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ABSTRACT

Formulas that express in terms of physical scattering functions
the discontinuity of any 3-to-3 scattering function across any basic
normal threshold cut are derived from field theory. These basic cuts
are‘the-cuts in channel energies that start at lowest normal thresholds
and extendito plus infinity. The discontinuity across such a cut
generally depends on whether it is évaluated'above or below each of the
remaining basic cuts. Formulas are obtained fér all cases. Generalized
Steinmann relations are foﬁnd to hold: the 2282 boundary values from
which the discontinuities across basic cuts are formed have a unique
extension to a set.of él6 = 65,536 functions, one for each combination
of sides of the 16 Easic cuts, such that for any pair of overlappipg

channels the corresponding double discontinuity vanishes. The ordinary

This work was supported in part by the U. S. Atomic Energy
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Steinmann relations require this property to hold only for the double

discontinuities formed from the 6rigina1 2282 boundary values. The
results are derived from the field-theoretic formalism of Bros, Epstein,
and Glaser, which is slightly developed and cast into a form suited for

calculations of the kind needed here.

I. INTRODUCTION _

The work of Mueller (i) and Tan (2) has demonstrated the useful-
ness of many-particle generalizations of the optical theorem. Mueller
derived important properties of inclusive cros$ séctions from the
assumption thét.éertain matrix elements of currents enjoy Regge
behavior. Tan showed that Mueller's special assumption about matrix
elements of currénts can be replaced, with the aid of a many-particle
generalization of the optical theorem, by the general Regge hypothesis

==

that the discontinuities of écattering functions across basic cuts

enjoy Regge behavior. The generalization of the optical theorem

required for this purpose is the inclusive optical theorem.
The ordinary optical theorem relates ordinary cross sections

to discontinuities of 27t0-2 scattering functions. Similarly, the

~ inclusive optical theorem, proved in (3), relates inclusive cross

sections to discontinuities of n-to-n scattering functions.

Mueller's work, augmented by this theorem, illustrates the general

fact that informatioﬁ about complicated many-body processes (e.g., high-
energy inclusive cross sections) can be derived from information about

simpler few-boqy processes by means of generalizations of the optical

theorem.
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The most useful geheralization of the optical theorem is prob-
zbly the inclusive optical . theorem.For this theorem, like the ordinary
cptical theorem, refers to measurable cross sections. However, the
Regge hypothesis, particularly as formulated by Weis (4), prescribes
a2 form for the discontinuity across any basic cut in appropriate Regge
limits. Thus to assess the fﬁll content of the.Regge hypothesis one
needs formulas for the discontinuitieé across each of these cuts. Some
of these discontinuities are directly related to inclusive cross |
sectiohs. Others are related to cross sections and inclusive cross
sections by (Schwartz) inequaliting The rest can have indirect
theoretical uses.

Formulas for all of these discontinuities were derived in
ref. (5). Those formulas express these disconfinuities in terms of
variogs boundary values FA of the analytically continued scattering
functions. Howevef, it appears more useful to have expressions for

~these discontinuities in terms of the physical scattering functions
themselves, instead of their analytic continuations. Formulas that
express discontinuities across basic cuts in terms of ph&sical
s;gttering functions will bé called generalized optical theorems.

| fThe firét~§im of tﬁé.present work-is to_develop‘theifieid_
‘tﬁéorefié’ formalism needed to defive geﬁeraiized opticéi theorems.
The second aim is ﬁo apply this formalism to the 3-to-3 case, and, in
particular, to express in terms of physical .scattering functions the
discontinuity of any 3-to-3 scattering function across any basic cut.
The discontinuity across such a cut generally depends on whether it is
evaluated above or_below each of the other basic cuts. What will be
obtained here is a set of formu;as that gives the discontinuity across

each of the basic cuts evaluated on each possible side of every other

iy

basic cut. Although only normal threshold cuts are explicitly
mentioned here there is ﬁo neglect of other cuts or singularities:
all the fbrmulas are exact.

The discontinuities across the basic cuts are formed from a
set of 2282 different boundary values of the analytically continued
scattering function. These boundary values are subject to a set of
linear relations known as‘the Steinmann relations, which have played
a prominent role in the development of Regge theory. It will be shown - #
here that the exact analog of tﬁe Steinmann relations holds for a
much larger set of 216 functions. These'generalized Steinmann
relations will be described presently. First the ordinary Steinmann
relations are reviewed.

The ordinary Steinmann relations (6) can be expressed in the
following way: Let the off-mass-shell analytically continued scattering
function for an arbitrary n-particle process be regarded as a function
of the n complex energies ij (j =1,---,n), restricted by the
conservation 1aw ijo = 0. The momenta iﬁ are to be held fixed and

real. Basic field-theoretic principles ensure that this function of

energies is analytic except at points k0 = (kio,‘ﬂ',kéj) that lie on

one or more of the planes

. .Kt_ 5 : : , . | , o
Z;,Im kj o, (1.1)

Jed

where the set. J can be any norempty proper subset of the complete
set of indices (1,2,---,n). Each such set J defines a channel,
and (1.1) is the statement thaﬂ the energy of channel J 1is real.
The complement of J in (1,2,---,n) is.denoted by J, and it

defines the same channel as J.
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The various planes (1.1) divide the n-1 dimensional complex
. -0 . » 0!
energy space (restricted by ij = 0) into sectors FX y calle@
(energy) cells. Each cell F{D' lies on a well-defined side of each

i . . o
of the planes (1.1), and the boundary of each cell ry

lies in the
union 6f these planes.

The analytically continued scattering function is analytic in
each cell TAO'. The 5oundary value defined by letting ko approach
the real boundary point pp from within the cell FAO" is denoted by
;i(p). These boundary values fi are fhe fﬁnctions that occur in the
ordinary Steinmann relations. The constraints imposed on them by the
Steinmann relations are now described.

Two cells ﬁi' and Fg{ are said to be adjacent if and only
if they lie on the s;ﬁe side o? every plane (1.1) except one. The
difference fi —ii between the Boundary values associated with two

1

adjacent'cells rg' and Fg' is called the discontinuity across the

2 3
eut (1.1) that seghrates these two adjacent cells. The plane (1.1) is:

usually called the cut (1.1) when the discontinuity across it is being

considered.

In general there are many pairs of adjacent cells separated

by any given cut (1.1). Each such pair lies on a well-defined side of

‘every bther cut (1.1), by virtue of the definition of adjacent cells.

Thus each such pair can be identified by specifying the sides of the;e
other cuts upon which it lies. The discontinuity across the given cut
(1.1) depends in general on which of these pairs is used. In other
woids, the discontinuity across any given cut depends in gene?al on

updn which sides of the other cuts it is evaluated.

6.

The ordinary Steinmann relations limit thié dependence. They

assert that the following Steinmann discontinuity property holds: The
discontinuity across‘the'cut (i.l) corresponding to a channel .J doeé
not depend on whether it is evéluatéd aboie or below the cuts (1.1)
associafed with the channéls that overlap J.. A channel (or éet) J!
is said to overlap a channel (or set) J if and only if the four sets
Ing, ing', 105, ana INT' are all nonempty. Here J and

A~

J' are the complements of J and J!', respeqtively, relative to the
set (1,2,---,n),

This statement of the Steinmann discontinuity property is not
manifestly covariant, because the eneigy cells FAO' refer pygferen—
tially to energies. A covariant generalization is described in section
II. That generalization enlarges each energy cell 'PAO' to a
covariantly described cell Fi that haé the same set of real boundary
points p. This covariant statement is equivalent to the noncovariant
statement given above.

The Steinmahn discontinuity property has a general appearaﬁce.
However, it covers 6h1y those discontinuities fhat can be formed as

B t
differences of boundary values from neighboring energy cells TXO .

~This limitation is now ‘discussed in more detail.

Cbnsider, for example, a process.with three initial particles
and three.final particles. The number of nonempty.proper subsets J
of the complete set J6 2 (1,2,---,6) is 26 -2-= 62. Only half of
these need be cqnsidered, since,by virtue of E:k.o = 0, the sets J
and 9 = Jé - J both définé the same cut. Moreover, the stability
conditions on the one-particle states imply that the discontinuities

across 15 of these 31 cuts.vanish identically af mass-shell points p.
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_These 15 cuts, which are célled'the‘trivial*cuts, are the six cuts
corresponding to channels defihed by»seté J =-{j} consisting of one
single index J, together with the nine cuts corresponding to channels
defined by sets J = {f,i} consisting ofione index f corresponding
to a final particle and one index 1 corresponding to an initial
particle. This leaves 31 --15 = 16 nontrivial cuts, which correspond
to the one total energy, the three initial subenergies, the three final
subenergies, and the nine cross energies corresponding to two initial
particles combined with-one final particle.

These 16 nontrivial cuts divide the five dimensional compiex .
energy space into 2282 regions called zones. Each of these zones
contains one or more cells ﬁi' all ofvwhich have equal boundary values
fi{ This number 2282 of different boundary values is smali compared
to the number 216 = 65,536 of boundary values that would occur if
the 16 cuts were cuts in 16 independent variables. Thus for most of

“the 216 combinations of‘sides of the sixteen nontrivial cuts there
is no corré;ponding cell or zone. This is because the 16 energies are
not independent variables; they are linear combinations of the five
independent energies kjo.

The ordinary Steinmann relations cover only those boundary
values that can be obtained as'limits from one of the cells fii. This
‘limitatién is sévere. For example, there is no éell fi' that lies
ﬁelow one single subenergy cut and abo&e the other 15 cufs. Conse-
quently the Qrdinéry Steinmann relations do not apply to any discon-
tinuity involving -any such function. This 1imitation on the Steinmann

relations is called the cell limitation.

-8-
The generalized Steinmann relations are described next. They

are essentially the ordinary Steinmann relations, with the cell

limitation removed.

If the 16 channel energies coryesponding to nontrivial éuts
were indeed independent variables then one could specify independently
for each channel whether the limit was to be taken from above or below
the corresponding cut. Thus for each set .G of nontrivial cuts (1.1)
one could define MG = MG(p) to be the boundary value of the sqa£tering

function obtained by approaching the real limit point p from below

every cut g in G, and from above every-cut g in G=E- G, where

E repreéents a set of 16 indices that label the 16 nontrivial cuts.
Then for any h in G the difference MG - MCh = MhG _would be the
discontinuity across the cut h, evaluated below all the cuts g in
G and above all the cuts g in E - Gh = E - GU(h}. The generalized

Steinmann discontinuity property is the property that this discon-

tinuity MhG across the cut h does not depend on whether it is
evaluated above or below any of the cuts geE corresponding to
channels that overlap the channel corresponding to h. Symbolically,

this property is expressed by the equation

G'/Oh = G"/Oh ’ (1.2)

Mh = Mh if
where C/Oh represents the set G modulo the set Oh’ and 0h is
the set of geE such that the channel Jg corresponding to g
overlaps the channel Jh corresponding to  h.

For each cell FAO' there is a unique set of cuts G(A)C E
sgch that F;)’ lies below every cut g in G{A) and above every

ecut g in E - G()). A set of functions M is said to be an

‘9
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enlargement of the set of cell functions EX if and only if

we(A) FA

for every A . : (1.3)

The number of generalized Steinmann discontinuity conditions
(ll2).is far greater than the number 216 of functions MC. Thus it
is not clear, a priori, whether any set of functions MG satisfying
(1.2) and (1.3) exists. And if a solution does exist, it is not clear
whether it is unique. However, it will be shown that there is a set
of »216 functions MC that satisfy (1.2) and (1.3), and that these
two_conditiongbuniquely determine this set.

The functions MG are, as just stated,'uniquely determined

by the two algebraic requirements (1.2) and (1.3). Thus no analyticity

requirements are needed. However, the identification of M with the .

boundary value taken from beloﬁ the normal- threshold cuts geG and
from above the normal-threshold cuts geG  demands that following
property hold: »
The function MG continues analytically into itself
around each J-channel normal-threshold singularity by moving

into the lower-half plane in the variable

K0(3) = E kjo o ’ (1.4)
jed : : '
“if J = Jg for some g in G, and into the upper-half
~in this variable if J = Jg for socme g in g.
This analyticity property is not proved in the present work.

~ However, the functions M® derived here from conditions (1.2) and

(1.3) are (when restricted to the mass shell) identical to the .

10~

functions MG derivéd earlier (7) from S-matrix analyticity require-
ments that en?ail ?his property. ZThus the description of MG as'thé
function evaluated below the cuts geG and above the cqts gea is
apbropriate. The analytic pfoperties of the MO with respect to

singularities other than normal threshold singularities are also

© discussed in ref.. (7).

The conditions (1.2) and (1.3), iogether with the fact that
there is a unique set of 216 functions MC that satisfy them, are
called the generalized Steinmann relations. These relétions are
useful because they are not limitgd-to the aﬁkward cell limitation.
The 216 functions MG are linéar combinations of the 2282 boundary
values. Thus the 21© functions enjoy Regge behaviér if the 2282
do. And so likewise do all the single and ﬁultiple discontinuities
formed from them.” Thus in the development of the dynamical conse-
quences of unitarity, Regge behavior, and the Steinmann relations one
can use all of the functions MG instééd of merely the 2282 boundéry
values. This givgs a richer set of relations to work with, and it

eliminates the problem of having to check always that all of the

functions involved in each application of the Steinmann‘relgtions

are contained among the 2282 special functions covered by thé ordinary
Steinmann relations.

The generalized Steinmann relations say, in éffect,-that the
nontrividl basic cuts can be treated as if they were cuts in indepen-
dent variables, insofar as the:system of discoﬁtinuities across tpese
cuts isuconcérned, and that the Steinmann discontinuity property
continues to hold. A compact formﬁla wi;l be given that expresses

all of the 2} functions M and all single and multiple
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discontinuities that can be formed from them invternm of physical
scattering functions. |

fhe central part of this work is the calculation of the discon-
tinuities across the basic cuts. These calculations are based on the
formulation of field theory developed by Bros; Epstein, and Glaser
_(8,9). This BEG formalism, which rests very heavily on the earlier
work of Ruelle (6), can be regardéd as an extension of
the formalism.of Lehhann, Symanzik, and Zimmermann (10).‘

This LSZ formalism is based on the use of the advanced and
retarded functions introduced bx_LSZ. These functions are better
adapted to the study of analytic properties than ihe time-ordered
functions because their x-space support properties, together with
their assumed tempéred-distribution character, imply that the =
corresponding‘p—space functions have well-defined domains of
analyticity. LSZ show that for processes wifh Just thIinitial
particles‘or Just two final particles the S matrix can be expressed
directly in terms of these advanced and retarded functions. However,
for arbitrary processes, fhe S matri# cannot be expressed directly in
terms of the LSZ advanced and retarded functions alone.

' This problem is overcome in the BEG (8,9) formalism by the
introduction of the operétorsbthat correspond to the boundary valués
fi(p) described earlier. These operators are not linearly independent,
but are related by theloperator equivalents of the Steinmann relations
described above. The BEG formalism is distinguished from the earlier
works of ref. (6) by the fact that time-ordered operators are not
introduced, and'bykthe development ana use of a graphical analysis of
the Steinmann relations in termé of tree diagrams. These tfee

diagrams play a central role in our calculations;
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The BEG formalism is_describéd in the published literature
only in a short section of a péper (8) dealing principally with other
matters. That account is extremely compact, and is couched in an
abstract algebraic terminology. Hence much of its imﬁlicit coﬁtent
is not set down in the form of explieit equations to which one can
refer.

To make our paper more readily understandabie tb readers
unfamiliar with the BEG forﬁalism, and in the hope of making that
formalism itself more accessible at a practical level, we shall
summarize in section II = the basic definitions and results of the BEG
formalism. To secure a direct and simple connection to physics this
formalism is cast into a form based on‘the 1SZ formalism. This
procedure masks some of the generality of the BEG formalism, but
allows it to be presented in terms of explicit equations that refer
to the field operators themselves, ahd that can be directly used in
calculations of the kind needed here, rather than in terms of abstract
descriptions that refer to associated Lie algebras. |

With three exceptions the results presented in this summary
are merely stated, not proved; the missing proofs are all contained in
refs. ,(8 -1l and 5), or are simple adaptgtions of proofs given
in tﬁese references. The threeexceptions are proofs of two results
important to our work that afe not proved in these referenﬁes.

Two of the three exceptions are a pair of theorems that

establish the connection between the boundary values f& and the

_ physical scattering functions. ' This connection is implicit in the

works of Ruelle and Araki (6). However, those works are based on

time-ordered functions, which are foreign to the LSZ-BEG formalism.
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Our derivation is within the LSZ—BEG framework. The.third exception
is a proof within the 1LSZ-BEG framework of the important hermitian-
énalyticity property of scattering functions. These three proofs
serve to méke the BEG-LSZ formalism self—contained.*

Bros, Epstein, and Glaser give a precise formulation of the
mathematical assumptions heeaed to derive the k-space analytiéity
properties and Steinmann relations. The focus of‘the preseht work,
hoﬁever, is on applicationsbof the forﬁalism, rather than the mathe- -
matical foundations of the theory. Thus the results of BEG will be
summarized by theorems that leave unstated the assumptions of BEG |
‘field theory itself. Readers interested in these assumptions should
consult references (8) and (9).

The BEG assumptions are_augmented in the present work by the
LSZ assumptions, and in particular by the LSZ asymptotic conditionms.

Other assumptions could be used to obtain the connection between fhe

BEG functions ;i and the physical scattering functions. The LSZ

assumption has the virtue of being well known and easy to use.

The plan of the\work is as follows. The BEG-LSZ formalism is
described in section II. The aim is merely to list fhe basic
equations together with brief descriptions of their meanings. The
first subsection is a short description of the LSZ formalism, adapted

to provide a suitable basis for the BEG formalism. The final subsection

is an index that is useful for locating definitions.

‘In recent years Bros, Epstein, Glaser, and Stora have enlarged the
BEG framework of refs. (8) and (9) to include time-ordered functions,
and have derived in this enlarged framework the general connection

between retarded functions and the time-ordered functions (12).

F-F
N
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Section III catalogues the 2282 zones. Each zone corresponds
toa G such that. G = G(A) for some A. It is the 2282 functionsv
MG(A) that are determinéd by equatién (1.3). Each discontinuity
across a basic cut is connected by (1.3) to a difference
MG(Al)_MG(AZ).- |

Section IV contains- the calculation by means of the BEG
formalism of the discontinuity 5A1-5A2 across each of the s?sic.
cuts. The procedure is based on the fact that each cell _FA is
associated with a corresponding sum of trees, called the grove pA.

(ol

This grove Y determines both the location of the cell FA and

the explicit form of the operator m associated with the cell. The

A

operatoi my is a sum of products of in- and out-operators. Hence

by inserting appropriate complete sets of in- and out-states one can

. reduce each term of my to a product of S matrices for various

processes. The expressions for the discontinuities obtained in this
way are then reduced to formulas that can be directly compaied to the

G(A;) G(A,)
formulas for corresponding discontinuities M -M

derived in
ref. (7) from S-matrix principles.

The generalized Steinmann relations are derived in section V.
First the formula given in ref. (7) for the 2'® functions M® and
all of their single and multiple discontinuities is preseﬁted. It is
noted that the diécontinuities calculated in section IV coincide with
those given by this férmula. Equation (1.3) follows directly from this
result. Next it is shown that this set of 216» functions MG
satisfies the generalized Steinmann discontinuity property (1.2).

Finally it is shown that this property (1.2) allows each of the 216

functions MG_ to be expressed as a linear combination of the 2282
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functions M® = MHA) | This ensures that the solution to (1.2) and

(1.3) is unique. .

II. GENERAL THEORY

A. The LSZ Framework

The LSZ formalism [IO) involves products of operators Aj(xj)'

The index j 1s used here to identify a particular operator in some

J

associated with a particle of type tj. " The hermitian-adjoint field

product. Each operator A EAj(xj) is a local interpolating field

A} is a local interpolating field associated with the corresponding
antiparticle. It will be convenient to label this antiparticle by the
type index -tj. l

For each Aj(xj) there is a complete orthonormal sef of
positive-frequency solutions fjn(xj) . of the Klein-Gordon equation.

Suppressing an index j one can write

3 .

fjn(x) = -d—% —1-.6f.n(p) e ipx : (2.1)

(2m)° 2p° J -
0 2 2 2

where n is a positive integer, p = (mj + p<), mj ig the
mass of particles of type tj, and

px = p%0 - pex . . (2.2)
With the aid of the notation

> .

A3 B = A3B - (3,A)B _ (2.3)

the normalization condition can be written

~16-_ ’

; 3 n, <t m * _ _
-1 [ &% 1700 (e M) =8 (2.42)
or, equivalently, .
3 ' '
p 1 -
_—f'n f.m = . .
() 20 5 () £(p) 6om - (2.4p)

If the negative—frequency'solutions to the Klein-Gordon

“equation are labelled by the negative integers, according to the rule

£.7(x)

; Q&Wfo, (2.5)

then Aj(x) can be expanded as

A = ) (B0 AN ¢ £ AT) L (26)
J < J J J J
n=1 '
where t = xo, and for all positive and negative integers n
Ajn(t) = -i(sign n)[d3x Aj(x)‘sg fJ,““(x) ) (2.7)

The LSZ asymptotic condition asserts that for every pair of

-normalizable states |®) and |y) the limit

Lin  (8A.R(t)[w) = (oA (£)|w) (2.8)

defines in-field operators Ajn(-) and out-field operators Ajn(+)
‘that are time independent and satisfy the properties that they would

have in canonical free-field theory. Thus the operators defined for

a(n,t5,2) = AN(2) _ (2.9a)
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and The momentum-space forms of these equations are obtained by

+ ' making the following substitutions:
a’(n,-t,.,t) = A .

Lo ' | 2.9
' ; 5 (%) ( -9 )
‘ : (1) n, = o ' - (2.12a) -
are interpreted as follows: J Ps » » (
a?(n,-tj,+) 'creaies an outgoing particle of type -tj and wave where Pjolvénd. ﬁj"whdvelthe catie sign;
function fjn(x); o ' - .(2.10a)
. n ‘ :
J pj = (3 ‘ o
' , (2) £;%x5) > £;9(x5) = exp(-ipyx;) ; (2.12v)
a(n,tj,+) - annihilates an outgoing particle of type tj and ; » 3 .
wave function fjn(x); (2.10b) - (3) Z > Z = _4_d P 1 3 ' (2.12¢)
o ’ - (2m)3 2|P50| .
o TR T
aT(n,-tj,-) creates an incoming particle of type —tJ and and
" wave function 'fjn(x); . {2.10¢) _
’ (4) Sing,t ) {ng,133) > S({pg,teds {pg,t})
a(n,tj,-)' annihilates an incoming particle of type t_ and
: v J = (o] T alp.,t.,+) T af(p,,ts,-)0 2.1
'wave function fjn(x) .- . (2.10d) » l P (pf’ f£? ) i (Pi) i )! ) . ( . 3)

The trapsition amplitude (S-matrix element) for the [Ihe normalization factor N is moved in the continuum case to the many-

scattering from a set of incoming particles 1 with wave functions particle phase space factor, which then becomes continuousl

n .

fi>i(xi) to a set of outgoing particles f with wave functions
n, : .

f, (xf) is . » , o o .a

For brevity let

' 'a(Pj,tj,t) | B : | _ (2.14&)A

e 14

and

L (ol 1Z/é(nf,t£,*), Ul al(nt,,-)[0)

(a?)f | (é(pj,tj{t))T, | '. | B (2.14b)

_ : : ' The normalization of these operators is fixed by the commutation
= S({n,t. }{n,,t. 1), (2.11) o
£7°f i’ _ ‘

relations

+

e @) = e, 6]

where N 1is a normalization factor that is unity if the wave

[

' (2m)3 21p,0163(3. - B.) 6 .
functions of all the incoming particles are orthogonal, and .the wave. |p1 | Pj pJ) titj

functions of all the outgoing particles are orthogonal. o (2;140)
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Only spinless bosons are considered here, but it is easy to
éeneralize all results to integral-spin bosons, and we believe that '
results analogous to ihose obtained below can be derived also for half-
odd.integral fermions.

B. The Operators A; and }A;

Fér brevity let
A, = A(x,), . '
;= J(xJ) , . (2.15)

and let gij be the © function in the time variable . xio-xjo

defined by

, |
1 - if : o 5 Y
it x x.io
0 .
o - < 0 ‘if xi >< xj .
13 1 1f 0 - 40 453
xiv = xj 7 Jd
0 if xio = xJO 1<§ . (2.16)

!

(For notational convenience it is assumed that there is an infinite
set 9 of indices J, and thét for each j€9 ‘there is a field
AJ = Aj(xj) associéted with a pafticle of type tj and mass mj.
The set 2} is assumed to éontain an infinité subset;of_indices J
corrésponding to each type.éf particle, so that‘any producf of
operators Aj can be written as.a product‘of Aj's over a set J
of indices jsé} none of which is repeated. Then each operator Aj

in any product is unambiguously identified by the single index j.)

Let A represent any ordered product of operators AJ:

AE A A Ry
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Let the retarded product gij[Ai’Aj} of any two operators be repre-
sented by . '

Qij[Ai,Aj] E (Ai,AJ.). ' (2.17)

Then the two operators 'A;' and A7 acting on A are defined as

follows: A;A is the sum of operators obtained by replacing in turn

each Aj in A by (Ai’Aj); A;A is the sum of operators obtained by

replacing in turn each Aj in A by (Aj’Ai)' That is, A}A and

AJA are defined as follows:

Definitions
+ -
AiA = (Ai’Aj(‘ID Aj(2) . Aj(n)
' AJ(l)(%i’Aj(Zi) Aj(3) T T RARET
* Ay Aj(n-l)(Ai:f‘J(n)) (2.18a)
and '
AEA = @j(l)’Ai)A‘]‘(Z) .en Aj(n)

+ A A JA ) A co. A
J(1)<j(2) 1> J(3) j{n)

+ Aj(l) e Aj(n_l)@‘j(n),Ai) . (2.18b)
If £ 1is a c-number function then
A%(fa) = rata . (2.18¢)

The action of A* and A~ on sums of products of Aj's and

c-number functionsis defined by linearity

A(x +y) = A'x +aty . B (2.184)
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C. Generalized Reduction Formulé

Let ‘F be any sum of productsof Aj's and ©-functions.

Let K, be defined by
o 2 ‘
Ky = Hj+m

S ‘ o : (2:19)

2 : .
d 2 2 . .
- V +m .
(a"ao> R

Then the afgumédts leading to the LSZ reduction formula give, for

n=1,2,"--,

L "en *
1] d'x g (xJ) KJ(¢[AJ Flv)

= (9][a(n,ty,2),FI}v) v ’ (2.20a)
and
1 | d*%, £ ) K, (o]a¥ Flv)
P I B RO | d
= - (°I[a7(n,-tj,t),F]lw)' . - .(2.20b)
These two formulas can be combined into a single_fgrmula by
introducing
c§(n) = a(n,tj,t) for n'=1,2,"*", (2.21a)
and
e*(n) = -af(en,-t.,2) . for '.1 2 - (2.21b
j) = -afln,-ty,e) . for na-l,-2,eee . 21b)

PP

Then suppressing ¢ and V - one may write (2.20a) and (2.20b) as

the single formula

: L -n * | +
1 d xj fj (XJ) KJ(AJ.F) = [Cj(p),F] > (2f22)7

which holds for all positive and negative integers n.

The momentum-space form of (2.22) is

ip,x ) . :
i f eI K45 F) = [eflpy),P) (2.23a)
where
cE(p,) = alp,,t.,t) = at for »po >0 (é 23b)
3 3 J :
and
* = —atlon - - =t 0
cd(pj), = at( Py tj,t) = -ay for p <0 . (2.23¢)

A closely related equation, which follows from the same

“argument; is

N ipjxj 0 -
i/’d xy e KJ.AJ = cj(pj) -cJ(pj) , (2.23d)

which is essentially eq. (13) of LSz (12).
D. The Symbol « "

Some basic quantities of the BEG formalism are labelled by én

index -a.

Definition The symbol « represents an ordered set of n = n(a)

signs O, together with an ordered set of n + l indices :jeg :
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Q
i

(o(1,a), o(2,a), Tt ‘.’(n,a);.

j(o,a), J(L,a), -, j(n:a.)}

g s Ja) . : o (2.24)

The arguments @ appearing in o(i ,a') and in Jj(i,a) indicate that
these quantities depend on «. -Taken together the o(i,a) and
J(i,a) define a. ' V

~E. The Steinmann Monomials Aa(x)

Definition
. 4%n,a) jo(n-1,0) ,0(1,a) ‘
A(x) = Aj(nja) Aj(n-1ia) A3(Xj0) A3(0) 0 (2.23)
where the symbols 'A; and A3 are defined by (2.18); and where
x = [’.‘3: Je 3,) . (2.26)
F. The Operators }%‘(p) E M,
Definition .
ipyx ‘ 
M (p) = 1 %, e J Ky ) A (x) C (2.27)
;jeJ ' , .

~

where A, (x) is defined in (2.25) and p is the set of variables

p.j associated with q,

p = [pJ:Je Iyl - ' ' ' (2.28)

2~
G. The.Nested Commutators ma(p). = m
. [Lotma) -10)... [0
() = [“j(n,a)’[" e [°J(1,a)’ PTCE) R
(2.29)
where p is a set of mass-shell pJ.,
* - t . ’ . .
and . '
= ot - ‘
¢y = ey -y . : (2.31)

H. The Mass-Shell Relation MCt = m

Repeated application of the generalized reduction formula

(2.23) gives, for mass-shell P,

M) = m(p) . T (2.32)

I. Commutators of the Ai*

The functions . @, defined in (2.16) satisfy the following

iJ
identities:
O3 Oy = O3 O - ekj 8y, = 0, " (2.33a)
g,ji ejk - eji 0y - ij 04 = 0, (2.3%b)
and
_913 + e'ji =1 . (2.33¢c)

These three identities imply the following three identities,

respectively:
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'[AI,A;]; =0, (2.348).
fAT,AL] = ’ 2.34b) -
(8851 = 0 (2.340) .
and ‘ ) -
toaT - & (2.34c)
Ay -8y = &
where the operator A s defined by
AF = [A,F] . (2.344)

J. The Sfeinmann Relations

The arguments p = (pj] of the nested commutators qx(p)
can be restricted so that no two ‘pJ add to zero. If the arguments
pj are restricted in this way then the in-operators cg(pj) commute

SN _
among themselves and the out-operators cj(pj) commite among

" themselves:

[ef,el = 0, (2.352)
and _ .
T,c.] = _ 2.35b
[ej,eq] = 0 . | (2.35p)

These commutation relations and the definition
= o} - el -~ (2.35¢)
907 %7 % .

together with the Jacobi identity, impose linear relations among

V the mass-shell operators . Precisely the same linear relations hold

among the off-mass-shell quantities qa(p) and among the Steinmann .
monomials Aa(x). These latter two sets of linear relations follow
from the use of egs. (2.34) in place of {2.35).

The Steinmann relations are defined by BEG to be the full set

of linear relations among the m, {or among the My or among the Aa]
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that arise from (2.35) [or (2.34)]. Actually, the restriction on the
arguments Py that led to (2.35a,b) is convenient, but not essential.
If they are relaxed then one can use (2.1kc) instead of (2.35a,b).

The importént common feature of (2.35a,b) and (2.1kc) is that the

right-hand side is a c-number that does not depend on the sign + or

< in (2.14e).

K. The Trees t_. and the_Groves

B P

Bros, Epstein, and Glaser construct a graphical analysis of
the Steinmann relations. This analysis is based on a mapping £ that
takes each nested commutator n, into a corresponding linear combina-

tion pa of trees tB.

Definition A tree tﬁ is a simply connected (no loops) graph that

consists of:

(i) a collection of vertices V;, which are represented by

dots;

(i1) a collection of vertices v}, which are represented by

crosses;

and

(1ii) a collection of open line segments s, each of which

links some dot v; in tB to some cross VT in t_.

2

No line segment s in t ‘links two dots or two crosses.

8

Different trees tB are regarded as independent basis vectors in a

linear vector space of trees. -

_The index sets J+

B’ Jg, and J

8 are defined by
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, =T"‘ e o _
Iy E {3: vy € tB) s (2.36a)
Jg = (J:‘v'j € ?B) r . : .(2.36v)
and
.
I = 3, LjJ[3 . _ (2.3§c)

-According to (2.29) the nested commutator m, is

s n-l; 1,
o T [cggﬁ,gg’ [°§§n-1,g;’[ e [°§§1,g;’ 3(0,a) ]"‘J s
where cJ = c; - cs . .

Definition The grove p, = z(gz) is

[vo(n,a) [vo(n-l,m ,_.[vo(l,a)'
J(n,0)’ [M3(a-1,0)7 777 [ T3(1,0) Yi(0;a) ’

* (2.372)
where )
v‘ = vio-vT . ' ; (2-57b)
J J 3 :
The commutator of two trees is the sum of trees defined by

“the rule

t 1}t v; = | .'
[ P P ] + t Tt + t t
iedg, B’ B" iedgn B" - B’
jeJ-n JEJ-v ’
P B (2:38)

This rule says that the commutator [tB,,t ] of the two trees t

B" B'

and »tB" is the sum of all trees that can be formed by joining a '
cross VI in tB, to a dot vs- in tB", minus the sum of all trees
to a dot v, in

that can be formed by Joiding}a cross v;

" where ,ﬁ_(a) is the number of dots in t,.
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tB,. The commutator of two linear combinations of trees is the natural

linear combination of the commutators of the component trees.

Remark The commutator symbol [tﬁ"tﬁ"] is appropriate because this

product is linear and both the antisymmetry property

[tB"tﬁ"] = = [tBn;tB'] : : (2.39a)
and the Jacobi identity

[ta',[tB"’tB‘"’]]‘ + [tB"’[tB"' ,tB']] + [tB"',[tB',tB"]] L= 0 -

(2.39v)
hold. Note that
+ _+ ;
[vi,vj) = © (2.39¢)
and
[v;,vg] = 0 . _ : (2.39d)
These two relations arebanalogous to the commutation relations
(2.35) satisfied by the c§'s.
: n_(g)
té = (-1) *- ts - 7 . (2~¥0)

]

Definition vI is oO-less than v; if and only if v; stands to
the right of v; in g, [see (2.37&)].

Definition qu' is triviel 'if and only if it consists of a single
v —V+'V-
J 3’

Remark For nontrivial Py

by = ) Cupts s / (e
B .

g



where o
o = ‘l if for each jeJ except 3(0,a) the vertex .
v; lies in ty, end is linked by a line segment s .
in ta to a vi' in tB that is «@-less than v;
caﬁ = 0 .other.wise .
Example

be = [v3 v [v5,vgll]

These two trees are the only trees t, ‘that satisfy the condition that

B

for each jed, except 3(0,a) the vertex v; is linked in tB to a
T .
i

n_(B)

v, that is «-less than 'v;. Each of these trees appears in the sum
= 1.

with coefficient (-1)

The set of coefficients c_. defined in (2.41) play a basic

ag
role in the BEG formalism.

L. The x-Space Cones Cﬁ

The assumed local commutation relations of the AJ. require

Z . These regions

each Aa(x) to vanish outside a certain region a

Z are expressed in terms of cones CB. The cone C’3 is associated

aQ
with the tree tB'
Defiriition Let each vertex v; of tB be associated wiﬁh a four-
vector xj. Let x = (xJ.: :jeJB) be the collection of these xj.

that are joined

Let v}(s,+) and v‘;(s,-) be the two vertices of tB

-30-
by the lige segment setﬁ_. Then
CB = {x: G,j(s £) T Xy(s _)e v fc;r every set_} . (2.428)
A , ’ 3]
He:re ¥* is the closure of the forward.light-cone‘
Vs (s 0, > o), (2.42b)

where w represents any Minkowski four-vector.

M. The

Regions Z o

Definition

Za = U 'CB . ’ (2.43)

ﬁ:ca%l
Theorem
Aa(x) = 0 for x ¢ Za . (2.44)
N. The Steinmann Functions r,, ?a, and ?&
Definitions
() = ©la,(x)|o) , |
e , (2.45)
To(p) = (Ol (p)o) . ’
Remark For méss-shel_l‘ P, eq. (2.32) gives
r (@) = (o|m (p)|0) (2.46)

Remark

Translation invariance implies momentum-energy conservation:

ZE: Py £ 0 .

F(e) = 0 ir (2.147a)



Definltién-qf -z;(f)

R PN
) = @0 el ) op )y Em . - (2um)
: ngqz :

The function ﬁ;
q;(k) that is analytic in a certain region F&, This region will be

(p) is the boundary value of a function.

defined presently. Some preliminary definitions are given first.

0. The Complex Momentum Vectors k = § + iq

Definitions
k = .é +1iq ., | (2.48a)
P = Rek . - (2.48b)
q = Imk . | -, (2.48c)

P. The Abbreviations p(J), q(J), and k(J)

Definitions
p(J) = Z Py (2.49a)
jeJ )
a(g) = Z ‘qJ " (2.49b)
! jed
k(J) = Z k:] (2.49¢)
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Q. ‘The Spaces P(J), Q(J), and K(J)

- Definitions

| P(J) is the space consisting of the points

p = [pj : JeJ, p(J) = 0) . ‘ (2.50a)

- Q(J) 1is the space consisting of the points

[fel
n

[qJ : jeJ, q(J) =0} . _ (2.500b)
K(J) 4is the space consisting of the points

kK = ey = JeJ, k(3) = 0) . _ (2.50¢)

[For example, if the set J has n elements J, then P(J) is the
restriction of the Un 'dimensional space of points p = (pJ s JeJ)

to the ULn-4 dimensional subspace on which momentum-energy is

conserved: .2: ‘p =0.]
Jed

~ ~t ]
R. The Momentum-Space Cones C@’ CB, qa’ and q:

Each Steinmann function ﬁ;(p) is the boundary value of a

function i;(k) that is analytic in a‘region P&. The regions q;

are defined as intersections of certain cones ag, which will new be

defined.

Let s be an open line segmént contained in the tree tB:
s € tB . (2.51a)

The removal of s from ¢ separates t_ into two trees tt

B 8 ps
t> , which contain, respectively, the cross and dot linked by s:

Bgs

and
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. . . . . .
(s, 0) € %s S5 0 (2:51b)
- et t . ' 2. ‘
Vi(s,-) € %8s © % (2.51¢)
The sets J;s and J;s are the sets of indices j that label the
. + - .
vertices of tﬁs and tBs, respectlvely.
+.. R +
JBs a-.[j s vy € tﬁs] , » (2.514)
JBS = (3 : vy € tBs} . (2.51e)
It is evident that for any s ¢ tB
+ -
JasUJas = Jy s (2.51f)
where: J_ = (j : v et ).
g J B
Definitions
EB = _(qu(JB) : q(J;s)EV+ for every setB] . (2.52a)

~

g’ {(k-=p + iq : qecs,

peP(JB)) . | (2.52b)

“Here Q(Jﬁ) and P(Jﬁ) are the spaces defined in (2.50).
[If the tree tB is regarded as a diagram representing the
flow of conserved complex momentum-energy, where kj represents the

flow out of the diagram at vertex v;, then the conditions for ¢ .

g

are the conditions that the imaginary part of the momentum-energy .

flowing from dot to cross along each line s of t ‘1lies in -V+.]

g
Remark For any q€Q(JB)

Z QJ xj = Z q(J;S)Gj(S,+) - xj(S,-)). . R (2.520)
Jer . : setB ‘ : : -

-3h.

Thus for x in C_, and g in EE the definitions (2.52a) and

g
(2.42) yield

Z q:lj x; > 0, (2.524)
€J ’ - . .
J<Tg
:except at the points x where the xj for jer are all equal.
Definitions
r, = - & - (2.532)
B:caB:
r& & Cé . (2.53b)
Bic -1

Remark .For x in z:a and q in T, the definitions (2.53a)

and (2.43) and the result (2.52d) yield

9y x5 = qx > 0 - (2.53¢)
'je%z :

except at points x where the xj for jeJd are all equal. This
inequality eﬁsure; that if the afgument p.vih the'definition (2.27)
of %1(p) is replaced by k = p + iq then thé.exponéntial féctor
exp(ik.x) will give exponential damping as T —»w at points 4

x = tx' for all x' in the domain. z:a of integration and all gq

in qx’ except at points where the x! are all equal.

J
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S. The Analytic Functions g&(k)

Definition

ik.x
e fshécd(o,a)) /rréh’.‘:i e 7 Ky A (x) -

dedy (2.5ba)
Definition

| £ (k) <o|M&(k)|é) . | | (2.5kb)

Remark The delta function Sh(%j(o,a) in (2.54) Suppresses the
trivial integration that would otherwise arise from the assumed
translational invariance of (olAa(x)]o). For Imk = O this trivial
integration leads to the factor (En)h sh(z:pd) that occurs in
(2.470). '

Theorem The fﬁnction %;(k) defined by (2.54b) is analytic in Q;

and satisfies for all p in the space P(Qa) the condition

Un F(p+ia) = B .  (2.54)
qel

[0
g-0

Remark The functions i&(p) and the similar functions ?1(p) that
are introduced later ére alweys, in the BEG'formalism,to be interpreted

as tempered distributions over the sﬁbspace on which momentum-energy

conservation holds. The functions ia(p) and ;X(p)v are tempered
distributions over the complete p space. Thus (2.5kc) is to be"

interpreted as

l'i? o (p + iq) #(p) 61’{p(Ja)]dp = f ¥(p) ¢(p)64[p(Ja)]'dp
qel, _
q=- 0

o _ (2.54d)
for all appropriate test functions ¢(p) in P({:){
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T. The S-matrix S(p)

The argument p of s(p) is a set (pj] of mass-shell

four-vectors (pj2 = mjg).
Definitions
= : €
5 {3 Py pl ,
F = (£:0.°>0, p, €p) (2.558)
P - . f b f p ) ) .
I = {1:p°<0,p ¢p) (2-55b)
P S | ?Fy :
Definition
s(p) =

<° !:rr alpptpsd {E aT('Pi"tif') ‘ °>

£
0>> , (2.56a)

where (2.23) and (2.30) are used to get the second line.

/\/
1

+ -
o] II s (-ci)
feF iel

p p

Remark Comparison with (2.13) gives

$(0) = s(lppteds (-pys-t3)) (2.56b)

where the indices f and i run over FP and Ip’ respectively.

Remark It will be shown in subsection X below that
s(p) = ry(p)

for all mass-shell points p in a certain domain ga C P({z). But

much of the mass shell lies outside the union of the 31. However, the
set of Steinmann functions iz(p) is a subset of & larger set of
“functions ;k(p) called generalized retarded functions. These

functionévsatisfy the relation
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s(p) = z, (p)

for all mass-shell points in Pk’ where the union of the Pk_ covers

almost all of the mass shell.
Any.point p- that lies outside the union of the Pk lies on
a plane

p(I') = 0

for some nonempty proper subset J' of Jp. Such points ére points
where‘energy-momentum conservation is satisfied for some subset J'
. | :

of the particles Jer. Thus all points p lying outside \JPX -are

points where the "disconnected parts" of the S matrix can be nonzero.

Thus .fA(p) is equated to S(p) only at points p where S(p) equals

its connected part Sc(p). ' _

The generﬁlized retarded funcfions ?i(p), which are defined
by ?h(p) = (2,,))4 S(E:P) ?i(p), are bopndary values of functions . .
;i(k) that are analyticrin domains ) caslled cells. Each cell I

is associated with an index set Jx and is the product of the space
in Q(JK). The cone T

P(J)\) with & cone T is also called

A A

a cell. ‘
To describe these cells Fx and the regions Pk Py P(Jx) it

is helpful to consider first the restrictions Pho of the cells T

_ A
to energy space.
0

U. The Energy Cells 'Fx

and the Signs O(J,\)

Definition For any set J, C gr the space QO(JX) is the

restriction of the spdce Q(Jx) to its energy subspace. Equivalently,

da(JA) is the space consisting of the points

Definition The location of Fx
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o® = lo)° : ger, @23 = 0] . (2.57)
Definition Each energy cell Fx? is associated with an index set
Jx, and rxo lies in QO(JX). Let J ;epreseﬁt a nonempty proper
subset of J,- Each plane qQ(J) divides QO(JX) into two halves.
The set of planes qO(J) divides QQ(JX), into several nonempty
open cones. Every such open cone ig an energy cell T 0

A

0 is determined by a set of siéns

’

o(J,n), one for each nonempty proper subset J of e The sign

o(J,\) determines the side of qO(J) = 0 upon which PA? lies:

0

r, (® € %)) : o(g,0) @) >0 (2.58)

for all J C Jo J4I, T4

Remark Each energy cell T 0 ‘correéponds to a definite set of

A
signs 0(J,\), one for each nonempty proper subset J of Jx.

However, not every set of signs o{(J), one for each such J,

corresponds to a cell. For the signs 0(J,\) must satisfy conditions

such as

o) = o(a, - T, T e

and

o@TUI ) = o@ ) o | (2.560)

if o(J,A) = o(J',\) and JNJI' =4¢.
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V. The g-Space Cells FX

The g-space cells FK are defined by a relativistic

generalization of the formula that defineé Fxo.
Definition
r, = {2€Q@3,) : oI a(@) ev* - (2.608)

for every J c:'Jx, J#J, T#d}.
Theorem For every « there is a A = A(®) such that

R ' - (2.60b)

Remark This theorem implies that the set of'indices A can be

regarded as an extension of the set of indices a.

W. The p-Space Regions P

A
Definition
P, = (peP) :0(3) p(3) e CV" (2.61a)

for every J C Jx, J # Jk: J £},

where C 77 is the complement of the closure of the backward
light-cone.

Definition

By = By . . (2.610)

where A(a) is defined in (2.60b).
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X. 8(p) =‘;a(p) in .Pa

Definition ) is the mass-shell, which is the space consisting

of the points

2 2,
p‘,= {pj e 5}, Py = m, l. : (2.62)
Theorem
s(p) = T (p) for p in pan‘?'z . . (2.63)

Proof For points p in the mass shell Y] the function iu(p)

is given by (2.46),
r(p) = (o|m(p)}o) , » (2.64)

where ﬂz(p) is the nested commutator defined by (2.29). For n(a) >1,

o(0,a) -
Jj(o,a) J(c,a)

o{0,a) = -0(1,a), since the other term does not contribute by

the operator ¢ is replaced by o(0,a) c with

virtue of (2.l4c). The term-of oy in which each c; stays.on the
left and each . cE moves to the right gives S(p), as defined-ﬁy
(2.56a). '

It will now be shown that all remaining terms vanish. Let

the multiple commutator o be written as

m (2.65)

i
™
e
> -

(L
o

<)
tc?'s ‘that occur in the expansion of - @, - For each pair (a;s) a

where the e_ = n(icj) .are the 2° ~differently ordered products of

distinguished tree is defined as follows:

*8(a,8)
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Let the ordered_sequencé of.éperators> :é? -in e_ " be

B

mapped into a cofrgspondingly ordered horizontal row of

vertices v?. The pair of vertices

v:t-
J(o,x)

and v

+

i(1,0)

will be adjacent, and will consist of one €ross and one

dot. Locate the vertex' v* . Join . each other vertex
J(o,a) v

t

v'_j by a line segment sj to the nearest vertex v_,

+

that lies in the direction of Vi, , &8s indicated by -
3(0,a) :

fig. II.1.

N

1 0

Fig. I1.1. A typical tree tﬂ(a,s)' The zero indicates

which in this example is a cross. Thus vertex v

It is indicated by 1.

In the tree ¢t

t
i(1,a)

8(a,s) each vertex vj (except. v

T

vy
b (0,(1)’
is a dot.

S . by .
- Joined by a line segment s to a vertex vy that is a-less than

a;. Thus (2.41) gives

“ap(a,s) = *

Let 5 =1 label the es“ in which all c;'s

left of all (-cg)'s. What must be shown is that

RONSHR

o(0.a)y .
j(o,g)) s
(2.66)

stand to the

(2.67)

bo-

For -each & £ 1 there must be at least one factor ;c; in

s that stands immediately to the left of some c; in e,. Let

the ordered product e8 be separated into two parts

2 TT () o -<2-685

jeJ~ jed

®
L

ﬁhere c; is the rightmost operator in the left-hand set of factors.

.

o g -
Then every s € t that links a vertex in [vj :jed} to

B(a,8) , ,
a vertex in Ivjc :ij €~J+} connects a dot in the first group to

a cross in the second as shown in fig. II.2.

J Jt

p(a,8)
o : - a! ' +
3 with jJeJ toa Vj! with J' € J one has 0 = - and

Fig. I1.2. For every line segment s in that links a

v

L3

o' = +.

If the tree condition q(JgS) e V', is satisfied for each-

'line'vs éhdwn in fig. II.2, then the»sum q(J+) of these vectors

q(J;s) also lies in V'. Thus the definition (2.52a) of A
entails that ' .

Ca,5) © (@ :a@) eV . | (2.69)

But then the formula (2.53a),
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and the result (2.66) that

o8 (o, 8) =1 imply that

ra'C (@ :q(@) evy . (2.70)

It then follows from the definition (2.60) for T,

r, = {q ¢ Q(Joz) : o(J,a) a(3) e V'
for every J'C J,, q'ﬁ Iy d £0),
“that |
U(J+,a) = + . (2.73)

But then the requirement of the theorem p ¢ By .entails [see

definition (2.61)] that

+ =- ' :
pdNH e &V . o © (2.72a)
However, the spectral conditions [see (2.23b,c) and (2.30)] entail

/1‘] (xD)o) = o - N CR Y

jeat

that

whenever (2.72a) holds. Thus
(0leglo) = o S (2.73)

for any fixed & # 1, and the corresponding contribution to (2.67)
is zero. Hence (2.67) holds, and the theorem is proved.

The similar theorem with « 1replaced by A is also true.
The proof depends on the fact that many relations that hold for the
index « hgve generalizations that hold for the index A. These
generalizations, which are useful in many contexts, are described in

"the next few subsections.

Y. The Coefficients c¢
w .

The coefficients B were defined in (2.41).

Theorem
1 if Ty < CB v
C = 2.)4-
o (2.74)
: 0 otherwise
~Definition
1l if PK‘C: CB
[ = : 2.
AB , (2.75)
' O otherwise :
Theorem

;- n CA | (-2.76)
a:cx5=l

Remark - Note the similarity of this equation to (2.53a),

r, = n G
BiChay

Remark BEG use the symbol k in place of c__.
Remark ® sym o 0P A8

‘2. The Groves Py

The grove p, Wwas shown in (2.41)to be of the form

vpabz Z cOtBté .

Definition

2

Px e % - _ (2.77)
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A'. Adjacent Cells T and T
Definition Two cells T and I, ‘are said to be adjacent if and

M

only if they differ by just one single condition #q(J) € V+. Moré

" precisely, the two sets J and J& mist be equal, and there must

M _
be two complementary subsets J' and J" of J, =J, =J. such
_ _ AT N T N
that
U(J',)\l) - 'U(J",’)\.l) = + , (2.788.)
and _
oI ay) = -od"y) = - (2.78b)

But for all other nonempty proper subsets J of Jx

o) = oIng) - o (2.780)
Remark If T and T, are adjacent then T and I ° are
—_— Kl KZ Xz
also said to be adjacent. The two cells rx 0 and PA 0 have a

. 1 2
common face that lies in the plane :
0 0
g (J') = ¢ (@ = o0 . (2.79)
. : s 0 0
This plane separates the two adjacent cells rx and Fx .
o ’ . . ' 1 2
B'. The Boundary Cells FK. and ’Fx" '
Definition Each pair of adjacent cells T and T is associated

M L

with a pair of boundary cells T and LU vhich lie in Q(J')

)\l
and @Q(J"), respectively, and are defined by the following .

conditions:

I = Jf ' (2.808)

L6
and
U(Jﬂ\') = U(J,)\-l) = G(J:)\-e) (2'80b)
for all J ¢ JK;, J ¥.Jx,, J£¢
.Jkn = J" : ) . : (Z.BOC)
and _
U(J:X") = O(J:?\l) = U(J’)‘?). ’ : (2'8Od).
for all JC Juy T 40, T#0
Remark
JgUJn = Jd = d = J . (2.818.)
S A M Ay A
Iy N In = ¢ . - (2.81b)
C'. Tne Difference Formula pki- A = [px.,pxn]
Theorem Let FX and [ be two adjacent cells. Let I, and
- 1 ) A

FX"' be the two associated boundary cells defined by (2.80). Let

pxl’ pke’ px,, and pk" be the groves éorresponding to these

four cells. Then

p)"l - p)\2 = [P)\np)\n] o - (2'82)

where the commutator product of two groves is defined by (2.38).

This theorem plays a central role in the BEG formalism, and

in the applications of that formalism made in this paper.
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D'. Formu;as for Commutators

The Jacobi identity and the algebraic similarities between
the | Pa’ By Ma, and Aa entail the following result. v
Theorem For each pair (a',a") of indices @ there is a set of

integral coefficients a(a',a"; a) such that

lpgrspgnd = Z ala',a"; a) o, (2.83a)
. - | : _
(m,omn) = 3 a{a',a"; a) m, ' ~ (2.8%b)
t”a"Ma"] = Z e{a',a"; a) M, o, (2.83¢)
, o . _
and
(A, A, = Z a0’ ,a" @) A, . : (2.83d)
S v
Moreover,
Z a(q',a"; a) = 0 . ' (2.83e)

a

E'. The Expansion N = Z d}a Py

Inductive use of (2.82) and (2.83a) yields the following
result. v
' Theorem For each A there exists at least one set of coefficients

dm such that

Py = Z APy 1 , (2.8ka)

- =48-

" where the fa are defined by (2.37). Furthermore, for each nontrivial

Py, (i.e., N # vj) the d - can (and will) be chosen so that every

tree ta occurring in the expansion (2.84a) with nonzéro coefficient

. has exactly the same set of vertices v§. Moreover, the d)a . can
be chosen. so that .
= . 2.8k
Z 4, = 1 | (2.840)
a .
Remark The expansion (2.84a) and the definitions be = & Cop
and Py = ch té yield th.e relation
d ¢ = c_ . 2.8
Z K 0B A8 (2.85)
Q .
F'. The Operators m)\, x&, and A)\
Definitions For every cell index A let
m, = Z dmnh : (2.86s)
p | .
M = Z da M . (2.86v)
a ‘ »
A= Y ay A, ) (2.86c)

a
where the coefficients d,, are the same as those occurring in (2.84).

Remark Since the d)\a . occurring in (2.84) are in general not unique,

. the operators defined above could depend on the particular choice

of dM! made in (2.84). However, it follows from the (corollary

of the) BEG tree lemma described in the following section that these
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quantities depend only on A. This potent BEG tree lemma will also

be used later, in the proof that 8(p) = ;K(P) for p in 907 N P, -

G'. The BEG Tree Lemma

+

Definition A graph ¥ 1is a collection of vertices v, and VE and

[N

line segments s such that each s € v links some v, € T to some
v;-e Y. A tree tB is said to be contained in a graph 7t if and
only if -fe can be formed from r> by deleting some (possibly empty)

subset of the set of s € v. . The statement 't is contained in

=
Y 1is written tB C v. The set J& labels the vertices of y .

Definition For any sum of trees
t = Z c, t 2-8

the restriction (t), of t to r is defined by

(t),. = Z s tg (2.87b)
pe¥
where
T = {p ttg ST (2.87¢)

Remark The linear independence_bf the trees tB entails that (t)r

is zero if and only if cg is zero for every B € T:
[(t)Y = 0] é%::%; [cB = 0 for every B : tB cr]l . (2.88)>
Definition

T

(o 2 (py)y = 0) - (2.89)

.
(=]
n

(o

s JY éhd g = O for every BeY} . (2.89b)
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lemma Let T be a graph and let the

2: % P
o T

%

be integers.

then there is a set of integers q& such that

Zda"a =
[0

R[]
Qp‘
=

and

™

QD-

Qb
i

1
E: dd pa )

~
QeY

Y aa

Lo aa
A
QeY

It

(2.90a)

(2.90v)
(2.90c)

(2.90d)

(2.90e)

If 1 is the maximal graph, in which each dot is Joined to

each cross, then (t)Y
following

Corollary

a

=t and T is empty. Thus one obtains the

(2.91&)

(2.91b)
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This corollary gnsures that.the quantities mx, MX’ and AK
defined in (2.86) depend only on A: they do not depend on the

particular set of dNZ chosen in (2.8h4),

H'. The Generalized Retarded Functions ;i(p)

Definition
F ) = o) L (2.922)

Remark For mass-shell p, (2.32) and (2.86) imply that

F () = (o (@)]0) . o . (2.92v)
Definition
rx(x) = (OlAk(x)|0) . | (2.92¢)

I'. s(p) =%, (p) in B N1M

Theorem «

s(p) = T(® for p in 2NN | (2.93)
" “Proof The proof is a generalization of the argument given in section

N .
X, which covered the special case in which the index ) - was one of

the a's.

In that earlier proof the nested commutator m, was expanded

into the sum 'E:qaﬁeb’ where s was an ordered product of
+c¥'s
J 2

[g da pa»z. OJ = [; aa o : o} : (2.91¢) |

52

s = M(xe)) | (2.9%)

The only e8 considered there were the 2% products that occurred
in the expansion of the particular m, 'in question. 1In the present
case the quantity mx = sz %1 is a sum of different By and
cancellations can occur. Thus each m, 1is now written as
m = 2: b!_ e, (2.95)
s .

Ao D

where this sum is over a set of basis operators e5 no two of which

are equivaleht.

Two es. are equivalent if and only if they can be transformed
into each other by a sequence of interchanges of adjacent operators
c; both of which have the same s}gn. Two equivalent €5 afe equal
by virtue of the commutat%on relations [cz,cg] = [c;,cg] = 0,
and hence any cell operafor m, ~can be expreséed in the form (2.95).

As before the e  with all et standing to the left of

J
all (-c;) ‘is called el{ The proof consists of showing that

= i ) = ' = -
by =1, and that for all & # 1 either (o|e5|o) O or by, =0
For each & # 1 a graph 7(8) is constructed by first
associating each cg in eg with a v?, and placing these V% on
a horizontal line in the same order as the corresponding cg in ea.

The set of vertices vg will group themselves into subsets each

consisting of a contiguous set of v; all qf the same sign, and such
that adjacent contiguous sets consist of vg's of opposite sign. The
graph 7(8) 1is formed by joining each vertex v§ of each contiguous

set to every vertex v; that lies in the adjacent contiguous sets.

(see fig. II.3)
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Pig. II.3. A typical graph 71(8), with the various contiguous sets

indicated by brackets.

Consider any fixed & # 1. There are two cases. If

(px)w(a) # O then, according to (2.88), there is at least one

tB c r(8) with g = 1. Let any one of these t(3 be called
-ts(x,a)' As before, let the seperation J and J* shown in (2.68)
be made. The construction of 71(8) ensures that the tB(k,B)
satisfies the conditions shown in fig. II.2. But then the earlier
argumeﬁt, with o repleced by A, gives (olealo) = 0 for all p
in PK'

= h )
If (pk)Y(B) O then the BEG tree lemma says that m can

be written in the form
o : Iy = JY(G) and c o = 0 for every Bey(§)} .

Replacing all the m, in (2.96) by their expansions (2.99, one

obtains

m)\ = Z h)‘\ﬁ e8 ‘ (2-975
5 | ‘

where

-5ho -

bl = Z CNIR SN » (2.98)
(o : Iy = Jy(d) and ¢ g = 0" for every Bey(s8)} .

Consider any fixed «. This @ contributes to (2.98) only

equivalent to e6 must

defined

. ] 3 v
it Ble # 0. But ;f b # O then some et

occur in the expansion of . t then the tr t
ccur in the expans: m, - Bu en the tree 8(a,8')

above fig. II.l satisfies ¢ )= 1, which is (2.66) with &'

oBla,d’
B(a 8') is contained in Y(%') = 1(5) :

tB(a 5) < v(8). 1In other words, p(x,8') ¢ 7¥{(58). But then «
b R .

in place of &. But t

does not belong to f{a : JG = Jy(d) and Cog = 0 for all BRey(8)}.

Hence every term on the right-hand side of (2.98) must vanish. This
gives

b= 0 . (2.99)

-To complete the proof one must show that
b!, = 1. .
a -1  (2.200)

This follows immediately from (2.84b) and (2.95), together with the

fact that bQ'l =1 for each @ gych that J = J
- a A’

J'. Difference Formulas

Let FK and Fx be two adjacent cells. Let Fx. and
1 .
Tyn be the two corresponding boundary cells defined by (2.80).

Then (2.82-86)_gnd (2.91) give

P
5

[m om ]l | (2.101;)

>
2

(M M), ‘ (2.101_b)
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and

Axl-;Akz = (A LA . (2.101c)

K'. The Difference Formula ;k - ;x = -<°|[Mx"Mx"]|°)

Let A, and ), label two adjacent cells, and let A' and

A" label the associated boundary cells defined in (2.80). Let

p' o= lpy et} S (2.1022)
and

1"

P {pJ : Jed")} .o _ " (2.102b)

Then (2.92a) and (2.101b) give

?M(p) - E‘A?(p) - (OIIMX.(p'),MXn(p"')]lW

= Z ]:(Ollvi)\.(p’)lpm+>(pint + IMX..(p")|0§

int
- (olM)\n(P")lPint ~+,>(Pint + |MA,(P' )|0>}
- : .(2.;0}&1)
= 3 [ohe, 012" - ™™ - i u(e")lo)
Pint ‘ )
- O™ - 2™ - L 210 - (2.103b)

In these formulas the sum over pint is a sum over the complete set
of intermediate in- or out-states.  For any p the bras (ptl and

kets  |p+) . are defined by

56
(pz| = (o] a(py,ty,1) ‘ o (2.10ka)
jer
= (o] ’rr c(pyst,%) ' ‘ (2.10k)
Jer .
and
lpt) = TT aT(pj,tj,t)IO) ' (2.10k¢)
3eT,
= ‘l I -C(-pj,-td,t)lo) (2.1044)
J€Jb

where Jp ={j : pjep).

Remark The first termson the right-hand sides of (2.103a) and "
(2.103b) vanish unless p(J') = -p(J")eV'*, and the second terms

vanish unless p(J") = - p(J')eV”, where V' is the closure of the

forward light cone.

L'. The Symbol p
Let p be'any set of arguments _pj. Then 3 is the set

generated from p by the substitutions

pj ”. h P,'j_ (2.1058.)
and

ty - -ty 3 . (2.105b)
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The substitution (2.105b) means that the particle-type variable ty

is to be replaced by the variable 'tj that specifies the associated

antiparticle.. This substitution (2.105b) is equivalent to the

substitution
U I (2.105¢)
Comparison of (2.10&) with .(2.56) shows that (' + |p" -
is S(p) with the arguments (p) taken to be (p',s");
(p' + |p" =) = s(p',p") = s(p) . (2.1054)
'M'. Formules for 1nt +‘Mx (p')|o) end (OlMx (' )|Pint *
Theorem For any cell index A' and any p' such that Jp. =J50
int + |M ,(p')|0) = (Ol .int int
M. (p = 0, (e ") [0) = 7 W(pp)
' ' (2.106a)
and
O, ()™ 1 = (O, (pr,5in pint
M)\ M)\'i PP )|O> )\H-(P »P ) >
(2.106b)

where A'* and A'" label the cells I ., and T,r. defined by

the signs
c(JiL) Int,x'*), = oI,ANT) = oI,\) = -o(F - JT,N)
(2.107a)
and
o(Int,n'f) = - o(d %) = 1 .

t ’ (2.1070)

=58

il

J_,, and Int
. = I \J Jlnt

P
The primes on ' and p' -are placed there merely to help with the

Here J 1is any nonempty proper subset of J' = Jk'

is any nonempty subset of J int Z Aot Clearly,

L)

substitution of these formulas into (2.103). These two symbols could

be replaced by any others, for example, the A" and p" of:(2.103)

N'. The PFunctions ?é and ;i

Definition of ?{(p)

5,0) = (20 8°(Lpy) F() - (2.108)

This is the )\ analog of the definition (2.47b) of i&(p).

Theorem For each tree t_ there is a tree function ?é(k) that is

B
analytic in the cone Ag, and such that its boundary value
?é(p) = lim 2“'(p+iq) ) (2.10%)
C
1%s
g—0
satisfies for all A
r.(p) = E: %p (p) . (2.109b)
Definition
(k) = e, B (k) . .
) o B0 a0

Definition {[See (2.76) and (2.52)]

ry l/f]. ¢ . _ | (2.111)

B:cx5=l
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Remark From (2.109-111) it follows that

(W) 0

“is analytic in Fi (2.112a)
and that
(@) F(p) = 1m F(p +1a) . . (2.112b)
qer ~
A
q- 0

Remark The momentum-space properties (2.109) follow from the existence

for each t. of an operator FB(x) satisfying

B
(1) FB(x) = 0 for mtcB (2.115a)
and for all A .
(2) A(x) = Z e FplX) - . (2.113v)

Q'. The Functions . r'(k) and Tr(k)

Definition The functions T'(k) and T(k) are defined in (J ri by

Y
Fk) = F (k) for k. in I} - (2.114)

and

r(k) = (2rn )l’ sl* (k) . : (2.115)
it k ek o

Remark The delta function of complex arguments can be given a ﬁell-
defined and sensible meaning.' The only property of ah(f: kj) needed
here is that it goes over to g‘(}:pj) as one takes the limit

kj _’Pj" In fact, the function r(k) will be used here only to
express'in a more compact form equatiohs that can be equally well

written in terms of T¥'(k) by making certain obvious adjustments.

‘p(J')eC v
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P'. The Basic Disconfinuity Formula

From (2.102-115) one obtains for peP(Jx') =P(J, ) and
1

A2

Lim F(p +1a) - Lim T(p + iq)
qer qel’

M M
3- 0 g— 0
~ —int, ~ int ‘
= 2: rxv+(P';Pln ) rx"+(P " »P") (2.116a)
int
P
= int
= Z l-(P P int) n-( n ") ’ (2.ll6b)
int
P n
int

where the sums over p in (2.116a) and (2.116b) correspond to sums
over complete sets of intermediate out- and in-states, respectively.
The cells labelled by A'Y and A"? are defined by (2.80) and
(2.107).

Q'. The Single Analytic Function r'(k) = se (k)

If the masses mj have a positive lower bound m,
my 2 > m > O, then all the discontinuities (2.116) vanish near the
off-mass-shell point p = O. Consequently, the function r'(k) can
be ektended to a ;unction (also called ?’(k)] that is analytic in
K(J,) (\ (U ) U n(3)] where Jy = (3 : kye k) and n(J,) is
some neighborhood of ﬁhe origin in the space K(Jk)’ IfS'(p) is

defined by (27()“ su(ij) s'(p) = S(p) then (2.93), (2.108), and
(2.112b) show that for DPeP, (3’Y7l the function S§'(p) is the

limit of r'(k) from points ker, .
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Remark The S-matrix §'(p) 'generally has disconnected parts, which

are terms that contribute only on the surfaces p(J) = O, where J

ranges over the nonempty property subsets of the set Jp = {J :vpj eP].

The union of the P, < P(Jé) contains no point on any of these
surfaces. Thus the connection between §'(p) and r'(k) described
above holds only at limit points p where all the disconnected parts
of S'(p) vanish. The function r'(k)  can thus be regarded as the
analytic continuation of the éonnected éart of 8'(p). This
connected part is denoted by Sé(p), and is called fhe physical -
scattering function. Its connection to r'(k) is recorded by the

definition
si(k) = T'(k) . " (2.117a)

The subscript ¢, which stands for connected part, is
eésential here; the analytic function ;;(k) does not contain any
¢ontribution from the disconnected parts of §'(k). This is because
any contribution to Aa(x) that is invariant under the translation
of some of the variables xa relative to the others, and satisfies
the support condition (2.4%4), is identically zero, as one sees by

'considering a large spacelike translation, Alternatively,'in'momentum
space the disconnected parts must have extra delta-function factors
if the contributions from the séts p(J)'='O; which have measure zero,
are to contribute. 'But delta functions cannot occur in the.analytic
function r'(k). |

The relation (2.1174) can be written in the alternative form

S.(k) = F(x) . s (2.117b)
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R'. Hermitian Anélyticity
Definition
s(p'; p") = (o' + [p" -)
= (olaray)t7a"y)T|0)
where )
(Mal?) = a(pj;ty,1)
dtpjep
and
. T T
nt = o
(ﬂ,a.j ) = » ! | a(Pj:tJ:i)
J:pjep”
Definition

ste'; 2"

[(olray) ey Tlo)™

(ol tiay) (i) o)

(' - |p" +)
Remark Equations (2.118-119) and (2.1054) give

s(p) = s(p',p") = s(p'; p")
Definition
r, = f(a:-qer,)

* , *
s (p"; »') = s(p"; p")

(2.118)

(2.119)

(2.120).

(2.121)

Theorem (Hermitian Analyticity) Suppose p Llies in PK(\‘771 » SO

that
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r.(p) = s (p) = s(p'sp") : ‘ _ Note that
= (o' + [p" =) . o (2.122) v Imk = g = ImE* . (2.127)
Then Thus if Im k lles in T, so will Im 5. But then, since both
~ : ' id 2.12 ' i i
r_x(P)_ . - st oM sides of (2.126) are analytic functions of k in each cell r,, it

is sufficient to show, for some ) and for all k in Pi, that

- "+ |p' ) ;k(k) - o [;X(E*)]*_ . . ) (2.128)

- (" - |p" +) . : (2.123)
: - For cases in which A = A{a) = @, the relation (2.128)

Proof It is sufficient, as will be shown later, to prove the more follows directly from the identity

general hermitian-analyticity property .
| m(x) = - IEMT _ (2.129)
15,(k's k" = [18,(x"™ M) = [1s (k% kI, (2.124) ‘ |

Ay

which holds for all k in P&, together with the formula (2.54b),

where S (k'; k") =5 (k',E") = 5 (k) = T(k) and where ¥ = D + ig

- r (k) = (oM (x)]o) . 2.130
with §i= -qj. {The neame "hermitian analyticity" for this property a( ) <,‘Wz( )‘ : (2.130)

arises from its similarity to the "regl analyticity" prdperty The operator %1(k) is defined for k in [} by (2.5ka),

£(z) = [f(z‘*)]* . ’ . (2224) - " ik, x : '
: : | M, (k) f‘ I(id xy e JJKJ)Aa(x) X  (2.131)

The operation of complex conjugation apﬁearing on the right-~hand side jeJa

of (2.1241) is replaced in (2.124a)by hermitian conjugation. ] . . : . . o
. c ‘ v » The identity (2.129) follows from (2.131) together with the fact that

Note that _ t
the transformation tJ - - tJ changes Aj to AJ [see (2.105¢)].
r(k) = _SC(E',k") = sc(k",E') = sc(k"; k') (2.125) This change is cancelled by the operation of hermitian conjugation

_ . appearing on the right-hand side of (2.129). That operation also
since the order of the variables of § (k) 1is immaterial (for : '
¢ reverses the order of the multiple commutator, which brings in (n -1)
bosons). Thus equation (2.124) can be written in the more compact ' v :
sign changes. The complex conjugation of the n factors i in
form . _
(2.31) brings in n sign changes. The factor (-1) in (2.129)

~ ~ iy 1 * '
r(k) = - [F(&]. . : (2.126) is the result of these (en. - 1) sign changes. The exponents

1kaJ' are unchanged.
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By analytic continuation the validity of (2.128) for one value
of A ‘ensures its validity for all values of ), and also fhe
validity of (2.126).

Letting Im k - O one obtains from (2.128)

FLe) - -EL@T ., (2.1320)

for every A'. If p 1lies in Fa_(\‘yy1 (and hence Pp lies in

) N () YN), then (2.132a), with A' = -A, together with (2.93), (2.120b),

and (2.125), give the desired result
P = -E @1 = -s®1" = -sfe) . (2.23m)

Remark The above proof makes use of the operations of complex conjuga-
tion, hermitian conjugation, and antiparticle conjugation
(tj - - tj)’ However, (2.123) can be derived without using any of

these operations. Comparison of the final form of (2.123), namely
) = - -y,

with
T () = (@ +|p" -

Shows that (2.123) is simﬁly the statement that the substitution
c§ —yc; reverses all signs 0(J,\) and brings in one overall minus

v sign, and hence converts rx(p) to -r_x(p). Inspection of (2.29),

(2.31); (2.37), (2.52), (2.53), and (2.121) shows that this is the case

for X = Ala) = a. It is not hard to extend this result to the

general case.
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S'. The Functions S+(p) and 8 (p)

- Definitions
s'(p) = 5,05 P" = o’{ ﬁ}p” | (2.1338)
and ‘ . ‘
s’ (p) =

-stesen = (TR} (2.1530)
Remark If A lsabels the physical cell, then S§'(p) = ?x(p) and

s (p) = ?_h(p). Thus S*(p) is the physical boundary value of

r(k) and S (p) is the boundary value from the cell that lies

opposite the physical cell.

Remark In what follows the functions s'(p) and S7(p) will
generally be represented by the plus and minus bubbles shown in
(2.133). The lines on the left- and right-hand sides of these

bubbles correspond to the variables in p' and p", respectively.

T'. Two Forms of the Steinmann Relations

The Steinmann relations were defined in subsection J. That

abstract definition can be converted into various equivalent concrete

‘statements. Two of these alternative statements are described here.

1. The BEG Form

To represent the symbol o defined in (2.24), let the-extra
sign o(0,a) = -0(1,a) be added. Let Ji 5~{5€J& T = j(i,&) and
o(i,a) = + for some O < i ¢ n(dj}}’ Then BEG show that the Steinmarn
relations as defined in subsection j, allow any pOl to be expressed

in the form
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G Z'b(c.a')oa.

al

(2.134a)

where the b(d,d') are positive'or negative integers, or zero, and the

Pyr are restricted by the fol;owing three conditions:
(1) J;, = J; end T, fJ;; |
(2) J(O,a').= Jd for every a occurring in (2.134&) where
JO is a fixed but arbitiary elemeni.of Ja;
(3) for any prescribed ordering of the indices; JeJa, oné
has §(1+1,at) > J(i,a') if o(i+l,a') = o(i,a’). .
Reference to equations (2.91 a-c) shows fhat for every

instance of (2.134a) one has as well the relations

n - Y Maadm, , (2.134b)
a’ '
Moo= ) baaM,, (2.134¢)
o
and
'Aa' = Z bla,a' ) A (2.134d)
o . ‘

with exactly the same coefficients bla,a') as in (2.134a).

In what follows, it will be (2.134b) that will be of principal
interest. It may be noted that for nf(a) = n{(@')> 1 the first
element ¢ in any nested commutator m may be'replaced by

J(O,a) : a
o{0,a) cggg’zg without altering ma. For this reason, (2.134b)
’ . .
may be expressed as follows:  any nested commutator m of c;!s and

a
c}'s can be expanded as a linear combination of nested commutators
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m,, built from the same cI's and c}'s, but with any specified .
. .

factor c; or c} occurring first, and with the ci's and c)'s

i J
that lie in contiguous groups of the same sign ordered in any

prescribed fashion.

: Fof each set of cj one- can prescribe a fixed set of basis

elements mo for the expansion all m, that are constructed as
products, in various orders, of this set of c?'s; The Steinmarn
relations impose no relations among these basis elements LR Thus
the exp#nsion of all L in terms of these basis elements m,
displays all the Steinmann relations: a linear combination of mc's
is zero by virture of the Steinmann relations if and only if its
expahsion in terms of the basis elements By is 1deptically zero

(i.e., if and only if the coefficient of each ma,' is zero).
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2. Discontinuity Form

Equation (2.116) is a formula for the difference of the

boundary values of T(k) taken from two adjacent cells Fx_ and
1

rh . These two cells, when restricted to energy space, are separated
2 .

by the plane qo(J;)'= qo(J") = 0. . The difference ;x - ;k between
these two boundary values will be called the discontin&ity across the
cut ¢O(3') = 0.

Equation (2.116) implies the following property:

Steinmann Discontinuity Property (SDP) The discontinuity across the

cut qO(J') = 0 is independent of the sign U(J,xl) = G(J;xe) if
J eand J' overlap. The two sets J and J' overlap if and only
it JNJI', NI, N 3’, and J () J' eare all nonempty. Here

T = - t = Tt oo = = = 7t "
J=4J, -, 3._J)\ J' =J", and JA_J)\l_JLa-JUJ.

This property follows from (2.116) because the right-hand
side of (2.116) depends on a sign O(J,xl) ='0(J,x2) only if J -or

? isa proper subset of either J' or J". But the condition that

A

J and J' overlap implies that neither J nor J is a proper sub-

set of either J' or J".

The Steinmann discontinuity property stated here is equivalent
to the one stated in the introduction, within the general framework

of BEG field theory. The only difference is that the limits ?)\ are
now allowed to be taken from Pi, instead of from the more restricted
0(

y

The following result, which is implicit in the reconstruction

region ' T

theorems of Araki and-Ruelle'(é), is proved in ref. (ll].
Theorem The Steinmann discontinuity property is equivalent to the

BEG form of the Steinmann relations.
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‘U'. Trivial Cuts
It was mentioned in the introduction that the discontinuities
across certain cuts vanish identiéally on mass shell, due to stability
conditions and spectral conditions. On the mass shell the formulas

(2.32) and (2.86) allow the discontinuity formula (2.103) to be written

as

;Xl(p) - ?;2(9) = {o][m, . (p")5m n(e")]}0) . . (2.135)

One kind of vanishing cut is the kind ldbelled by a set J , that
: A

consists of only one element,

Jyv o = ) . _ (2.136a)
In this case (2.135) becomes

r -r. = (o ")1lo .

Ny T _( teyom, « (2")]10) . (2.136b)
This vanishes due to the conditions

CJ|O) = 0 = (OICJ > ) » (2.137)

which follow from (2.23d4), and the spectral conditions.

~ Condition (2.137) expresses the stability of one-particle states:
the in-state is tpe same as the out-;tate. The case JA" = {3}
. gives null discontinuity by the same argument.

The second trivial case is the one in which Jk, consists

of one initial-particle index and one final-particle index,

J.. = (i,£} . (2.138)

XV
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There are two possibilities, which correspond to the two signs in
= [e¥e] : (2.139)
m, . joced - _ .
The spectral conditions and energy conditions (2.55) give
(©le¥ = 0 = cflo) . . (2.140)
1 R L
The first equation, together with (2.137), gives
*
(Ol[ci,cf] = 0 (2.1&1)
The second equation, together with (2.137) and the identity
+ + - -
[cJ!cJ']. = [cJ,cJ']’ (2.1’42)
gives
lef,epllo) = o . (2.143)

Equation (2.142) and the definition ¢y = c; - CS give the important

identity
s ) z . . _
[cJ’ch] = [cd',c:j] . (2.1’-“-&)
Equations_ (2.137) and (2.104) give

(Ol[cg,,cfn] = (Pf' an +| - (Pf. an "I (2.1)4-58.)

and

(e}, ¢ nl]0)

IPi.Pin'-) - lpi';PiH +) . (2.1)451))

Thus (2.133) gives

(oltcgncf"”p 1') = S;(Pf.,an; P) _(2.1)468.)
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since for cases with two particles in the initial or final state the

connected part of the § matrix is Sc =8 - I. These formulas are
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+ : + ' '
(P 4 |[Ci| }ci"]lo) = S"(p; PiuPi") 3

used in section IV.
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III. THE 2282 ZONES
The formalism of sectioﬁ II applies to processes with arbitrary
numbers of particles. It is now applied to a process of the form
1+2 + 3~ 4+ 5+ 6. This processAis described b& an S matrix S(p),
where p = (pl,---}p6), and, in accord with (2:55);

0

P, < 0 for je{1,2,3}= I : (3:1a)
and

pj0 > 0  for jel4,5,6}=F . (3.1b)
Here

Wr = Jp = {1,---,6} = J6 ." . " (3.1e)

For each nontrivial cut g there is a nonempty proper

subset J_ of. J

g 6 such that the cut g is

) = %3 = o, (3.2a)
‘'where

3g = 3 -3, ' (3.2b)

"The set of indices g that label the 16 nontrivial cuts is denoted by

E. This set consists of the elements ‘%, I, [, and fi, where 1

is 1, 2, or 3, and f is 4, 5, or 6. The corresponding J_,6 are

g

J = {4,5,6} = F , (3.32)
T

J_ = {4,5,6} + i} , : - (3.3v)
1

J = {4,5,6} - {r} , (3.3¢)
T .

-

and

J_ = 4,56} - {£}+ {1} . : ' (3.3d)
1

With the sixteen sets Jg chosen in this way there is a cell
PAO such that every c(Jg,A) is positive. This cell lies "above"

every cut geE. This cell is équivalent to the physical cell Fg(p)

" in the sense that it has the same boundary value ; as Pg(p). For

v _ A
if po(Jg) is nonpositive for any geE then the discontinuity across

cut g vanishes by virtue of the stabiiity conditions (2.137) and
(3.1). |

The 16 cuts divide the 5 dimensional space Q(JG) into 2282
regions called zones. Each zone corresponds to a set of 16 signs

o(Jg) such that the 16 conditions
o3 )d&3) > o
g g

are satisfied fof all points qo in the zone. In this.sectibn'the
2282 combinations of sixteen signs 0'(Jg) that correépond to zones
are exhibited.

The sixteen indices geE éan Be.arfanged in a féur-by—four

box in the manner shown in fig. III.1.

Fig. III.1. Arrangement of the sixteen indices g.



The combinations of -signs . og z U(Jg) that correspond to
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zones ‘are shown in fig. III.2,

Fig.

(2x63)

III.2. -The signs og

(2 x 252) (2x 162)

that correspond to zones.

76

The + signs occurring in fig. III.2 are variable signs:
they can be chosen to bé’eithgr plus or minus; subjecf to tﬁe-condition
that

o <0 for T»T" and T3F .  (3.4)

ir it : ’
That.is, if any sign © represented in fig. III.2 by * 1is chosen to
be minus, then all the * signs that can be reach by mqving downward
from © along the rows and columns must also be minus. - For example,
if the topmost % sign in the top left-hand diagram of fig. III.2
is chosen to be minus, then all the * signs in that box must be
chosen to be minus. |

The two symbols * and X represent variable signs +* thét
are subject, however, to the additional conditions that * "cannot be

positive if all other variable sighs are positive, and X cannot be

- negative if all other variable signs are negative.

-Each combination of signs og shown in fig. IIT.2 corresponds
to a zone. The other sets of signs O that correspond to zones are
those that can be obtained from one of the sets shown by a combination

of one or more of the following operations:
permutation of the indices iel , (3.5a)

permutation of the in&iées feF , (3.5b)

reflection of the diagram across the vertical axis, (B-QC)F

reversal of all the signs . (3.54)

The number of combinations of signs repreéented by each diagram is

written below it, with the factor two coming from the reversal of all-
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signs explicitly displayed. The total number of allowed combinations
is 2 x.1141 = 2282. | |
The results described above were established by first fixing
6({7 = +, then ordering the i and f so.ﬁhat q60 > q5o > q40 and '
' —qBO > -q2O > ﬁglo, and then eliminating all the combinations not ‘

shown by use of the identities
QD+ &m = A+ lan (3.6)
(T + T, + T, = 2D (3.6b)

20%%) , (3.6c).

qo(ilfl) + qo(iz?z) + qO(T;)_+ qo(?;)

QT + AL + AT = &, (3.60)
and '
QT + G + &) + AT - q°<1—1_) + AT .
o (3.6e)

[In this equation, and here alone, the notation qo(g) = qo(Jg) is
used.] Then it was checked that each of the remaining combinations
of signs were mutually compatible by exhibiting a solution to the

set of 16 simultaneous equations % qO(Jg) >0 .

IV. GENERALIZED OPTICAL THEOREMS
In this section formulas are derived that express in terms
of physical scattering functions the discontinuity of any 3-to-3
scattering function across any basic cut. The basic cuts are cuts in

the energy space that are confined to the planes (1.1). These planes

' Py+ and P+ In the 3-to-3 case these groves are groves p
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divide the space QO(J6)A into the 2282 zones catalogued in section
III. ATWo zones are adjacént if they lie on the same side of every
p;ane (1.1) but one. The discontinuities to be derived are tﬁe
differences of the boundary values corresponding to two adjacent -

0]

zones. Each zone contains several cells. All the cells FA in

a given zone have the same boundary value }A' Thus the discontinuity

defined as the boundary value from zone 'Zl minus the boundary value
from 2., can be expressed as T, - T, , where T Oc 2 and
2 M AZ Al 1 ’
T 0 C Z,.
A2 2

- The difference fx - FA can be expressed in terms of
1 2
physical scattering functions by taking the formula (2.135)

-~

r)‘l = i:>‘2 = <0|{m>‘,,p)‘,,]'|0)

and inserting between the operators c¢* and ¢, that occur in the

J J

terms of m . and By n ﬁppropriate complete sets of in- and out-
states. The main task is to determine the explicit forms of the
operators’ m, and m,, that cerrespond to a given set of adjacent
zones. This will be done by first finding the corresponding groves

o and

Py and hence the-operators mx, and my, are the nested  commutators

and m

mn .
a”

al
The discontinuities across final subenergy cuts are considered

first. Inspection of the first two diagrams of fig. III.2 reveals a

difference in the final subenergy sign o_ = O(JZ,') = o({4,5}). These
. Z _ ,

two signs can be identified with the two signs o(g,kl) =+ and
o(g,),) = -. Then the condition that Z, and Z, be adjacent

requires all other signs in the two'diagrams to be pairwise equal.
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If o(J ) is.fixed to be minus, then there are, in view of the sign
“or ) _ _
- restrietion (3.4), just three remaining possibilities, and these are

shown on the left-hand side of fig. IV.la.

,Fig.vIV.la. The basic discontinuity equation. for case 1.

On the left-hand side of fig. IV.la the * sign on.the
' loopipg line that cuts off lines 4 and 5 indicates a discontinuity
across the cut qo({4,5}) = qo(Jg) = 0. This discontiﬁuity is defined
to be the function evaluated at qo(J ).= 0+ minus the function
evaluated at qo(Jg) = O-. The circled * sigh occurring in tﬁe [
Abositioh'df the matrix of signs inside.the bubble on the left-hand
siée i1s this same * sign. The other signs in this bubble are the
-pairwise-equal signs o = c(g,;li) '='0(g,')\2'). The two # signs,,b'
o({5,2}) and o({5,3}), can be iﬁdependently'fixed to be either plus
or minus,.subject to (3.4).

The.equationbrepresented by fig. III.la is an instance of
the basic discontinuity equation (2.116a) except that the‘signs of the
trivial cuts are not specified. In this instance the.intermediate

states are the out or plus-states. Thus the functions represented by

‘the smail and large bubbles'@n the right-hand side of fig. IV.la are
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iX'+ and fA"*’ respectively. - Equation (2.146a) says that the
quahtity ;A'* is S-(pf,pf"; pint). This quantity is represented
by the small minus bubble on the right-hand side of fig. IV;la, in
accordance with (2.133).
For the large buﬁble on the right-hand side of fig. IV.la the

ordering conventions of fig. III.1 are used. The set of intermediate .

lines can be considered to be divided into two nonempty sets, which are

‘associated with lines 4 and 5 of fig. III.1. This representation is

" adequate because the signs determined by rules (2.107) treat all

separations of the set of intermediate lines into two such sets in
the same way: the particular content of these two sets is not
important.

The Signs in the large plus bubble are the signs c(Jg,X"+)
associated with Tyne. They are determined by (2.80), (2.107), and
(3.3): |

o(I_A"™) = oI A) = + , (4.1a)
I I

oI ") = od_n) = - (4.1b)
& 5 . o

oI A") = o+ - o L (410)
g . .

o(I__A") = oI_r) = + < (4.1d)
T I

o(3__A"*) = oli_n) = + , (4:1e)
51 o1

o(I_A") = old_n) = + , (4.1f)

- t .

Z
and '

1
+

.o(J_,)«"") = o(J_) (4.1g)

5

ot



-81-

-Note that the signs on the right-hand side of fig. IV.la do not

depend on the variable signs * that occur on the left.

The large bubble on tﬁeright_handside of‘fig. IV.1la represents

a function

. t .
@™+ ma(em)]0) = (Olma (eI, (4.2)

where Dy is an operator
_m)\n = § dX"G. m(!. . . (4-3)

The_main task in this sectioﬂ/is to explicitly exhibit this
operatop_ m,,, and the analogous operators for gll the other ‘
.qiscontinuities. This task is simplified by the fact that each my
' corresponding to a I with less than five elements is a nested

commutator n.-

_ The'procedure for determining Oy, =M is as follows:

a
(1) The given sets of signs O(Jg,k } and G(Jg’AZ)
determine, via (2.80), a set of signs o(Jg,xv)_ For each such sign

o(Jg,A") there is, according to (2.58), a condition on PO

AM of the

rform
o3, %3) > 0. . (4sa)
g g . , .
By virtue of_the congervation-law condition in the definition (2.57)

of QO(JA")F there is also a condition of the form.

; ny 0 » : _
o(Jg,} ) e (dy, - Jg) <0 . (4.4b) .

These conditions (4.4a) and (4.4b). define an energy region Fxﬁ that
0 .

containsg Fx" .

-82-

(2) A set T of trees tB is found that satisfies both

580 c Fkﬁ : - (4.52)
B:tB;T

' . Where ‘CBO is the energy section of -C%, and, for some o,

tg =, - (4.5b)
B:tBET

(3) The operator myy 1is identified as m,s

m}\" = ma 9 (4-6)

where o is the o pafameter in (4.5b).

» This procedure is used in cases where the set JAP includes
all thrée initial particle indices i or all three final particles
indices f. In these cases the set of signs o(Jg,A") determines all
the signs o(J;A"), and hence F;" = FA"O. Tﬂus in these cases the
procedure described above determines the unique . My n = n,. [The
same conclusion holds with A" replaced by A’.]

| The small bubble in the subenergy discontinuity formula is
determined by (2.146). This leaves only the case of the cross-energy
disecontinuity formula. But in ;he'cross;energyjcases the-basic.
discontinuity fofmula [5]balreédy gives'the discontinuity in tefms
of physical scattering.functions, and hence no‘further work is needed
for them. |

The prpéedure outlined above is now carried out in detail for

case‘l, whiqh is the case show£ in fig. IV.la. In this case, the

eqs. {2.80) and (3.3) give

0'({6}))\") = - 0'(_J"-— {6};A") : =‘ o(fy)‘l) = + (10-78)
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oA"Y = - o3 - {1LA") = o(BLA) = -, (4.7)
and - : '
0({6’1}11") = “O(J" - {611})A") = U(Y;Al) =+,
(4.7¢)
ﬁhere' i runs over {1,2,3}, and J" = JA" = {1,2,3,6}. The
corresponding region r:" = rx4° is theﬁ defined by the conditions
from (2.58),
0 : o | | .
q ({6}) > 0 , - (4.8a)
0 _ : :
q ({i}) < o , : (4.8b)
0 .
q ({6,i}) > 0 , } (4.8¢)
and
O(gn) = . o
q(J") = 0 . (4.8d)

These are the equations (4.4) that define T for -case 1.

0
A"
The next step is to find a set T of trees tg such that

0 Ve =0 T -
FA" ::) ((—) CB .f 2. (4.9)
B:tBET . ) :

'The conditions (4.82,b) and (4.9), together with (2.52), require that

O¢ - o+ ’ b'(l.lea)
ve = v , . .
and
% .
i (3=1,2,3) o)
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But there is only one tree ts that can be formed from one cross

vg and three dots vy, namely the tree shown in fig. IV.1b.

6 2
3

Fig. IV.1b. The tree tB for case 1.

"The tree tB shown in fig. IV.1b 1is associated with a cone
Gy defined by (2.52). Comparison of (2.52) with the conditions (4.8)
that define Pxno shows that Eg C PA"O. Thus (4.9) is satisfied.

But the rules (2.38) and (2.41) show that

R R A CACRA) B (2.11)
Thus Dy = My for case 1 is
o
m, = [ci,[cé,[c},cé]]] . : (4.12)

Having described the procedure in detail for case'l we now merely list

the corresponding results for the remaining final subenergy cases:

Fig. IV.2a. The basic discontinuity equation for case 2.
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‘The m, for case 3 is

—~— e el O wa
4 + ' - ‘
| 3 |Sz ' ‘ _ _ : o | :

Fig. IV.2b. The sum of trees for case 2.

The m, for case 2 is

=y - (°I'[°5’[°§’°6]]} . (4.13)

Fig. IV.4b. The sum of trees for case 4.

Fig. IV.3a. The basic Hiscontinuity equatibﬁ for case 3.
The ma for case 4 is

oy e bl - o

Fig. IV. 3b. The tree tB for case 3.

'Fig. IV.5a. The basic discontinuity equation for case 5.
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| s::;;;zszjiz | 6 :;;;Efffi 3
1 — 3 a3 2 '
Fig. IV.5b. The sum of trees:for case 5.

" The mu for case 5 is

Pa - ’[cg'[cé’["}cl]]] - g (4.16)

If the sets of signs o(Jg,Xl) and 0(Jg,A2) are restricted
to those appearing in fig. III.2, and those obtained from it by the
reflection (3.5¢), then the five cases listed above exhaust all the

pairs of sets satisfying c({4,5},Al) = 45 o({4,5},A2) = ~, and

o(J',Al) = G(J’,A2) for all J' # {4,5}. The remainihg four final-
subenergy discontinuities are discontinuities acrosé the cut

q({4,6}) = 0. The bubble diagram on the right-hand side of each of Fig. IV.8. Case 8 reduces to case 4.
these remaining four discontinuity eqﬁations is the same as. the |
diagram on the right-hand side of one of the {4,5} discontinuities
alréédy given, except that line five replaces line six. Thus it is
enough to give the léftfhand side and to identify the case to-which

it reduces.

Fig. IV.9. Case 9 reduces to case 5.

Fig. IV.6. Case 6 reduces to case 2.
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The nine cases described above cover all the final-subenergy

discontinuities that can arise if the allowed signs are restricted to

those either actually shown in fig. III.2, or obtained from fig. III.é ' t ’ !
o . _ B/= 6 &, tgw= 3
by a reflection across the vertical axis. The remaining‘final subenergy o s 2
cases are obtained by relabelling the initial indices; or reiabelling - » . *
the final indices, or reversing all signs, or by applying combinations ' Fig. IVf 10b. The two trees tB' and tB" for case 107
of these three operations. , -
The initial—subenergy'discontinuities are treated in the same The two m for case 10
way. The net results are described later. »
v o : my, = [cz,[c;,cé]] (4.17a)
The total-energy discontinuities are considered next. . In '
these cases there are two nontrivial cells, PA' and PA"’ with and
I‘A. < Q(Jk,) = Q({4;5:6}) ‘and I‘An CQ(JAH) = Q({l,2,3}). .There is ' : - n, = [CI,[C;,CB]] . (4.l7b)
. a 4

a single tree tB' corresponding to FA' and a single tree tB"
corresponding to PA"' The basic discontinuity equations, the trees

and Dyn .for two total-

tB' and tB"’ and the corresponding oy

energy discontinuity cases are summarized in fig. IV.10a,b and fig.
IV. 1lla,b, and in egs. (4.17) and (4.18). The analogs of (4.7) are

o( {i},A") = + c(T,xl) and o({f},A') = - o(F,Al).

Fig. IV.10a. The basic discontinuity equation for case 10. ' S
' Fig. IV.1la. The basic discontinuity equation for case 1l.
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)

o o .
ts”_.::>4 e . 2 "

and .t,, for case 11.

Fig. IV.11b. The two trees tB' 8
The two m, for case 1l are
| By - [cg’[‘_’;’cz,]]. ' | ' | : (4.182)
and | | ’
B = [ci’[;z’CB]] . 7 | (4.18p)

All other total-discontinuity cases follow from cases 10 and
ll by the épplication of the_various operations (3.5)."

As already mentioned the cross-energy discontinuities are
expreésed in terms of physical scétte:ing fﬁﬁctions by the basic
discontinuity equation itself [5]. _Theée results will be listed later,
along with the final results foi the subeneréy and total;energy
:discontlnultles . » '

The required expressions in terms of phys1ca1 scattering
functions for the subenergy and total energy diséontinuities can be
obtained by inuerting complete sets of ih- or out-states betwegn the
factors of mo and M- Casé 1 is considered first; The second
factor . iA"* oﬁ the right-hand side of the discontinuity equation
shown in fig. 1V.1la is, by virtue of (4.12), (2.23), (3.1), and (2.31)

given by .

-
'<p; + I@A"l0>_

o - ik bseell
o+ ({55 )ale

=Pt g A E D) - (et e Ial 6 3—-—2-b>

" (case l)-

"

S I e T - (o e I L EEn

+ '+ (57 T5 a0 TP + (o' + [ F; ap 3, D)

e e )
To convert'(4.l9) and the equations like it that follow

into simpler forms a diagrammatic notation is introduced. The basic

definitions are as follows:b

(pn!".'l m+1:+|Pl;--‘-,Pm:-> » (4-‘208-)

3

. 3

+]
oo

3 <
1]

<Pn,~--, m+1’_lp1’..i’pm’+) , (4-20b)

3

s

5-
in
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"

me| I m ’ (pn""l. m+lr+.|p1’.”‘1pm!+)

in

(pn’ Tt m+l’-lp1’ Tt ,pm,-> _,-(4.200)

mmmK::)mmn = [ + o  ‘ (4.204)

c

where c¢ denotes connected part. Three other frequently appearing

combinations are also represénted by special symbols:

. mu" + I = Vf -f - ‘ (4.20f) ‘

-4~
‘ ) . - - ’ N
"""Emm = umm" " ! i (4.20g)

(4.20n)

" i i oo i
'!!!illi;ii =4 ?Efii::l;;; 4 II:I""”E!!Inuu

= ¢ % b " ""E""'m '

(4.201)

where the shaded external strips represent fixed sets of lines, and
the shaded internal strips represent sums over all numbers of lines,

together with an integration of the kind occurring in the unitarity -

equation, which thus takes the form

(TR o{ e =l T aon
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Unitarity, -together with (4.20d) and (4.20e), gives the useful

~ identities

oTm(= - b

and

=Gl - <(Ox
- (4.200)

The first term in (4.195 is just the S matrix for
1+2+3-+6+Int, where Int represents the set of intermediate
particles. The femaining six terms can be converted into éxpreséions
1nvolv1ng physical scattering amplitudes by inserting on. the left-hand

side of - a6 the identity operator I = |m-)6%—|n->(n+| This gives

@ myu|0) - | o (Caée 1)
-3 e
o=

b e i

_;__ 6 um

[T 18 Rud

e

|
— 2

SCE: S e AF
% Z““@—i—ﬂ
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For case 2,eq. (4.13) gives
<pint + |m>‘”|0> " (Case 2)
+
@'+ 1ol [

eIt 4 | [[[ag,;;} ,52‘}51*]|o>

l\) J
r—-ﬂ
\/J

-

[¢]
(o8
—
—
e

o

3 t + —_—— —— —_— : : t _ ' - —_—
<p1n + I 3'6_ v a a ai I 0> = <p1n + l al+ 6 3 2 ! O>
int —_—— + = - — ., i —_ —_— —-
- (Pln + |a2 36,33 al l0> - \plnt + Iag 86+ 32 ?1 l0>

int -+ ==

(pInt 1zt oo ot oo
(o ¢y ag a as S Joy + {p +lay) & 5 10
+ (pF . 5, 3, a a3 lo) (4.21a)

where E; o) = ;j_ |0) is used. Inserting appropriate complete sets

of in- and out- states, one obtains

(pint + |mAu|0> (Case 2)

0

wr-
i

1T

o "|“"=

i -
. -
+ m@ + IIIIIIll g

6 ——o——— |

i#!

i
»
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| . For‘ case 3, eq. (4.14) giﬁes
% i'EFE): SRR A SA ) Y
T e m Al
i#l : ] ) . :

i#1s = e e a; 3, 7o) - G lag 3 35 o)

-z m I mmunmr '_Z IE ! . E . | . < int | 'la+ é+ - a-|'0'> . (pint . |a+ . E+ - 0)
i#l L\t i;|6—j3:» o - AP 672 "3 71 . 6 %1 %2
‘ : 2
> mrE: - © =31
|¢l6-——o—|

| g—— | SR - |||| - > m i
. . e~ -1} i#3 o ] +]
2 . . . ‘ )
+ mi1j=3 | .

: : ' ' i
6 — . e =
. . » 6
]
| . 113 .
= 2 — Z + it R
6 3 h . uum.

1£1 6
mu -
2
6 3

I

Gl (case )

o N~

uu. 3 Z - T P
6 m( -} & s i + -

(4.21b)
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i#3

1]
6
6 3

S e -
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" 3
6 mu""“m“° ;

3

l#

=

N -

Ty
6 — 2

(4.22)

For case 4,eq. (4.15) gives

@™ + |my,l0)

(Case 4)

. int
- "

—— == = int
+ Ia2 8g a5 ) fo) - <p +

¢ (4 (55 @) ag ) loy + (B |

s (pint 4 5, 5 e z;|

6 —

Tg

o+
|a3 ag

— 2
3

+ -

a) a3 3¢ 3, lo)

o\

- »
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Fo . (4.16) gives o 4 - _ - )
or case 5 eq. (4.16) gives These five cases, and in fact all final subenergy cases with

(pint +| mrn|0> . ' : _ ~ . (case 5)° G(T)b= +, are summarized by the eqﬁation
AU . _ v

SR CYCACEN D
R ((Agr vy o9 0%

s t Ty '

int + —+ : int + -
= "(P T + laé al |2’3-> * <P +| a6 8-3| 1)2+>

| | | s [/t
+ <pintv+ la+ E.W l,3+> _Y<pint +l ag|1,2’3_>‘. . iel, t —

6 "2

= - ! + m : i o ' . ‘ €1,
i I ;25 6 =] o - ‘ .

Y (4.250)
' — 1
=a=
’ where
- | ! — i _ : ‘
- 2 = Am% S . L e AT o o FTY = ’
GEIH_HEE?’ i; 6 — | . I, = {4 ', o(T) , o{f1) } . (4.250)
S (4.24) :
and
L = o) =4, off) = -} . (4250)

-

The plus sign inside the bubble on the left-hand side is the sign

o(t). In thesgl equations 0(g) = O(Jg,Al) = o(Jg,Xz).

Remark The case in which o(I) = - and o(TI) = + does not occur
in the BEG framework because of the cell function limitation (3.6a).
In section V this limitation is removed and a term corresponding to

this case will appear.
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The equations analogdus-to (4.26 ) for initial subenergies

are
' i
nua
':'uu
' feF. e umg
> i
- ] - [
% SO
(4.26a)
where
F, = {f:0o(f)=-, off)=-} (4.26b)
and
F, = {f:0(F) =+, offi)=-} . (4.26c)
The corresponding equations for the case o(¥) = - are

_obtained from the above equations (2.25) and (2.26) by simply reversing
all signs inside each box and bubble, except for the circled + that

occurs also outside the bubble on the left-hand side and that says’

106~

that the discontinuity is the function for ‘o(F) = + minus the

function for O'(F) = - (OI‘ for 0'(;) =+ minus o(;) = _).

~Starting from (4.17) and (4.18) and proceeding in the same way

_ one obtains the total-energy discontinuity equation

+
.= - Zf )+ mﬁ]
EQ.Epree- 13
< pCE- 3 T
_ ' Lels (4.27q)
where
13_ 'sv {i: o(JT,Al)' = o(JT,Aé) T o) = -} (4.27b)
and ‘
'F3 = {f:0of) = - b_ (4.27¢)

The cross—ene?gy‘discontinuities are given by the basic

discontinuity equations (5)
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Py A ow=m . ta2sa) -
== S20 408!,

(4.28b)

;
i

°ll|lllllll° ' » . (4.28¢)

1

(4.289)

whefé the upper and lower signs appearing inside the bubbleé'on the
left-hand sides are o(F) and o(T), respectively.

Eqﬁations (4.25-28), along with their hermitian conjugates,

express all the discontinuities T
: ' 1 "2

-the physical region of the process 1 + 2+ 3+4 + 5+ 6 1in terms

of physical scattering amplitudes.

A";A at points p 1lying inside.
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V., GENERALIZED STEINMANN RELATIONS

In this section it is shown that the cell functions fx

have a unique maximal enlargement that satisfies the generalized

. Steinmann discontinuity property. That is, it is shown that the

conditions
’MhG' - MhG" it 6'/0, = G"/0, | (5.1)
- and
MG(A) = fA for every A - (5.2)

determine é\unique set of _216»'functions MG.

This unique set of functions is identical to @ set of 216
runctions ‘MG derived in ref. 7 ffom analyticity requirements. It
is theréfore»sufficient simply to verify'first,tﬁat the‘fuhctions
W of ref. 7 satisfy (5.1) and (5.2), and fhen proﬁe uniqueness.

;'f The set of functions Mp‘ is defined in ref. 7 in terms of a
ceftain éubset of its multiple discontinuities. As discussed in the

introduction, the difference.

VA YL MhG R _ (5.3)

for any heG = E - G 1is identified as the discontinuity across the

cut h evaluated below all the cuts geG and above all the cuts

geE - Gh. Similarly, for any keE - Gh 'the function
BT IC B Y E I

e Y < N N Mth = thc {5.4)
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is the double discontinuity across the pair of cuts (h,k). evaluated
below all the cuts geG and above all the cuts geE - Ghk. More
generally, if (hl,hz,--~,hm) = H is a set of m distinct elements

of E -G, and if for any subset X of E the quantity n(X) is

the number of distinct elements of X, then

T Z (-1)P(H" ) GH" | (5.5)
H'cH
defines the m-fold multiple discontinuity across the set of cuts AH o
evaluated below all the cuts geG  and above all the cuts geE - GH.
The sum in (5.5) runs over all the different subsets H' of H,
including the full set H and the empty set '¢. 'It.is showﬁ in ref.

[7]that the set of equations (5.5) can be inverted to give

Z ('l)n(G')MHG.' g | : (5.6)
G'cG

where the sum runs over all different subsets G' of G, including‘
the full set G and the empty set ¢.

» Equatlon (5.6) expresses each of the functions MG and

véacﬁ of the multiple discontinuities formed from them, evaluated on
- each possible side of every cut, in terms of the multiple disconiinu—
ities Mﬂ. Explicit formulas are given in ref. 7 for all of the Mﬁ.

This is feasible because most of the Mﬁ vanish.

The function M¢ =M =M is defined to be the connected part

Moo= S, = fx(P) , | (5.7)

where rx(p) is the physical cell defined by eq. (2.133c).
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This equatlon says that M?, which is the function evaluated EESXE
all the cuts,is the physical scatterlng function [t1mes (2w) §( Z‘pj ]
in accordance with the discussion given below (3.3).

A1l 16 single discontinuities Mg' are given by the sing}e

M = (I3 \'n .
’ ‘ N X

formula

where the division of external 1ines between the two bubbles is

defined by g. In particuiar, if the 16 cuts g are labelled in

‘the way specified in (3.3) then the M are

g

°mm=mm° (‘5..93 ) |

M__ - °um-mm° ' ( 5-9b) .

: (5.9¢)
M_ = :
A Cu . O

M'_ - mi . . ‘ (5.9(1)
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' The nonzero double discontinuities -Méh,-are,.in{thé notation

(4.20),

s . | X (5.108)
i S— e e T

|
-1

o - | ' (5.100)
M__ - °mmﬁw° L o

| = ; . m =~ Gy " | (5.104)

and

The nonzero triple discontinuities M

ghd are

Mf—iT=-;fi | | (5.10e)7“
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| MTTT= - ‘ °muﬂmm ‘1,,,,_0 i A (5.11a)

| . - G')nmﬂummlm“° | (5.11b.)‘

and

voar O G

Finally
.M.H = 0 ¢ for n(H) > 3-. : , (5.12)

For brevity in what follows two cuts g and h are said to

_cross, or to be crossed cuts, if and only if geOh, i.e., if and only

if Jg overlaps Jh. : '
The generalized Steinmann discontinuity property (5.1)'
follows immediately from these formulas. For (5.6) and the fact. that

MH vanishes if H contains any pair of crossed cuts means that

G G-0y

2 A T (5.13) -
where G - Oh' consists of the geG that do not lie in Oh' But

= ] 3 3 1 - = L. 3
G'/th G"/0, - is equivalent to G 0, =6 Ohf Hence (5.13) is
equivalent to (5.1).
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To prove (5.2) it is sufficient to show for some A = A’

» 0
that
M- = 7 , ' _ : (5.14)
}‘ .
0 o
and for each pair of.adjaCeﬁt cells FA 0 and FA ° that
. 1 2
N a(A)  o(r,)  Ga) S
r, -1, =M - -M = M, ’ (5.15)"
A Ay . .

where h 1is the cut that separates T 0 from T 0’ and T 0 lies
A A A
above h. Equation (5.2) follows from (5.14), (5.15), and the fact

that any ;A can be expressed as fA plus a sequence of differences
. ‘ 0
¥, -7 corresponding to adjacent cells T .0 and T 0. - For .
Al AZ Al A2
(5.14) saysthat (5.2) holds for A = Aj, and this equality can be

extended to any other value of A by a sequence of applications of

(5.15).

Equation (5.14) follows from (5.7) for any A, such that

0
FA lies above all the cuts geE. To verify (5.15) one must show -
(¢} .
that each of the discontinuities ;A -’ik given by (4.25-28) _
1 2 G(Al) G(AZ) G(Al)
is equal to the corresponding discontinuity M -M =

‘given by (5;6). Comparison of (4.25-28) to the formulas summarized in |

Fig. 'II.3 of ref. 7 confirms that this is true.

To'prove uniqueness it must be shown that if 'F‘G is a set

of functions that satisfies

if G'/Oh = G"/Oh (5.16)

and

.Lemma A If g crosses h, then Fg
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FG(X) = MQ(A) . for every A,
then

FG = Mg " for every G
The functions FhG in (5.16) are defined for -hsa‘ by

G _ G Gh
Fh = F -F .
Let FHG for H< G be defined in analogy to the

vey
i

G 2: (_l)n(H') FoH!
H'CH

These equations can be inverted to give
¢ _ . .n(G)
FH = Z (‘1) FHG'
G'CG »

=0 G.
gh 0 for all

(5.17)
(5.18)

(5.19)

G

My s

(5.20a)

- (5.20p)

Proof Without loss of generality it can be assumed that FGgh =0

for all proper subsets G' of G. Then (5.20b) gives

- Cg G _ L yn(e")
S 2: - (1) Foigh
G'c:Q .
n(G)
- (-1) FGgh
But then (5.16) gives FGéh = 0. QED.

(5.21)
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Let € be the set of cross-energy cuts,

Yo ar®) ey

C = fT:1=1,20r3 f£=4,5 or6}. (5.228) MKH) = K'H'
, ‘ K'CK
A : ¢/H'CH
- Any G can be written in the form G = K UH = Ki where
: | c
H C C (5-22b) ) = Z - (_l)n( ) F -
and o _ K ex K'TT )
. ~ ) fieH
KCC = - )
< _ E-C . ' o (5.220)
Correspondingly, F~ can be written as : : = Z F_ o+ Sppr F___ ¢+ Z 8,00 F__
: T/ S U AR S £
XH : N el T'eK i'ek
= Z (_1 )D(H ) (-l )n(K' ) F )
) . - KIHI . B
K'CK ' ' S
K'CH | o - Z 8501 8oy F__ (5.24)
: y F_ . .
, . _ , i 1 CwmEp
x : T'Trex
= ) (A | -
o K' It will now be shown that each term of A(K,H). is, by virtue of (5.16)
' and (5.17),a linear combination of the functions MG(A). _
. Z (1)K (gl _ _ Aset G such that G = G(A) for some A is called a BEG
K'<K K'H! set. These are the sets G that correspond to -zones.‘ According to
¢#H'CH
_ fig. II1.2 both ¢ and {fi} are BEG sets. Thus
_ & - F = M ana FPRouft © (5.25a)
= F O+ A(K,H) . '(5.23) ) ) . : . :
. - : : Therefore
Egch cut fi.¢ C crosses every other cut geE save T ‘and {. ' ' ’
Thus lemma A entails that Feigivanishes if H'c C has more than one , F = - Ffi_ T
- element, and that F =z VEnishes if K' has any element other than ' :
- . = K'fi ’ - The double discontinuity F vanishes by virtue of Lemma
f: or i. Thus TFT .

Aunless f = f'. In this case



F_ = F~F " -F +F
i
= F .-F_F =M _-F T 0 : (5.250)
T fi fi i~ ' k

Now all pairs of cuts - T1 and Ti' are crossed, and by fig. III.2 -

the sets {¥,T1,Ti'} and {F,fI,fi',Ti"} -are BEG setsz. Thus (5.16)

and (5.17) give

- TfiFin : _
p Too gD oy : (5.25¢)
1 1 T -

Insertion of this result into (5.25b) gives 4

Fo= oM - . | (5.254)
T 1 T - T :
Similarly, F_ = O unless i= i', in which case
fi1!
) Co T ATI AT -
F__ = F  -F.1 =y -l =y (5.25¢)
CFif T T T 71 fii -
Finally, F___ =0 unless f' =f and i' =1, in which
PED
case
F__=F -F =M -7 *+@f
Ffid ffi  ffi £ff1  fi i
- _M'if"'-if"T+F'i_f; ;o ’ (5.25f)
T T 1

where use was made of an gnalogof (5.25 ). - Now since by fig. IIT.2

both E and E - {fi} are BEG sets, and since all cuts “save f

and T ecross T, it follows that

" Equations (5.25a-g) and (5.24) reduce every A(K,H), with K

“and H.Ca, to a linear combination of the functions M
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LY I
)

o pETT L pETT B BT B L BT (5 agg)

6(0)

K

It remains to show that each of the F v_vith K< C can be

reduced to a linear combination of the MG(A).. The construction‘ will

depend on whefher K belongs to a certain set Z or not. The set
Z consists of those seéts K < C such that one (or more) of the

following four conditions are satisfied: (1) K contains t but

"none of the 1; (2) K contains T but none of the F; (3) K

contains all of the 1 but not ¥; (4) K ‘contains all of the T

but not ¥. Symbolically,

z = zlu 22U z3-'uz4 (5.26a)
where

z, = {k < ; TeK andfeﬁ for i =1, 2, and 3},(5.26b)

Z, = _{KlCa: TeK and Tek for f = 4,5, and 6} ,(5.26¢c) .

z, = K ©C: Tek and TeK for i = 1,2; and 3} ,(5.264)
and

z, = {(KcG : ek and TeK for f = 4,5, and 6}. (5.264)

If Ko C is not in Z +then fig. III.2 shows that there is at
least one H<«C such that G = KH is a BEG set. Let this H be

called H(K). Then (5.17) gives



-

us-
FKH(g) - () (5.27&5
But then (5.23) gives |
P ) aGon) (52w
and hence a;so, for any H e,

FKH

FX + ACK,H)

M) A m(x0)) + a(K,H) ¢ (5.27¢)

This equation, together with (5.24-5), reduces each Fo = P with

K Cﬁ, K¢gZ, and HC C to a linear éon’lbination of functions MG()‘).
‘The cases KeZ are treated by exploiting the fact that any

two initial cuts I, I' are crossed and any two final cuts T,T7

 are crossed. Thus {5.20b) and Lemma A give, for each.(}cza,

0o = PG - §O (5.28a)
'T:'{'ﬂ Ty T .
and also
o = FC = g - (5.28b)
I ESd o -

'The first of these equations, together with (5.20&),.gives,
for G = ¢, »
0 =.F = F-F' -F' +F . (5.29a)
’ Tiv o
The first three terms are functions of the form FK with X¢Z. Thus

the relation

e
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I T T
,ﬁf? R & L
I
: - . SiTn
expresses the function Fil .

(5.29)

in terms of functions that have already

been reduced, by (5.27¢), to linear combinations of the functions

Similarly, (5.28a) for G‘f ¢ leads to the relation -

' - 7"T" - =3 l". -, .

Fll i"G = Fil G _ Fii - » (5.29¢)
. i " .

which allows any 'FK ‘with ngj - Z4 to be expressed in termslof

functions that are reduced by (5.27¢c) to the functions MG(A). The
functioﬂs FK with KgZ4 - Z3 may be similarly reduced by the

equations » -

2 3 R

: Fr

(5.29d)

which follow from the second part of eq. (5.28a).
The only set KéZ3 n Z4 is K = {3_: j-= 1,2,---,or>6}; For
{

it equation (5.29¢) with G = (T,F7,F"'} gives

F - prHT g o (5.29)

The terms on the right-hand side of this equation may be reduced by

eq. (5f29d).

The first part of eq. (5.28b) with G = {f} is

Ry £y
_F fi + thll

I3a)

o = F - th _ pill o (5.29¢)

iy

f
i

[X]
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- - : _ : : , : G
in which each térm but th is an FK with K¢Z', Thus the relation cover all cases. Thus every F~ has been reduced by means of(5 16)
and(5 17) to a linear comblnatlon of MG()‘)
& 18T TAS) E . . )
th = thl + Fi . (5.29¢g) " Since the MG are a special case of the FC' the functions
1 : _ .
__ MG are equal to these same linear combinations. Thus FG = MG for

expreéses- th in terms of functlons already reduced by (5 27¢). all G. OED
Similarly the relatlon .

- - o - . < . : \-

AL 2 L f_fG e - (5.29n)

i

reduces all FK with Ks:Zl - 22, and

i o r I3F ~

F iG Ft?i'G . F;t-lf'G (5.291)

r B

reduces all FK with Ke:Z2 - Zl'
The intersection Zlﬂ 22 contains only the set K = (T}.

The function F' may be reduced by (5.28b) with G = ¢, -

” R (5.295)

together with (5.29h). v
The preceding equations (5.28) and (5.29) reduce every s
with K cé and KeZ to a linear combination ofbfunctions MG(A).

Thus for any G = KH with KCC KeZ, and H< C these results

together with (5.23)

P o= F s aH) ‘ (5.30)
d (5.25) reduce the function ‘FG = FKH to a linear cémbination
1 G(A)

of M These results together with those covered by (5:.27c)



Q)
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