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Abstract

Alzheimer’s disease (AD) is characterized by the selective vulnerability of specific neuronal 

populations, the molecular signatures of which are largely unknown. To identify and characterize 

selectively vulnerable neuronal populations, we used single-nucleus RNA sequencing to profile 

the caudal entorhinal cortex and the superior frontal gyrus – brain regions where neurofibrillary 

inclusions and neuronal loss occur early and late in AD, respectively – from postmortem brains 

spanning the progression of AD-type tau neurofibrillary pathology. We identified RORB as a 

marker of selectively vulnerable excitatory neurons in the entorhinal cortex, and subsequently 

validated their depletion and selective susceptibility to neurofibrillary inclusions during disease 

progression using quantitative neuropathological methods. We also discovered an astrocyte 

subpopulation, likely representing reactive astrocytes, characterized by decreased expression of 

genes involved in homeostatic functions. Our characterization of selectively vulnerable neurons in 

AD paves the way for future mechanistic studies of selective vulnerability and potential 

therapeutic strategies for enhancing neuronal resilience.

INTRODUCTION

Selective vulnerability is a fundamental feature of neurodegenerative diseases, in which 

different neuronal populations show a gradient of susceptibility to degeneration. Selective 

vulnerability at the network level has been extensively explored in Alzheimer’s disease 

(AD)1–3. However, little is known about the mechanisms underlying selective vulnerability 

at the cellular level in AD, which could provide insight into disease mechanisms and lead to 

therapeutic strategies.

The entorhinal cortex (EC) is one of the first cortical brain regions to exhibit neuronal loss in 

AD4. Neurons in the external EC layers, especially in layer II, accumulate tau-positive 

neurofibrillary inclusions and die early in the course of AD5–10. However, these selectively 

vulnerable neurons have yet to be characterized at the molecular level. Furthermore, it is 

unknown whether there are differences in vulnerability among subpopulations of these 

neurons. Although rodent models of AD have offered important insights, the available 

models fail to simultaneously capture some critical disease processes, such as the 

Leng et al. Page 2

Nat Neurosci. Author manuscript; available in PMC 2021 July 11.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



accumulation of neurofibrillary inclusions and neuronal loss11, limiting the extrapolation of 

findings from rodent models to address selective vulnerability.

More recently, single-nucleus RNA-sequencing (snRNA-seq) has enabled large-scale 

characterization of transcriptomic profiles of individual cells from post-mortem human brain 

tissue12, 13. However, snRNA-seq studies of AD published to date have focused on cell-type 

specific differential gene expression between AD cases and healthy controls14, 15, without 

explicitly addressing selective vulnerability.

Here, we performed snRNA-seq on post-mortem brain tissue from a cohort of cases 

spanning the progression of AD-type tau neurofibrillary pathology to characterize changes 

in the relative abundance of cell types and cell type subpopulations. We discovered a 

selectively vulnerable subpopulation of excitatory neurons in the EC and validated the 

selective depletion of this subpopulation during AD progression with quantitative 

histopathology, using multiplex immunofluorescence in EC regions delineated by rigorous 

cytoarchitectonic criteria. Furthermore, we uncovered an astrocyte subpopulation likely 

corresponding to reactive astrocytes that showed downregulation of genes involved in 

homeostatic function.

RESULTS

Cohort selection and cross-sample alignment

We performed snRNA-seq on cell nuclei extracted from postmortem brain tissue (see 

Methods) from the EC at the level of the mid-uncus and from the superior frontal gyrus 

(SFG) at the level of the anterior commissure (Brodmann area 8), from 10 male APOE ε3/ε3 

individuals representing the cortical-free, early and late stages of AD-type tau neurofibrillary 

pathology (Braak stages1 0, 2 and 6; Fig. 1a, Table 1). The neuropathological hallmarks of 

AD are amyloid plaquesand neurofibrillary inclusions. Since the accumulation of 

neurofibrillary inclusions measured by the Braak staging system is the best correlate of 

clinical cognitive decline, after neuronal loss16, we reasoned that profiling matched EC and 

SFG samples across different Braak stages would allow us to isolate the effect of disease 

progression on cell types and cell type subpopulations.

A challenge in characterizing the impact of disease progression on different cell type 

subpopulations is that these subpopulations need to be defined in a way that is independent 

from the effect of disease progression. Typically, cell type subpopulations are defined by 

sub-grouping cells of the same cell type through cluster analysis (i.e. clustering), followed 

by examination of marker gene expression in the resulting clusters. To remove the effect of 

disease progression on clustering, we performed, prior to clustering, cross-sample alignment 

of the data from each brain region using scAlign (see Methods). Importantly, after 

identifying clusters in the alignment space, we used the original data for subsequent analyses 

involving examination of gene expression, such as identifying differentially expressed genes 

between clusters.
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Changes in broad cell type composition with neuropathological AD progression

After quality control (see Methods), we recovered 42,528 cells from the EC and 63,608 cells 

from the SFG. Examination of the average number of genes and unique molecular identifiers 

(UMIs) detected per cell showed similar or superior transcript coverage compared to 

previously published AD snRNA-seq datasets14, 15 (Extended Data Fig. 1a,b).

After cross-sample alignment, we performed clustering and recovered clusters that 

demonstrated spatial grouping in t-stochastic neighborhood embedding (tSNE) largely 

uncorrelated with the individual of origin (Fig. 1b,c). Furthermore, the clusters showed 

specific expression of cell type markers and grouped in a manner consistent with their 

expression of cell type markers in hierarchical clustering (Fig. 1d,e, see Methods). For 

comparison, we also performed clustering without cross-sample alignment, which resulted 

in many clusters that were defined by individual of origin in addition to cell type (Extended 

Data Fig. 1c–f). Having confirmed the effectiveness of cross-sample alignment in removing 

the effect of technical and experimental factors on clustering, we then assigned clusters to 

broad cell types (i.e. excitatory neurons, inhibitory neurons, astrocytes, oligodendrocytes, 

oligodendrocyte precursor cells, microglia, and endothelial cells) based on their expression 

of cell type markers (Fig. 1d,e, see Methods).

Next, to assess whether the proportions of broad cell types change with disease progression, 

we aggregated clusters assigned to the same cell type for each individual and then computed 

the relative abundance of each cell type in each individual. We tested for statistical 

significance using beta regression and corrected for multiple testing using Holm’s method 

(see Methods). While there were not many statistically significant changes in the relative 

abundance of cell types, we observed a downward trend in the relative abundance of EC 

excitatory neurons in Braak stages 2 (Punadjusted = 0.18) and 6 (Punadjusted = 0.02), and of 

SFG excitatory neurons only in Braak stage 6 (Punadjusted = 0.05), consistent with early 

involvement of the EC and sparing of the SFG until late Braak stages, and the previously 

described greater vulnerability of excitatory neurons relative to inhibitory neurons in 

AD17, 18.

Selective vulnerability of excitatory neuron subpopulations

Based on these observations, we next asked whether specific subpopulations of excitatory 

neuron show a decline in their relative abundance with disease progression, by performing 

subclustering of excitatory neurons in the EC and SFG after cross-sample alignment (see 

Methods). The EC, a relatively phylogenetically conserved brain structure in mammals, is 

among the first cortical fields to accumulate tau-positive neurofibrillary inclusions followed 

by neuronal loss in AD1. The EC is a heterogeneous structure and cytoarchitectonic 

considerations matter when analyzing and sampling this region to avoid biased 

observations19. During evolution, the position of the EC changed, and the mouse medial EC 

(the source of our layer-specific marker genes) is generally regarded as the equivalent of the 

caudal EC in humans (our sampling location)20, 21.

In the EC, we discerned nine excitatory neuron subpopulations (Fig. 2a–d). These 

subpopulations exhibited distinct expression of EC layer-specific genes identified in the 

Leng et al. Page 4

Nat Neurosci. Author manuscript; available in PMC 2021 July 11.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



mouse medial EC22. Notably, subpopulation EC:Exc.s2 showed a striking ~50% decrease in 

its relative abundance in Braak stage 2 compared to Braak stage 0, with no further decrease 

in Braak stage 6 (Fig. 2c), suggesting depletion early in disease. EC:Exc.s1 and EC:Exc.s4 

similarly exhibited a ~50–60% reduction in their relative abundance in Braak stage 2. 

EC:Exc.s1, EC:Exc.s2, and EC:Exc.s4 expressed genes associated with mouse EC layer II 

(Fig. 2c), consistent with the fact that tau neurofibrillary inclusions are known to accumulate 

preferentially in human EC layer II early in AD5–8. However, not all subpopulations 

expressing genes associated with mouse EC layer II showed similar levels of early 

vulnerability. For example, EC:Exc.s6 and EC:Exc.s8 did not demonstrate statistically 

significant changes in their relative abundance across disease progression. We failed to find 

evidence of selective vulnerability in neuronal subpopulations expressing genes associated 

with mouse EC layer III (EC:Exc.s0) or V/VI (EC:Exc.7, EC:Exc.s5, EC:Exc.s3). In fact, 

EC:Exc.s5 exhibited a statistically significant increase in its relative abundance in Braak 

stage 2. Since neurons are post-mitotic, this increase is likely due to the selective earlier 

depletion of more vulnerable excitatory neuron subpopulations, followed by later depletion 

of EC:Exc.s5.

To identify molecular markers of selectively vulnerable excitatory neuron subpopulations in 

the EC (EC:Exc.s2, EC:Exc.s4, EC:Exc.s1), we inspected transcript levels of genes 

differentially expressed between pairs of subpopulations and curated a set of genes which 

were specifically expressed by no more than four subpopulations (Extended Data Fig. 2a), 

which we decided was a reasonable threshold for a positive marker to be useful. We found 

that EC:Exc.s2 and EC:Exc.s4 specifically expressed RORB, CTC-340A15.2 and 

CTC-535M15.2 (Fig. 2c). RORB (RAR-related Orphan Receptor B) encodes a transcription 

factor known as a marker and developmental driver of layer IV neurons in the 

neocortex23–25, but is also expressed by neurons in other layers13. Little is known about the 

non-coding transcripts CTC-340A15.2 and CTC-535M15.2 in the context of neuronal 

identity and function. We also found that EC:Exc.s1 was marked by high expression of 

CDH9 (Fig. 2c), which encodes a cadherin with neuron-specific expression. However, 

CDH9 was also expressed by other excitatory neuron subpopulations in the EC, and we 

could not find markers that were specifically expressed only in EC:Exc.s1. Therefore, we 

chose to focus our analysis on EC:Exc.s2 and EC:Exc.s4.

In addition to identifying molecular markers of the selectively vulnerable EC:Exc.s2 and 

EC:Exc.s4 neurons, we also enumerated genes that were differentially expressed in 

EC:Exc.s2 and EC:Exc.s4 compared to all other excitatory neurons in the EC, controlling 

for differences across individuals (see Methods). We found that genes with higher 

expression in EC:Exc.s2 and EC:Exc.s4 were enriched for axon-localized proteins and 

voltage-gated potassium channels, whereas genes with lower expression in EC:Exc.s2 and 

EC:Exc.s4 were enriched for synapse- and dendrite-localized proteins and pathways 

involving G-protein mediated signaling, ion transport, and neurotransmitter receptor 

signaling (Extended Data Fig. 2b–e, Supplementary Table 1).

We also performed differential gene expression analysis across Braak stages for EC 

excitatory neuron subpopulations (see Methods), comparing Braak stage 6 vs. 0, which 

yielded the largest number of differentially expressed genes. We found a broad decrease in 
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expression of genes encoding pre- and post-synaptic proteins in Braak stage 6 vs. 0 for many 

EC excitatory neuron subpopulations (Extended Data Fig. 3b,d,f; Supplementary Table 2). 

Furthermore, we observed that the selectively vulnerable subpopulation EC:Exc.s2 had the 

largest number of downwardly differentially expressed genes and the strongest enrichments 

for pre- and post-synaptic proteins in these genes (Extended Data Fig. 3b,d). Overall, the 

downregulation of synapse-related genes we have observed mirrors the findings from a 

recent preprint by Marinaro et al.26, which examined the frontal cortex in familial 

monogenic AD using snRNA-seq, and is consistent with a previous study of gene expression 

changes in AD in the entorhinal cortex and other brain regions employing laser capture 

microdissection of neurons followed by DNA microarray analysis27.

We next examined excitatory neuron subpopulations in the SFG. Similar to previous 

studies12, 13, we found that excitatory neuron subpopulations in the SFG (11 in total) 

expressed distinct sets of neocortical layer-specific genes (Fig. 2b,d), recapitulating the 

laminar organization of the neocortex. Interestingly, SFG:Exc.s4 and SFG:Exc.s2, which 

were marked by the vulnerability markers we identified in the EC (RORB, CTC-340A15.2 
and CTC-535M15.2), trended towards decreased relative abundance only in Braak stage 6 

(Fig. 2d), consistent with the late appearance of neurofibrillary inclusions in the SFG 

starting at Braak stage 5. Although SFG:Exc.s7, which also expressed the EC vulnerability 

markers, exhibited a statistically significant decrease in relative abundance in Braak stage 2 

but not 6, the magnitude of change was negligibly small.

Given that SFG:Exc.s4 and SFG:Exc.s2 expressed similar markers as EC:Exc.s4 and 

EC:Exc.s2, we wondered if SFG:Exc.s4 and SFG:Exc.s2 may resemble EC:Exc.s4 and 

EC:Exc.s2 more broadly at the transcriptome level. SFG:Exc.s4 and SFG:Exc.s2 were 

indeed most similar to EC:Exc.s4 and EC:Exc.s2 based on the Pearson correlation 

coefficient between the expression profiles of SFG and EC subpopulations (Fig. 2e). We 

observed the same pattern when we mapped subpopulations in the EC to those in the SFG 

by performing cross-sample alignment for both brain regions jointly (Extended Data Fig. 4). 

This similarity is consistent with the reported similarity between deep layer neocortical 

excitatory neurons and EC excitatory neurons in general28. The similarity in transcriptomes 

of vulnerable excitatory neurons in different brain regions is intriguing and suggests similar 

mechanisms of selective vulnerability in different brain regions.

Although the decrease in the relative abundance of SFG:Exc.s2 and SFG:Exc.s4 in Braak 

stage 6 was not statistically significant after correction for multiple testing, we asked if we 

could detect signs of selective vulnerability in neocortical RORB-expressing excitatory 

neurons in an independent dataset with a larger sample size. To this end, we reanalyzed data 

from Mathys et al.14, which profiled the prefrontal cortex from 24 AD cases and 24 healthy 

controls, with our cross-sample alignment pipeline and performed subclustering of 

excitatory neurons. In the Mathys et al. dataset14, we discerned 10 excitatory neuron 

subpopulations, each of which expressed distinct sets of neocortical layer-specific genes 

(Extended Data Fig. 5a,b) similar to Lake et al.12 and our dataset. Of these 10 

subpopulations, Mathys:Exc.s4, Mathys:Exc.s5, and Mathys:Exc.s1 expressed RORB at 

high levels (CTC-340A15.2 and CTC-535M15.2 were not available in the pre-processed 

Mathys et al.14 data). Importantly, we observed a statistically significant decrease in the 
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relative abundance of Mathys:Exc.s4 in male AD cases vs. controls (Extended Data Fig. 5b), 

recapitulating the selective vulnerability observed in our dataset, which consists only of male 

individuals. Furthermore, gene expression correlation analysis showed that Mathys:Exc.s4 

was the most similar to EC:Exc.s2 and EC:Exc.s4 (Extended Data Fig. 5c), again 

demonstrating similarity between selectively vulnerable excitatory neurons in the neocortex 

and those in the EC.

Although we did not detect any statistically significant changes in the relative abundance of 

RORB-expressing subpopulations in female individuals in Mathys et al.14, Mathys.Exc.s1 

trended towards decreased relative abundance in female AD cases (Punadjusted = 0.17) and 

mapped to EC:Exc.s2 by gene expression correlation (Extended Data Fig. 5b,c). 

Furthermore, Marinaro et al.26 included both male and female cases of monogenic AD and 

also reported the selective vulnerability of two out of four RORB-expressing excitatory 

neuron subpopulations in the prefrontal cortex (ExcB1 and ExcB4)26, providing further 

evidence that subsets of RORB-expressing excitatory neurons in the neocortex are 

selectively vulnerable.

Considering the Mathys et al.14 and the Marinaro et al.26 datasets together with our dataset, 

it appears that while not all RORB-expressing excitatory neuron subpopulations in the 

neocortex showed signs of selective vulnerability, those that did were the most similar to 

RORB-expressing excitatory neurons in the EC, all of which showed signs of selective 

vulnerability.

Validation of the selective vulnerability of RORB-expressing excitatory neurons

To validate our finding that RORB-expressing excitatory neurons in the EC were highly 

vulnerable in AD, we performed multiplex immunofluorescence on postmortem brains of 26 

individuals spanning Braak stages 0 to 6, who were devoid of non-AD neuropathological 

changes (Table 1). Specifically, we quantified the proportion of excitatory neurons and 

RORB-positive excitatory neurons in the EC superficial layers (i.e. above layer IV, which we 

also refer to as dissecans-119 in Fig. 3b). Given EC heterogeneity, we used rigorous 

cytoarchitectonic parameters to delineate the caudal EC and minimize artifactual results 

(Fig. 3a–c, Extended Data Fig. 6, see Methods). We used multiplex immunofluorescence29 

to label nuclei (DAPI), excitatory neurons (TBR1), RORB+ neurons, and phospho-tau 

neuronal inclusions (CP-13, Ser 202). We observed a substantial reduction in the proportion 

of RORB+ neurons among excitatory neurons in Braak stages 2–4 and 5–6 compared to 

Braak stages 0–1 (Fig. 3d,e). Furthermore, by analyzing a subset of cases, we detected 

phospho-tau (CP-13) preferentially in RORB+ compared to RORB- excitatory neurons (Fig. 

3f–g). Thus, our results substantiate that RORB-expressing excitatory neurons are highly 

vulnerable in AD and support a model in which their depletion is a consequence of 

accumulating tau neurofibrillary changes.

Given that largel multipolar neurons of “stellate” morphology in EC layer II are particularly 

vulnerable in AD5–8, we examined the morphological features of layer II’s RORB+ 

excitatory by overlaying immunofluorescence with Nissl staining. We found that RORB+ 

excitatory neurons adopted various shapes, including pyramidal and multipolar 

morphologies (Fig. 3h). Conversely, some large multipolar neurons are RORB-negative (Fig. 
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3h). Our results are consistent with the known vulnerability of large multipolar EC layer II 

neurons and demonstrate that molecular characterization of vulnerable neurons refines the 

results of morphological studies.

Lack of differences in vulnerability of inhibitory neuron subpopulations

We next examined inhibitory neurons, which are more resistant to tau pathology than 

excitatory neurons in AD17, 18. In both brain regions, inhibitory neuron subpopulations 

expressed distinct sets of inhibitory neuron subtype markers (Fig. 4a–d), consistent with 

previous studies12, 13. We did not any detect statistically significant changes in the relative 

abundance of inhibitory neurons subpopulations in the EC or SFG (Fig. 4c–d), or in the 

prefrontal cortex in Mathys et al.14 (Extended Data Fig. 7). Although Marinaro et al. 
reported broad depletion of inhibitory neuron subpopulations in familial monogenic AD, 

there was no strong evidence of selective vulnerability in particular inhibitory neuron 

subpopulations relative to other inhibitory neuron subpopulations in Marinaro et al.

Analysis of glial subpopulations

Glial cells have emerged as important players in AD. We found a trend towards increased 

relative abundance of microglia in the EC in with AD progression (Fig. 1f), consistent with 

microgliosis. Next, we asked whether a specific transcriptional state of microglia is 

associated with AD in our dataset. Recent single-cell profiling of microglia from mouse 

models of AD identified disease-associated microglia30 (DAM), the transcriptional signature 

of which overlap only partially with that of human microglia found in AD31. Considering 

the possibility that DAMs may cluster separately from homeostatic microglia after cross-

sample alignment, we performed subclustering of microglia in our dataset, discerning 4 

subpopulations in the EC and 5 subpopulations in the SFG (Extended Data Fig. 8a–b). 

However, similar to Thrupp et al.32, we were unable to detect the expression of the majority 

of homeostatic microglia markers and DAM markers in our dataset or in Mathys et al.14 

(Extended Data Fig. 8d–f), which may be due to the relatively low number of genes captured 

in microglia compared to other cell types (Fig. 1h–i) and the depletion of many DAM 

markers in nuclei compared to whole cells32.

We next examined oligodendrocytes, which were shown by Mathys et al.14 to exhibit a 

strong transcriptional response in AD. Subclustering of oligodendrocytes in the EC and SFG 

revealed subpopulations (EC:Oligo.s0 and EC:Oligo.s4, SFG:Oligo.s1 and SFG:Oligo.s2) 

which exhibited higher expression of AD-associated oligodendrocyte genes from Mathys et 
al.14, i.e. genes with higher expression in the AD-associated subpopulation Oli0 in Mathys et 
al.14 (Extended Data Fig. 9d–e). Although the function of these genes in the context of AD 

is largely unknown, a spatial transcriptomics study of AD33 has recently implicated a subset 

of these genes in the response of oligodendrocytes to amyloid plaques (e.g. CRYAB, 

QDPR).

Finally, we turned our attention to astrocytes. While reactive astrocytes are ubiquitously 

associated with AD pathology34, only few studies to date have directly profiled reactive 

astrocytes due to the difficulty of specifically isolating reactive astrocytes35, 36. Similarly to 

our interrogation of microglia, we asked if reactive astrocytes would cluster separately from 
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non-reactive astrocytes after cross-sample alignment. After subclustering of astrocytes in our 

dataset, we discerned 4 subpopulations in the EC and 6 subpopulations in the SFG (Fig. 5a–

d). In each brain region, there was at least one subpopulation (EC:Astro.3, SFG:Astro.s4 and 

SFG:Astro.s5) that expressed dramatically higher levels of GFAP, which we will refer to as 

GFAPhigh astrocytes (Fig. 5c,d). In the EC, GFAPhigh astrocytes also expressed CD44 and 

HSPB1, markers of pan-reactive astrocytes37; TNC, which is upregulated in stab-wound 

reactive astrocytes38; and HSP90AA1, which is upregulated in reactive astrocytes associated 

with middle cerebral artery occlusion39 (Fig. 5c,d). Interestingly, in the SFG, GFAPhigh 

astrocytes consisted of two subpopulations, one marked by higher expression of CD44 and 

TNC, both of which are involved in interactions with the extracellular matrix, and the other 

marked by higher expression of HSPB1 and HSP90AA1, both of which are chaperones 

involved in proteostasis. In terms of downregulated genes, GFAPhigh astrocytes consistently 

expressed lower levels of genes associated with glutamate/GABA homeostasis (SLC1A2, 

SLC1A3, GLUL, SLC6A11) and synaptic adhesion/maintenance (NRXN1, CADM2, PTN, 

GPC5), suggesting a loss of homeostatic function.

Examination of all differentially expressed genes in GFAPhigh astrocytes showed significant 

overlap with differentially expressed genes from reactive astrocytes in a mouse model of 

spinal cord injury40 (Fig. 5e). Overlapping downregulated genes included the previously 

noted genes associated with glutamate homeostasis and synaptic adhesion/maintenance and 

also genes related to lipid metabolism, cytoskeleton and extracellular matrix, and 

transporters (Fig. 5f–g).

Finally, to confirm the presence of GFAPhigh astrocytes in an independent dataset, we 

performed subclustering of astrocytes from Mathys et al.14 after cross-sample alignment, 

which yielded 3 subpopulations (Extended Data Fig. 10a,b). Indeed, we found that 

Mathys:Astro.s2 behaved identically compared to GFAPhigh astrocytes in our dataset in 

terms of upregulating reactive astrocyte markers and downregulating genes associated with 

glutamate/GABA homeostasis and synaptic adhesion (Extended Data Fig. 10b). 

Furthermore, the differentially expressed genes in Mathys:Astro.s3 overlapped highly with 

those in GFAPhigh astrocytes in our dataset (Extended Data Fig. 10c).

DISCUSSION

Selective vulnerability is a fundamental feature of neurodegenerative diseases, including 

AD. Past studies have characterized the most vulnerable neurons in AD based on topography 

and morphology. For instance, EC layer II neurons are more vulnerable than EC layer III 

pyramidal neurons8–10. However, the molecular signature of selectively vulnerable neurons 

in AD is largely unknown.

Using a combination of snRNA-seq and quantitative neuropathology in postmortem human 

brains, we discovered that in the caudal EC, specific excitatory neuron subpopulations 

defined by snRNA-seq were selectively vulnerable in AD. These neurons expressed genes 

associated with layer II of the mouse medial EC, consistent with the known vulnerability of 

neurons in superficial layers of the human EC in AD5–8. .We identified and validated RORB 
as a marker of these selectively vulnerable excitatory neuron subpopulations. Selectively 
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vulnerable RORB+ excitatory neurons included both large multipolar neurons and pyramidal 

neurons. Our findings demonstrates that morphology alone is insufficient to determine 

selective vulnerability.

We also found that tau neuronal inclusions, a chief AD neuropathological hallmark, 

preferentially accumulated in RORB+ excitatory neurons in the EC. To uncover potential 

cell biological mechanisms underlying the vulnerability of EC RORB+ excitatory neurons, 

we compared the gene expression profiles of EC RORB-expressing excitatory neurons 

against all other EC excitatory neurons, which revealed differences in the expression of 

genes encoding synapse- vs. axon-localized proteins, potassium channel subunits, G-protein 

signaling molecules, and neurotransmitter receptor signaling molecules. Future studies 

utilizing in vitro and animal models of AD together with techniques for manipulating gene 

expression such as CRISPR inhibition and activation41–43 will make it possible to address 

these potential mechanistic connections among RORB-expression, phospho-tau 

accumulation, and vulnerability.

In neocortical areas, layers III and V are the first to accumulate tau neurofibrillary inclusions 

in AD1, 44, 45. Our dataset, together with our re-analysis of datasets from Mathys et al.14 and 

Marinaro et al.26 suggests that in the neocortex, vulnerable excitatory neuron subpopulations 

express RORB and have a similar transcriptional profile as selectively vulnerable neurons in 

the EC, although not all neocortical RORB+ neurons are vulnerable. Given that RORB is 

known to function as a developmental driver of neuronal subtype identity in the 

neocortex23–25, we hypothesize that the vulnerability of RORB-expressing excitatory neuron 

subpopulations in different brain regions may be caused by gene expression programs driven 

by RORB and potentially other subtype-determining transcription factors. Further 

mechanistic studies involving the perturbation of RORB expression in cell-based or animal 

models of AD are necessary to test this hypothesis.

A previous study suggested changes in the number of neurons expressing calbindin and 

parvalbumin, which tend to mark inhibitory neurons, in EC layer II in AD46. Here, we found 

no evidence of selective vulnerability in inhibitory neurons subpopulations in EC layer II or 

any other layer. Inhibitory neurons in EC superficial layers show a gradient of abundance in 

the various EC regions20, which could confound the results. But, given that we used strict 

cytoarchitectonic criteria to sample the EC, it is unlikely that our results reflect comparisons 

of different EC areas across the cases. Evidence suggests that these inhibitory neurons 

undergo changes in morphology and function, rather than loss in sporadic AD46. Thus, our 

results do not preclude the possibility that inhibitory neuron subpopulations may be 

differentially affected by AD progression at the morphological and functional level, even if 

neuronal loss is not apparent.

Accumulating evidence is highlighting the importance of glial changes in AD. We 

discovered an astrocyte subpopulation expressing high levels of GFAP, which we termed 

GFAPhigh astrocytes, in both EC and SFG, and in prefrontal cortex from Mathys et al.14 We 

found that GFAPhigh astrocytes expressed higher levels of other genes associated with 

reactive astrocytes, and lower levels of genes involved in astrocyte homeostatic functions. 

Furthermore, we found a high degree of overlap between genes differentially expressed in 
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GFAPhigh astrocytes and genes differentially expressed in reactive astrocytes from a mouse 

model of spinal injury40. Thus, we believe that GFAPhigh astrocytes correspond to reactive 

astrocytes in AD, which may have compromised homeostatic function.

Our study has several methodological strengths. First, the postmortem cohort used for 

snRNA-seq and histopathological validation consists of well-characterized cases, devoid of 

non-AD pathology. To minimize confounders in the snRNA-seq results, we selected only 

male cases with an APOE ε3/ε3 genotype. Second, we sequenced a very large number of 

nuclei from each case (~10,000 nuclei per case, compared to ~1,700 nuclei per case in 

Mathys et al.14) from two brain regions per individual (~4,000 nuclei from the EC and 

~6,000 nuclei from the SFG). Third, we used strict cytoarchitectonic criteria to sample brain 

regions for snRNA-seq and histopathological validation, instead of broadly defined sampling 

areas used by previous studies. Fourth, our focus was on defining cell type subpopulations 

that showed changes in relative abundance between disease stages, which can reflect 

important disease processes such as neuronal loss, and to define the genes characteristic of 

these subpopulations. By defining cell type subpopulations independently of disease 

progression, we could compare gene expression between subpopulations within individuals 

while controlling for differences among individuals; this is more robust than comparing gene 

expression in a given subpopulation across groups of individuals, which can be influenced 

by differences in confounding factors between the groups. Lastly, by validating our findings 

using a novel multiplex immunofluorescence approach29, we could quantify the relative 

abundance of excitatory neurons and RORB+ neurons and also demonstrate that RORB+ 

excitatory neurons were preferentially affected by neurofibrillary inclusions.

A limitation of our study is that we only included male APOE ε3/ε3 individuals in the 

snRNA-seq analysis. We included females and individuals carrying the APOE ε4 allele 

associated with AD risk in our histopathological validation, but caution should be taken 

before generalizing our results to these groups. Future studies will provide a systematic 

analysis of the impact of sex and APOE status on selective vulnerability in AD.

In conclusion, our study contributes a pioneering characterization of selectively vulnerable 

neuronal populations in AD using snRNA-seq profiling of paired brain regions from the 

same individuals, which were all carefully curated AD cases and controls. These results will 

inform future studies of the mechanistic basis of selective vulnerability in both animal and in 
vitro models, such as human iPSC-derived neurons, in which the deployment of CRISPR 

inhibition and activation technology enables elucidation of the functional consequences of 

transcriptomic changes41, 47.

ONLINE METHODS

Post-mortem cohort

This study was approved by and University of Sao Paulo institutional review board and 

deemed non-human subject research by the University of California, San Francisco (UCSF). 

De-identified human postmortem brain tissue was supplied by the Neurodegenerative 

Disease Brain Bank (NDBB) at UCSF, and the Brazilian BioBank for Aging Studies 

(BBAS) from the University of Sao Paulo50. The NDBB receives brain donations from 
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patients enrolled in the UCSF Memory and Aging Center research programs. The BBAS is 

population‐based and houses a high percentage of pathologically and clinically normal 

control subjects who are not available in the NDBB. Neuropathological assessments were 

performed using standardized protocols and followed internationally accepted criteria for 

neurodegenerative diseases51–53. The brain samples used in this study contained a broad 

burden of AD-type pathology and were selected to be free from non-AD pathology 

including Lewy body disease, TDP-43 proteinopathies, primary tauopathies, and 

cerebrovascular changes. Argyrophilic grain disease (AGD) was not an exclusion criterion 

based on its high prevalence and lack of correlation with significant clinical symptoms54–56. 

In total, the cohort included 10 cases who underwent snRNA-seq, representing Braak stages 

0, 2 and 6, all ApoE 3/3, and 26 cases who underwent neuroanatomical analysis, 

representing Braak stages 0–61, 57, ranging from 2–5 individuals per Braak stage. Table 1 

depicts the characteristics of the 31 cases.

Isolation of nuclei from frozen post-mortem human brain tissue

Isolation of nuclei was performed similarly as previously described58. Briefly, frozen brain 

tissue was dounce homogenized in 5 ml of lysis buffer (0.25 M sucrose, 25 mM KCl, 5 mM 

MgCl2, 20 mM Tricine-KOH, pH 7.8, 1 mM DTT, 0.15mM spermine, 0.5 mM spermidine, 

1X protease inhibitor (Sigma, 4693159001), and RNAse Inhibitor (Promega, N2615)). 

Following initial dounce homogenization, IGEPAL-630 was added to a final concentration 

of 0.3% and the sample was homogenized with 5 more strokes. The solution was then 

filtered through a 40 um cell filter and mixed with Optiprep (Sigma, D1556–250ML) to 

create a 25% Optiprep solution. This solution was then layered onto a 30%/40% Optiprep 

gradient and centrifuged at 10,000g for 18 minutes using the SW41-Ti rotor. The nuclei 

were collected at the 30%/40% Optiprep interface.

Droplet-based single-nucleus RNA-sequencing

Droplet-based single-nucleus RNA-sequencing (snRNA-seq) was performed using the 

Chromium Single Cell 3′ Reagent Kits v2 from 10X Genomics. Nuclei were resuspended to 

a concentration of 1000 nuclei/uL in 30% Optiprep solution before loading according to 

manufacturer’s protocol, with 10,000 nuclei recovered per sample as the target. cDNA 

fragment analysis was performed using the Agilent 4200 TapeStation System. Sequencing 

parameters and quality control were performed as described by The Tabula Muris 

Consortium59.

Pre-processing of snRNA-seq data

Sequencing data generated from snRNA-seq libraries were demultiplexed using Cellranger 
(version 2.1.0) cellranger mkfastq. To align reads, we first generated our own pre-mRNA 

GRCh38 reference genome using cellranger mkref in order to account for introns that may 

be eliminated using the default GRCh38 reference genome. Alignment and gene expression 

quantification was then performed using cellranger count with default settings.
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Exploratory analysis of EC and SFG data

For each sample, the raw gene-barcode matrix outputted by Cellranger was converted into a 

SingleCellExperiment (SCE) object in R (version 3.5.1) using the read10xCounts function 

from the DropletUtils package60 (version 1.2.2). Droplets containing nuclei were then 

distinguished from empty droplets using DropletUtils::emptyDrops with the parameter FDR 
= 0.01, and then nuclei (hereon also referred to as “cells”) with less than 200 UMIs were 

discarded. Afterwards, SCE objects corresponding to each sample were merged into a single 

SCE object for downstream processing and analyses.

For normalization of raw counts, to avoid artifacts caused by data sparsity, the approach of 

Lun et al.61 was adopted: For each sample, cells were first clustered using a graph-based 

method followed by pooling counts across cells in each cluster to obtain pool-based size 

factors, which were then deconvoluted to yield cell-based size factors. Clustering was 

performed using the quickCluster function from the scran package62 (version 1.10.2) with 

the parameters method = ‘igraph’, min.mean = 0.1, irlba.args = list(maxit = 1000), and the 

block parameter set to a character vector containing the sample identity of each cell. Size 

factors were computed using scran::computeSumFactors with the parameter min.mean = 0.1 
and the cluster parameter set to a character vector containing the cluster identity of each cell; 

cells with negative size factors were removed. Normalization followed by log-transformation 

was then performed using the normalize function from the scater package63 (version 1.10.1).

Prior to dimensionality reduction, highly variable genes were identified for each sample 

separately using the approach of Lun et al.62: Each gene’s variance was decomposed into a 

technical and biological component. Technical variance was assumed as Poisson and 

modeled using scran::makeTechTrend. The mean-variance trend across genes was fitted 

using scran::trendVar with parameters use.spikes = FALSE and loess.args = list(span = 
0.05); and the trend slot of the resulting fit object was then set to the output of 

scran::makeTechTrend. Biological variance was extracted from the total variance using 

scran::decomposeVar with the above fit object as the input. Finally, highly variable genes 

that were preserved across samples were identified by combining the variance 

decompositions with scran::combineVar, using Stouffer’s z-score method for meta-analysis 

(method = ‘z’), which assigns more weight to samples with more cells.

For initial data exploration, genes with combined biological variance greater than 0 were 

used as the feature set for dimensionality reduction by principal component analysis using 

scran::parallelPCA, which uses Horn’s parallel analysis to decide how many principal 

components to retain, with parameter approx = TRUE. Clustering was then performed on the 

retained principal components using the FindClusters function from the Seurat package64 

(version 2.3.4) with parameter resolution = 0.8, which required conversion of SCE objects to 

Seurat objects using Seurat::Convert. To visualize the clusters, t-stochastic neighborhood 

embedding (tSNE) was performed on the retained principal components using 

scater::runTSNE with parameters perplexity = 30 and rand_seed = 100.
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Cross-sample alignment of SFG and EC data

Initial data exploration revealed that clustering was driven by individual of origin in addition 

to cell type identity, which makes it difficult to analyze changes in the relative abundance or 

gene expression of a given cell type across disease progression or brain regions. To recover 

clusters defined by mainly by cell type identity, data was aligned across samples from each 

brain region using with scAlign65 (version 1.0.0), which leverages a neural network to learn 

a low-dimensional alignment space in which cells from different datasets group by 

biological function independent of technical and experimental factors. As noted by Johansen 

& Quon65, scAlign converges faster with little loss of performance when the input data is 

represented by principal components or canonical correlation vectors. Therefore, prior to 

running scAlign, the top 2000 genes with the highest combined biological variance were 

used as the feature set for canonical correlation analysis (CCA), which was implemented 

using Seurat::RunMultiCCA with parameter num.cc = 15. The number of canonical 

coordinates to use for scAlign was determined by the elbow method using 

Seurat::MetageneBicorPlot. scAlign was then run on the cell loadings along the top 10 

canonical correlation vectors with the parameters options = scAlignOptions(steps = 10000, 
log.every = 5000, architecture = ‘large’, num.dim = 64), encoder.data = ‘cca’, supervised = 
‘none’, run.encoder = TRUE, run.decoder = FALSE, log.results = TRUE, and device = 
‘CPU’. Clustering was then performed on the full dimensionality of the ouptut from scAlign 
using Seurat::FindClusters with parameter resolution = 0.8 for the SFG and resolution = 0.6 
for the EC. Clusters were visualized with tSNE using Seurat::RunTSNE on the full 

dimensinality of the output from scAlign with parameter do.fast = TRUE. Alignment using 

scAlign followed by clustering was also performed for all samples from both brain regions 

jointly.

To assign clusters identified in the aligned subspace generated by scAlign to major brain cell 

types, the following marker genes were used: SLC17A7 and CAMK2A for excitatory 

neurons, GAD1 and GAD2 for inhibitory neurons, SLC1A2 and AQP4 for astrocytes, MBP 
and MOG for oligodendrocytes, PDGFRA and SOX10 for oligodendrocyte precursor cells 

(OPCs), CD74 and CX3CR1 for microglia/myeloid cells, and CLDN5 and FLT1 for 

endothelial cells. Clusters expressing markers for more than one cell type, most likely 

reflecting doublets, were removed from downstream analyses.

Cell type-specific subclustering (subpopulation) analysis

To identify cell type subpopulations, cells from all samples belonging to a given major cell 

type were extracted for sample-level re-computation of size factors and highly variable 

genes. CCA was then performed using the top 1000 genes with the highest combined 

biological variance as the feature set, followed by alignment of the first 10 to 12 canoical 

coordinates with scAlign, with steps = 2500. The full dimensionality of the output from 

scAlign was used for subclustering (using resolution = 0.4) and tSNE. Analyzing cells from 

each brain region separately, marker genes for subpopulations were identified using 

scran::findMarkers with parameters direction = ‘up’, pval.type = ‘any’, lfc = 0.58, and the 

block parameter set to a character vector corresponding to each cell’s sample identity. 

Subpopulations that expressed markers for more than one cell type were removed from 

downstream analyses.
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Identification of differentially expressed genes in cell type subpopulations

To identify genes differentially expressed by a cell type subpopulation compared to all other 

subpopulations in a way that accounts for true biological replication (i.e. at the level of 

individuals), UMI counts of cells from the same individual belonging to the subpopulation 

of interest or all other subpopulations were summed to obtain “pseudo-bulk” samples, which 

were then analyzed using edgeR66 (version 3.24.3) following the approach recommended by 

Amezquita et al.67 A false-discovery rate cutoff of 0.1 was used.

Heatmap visualization of relative gene expression across cell types or cell type 
subpopulations

For heatmaps of relative gene expression across cell types or cell type subpopulations shown 

in the figures, log-scaled normalized counts of each gene were z-score transformed across all 

cells and then averaged across cells in each cluster to enhance visualization of differences 

among clusters. Thus genes with “high” relative expression have above-average expression 

(positive z-scores) and genes with “low” relative expression have below-average expression 

(negative z-scores).

Functional association network analysis and pathway enrichment analysis of differentially 
expressed genes

Differentially expressed genes were visualized as a functional association network using 

String-db68 (v11), a protein-protein association network based on known physical 

interactions, functional associations, coexpression, and other metrics, and Cytoscape69 

(version 3.7.2), a network visualization software. When generating the networks, the String-

db association confidence score cutoff set to 0.5, and the network layout was optimized for 

visualization using the yFiles Organic Layout. For pathway enrichment analysis, 

enrichments for Gene Ontology terms and Reactome Pathways were also obtained through 

String-db, using a false-discovery rate cutoff of 0.05.

Entorhinal cortex layer-specific genes

Due to the lack of published data on layer-specific genes for the human EC, layer-specific 

genes in the mouse medial entorhinal cortex (MEC) were obtained from Ramsden et al.22. 

(The MEC is the most phylogenetically similar to the human caudal EC20, 21 used in this 

study.) Specifically, genes with expression specific for layer II, III, and V/VI of the mouse 

MEC according to the S4 Dataset excel spreadsheet in the supplemental information of 

Ramsden et al.22 were mapped to human genes, and cross-referenced against genes 

differentially expressed across EC excitatory neuron subclusters (obtained using 

scran::findMarkers without setting direction = ‘up’).

Re-analysis of the Mathys et al. dataset

To re-analyze the data from Mathys et al.14 using our cross-sample alignment approach, the 

filtered matrix of UMI counts (“Data/Gene Expression (RNA-seq)/Processed/

filtered_count_matrix.mtx”) and associated row and column metadata 

(“filtered_gene_row_names.txt” and “filtered_column_metadata.txt”) were downloaded 

from the AMP-AD Knowledge Portal (Synapse ID: syn18485175). The experimental and 
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clinical metadata files were downloaded from “Data/Metadata/”. The filtered UMI counts 

matrix and the associated row and column metadata were then converted to a 

SingleCellExperiment object for analysis, and the relevant experimental and clinical 

metadata (e.g. “Pathologic diagnosis of AD” were merged with the SingleCellExperiment 
object. The cell type assignments from Mathys et al.14 provided in the column metadata 

were used for subclustering.

Functional annotation of differentially expressed genes in GFAPhigh astrocytes

We obtained the functional annotation for differentially expressed genes from the GeneCards 

website70 and verified the primary literature references for glutamate/GABA-related 

genes71–76 and synaptic adhesion/maintenance-related genes77–80.

Quantitative histopathological assessment using multiplex immunofluorescence

Delineation of the caudal EC.—We used archival paraffin blocks from the UCSF/

NBDD and BBAS (Table 1). First, we collected blocks sampling the hippocampal formation 

anterior to the lateral genicular body from the 10 cases used for the snRNAseq and another 

30 cases spanning all Braak stages1. To determine if the caudal EC region was present, 8μm 

thick sections of each block underwent hematoxylin and eosin staining (Extended Data Fig. 

8A). We took digital images of the stained sections and aligned each one the most 

approximate section from a large collection of 400 μm thick serial coronal sections of 

whole-brain hemispheres stained for gallocyanin provided by co-author Heinsen19, 81 

(Extended Fig Data 8B). We eliminated blocks from five cases used for snRNA-seq and four 

of the extra cases for lack of caudal EC. Next, again with the aid of the paired gallocyanin 

sections, we delineated the borders of the caudal EC in each case (Extended Data Fig. 8A).

The EC is considered a peri- or allocortex, depending on the author9. EC parcellation and 

cytoarchitectonic definitions have been a matter of debate, and here, we are adopting the 

cytoarchitectonic definitions proposed by Heinsen and colleagues19, which is based on the 

examination of thick histological preparations and considered the definitions proposed by 

Insausti and Amaral (6 layers)82 and Braak and Braak (3 layers)9. In thick histological 

sections, the caudal entorhinal region features well-delineated clusters of stellate or principal 

cells in layer II (pre-alpha clusters) and three lamina dissecans19. The external dissecans 

(dissecans-ext) divides layers II and III is particularly prominent in the caudal EC. 

Dissecans-1 (diss-1) corresponds to layer IV of Insausti83 and the lamina dissecans of Braak 

and Braak9 and Rose84. The most internal dissecans (dissecans-2, or diss-2) is hardly 

appreciated in thin sections but easy to visualize in thick sections. It roughly corresponds to 

layer Vc of the caudal subregions of Insausti83.

Multiplex immunofluorescence.—Next, for each case, an 8μm thick, formalin-fixed 

and paraffin-embedded coronal section underwent immunofluorescence against TBR1, 

RORB and phospho-tau(CP-13) as described below. TBR1, or T-box, brain, 1 is a 

transcription factor protein that has a role in differentiation of glutamatergic neurons and is a 

marker for excitatory neurons, including EC excitatory neurons85, 86. In summary, sections 

were deparaffinized and incubated in 3.0% hydrogen peroxide (Fisher, H325–500) in 

methanol to inactivate endogenous peroxidase. Antigen retrieval was performed in 1X Tris-
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EDTA HIER solution (TES500) PBS with 0.05% Tween 20 (PBS-T) at pH9 in an autoclave 

at 121 °C for five minutes. To reduce nonspecific background staining, sections were 

blocked with 5% Milk/PBS-T. To avoid cross-reactions between primary antibodies that 

were raised against the same species, an antibody stripping step using 0.80% β-

mercaptoethanol/10% sodium dodecyl sulfate in 12.5% Tris-HCL was performed after the 

tyramide-signal amplification (TSA) development for RORB.

Sections were first incubated overnight in primary antibody against RORB (1:400, rabbit, 

HPA008393, Millipore Sigma), which was later developed in goat anti-rabbit HRP (1:400, 

R-05072–500, Advansta) with Alexa Fluor 488 TSA (1:100, B40953, Thermo Fisher). Next, 

sections were stripped of RORB primary antibody and then were incubated overnight in a 

cocktail of primary antibodies against TBR1 (1:100, Rabbit, ab31940, Abcam) and CP13 

(1:800, mouse, phospho-tau serine 202, gift of Peter Davies, NY), all of which were later 

developed with secondary antibodies and fluorophores: for TBR1, Alexa Fluor 546 

conjugated anti-rabbit secondary (1:200, A-11010, Thermo Fisher) was used, and for CP13, 

biotinylated anti-mouse (1:400, BA-2000, Vector Laboratory) with streptavidin Alexa Fluor 

790 (1:250, S11378, Thermo Fisher) was used. Sections were then counterstained with 

DAPI diluted in PBS (1:5000, D1306, Invitrogen). Finally, sections were then incubated in 

Sudan Black B (199664–25g, Sigma) to reduce autofluorescence and coverslipped using 

Prolong antifade mounting media (P36980, Invitrogen). A quality control slide was used to 

verify the efficacy of the antibody stripping process. A detailed description of the method is 

provided in Ehrenberg et al.29 Sections were scanned using a Zeiss AxioScan Slide Scanner.

For generating the images shown in Fig. 3h, a section from case #6 (Braak stage 2, see Table 

1) was stained with gallocyanin-chrome alum following standard methods19. The section 

was placed on a cover slip and scanned using a Zeiss AxioScan Slide Scanner. Next, the 

section was removed from the cover slip and underwent immunofluorescence for RORB and 

CP13 as described above. Then, the section was placed on a cover slip and scanned once 

more.

Neuronal quantification.—The caudal EC delineations carried out in the hematoxylin 

and eosin-stained slides were then transferred to the immunostained images. Within these 

borders, we randomly placed four 500×500 μm regions of interest (ROI) overlaying the EC 

external layers (I to III), which we identified as being external to dissecans-1. We then 

extracted the ROIs for quantification in ImageJ (Fig. 3). The number of excitatory neurons 

was quantified by segmenting the TBR1 signal, using a threshold to create a mask and the 

segmentation editor plugin to manually remove all non-neuronal artifacts and vessels. The 

number of RORB+ excitatory neurons was then counted using the mask of excitatory 

(TBR1+) neurons in the segmentation editor and manually removing all neurons not 

expressing RORB. All segmentations were manually verified for quality control. 

Quantification was done blinded to the neuropathological diagnosis. We quantified phospho-

tau (CP-13) staining in two ROIs in a subset of the cases, using the same FIJI protocol.
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Statistics

Beta regression.—For each brain region, the relative abundance of a given cell cluster or 

cell type, which ranges from 0 to 1, was computed for each sample, treated as an 

independent measurement, and assumbed to follow a beta distribution (although this was not 

formally tested). To determine the statistical significance of changes in the relative 

abundance of a given cluster or cell type across Braak stages, beta regression87 was 

performed using the betareg package (version 3.1–1), using the formula relative.abundance ~ 
braak.stage for both the mean and precision models, and the bias-corrected maximum 

likelihood estimator (type = ‘BC’). The statistical significance of changes in the proportion 

of TBR1+ cells and RORB+ cells among TBR1+ cells obtained from immunofluorescence 

validation were assessed similarly as above using beta regression. To correct for multiple 

hypothesis testing for each family of tests (e.g. testing all cell type subpopulations for a 

brain region), Holm’s method was used to adjust P values obtained from beta regression to 

control the family-wise type I error rate at 0.05.

Fisher’s exact test.—For Fig. 3g, the two-sided Fisher’s Exact Test was used to calculate 

the statistical significance of the observed enrichment of CP13 staining in RORB+ excitatory 

neurons. The test was performed in R using fisher.test with alternative=‘two-sided’.

Hypergeometric test.—For Fig. 5e and Extended Data Fig. 10c, the one-sided 

hypergeometric test (implemented in R with the package GeneOverlap, version 1.18.0) was 

used to calculate the statistical significance of the observed gene overlaps. The P values 

were adjusted for multiple testing using the Benjamini-Hochberg method.

Randomization.—Data collection for the snRNA-seq or immunostaning validation was 

not randomized or blocked.

Sample sizes.—No statistical methods were used to pre-determine sample sizes but our 

sample sizes are comparable to those reported in previous publications14, 15.

A Life Sciences Reporting Summary is provided as Supplementary information.
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Extended Data

Extended Data Fig. 1. Data quality and initial clustering without cross-sample alignment
a-b, Mean number of genes (a) or UMIs (b) detected per cell across individual samples for 

major cell types identified in each dataset. Grubman et al.15 did not resolve excitatory 

neurons from inhibitory neurons. Pericytes were identified only in Mathys et al.14 Cell type 

abbreviations: Exc – excitatory neurons, Oligo – oligodendrocytes, Astro – astrocytes, Inh – 

inhibitory neurons, OPC – oligodendrocyte precursor cells, Micro – microglia, Endo – 

endothelial cells, Per – pericytes. c-d, tSNE projection of cells from the EC (c) and SFG (d) 

clustered without first performing cross-sample alignment, colored by individual of origin 

(center) or cluster assignment (outer). e-f, Heatmap and hierarchical clustering of clusters 

and cluster marker expression (top subpanels); “High” and “Low” relative expression reflect 

above- and below-average expression, respectively (see Methods). Expression of cell type 

markers (bottom subpanels).
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Extended Data Fig. 2. Expression of selected EC excitatory neuron subpopulation markers and 
pathway enrichment analysis of differentially expressed genes in selectively vulnerable EC 
excitatory neuron subpopulations
a, Expression heatmap of genes that are specifically expressed by four or fewer EC 

excitatory neuron subpopulations; “High” and “Low” relative expression reflect above- and 

below-average expression, respectively (see Methods). b-d, Enrichment analysis against 

Gene Ontology Cellular Component terms or Reactome Pathways (b,d) and functional 

association network analysis (c,e; see Methods) of genes with higher (b-c) or lower 

expression (d-e) in RORB+ vulnerable EC excitatory neurons, with selected terms 
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highlighted by color. In panels c and e, genes with stronger associations are connected by 

thicker lines, and genes without known associations are not shown.

Extended Data Fig. 3. Differential expression analysis across Braak stages for EC excitatory 
neuron subpopulations
a-b, Number of differentially expressed genes in EC excitatory neuron subpopulations with 

higher (a) or lower (b) expression in Braak stage 6 vs. Braak stage 0. c-f, Enrichment 

analysis against Gene Ontology Cellular Component terms (c-d) or Reactome Pathways (e-
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f) of differentially expressed genes in EC excitatory neuron subpopulations with higher (c,e) 

or lower (d,f) expression in Braak stage 6 vs. Braak stage 0.

Extended Data Fig. 4. Alignment of EC and SFG maps homologous excitatory neuron 
subpopulations.
a, tSNE projection of excitatory neurons from the EC and SFG in the joint alignment space, 

colored by subpopulation identity (top), individual of origin (middle), or brain region 

(bottom). b, Heatmap and hierarchical clustering of subpopulations and subpopulation 

marker expression (top subpanel); “High” and “Low” relative expression reflect above- and 
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below-average expression, respectively (see Methods). Relative abundance of 

subpopulations across Braak stages (second and third subpanels); for each brain region, 

statistical significance of differences in relative abundance across Braak stages (Braak 0 n=3, 

Braak 2 n=4, Braak 6 n=3, where n is the number of individuals sampled) was determined 

by beta regression and adjusted for multiple comparisons (see Methods). Expression 

heatmap of EC layer-specific genes identified from Ramsden et al.22 (fourth subpanel). 

Expression heatmap of neocortical layer-specific genes from Lake et al.12 (fifth subpanel). 

Expression of selectively vulnerable EC excitatory neuron subpopulation markers by 

excitatory neurons in the EC (sixth subpanel) or SFG (bottom subpanel). Significant beta 

regression P values (adjusted for multiple testing) are shown in a table at the bottom of the 

panel. c, Sankey diagram connecting subpopulation identity of excitatory neurons in the EC 

alignment space and the SFG alignment space to subpopulation identity in the EC+SFG 

alignment space. The links connecting EC:Exc.s2 and EC:Exc.s4 to SFG:Exc.s2 and 

SFG:Exc.s4, respectively, are highlighted.
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Extended Data Fig. 5. Cross-sample alignment of excitatory neurons from Mathys et al. 
recapitulates selective vulnerability in a RORB-expressing subpopulation
a, tSNE projection of excitatory neurons from Mathys et al.14 in the alignment space, 

colored by subpopulation identity (top) or individual of origin (bottom). b, Heatmap and 

hierarchical clustering of subpopulations and subpopulation marker expression (top 

subpanel); “High” and “Low” relative expression reflect above- and below-average 

expression, respectively (see Methods). Relative abundance of subpopulations in in AD 

cases vs. controls, separated by sex (second and third subpanels); for each sex, statistical 

significance of differences in relative abundance between AD cases vs. controls (cases n=12, 

controls n=12, where n is the number of individuals sampled) was determined by beta 

regression and adjusted for multiple comparisons (see Methods). Expression heatmap of 

neocortical layer-specific genes from Lake et al.12 (fourth subpanel). Expression of 

selectively vulnerable EC excitatory neuron subpopulation markers (bottom subpanel). c, 
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Heatmap of Pearson correlation between the gene expression profiles of excitatory neuron 

subpopulations from the EC vs. those from the prefrontal cortex in Mathys et al.14

Extended Data Fig. 6. Delineation of the EC for each case used in immunofluorescence validation
a, The borders of the caudal EC delineated on sections stained with hematoxylin and eosin 

(H&E) for all 26 cases used in immunofluorescence validation (Table 1). b, Borders of the 

EC were determined with the aid of 400 um thick serial coronal sections of whole-brain 

hemispheres stained with gallocyanin (see Methods). Each H&E section (left) along with its 
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corresponding immunofluorescence image (middle) was aligned to the most approximate 

gallocyanin section (right), in which the the dissecans layers (diss-1, diss-2, and diss-ext) 

characteristic of the caudal EC were easier to visualize. This was then used to guide 

delineation of the EC on the H&E and immunofluorescence sections. For more details on the 

cytoarchitectonic definitions used to define the caudal EC, please consult Heinsen et al.19.

Extended Data Fig. 7. Inhibitory neurons from Mathys et al. also do not show differences in 
resilience or vulnerability to AD
a, tSNE projection of inhibitory neurons from Mathys et al.14 in the alignment space, 

colored by subpopulation identity (top) or individual of origin (bottom). b, Heatmap and 

hierarchical clustering of subpopulations and subpopulation markers (top subpanel); “High” 

and “Low” relative expression reflect above- and below-average expression, respectively 

(see Methods). Relative abundance of subpopulations in in AD cases vs. controls, separated 

by sex (second and third subpanels); for each sex, statistical significance of differences in 

relative abundance between AD cases vs. controls (cases n=12, controls n=12, where n is the 

number of individuals sampled) was determined by beta regression and adjusted for multiple 
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comparisons (see Methods). Expression heatmap of inhibitory neuron subtype markers from 

Lake et al.12 (bottom subpanel).

Extended Data Fig. 8. Subclustering of microglia does not sufficiently resolve disease associated 
microglia signature
a-c, tSNE projection of astrocytes from the EC (a), SFG (b), and Mathys et al.14 (c) in their 

respective alignment spaces, colored by subpopulation identity (left) or individual of origin 

(right). d-f, Heatmap and hierarchical clustering of subpopulations and subpopulation 

marker expression (top subpanels); “High” and “Low” relative expression reflect above- and 
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below-average expression, respectively (see Methods). Relative abundance of 

subpopulations (middle subpanels) across Braak stages in the EC and SFG (for each brain 

region, Braak 0 n=3, Braak 2 n=4, Braak 6 n=3, where n is the number of individuals 

sampled) or between AD cases vs. controls in Mathys et al.14 (for each sex, cases n =12, 

controls n = 12, where n is the number of individuals sampled); statistical significance of 

differences in relative abundance was determined by beta regression and adjusted for 

multiple comparisons (see Methods). Expression of disease associated microglia markers, 

with median expression level marked by line (bottom subpanels).
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Extended Data Fig. 9. Subclustering of oligodendrocytes identifies subpopulations with higher 
expression of AD-associated oligodendrocyte markers from Mathys et al.
a-c, tSNE projection of oligodendrocytes from the EC (a), SFG (b), and Mathys et al.14 (c) 

in their respective alignment spaces, colored by subpopulation identity (left) or individual of 

origin (right). d-f, Heatmap and hierarchical clustering of subpopulations and subpopulation 

marker expression (top subpanels); “High” and “Low” relative expression reflect above- and 

below-average expression, respectively (see Methods). Relative abundance of 

subpopulations (middle subpanels) across Braak stages in the EC and SFG (for each brain 

region, Braak 0 n=3, Braak 2 n=4, Braak 6 n=3, where n is the number of individuals 
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sampled) or between AD cases vs. controls in Mathys et al.14 (for each sex, cases n =12, 

controls n = 12, where n is the number of individuals sampled); statistical significance of 

differences in relative abundance was determined by beta regression and adjusted for 

multiple comparisons (see Methods). Relative expression of AD-associated oligodendrocyte 

subpopulation markers from Mathys et al.14 (bottom subpanels).

Extended Data Fig. 10. Astrocyte subpopulations with high GFAP expression from Mathys et al. 
are highly similar to those from the EC and SFG
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a, tSNE projection of astrocytes from Mathys et al.14 in the alignment subspace, colored by 

subpopulation identity (top) or individual of origin (bottom). b, Heatmap and hierarchical 

clustering of subpopulations and subpopulation marker expression (top subpanel); “High” 

and “Low” relative expression reflect above- and below-average expression, respectively 

(see Methods). Relative abundance of subpopulations in in AD cases vs. controls, separated 

by sex (middle subpanels); for each sex, statistical significance of differences in relative 

abundance between AD cases vs. controls (cases n=12, controls n=12, where n is the number 

of individuals sampled) was determined by beta regression and adjusted for multiple 

comparisons (see Methods). Expression of genes associated with reactive astrocytes, with 

median expression level marked by line (bottom subpanel). c, Enrichment analysis of 

overlap between differentially expressed genes in astrocytes with high GFAP expression 

from Mathys et al.14 vs. differentially expressed genes in astrocytes with high GFAP 

expression from the EC and SFG; the number of genes in each gene set and the number of 

overlapping genes are shown in parentheses, and the hypergeometric test p-values are shown 

without parentheses.
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Fig. 1 |. AD progression differentially affects the cell-type composition of the EC and SFG.
a, Schematic of experimental design and sample processing. Darker shades of red in brain 

cartoons reflect more severe AD-tau neurofibrillary pathology. b-c, tSNE projection of cells 

from the EC (b) and SFG (c) in their respective alignment spaces, colored by individual of 

origin (center) or cluster assignment (outer). d-e, Heatmap and hierarchical clustering of 

clusters and cluster marker expression (top subpanel); “High” and “Low” relative expression 

reflect above- and below-average expression, respectively (see Methods). Expression of cell 

type markers in each cluster (second subpanel). The average number of cells and average 

Leng et al. Page 36

Nat Neurosci. Author manuscript; available in PMC 2021 July 11.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



number of genes detected per cell in each cluster (third and fourth subpanels). f-g, Relative 

abundance of major cell types across Braak stages. For each brain region, statistical 

significance of differences in relative abundance across Braak stages (Braak 0 n=3, Braak 2 

n=4, Braak 6 n=3, where n is the number of individuals sampled) was determined by beta 

regression and adjusted for multiple comparisons (see Methods). Cell type abbreviations: 

Exc – excitatory neurons, Oligo – oligodendrocytes, Astro – astrocytes, Inh – inhibitory 

neurons, OPC – oligodendrocyte precursor cells, Micro – microglia, Endo – endothelial 

cells.
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Fig. 2 |. RORB-expressing excitatory neuron subpopulations in the EC are selectively vulnerable.
a-b, tSNE projection of excitatory neurons from the EC (a) and SFG (b) in their respective 

alignment spaces, colored by individual of origin (center) or subpopulation identity (outer). 

c-d, Heatmap and hierarchical clustering of subpopulations and subpopulation marker 

expression (top subpanel); “High” and “Low” relative expression reflect above- and below-

average expression, respectively (see Methods). Relative abundance of subpopulations 

across Braak stages (second subpanel); for each brain region, statistical significance of 

differences in relative abundance across Braak stages (Braak 0 n=3, Braak 2 n=4, Braak 6 
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n=3, where n is the number of individuals sampled) was determined by beta regression and 

adjusted for multiple comparisons (see Methods). Expression heatmap of EC layer-specific 

genes identified from Ramsden et al.22 (c, third subpanel). Expression heatmap of 

neocortical layer-specific genes from Lake et al.12 (d, third subpanel). Expression of 

selectively vulnerable subpopulation markers identified in the EC (bottom subpanel). e, 

Heatmap of Pearson correlation between the gene expression profiles of EC and SFG 

subpopulations.
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Fig. 3 |. Immunofluorescence of the EC validates selective vulnerability of RORB-expressing 
excitatory neurons.
a, The method for extracting regions of interest (ROI) is illustrated using a representative 

brain slice used for immunofluorescence (pseudo-colored: DAPI in blue, RORB in green, 

TBR1 In orange and NeuN in pink) with the EC delineated in red. Four ROIs (drawn in red 

squares) were randomly distributed along the superficial layers of the EC and extracted for 

quantification after masking neurons (see Methods). A representative ROI image is shown as 

insert (note that the pseudo-coloring scheme for the insert, as indicated in the Figure, differs 
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from the pseudo-coloring scheme of the larger panel). The anatomical orientation of the slice 

is provided in the top left corner (D – dorsal, V – ventral, M – medial, L – lateral). b, 

Representative RORB staining in a Braak stage 1 sample (left) vs. a Braak stage 5 sample 

(right), shown with (top) and without (bottom) excitatory neurons marked by TBR1 staining. 

The EC layers captured in the image are demarcated in the bottom subpanels (see Methods 

and Extended Data Fig. 6). c, Representative CP13 staining in a Braak stage 6 sample, 

shown together with TBR1 and RORB staining (left) or only with RORB staining (right). d-
e, Proportion of TBR1+ cells among all cells (d) or proportion of RORB+ cells among 

TBR1+ cells (e) averaged across ROIs for each individual across groups of Braak stages; 

statistical significance of differences in the above proportions across groups of Braak stages 

(Braak 0–1 n=6, Braak 2–4 n=12, Braak 5–6 n=8, where n is the number of individuals 

sampled) was determined by beta regression without adjustment for multiple comparisons. f, 
Proportion of CP13+ cells in RORB- or RORB+ excitatory neurons (i.e. TBR1+ cells) 

averaged across ROIs for each individual across groups of Braak stages. g, Contingency 

tables of raw counts of TBR1+ cells based on their RORB or CP13 staining status summed 

across ROIs and individuals for each group of Braak stages (Braak 2–4 n=6, Braak 5–6 n=4, 

where n is the number of individuals sampled); the Fisher’s Exact Test p-value (two-sided) is 

shown below each table. h, Representative image of EC layer II neurons stained with 

gallocyanin (top subpanel) with the corresponding RORB and CP13 immunofluorescence 

signal shown in selected fields (Field 1 – middle subpanels, Field 2 – bottom subpanels). 

RORB+ neurons include both large multipolar neurons (m1, m3, m4, m5) and pyramidal 

neurons (p1). One large multipolar neuron (m2) is RORB-. The neuronal somas are outlined 

manually in white in the RORB immunofluorescence images to aid interpretation. Scale bars 

shown in a-c correspond to 100 microns; scale bars shown in h correspond to 15 microns. 

For all data shown in this figure, the experiment was performed once.
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Fig. 4 |. Inhibitory neuron subpopulations do not consistently show differences in resilience or 
vulnerability to AD progression.
a-b, tSNE projection of inhibitory neurons from the EC (a) and SFG (b) in their respective 

alignment spaces, colored by individual of origin (center) or subpopulation identity (outer). 

c-d, Heatmap and hierarchical clustering of subpopulations and subpopulation marker 

expression (top subpanel); “High” and “Low” relative expression reflect above- and below-

average expression, respectively (see Methods). Relative abundance of subpopulations 

across Braak stages (middle subpanel); for each brain region, statistical significance of 

differences in relative abundance across Braak stages (Braak 0 n=3, Braak 2 n=4, Braak 6 

n=3, where n is the number of individuals sampled) was determined by beta regression and 

adjusted for multiple comparisons (see Methods). Expression heatmap of inhibitory neuron 

molecular subtype markers from Lake et al.12 (bottom subpanel).
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Fig. 5 |. GFAPhigh astrocytes show signs of dysfunction in glutamate homeostasis and synaptic 
support.
a-b, tSNE projection of astrocytes from the EC (a) and SFG (b) in their respective alignment 

spaces, colored by individual of origin (center) or subpopulation identity (outer). c-d, 

Heatmap and hierarchical clustering of subpopulations and subpopulation marker expression 

(top subpanel); “High” and “Low” relative expression reflect above- and below-average 

expression, respectively (see Methods). ). Relative abundance of subpopulations across 

Braak stages (middle subpanel); for each brain region, statistical significance of differences 
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in relative abundance across Braak stages (Braak 0 n=3, Braak 2 n=4, Braak 6 n=3, where n 

is the number of individuals sampled) was determined by beta regression and adjusted for 

multiple comparisons (see Methods). Expression of genes associated with reactive 

astrocytes, with median expression level marked by line (bottom subpanel). e, Enrichment 

analysis of overlap between differentially expressed genes in GFAPhigh astrocytes vs. 

differentially expressed genes in reactive astrocytes from Anderson et al.40 The number of 

genes in each gene set and the number of overlapping genes are shown in parentheses, and 

the hypergeometric test p-values (one-sided, corrected for multiple testing using the 

Benjamini-Hochberg procedure) are shown without parentheses. f, Enrichment of Reactome 

pathways in downregulated genes in GFAPhigh astrocytes, with selected terms highlighted in 

color. g, Functional association network (see Methods) of downregulated genes shared 

between EC and SFG GFAPhigh astrocytes that overlap with those in Anderson et al.40 

Genes with stronger associations are connected by thicker lines. Genes that belong to 

selected gene sets in f are highlighted in color.
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Table 1 |

Description of post-mortem cohort.

Cases used for snRNA-seq

Case # Braak stage Sex Age at death 
(years)

Post-mortem 
interval (hours)

ADNC score CDR before 
death

APOE genotype Source

1 0 M 50 13 A0,B0,C0 0 E3/E3 BBAS

2 0 M 60 12 A0,B0,C0 0.5 E3/E3 BBAS

3 0 M 71 12 A1,B0,C0 0 E3/E3 BBAS

4 2 M 72 15 A1,B1,C0 0 E3/E3 BBAS

5* 2 M 77 4.9 A2,B1,C1 0.5 E3/E3 UCSF

6* 2 M 87 30 A2,B1,C2 2 E3/E3 UCSF

7* 2 M 91 50 A1,B1,C1 0 E3/E3 UCSF

8* 6 M 72 6.9 A3,B3,C3 3 E3/E3 UCSF

9* 6 M 82 6.7 A3,B3,C3 3 E3/E3 UCSF

10 6 M 82 9 A3,B3,C3 3 E3/E3 UCSF

Cases used for immunofluorescence validation

Case # Braak stage Sex Age at death Post-mortem 
interval (hours)

ADNC score CDR before 
death

APOE genotype Source

5* 2 M 77 4.9 A2,B1,C1 0.5 E3/E3 UCSF

6* 2 M 87 30 A2,B1,C2 2 E3/E3 UCSF

7* 2 M 91 50 A1,B1,C1 0 E3/E3 UCSF

8* 6 M 72 6.9 A3,B3,C3 3 E3/E3 UCSF

9* 6 M 82 6.7 A3,B3,C3 3 E3/E3 UCSF

11 0 F 62 10.1 A1,B0,C0 0 NA BBAS

12 0 M 64 12 A0,B0,C0 0 E3/E3 BBAS

13 1 M 60 19 A0,B1,C0 0 NA BBAS

14 1 F 64 13 A1,B1,C0 0 E3/E3 BBAS

15 1 M 70 11 A1,B1,C0 0 E3/E3 BBAS

16 1 F 82 9.6 A1,B1,C0 0 NA BBAS

17 2 F 79 18 A1,B1,C1 0 E3/E3 BBAS

18 2 F 81 30.3 A1,B1,C0 NA E3/E3 UCSF

19 3 M 81 8.3 A2,B2,C3 1 NA UCSF

20 3 M 84 28 A3,B2,C2 1 NA UCSF

21 3 F 88 9.8 A3,B2,C2 0.5 E3/E3 UCSF

22 3 M 89 9.1 A3,B2,C2 1 E3/E3 UCSF

23 4 F 87 9.5 A1,B2,C3 2 E3/E3 UCSF

24 4 M 91 11.2 A3,B2,C2 0.5 E3/E3 UCSF

25 4 M 103 7.8 A1,B2,C2 NA E3/E3 UCSF

26 5 M 77 8.4 A3,B3,C3 0.5 E4/E4 UCSF

27 5 M 85 11.2 A3,B3,C3 1 E3/E3 UCSF

28 5 M 86 8.6 A3,B3,C3 2 E3/E4 UCSF
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Cases used for snRNA-seq

Case # Braak stage Sex Age at death 
(years)

Post-mortem 
interval (hours)

ADNC score CDR before 
death

APOE genotype Source

29 5 F 87 17 A3,B3,C2 3 E3/E3 BBAS

30 6 F 64 7.3 A3,B3,C3 3 E3/E4 UCSF

31 6 F 67 9.7 A3,B3,C3 3 E4/E4 UCSF

Asterisks denote cases used both for snRNA-seq and immunofluorescence validation. The AD neuropathological change (ADNC) score 

incorporates assessment of amyloid-beta deposits (“A”), staging of neurofibrillary tangles (“B”), and scoring of neuritic plaques (“C”)48. The 

Clinical Dementia Rating (CDR) reflects the degree of cognitive impairment49.
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