a fixation point (black cross). The X-axis represents depth or horizontal binocular disparity, and the Y-axis 
represents the vertical dimension. Around the fixation point, the disparity is sampled at large (magenta box), middle (blue box) and small (red bars) scales (not all 
samples are shown). The X-axis is labled in phase degrees at the middle scale. (B) The LS (large-scale) phase disparity energy drives vergence eye movements to shift 
the depth surface to the position without global disparity, i.e., to align the two eyes images globally. (C) The MS (middle-scale) phase disparity energy drives MS 
sensory fusion to shift the readout to MS paired filters (bold blue boxes) that are relatively aligned with the depth surface at the middle scale. (D) The SS (small-scale) 
phase disparity energy drives SS sensory fusion for any possible SS misalignments. (For interpretation of the references to colour in this figure legend, the reader is 
referred to the web version of this article.) 
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9.6. Does the brain need a sensory fusion mechanism for depth 
perception? 

One might ask why a visual system needs a sensory fusion mecha
nism for depth perception if it is able to measure a stimulus disparity 
without considering fusion. Indeed, as far as we know, computer vision 
models of disparity estimation are seldom concerned with the issue of 
fusion - disparity is measured directly and assigned to the image. 
However, a model in which disparity is measured and assigned to the 
image may not be able to predict the systematic reduction in depth 
perception when the disparity increases beyond the point where the 
model loses its ability to estimate disparity accurately, and therefore 
cannot predict the Dmax threshold. While a computer model might not 
need such a mechanism because one can always increase its measurable 
range of disparity by increasing its computational resource, given the
limited computational and energic resources of the brain, humans need 
such a mechanism to provide continuous depth perception when the 
disparity increases from Dmin to Dmax. 

The present study proposes a depth model with sensory fusion 
mechanism for the brain to evaluate the reduced depth perception of 
diplopic images systematically, which successfully predicts our Dmax 
threshold data. This model provides a unified explanation of depth 
perception, either perfect or reduced, over the entire range of disparities 
from Dmin to Dmax (see Figs. 13 and 14), no matter whether the image 
appears single (aligned) or diplopic (misaligned). 

9.7. Disparity upper limit for perfect sensory fusion 

Please note that the sensory fusion mechanism proposed in the pre
sent study operates over the entire range of stimulus disparities from 
Dmin to Dmax, to reduce or eliminate misalignment, even when sensory 
fusion fails at the disparity upper limit (<Dmax) and diplopia appears. 
In one spatial frequency channel, when disparity ≤ 90 phase degree, 
both fusion energy (phase disparity energy) and misalignment increase 
with disparity; perfect fusion is able to maintain. However, when 
disparity > 90◦, further increasing disparity, the fusion energy decreases 
while misalignment increases; the reduced fusion energy is not sufficient 
to realign the increased misalignment, resulting in failure of fusion 
(diplopia). This is a correct prediction of the upper limit for sensory 
fusion that has a constant phase disparity limit of 90◦ (Schor et al., 
1984). Although the fusion fails with diplopia when disparity > 90◦, 
depth perception and partial sensory fusion persist until disparity =
180◦, which determines the upper depth limit, Dmax, in a single spatial 
frequency channel. Although the fusion mechanism can explain both 
Dmax and the upper limit for fusion, they represent two different 
measures. Dmax is the disparity at which depth perception collapses. At 
Dmax the fusion energy is just beyond the noise level required to give a 
fusion direction, no matter whether fusion is actually achieved. The 
fusion upper limit is determined at a suprathreshold level, well beyond 
the noise level, at which the fusion energy is insufficient to maintain 
perfect fusion, but still provides a clear fusion direction and possibly 
achieves a partial fusion. Typically, the second-order pathway can 
further increase the Dmax as shown in the present study, but we are not 
clear if it can also increase the fusion upper limit. Previous work also 
showed that depth thresholds and the upper limit for fusion have 
different contrast dependences (Schor & Heckmann, 1989). Currently, 
we have only tested the unified model with depth thresholds. Testing the 
model with fusion upper limits is beyond the scope of the current study. 

9.8. Depth gradients 

As demonstrated in Fig. 12, our model provides a unified account of 
binocular fusion and depth perception of 0th depth order. Although 
further development is needed to explain depth gradients (first depth 
order) and depth curvatures (second depth order), the current model 
might be able to provide an approximate explanation of depth gradients 

or depth curvatures with a small number of steps in 0th depth order, for 
example, with two steps for a gradient and three steps for a curvature 
(Orban, Janssen & Vogels, 2006). Two steps of 0th depth order can 
explain the maximum limit of depth gradient, as follows: In one spatial- 
frequency band, because a sensory shift between two adjacent depth 
planes has a half-cycle limit (see Fig. 6A), the maximum depth gradient 
depends on the sampling rate in the 2D xy-plane. Taking two samples 
per cycle in the 2D xy-plane, i.e., the minimum sampling rate (Nyquist 
rate) that satisfies the Nyquist sampling criterion, the model predicts the 
maximum depth gradient is 1, consistent with previous studies using 
dots (Burt & Julesz, 1980) or vertical lines (Tyler, 1975) as stimuli. The 
model’s interpretation of the maximum depth gradient is similar to the 
original explanation in Tyler (1975); it reflects a size-disparity correla
tion (Smallman & MacLeod, 1994) within a sensory fusion mechanism. 
Based on the explanation by McKee and Verghese (2002), here is our 
version with a fusion mechanism. For two adjacent dots differing greatly 
in disparity, a fine scale disparity mechanism can resolve the pair in the 
2D xy-plane, but sensory fusion fails to reduce the misalignment for a 
large disparity that lies beyond its half-cycle limit. A coarse scale can 
bring about sensory fusion to achieve perfect alignment for the large 
disparities of widely separated dots but may fail to resolve the pair in the 
2D xy-plane if they are too close together. Thus, there exists a suitable 
scale that can resolve the pair in the both 2D xy-plane and the third 
disparity dimension. However, McKee and Verghese (2002) used psy
chophysical measurements of stereo transparency to show that human 
stereo matching is not constrained by a gradient of 1. They used trans
parent surfaces composed of many pairs of dots, in which each member 
of a pair was assigned a disparity equal and opposite to the disparity of 
the other member, and they found that these opponent–disparity dot 
pairs produced a striking appearance of two transparent surfaces for 
disparity gradients ranging between 0.5 and 3. Although diplopia still 
occurred when gradients were>1, the depth separation of two surfaces 
could still be measured reliably. 

The model with both second- and first-order sensory fusion mecha
nisms can explain their observation. As shown in Fig. 9, the sensory 
fusion at a large scale of the second-order pathway reduces the inter
ocular misalignment by shifting the readout of a depth sensor’s output 
from the fixation plane to a large-scale position disparity plane (both 
planes are also sampled by small-scale position and phase disparity 
detectors), where the misalignment might be reduced to be within the 
half-cycle limit of a small scale of the first-order pathway. However, at a 
large gradient, when the total sensory shift of second- and first-order 
pathways is less than the stimulus disparity, diplopia occurs but the 
depth can still be estimated reliably by the combination of sensory shifts 
and phase disparities of the two pathways. 

9.9. Model simulations 

In the following, we simulate the model with the best fit of our Dmin 
and Dmax threshold data (Tables 4a and b). Our model fitting shows that 
fusion energy (phase disparity energy before fusion) determines the 
Dmax threshold, and disparity energy (position plus phase disparity 
energies after fusion) determines the Dmin threshold (See Tabel 6). 
Fig. 13 demonstrates model simulations of fusion (Fig. 13A) and 
disparity (Fig. 13B) energies, and second- and first-order sensory shifts 
(Fig. 13C) as a function of stimulus disparity. We note that both fusion 
and disparity energies should be above the noise levels in order to 
perceive depth veridically. When the disparity energy is below the noise 
level, the system fails to detect the depth. When the fusion energy is 
below the noise level, the system fails to detect the depth direction, even 
though it can detect the depth but with uncertain direction. When the 
stimulus disparity increases below the Dmin threshold, the fusion energy 
increases across the fusion energy threshold (the horizontal red dashed 
line at d’ = 1 in Fig. 13A). At Dmin threshold (blue dashed lines, at 
which, the disparity energy = threshold, i.e., d-prime = 1 in Fig. 13B), 
the fusion energy reaches ~ 3.7 d-prime units, large enough to fuse the 
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two eyes images into a single, sharp 3D image even at the Dmin 
threshold (see Fig. 13C: the binocular fusion shift is very close to the 
stimulus disparity at Dmin threshold). When further increasing stimulus 
disparity, the disparity energy first increases and then decreases 
(Fig. 13B). At Dmax threshold (red dashed lines, at which, the fusion 
energy = threshold , i.e., d-prime = 1 in Fig. 13A), the disparity energy is 
still at a high level (d-prime = 17.6, Fig. 13B). However, beyond the 
Dmax threshold, fusion energy cannot overcome the noise in the fusion 
system (i.e., the direction of sensory fusion becomes uncertain), and the 
brain fails to detect the direction of depth even with high disparity en
ergy. This is consistent with our observations, at Dmax threshold, 
although the depth direction is not reliable, the apparent depth is much 
larger than the minimal threshold. 

Fig. 13D shows model simulations of Dmin threshold or the total 
sensory shift at the threshold level (thick black curve) as a function of 
binocular contrast when spatial frequency is 3 cpd (the middle panel in 
Fig. 10B) to predict why Dmin threshold decreased (performance 
increased) when binocular contrast decreased from 0.96 to 0.24. Based 
on the model simulations, near the Dmin threshold, the disparity 
sensitivity of the first-order pathway is much higher than that of the 

second-order pathway. As indicated by the thick dashed vertical line 
around 0.4 contrast, the same sensory shift (=0.5 Dmin) produces>10x 
the disparity energy in the first-order pathway than in the second-order 
pathway, and as indicated by the thin dashed vertical line around 0.8 
contrast, the same disparity energy (=0.5) is produced by a 2x sensory 
shift in the second-order pathway than in the first-order pathway. The 
possible reasons for less disparity sensitivity in the second-order 
pathway are (1) interocular gain-controls before binocular combina
tion; (2) less depth sensitivity at a larger scale near Dmin threshold; (3) 
possible false matches of Gabor patches. The simulations also show that 
the first-order pathway dominates depth perception at low contrast; the 
performance increases slightly with contrast as predicted by EN contrast 
normalization in the first-order pathway. However, when further 
increasing contrast, the less sensitive second-order pathway becomes 
dominant, resulting in decreased total performance of the two pathways, 
although the performance in the second-order pathway gets a great in
crease (thick and thin red curves) as predicted by the DSKL normaliza
tion. Because the total disparity energy is fixed (=1) at the threshold 
level, the first-order disparity energy (thin blue curve) decreases when 
the second-order disparity energy increases with increasing contrast. 

Fig. 13. Simulation of the full model using RGP stereograms with Gabor contrast = 0.96 and Gabor spatial frequency = 3 cpd. Model parameters come from 
Tables 4a and b. (A) Binocular fusion energy (balck, in d-prime units), summation of second- (red) and first-order (blue) sensory fusion energies, as a function of 
stimulus disparity. The noise level is indicated by the horizontal red dashed line at d-prime = 1, which determines the Dmax threshold. (B) Binocular disparity energy 
(in d-prime units) as a function of stimulus disparity. The total disparity energy (black) is the summation of second- (red) and first-order (blue) disparity energies, 
which determines Dmin threshold (horizontal blue dashed line at d-prime = 1). The arrow indicates the stimulus disparity where the disparity energy reaches the 
maximum. (C) Binocular fusion shifts as functions of stimulus disparity. (D) Binocular fusion shifts (left y-axis) and binocular disparity energy (right y-axis) as 
functions of binocular stimulus contrast at Dmin threshold. (For interpretation of the references to colour in this figure legend, the reader is referred to the web 
version of this article.) 
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9.10. Depth perception at suprathreshold levels 

Although the model was developed based on Dmin and Dmax 
threshold data, it might be able to predict depth perception at supra
threshold levels. If the disparity energy reflects apparent depth, the 
model predicts that when stimulus disparity increases, the apparent 
depth initially increases, reaches a maximum, and then decreases 
(Fig. 13B). This prediction is consistent with previous studies on 
apparent depth (Richards, 1971, Schor & Wood, 1983). Schor and Wood 
(1983) reported that, before reaching the Dmax threshold, usually the 
stimulus appeared diplopic, and that it always reached a depth 
maximum beyond which the apparent depth decreased as disparity 
increased to the Dmax. Richards (1971) measured the apparent depth 
over a large range of stimulus disparities using a depth matching task. 
He found that, for a normal stereo-observer (WR), matched depth first 
increased as disparity increased, and near the depth maximum, the 
stimulus appeared diplopic, and then it dropped back toward zero depth 
as the stimulus disparity further increased. Our simulation shows that 
the fusion energy reaches the maximum earlier than the disparity en
ergy. At the maximum disparity energy (as indicated by arrows in 
Fig. 13), fusion energy already drops off to a lower level that might not 
be sufficient to maintain the two eyes images in perfect alignment. As 
shown in Fig. 13C, the fusion shift first follows stimulus disparity 
perfectly, correctly informing depth perception at small stimulus dis
parities. However, near the maximum apparent depth, the fusion shift 
drops below the stimulus disparity, resulting in diplopia. Further 
increasing stimulust disparity, the fusion shift decreases, correctly pre
dicting the reduced depth perception (see **), before reaching Dmax 
threshold. 

In our previous studies (Ding & Levi, 2016a; 2019), we proposed a 
depth perception model without binocular fusion mechanisms (Fig. 5). 
Instead, we included a disparity window, the product of a disparity 
power function and an exponential decay function, in the model. This 
previous model successfully predicted the depth thresholds, Dmin and 
Dmax (Ding & Levi 2016a), and suprathreshold depth perception (Ding 
& Levi 2019). The output of a disparity window is very similar to those 
of phase/position disparity energies (Fig. 13A and 13B) – binocular 
fusion is the mechanism behind the disparity window. 

At small stimulus disparities with perfect binocular fusion, the po
sition disparity energy is very close to a disparity square function (Eqs. 

(5) and (7) with p ≈ 1.88). This correctly predicts the accelarating 
behavior (dipper effect) of increment disparity thresholds, which 
decrease when pedestal disparity increases in the range of small dis
parities (Farell, Li & McKee, 2004). However, using disparity modula
tion (corrugated stereo surfaces), Lunn & Morgan (1997) did not find 
this acceleration with small pedestal disparities (no dipper effect). 
Georgeson, Yates & Schofield (2008) showed that the presence of ac
celeration could be attributed to a procedural effect: trial-by-trial un
certainty about the direction of disparity. Adding a pedestal would 
reduce this uncertainty and therefore improve the performance. Because 
our present experiment randomized the disparity direction from trial to 
trial, uncertainty could be one source of the nonlinearity of depth- 
disparity power function. 

9.11. Apparent depth 

To test whether the model can quantitatively predict apparent depth, 
we re-plotted Richards’ data in Fig. 14. Each datum represents the 
average of crossed and uncrossed apparent depth replotted from the top 
panel (WR) of Fig. 2 of Richards (1971). Because his stimulus was a 
single vertical bar with a short duration (distance = 250 cm, duration =
80 ms, stimulus bar = 6′ × 75′), we ignore motor fusion (which requires 
longer durations). We used a model with two sensory fusion channels, 
one for stimulus edge energy with higher spatial frequency and the other 
for stimulus bar energy with a lower spatial frequency. Because the 
stimulus contrast was fixed and equal in the two eyes in Richards (1971), 
contrast normalization was not included. The noise terms were also 
ignored for the matching task. 

The model with two sensory-fusion channels has 10 free parameters, 
but we only have 10 data points. Therefore, for modeling, we reduced 
the number of free parameters to 6 (for details see Appendix A). The 
black curve in Fig. 14A shows the best fit, which gives a good fit to all the 
data. In Fig. 14A, the red curve indicates the depth estimated from the 
bar sensory shift and the blue curve indicates the depth estimated from 
the edge sensory shift, with the scale factor a = 7.17 (ωbar = 3.17 cpd 
and ωedge = 22.7 cpd). However, with only one sensory fusion channel, 
the model failed to fit the data (Fig. 14B). 

Although our model was developed based on Dmin and Dmax 
thresholds, it also provides reasonable predictions for suprathreshold 
depth perception, either perfect or reduced, as discussed above. 

Fig. 14. Model simulations. Apparent depth as a function of stimulus disparity. The data (black circles) are replotted from the top panel of Fig. 2 of Richards (1971), 
and the crossed and uncrossed apparent depths were averaged. We fit his apparent depth data using a model with (A) two sensory fusion pathways, one for bar 
(dashed red line) and the other for edge (dashed blue line), and (B) one sensory fusion pathway for edge only. (For interpretation of the references to colour in this 
figure legend, the reader is referred to the web version of this article.) 
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However, depth perception has seldom been studied at suprathreshold 
levels because of a lack of reliable measurement techniques. Typically, 
in previous studies (Richards, 1971, Schor & Howarth, 1986, Schor & 
Wood, 1983), a matching task was used to measure the apparent depth 
at suprathreshold levels: A reference depth was manipulated to match 
the target depth, which made the measurements highly dependent on 
the reference, and limited the possible stimulus conditions. In a previous 
study (Ding & Levi 2019), we performed a rating-scale experiment to 
study suprathreshold depth perception over a large range of stimulus 
disparities. We plan to use these suprathreshold data to test our model 
directly. 
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