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Abstract

Discrete Systems in Quantum and Statistical Mechanics

by

Meredith Shea

Doctor of Philosophy in Mathematics

University of California, Berkeley

Professor Nicolai Reshetikhin, Chair

Here we consider operators in the physics literature and explore their discretized counterparts
for a better understanding of their behavior. In chapter 2, we discretize a standard Hamil-
tonian model from quantum mechanics and, in this setting, develop a discretized Gelfand-
Yaglom formula. From this discrete set up we are able to develop an alternative regularization
for the determinant of a class of operators. We refer to this as the lattice-regularization.

In chapters 3 and 4 we develop connections between the asymptotics of the inverse of two
different operators: the Kasteleyn operator with interface and the Dirac operator with in-
terface. The definition of these operators are given in their respective chapters. While the
former is operator acting on a discrete space and the latter is acting on the plane, there are
well established connections between the two [14]. Moreover, in chapter 3, we give a com-
plete picture of the asymptotics across the interface when one half of the lattice is weighted
critically and the other half is weighted non-critically.
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Chapter 1

Introduction

The broad goal of this exposition is to investigate the properties of operators that arise in
important systems in quantum and statistical mechanics. In particular, we use the relation-
ships between continuous systems and their discrete counterparts as a tool of investigation.
We start in chapter 2 by using a discretized system to formulate an alternative regularization
for a class of continuous differential operators. Then, in chapters 3 and 4, we compare the
asymptotic behavior of a particular Kasteleyn operator and a Dirac-like operator, where the
former is on operator acting on a discrete domain (vertices of a lattice) and the latter is a
operator that acts on spinors in R2. Below we summarize the main results of this paper.

We begin in chapter 2, where we study a new regularization for the determinants of a
class of differential operators through the lens of quantum mechanics and a Gelfand-Yaglom
formula. Gelfand and Yaglom first inspired this type of formula by relating the evaluation
of a certain class of exponential integrals to a Sturm-Loiusville problem in [9]. The original
formula has since been refined to relate the regularized determinant of an elliptic operator
to the solution of an initial value problem. A presentation of this formula that emphasizes
its connection to quantum physics can be seen in [23]. Moreover, this modern take on the
Gelfand-Yaglom formula is fully describe in section 2.3.

We begin by developing a discretized quantum system in section 2.6 and the corre-
sponding discretized action. From this set up we are able to derive a discretized gener-
alized Gelfand-Yaglom formula. This formula is detailed in Theorem 2.5. We then used
the continuum limit of this discretized set up to define an alternative regularization of the
determinant of the original continuous operator. We call this alternative regularization the
lattice-regularization, which is defined in Definition 2.1.

In this discretized Hamiltonian set up, the lattice regularization is often convergent and
presents a potentially easier way to compute the regularized determinant of the Hamilton-
Jacobi operator. Note the distinction between Hamiltonian and Lagrangian formalism is
important here. This can be immediately seen in section 2.6.2, as the determinant of the
discrete Laplacian does not converge naively in the continuum limit. This may motivate the
Hamiltonian formalism as the more natural setting to consider these operators.
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In many classical examples, we can show that the lattice regularization is equivalent, up
to a multiplicative constant, to the zeta-regularization. This is accomplished in Corollary
2.6.1. Moreover, the lattice-regularization can be applied to examples that are not contained
within the scope of the usual Gelfand-Yaglom formula, although convergence of the lattice-
regularization may no longer be obvious.

In chapter 3, we turn our focus to a problem regarding dimer models. A dimer config-
uration, or perfect matching, of a graph is a subset of the edges which covers every vertex
exactly once. Given a graph, one assigns a positive weight to each edge. The probability of
a random dimer configuration is proportional to the product of all the edge weights of the
edges included in the configuration. A dimer model studies the random dimer configurations
of a graph.

For case of uniform edge weights, in other words each dimer is equally likely, solutions
to the dimer model on regions of the square and hexagonal lattice are well understood.
Moreover, in the case of periodic weightings, the dimer model has been studied for many
cases of the square lattice [13, 6, 5]. There are also similar results regarding isoradial graphs
[14, 19], and the more general Rail Yard graphs [2]. In general, less is known about dimer
models when the weightings are not periodic. In some instances, non-periodic weightings
can still be expressed as a Schur process and exact solutions are known. Some examples of
this can be seen in [21, 1, 3, 2].

Of principle interest in the study of dimer models is understanding the asymptotic be-
havior of the model. Specifically, when we allow the model to become large and re-scale
appropriately, the height function (a function associated to the faces of the graph for a given
dimer configuration) tends to a deterministic limit shape which describes the global behavior
of the model [15, 16]. The limit shape of a model illustrates the different phases that occur.
In particular, the phases possible are deterministic (frozen), critical (liquid or rough), and
non-critical (gas or smooth). Depending on the weights in a given dimer model, the model
can exhibit a single phase or a mix of some or multiple phases.

A classic example of the limit shape of a dimer model is the arctic curve phenomenon of
the uniform Aztec diamond [7, 10]. For this model, an elliptic curve separates a deterministic
(the outside) and critical region (the interior). In the critical region, the height fluctuations
are known to converge to a Gaussian free field [12, 22]. More complicated limit shapes of
the Aztec diamond have been studied in [6, 5].

In chapter 3, we consider the dimer model on the infinite square lattice with, what I
refer to as, an interface weighting. This weighting is non-periodic in the horizontal direction.
The interface weighting is motivated by combining a lattice weighting which exhibits critical
behavior (on an infinite planar lattice) with a lattice weighting that exhibits non-critical
behavior (on an infinite planar lattice). These two regions are separated by an interface.
This weighting is formally defined in section 3.3.1.

The main result of this chapter is as integral form of the inverse Kasteleyn operator for
this dimer model, which is presented in Theorem 3.1. The rest of the chapter is dedicated to
studying the asymptotic behavior of this inverse operator in order to gain an understanding



CHAPTER 1. INTRODUCTION 3

of the limit shape of the particular dimer model. Of note, the lattice behaves incredibly
predictably in the asymptotic limits. On the ‘critical’ side of the lattice, the decay is inverse
in distance, while on the ‘non-critical’ side of the lattice the decay is exponential in distance.

Lastly, in chapter 4 we turn our attention to, what we refer to as, the Dirac operator
with interface. This operator was motivated by the operator studied in chapter 3 as well as
the connections between the Dirac operator and Kasteleyn operator discussed in [14].

The Dirac operator with interface is defined generally in section 4.1. Moreover, an integral
form of the Green’s function for this operator is given in Theorem 4.1. In the rest of the
chapter, we focus on the Dirac operator with interface where the interface separates a massive
and massless Dirac operator. This operator in particular is motivated by the case in chapter
3 of the Kasteleyn operator with non-critical/critical interface. In section 4.3, we study the
asymptotics of the Green’s function for the Dirac operator with massive/massless interface.

While the Kasteleyn operator does not naively converge to the Dirac operator with in-
terface, the asymptotics of these two operators are resoundingly similar. These connections
are discussed in section 4.4 in moderate detail.



4

Chapter 2

Regularized Determinants

Here we give an alternative regularization for the determinant of a class of differential op-
erators. We first discuss necessary preliminary information in sections 2.1-2.4, including a
useful formulation of the Gelfand-Yaglom formula. Then we define a discretize quantum
mechanics system in section 2.5 and prove a discretized generalize Gelfand-Yaglom formula
in Theorem 2.1. In sections 2.6 and 2.7, we prove the operator that is discretized in section
2.5 converges to its continuous counterpart. By way of this convergence, we are able to define
the lattice-regularized determinant.

2.1 Quantum mechanics formalism

To understand the motivation of the problem presented in this chapter, it will be useful to
understand some quantum mechanics. In this section, we introduce two common set ups
used in quantum mechanics from the perspective of a mathematician. In both set ups de-
scribed below, we will consider the classical problem from physics:

Consider a one-dimensional system with a particle of mass m and a potential energy V (that
only depends on position), what are the equations of motion and statistics of the system?

Lagrangian formalism

We will define the path of the particle by the function q(t) : [0, T ] → R, where q(t) describes
the position in one-dimensional space of the particle at time t. We will also use the standard
notation q̇(t) = dq(t)/dt. With this in mind we first define the Lagrangian of the system at
hand,

L (q(t), q̇(t), t) =
m

2
q̇(t)− V (q(t)) (2.1)

From the Lagrangian we are able to define the action functional of the system,

S [q(t)] =

∫ T

0

(m
2
q̇(t)2 − V (q(t))

)
dt (2.2)
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The action functional is a map from the space of all possible paths to the underlying field.
For the sake of this work, it is not necessary to be specific on what the space of possible
paths entails.

We will call the path that minimizes the action functional the critical point of the action
and denote it qc(t). In particular, the critical point is the solution of the ODE,

mq̈(t) = −V ′ (q(t)) (2.3)

One way to understand that this is the critical point is by computing the variation of the
action functional,

δS [q(t)] =

∫ T

0

(
∂L

∂q(t)
− d

dt

∂L

∂q̇(t)

)
δq dt (2.4)

Note that the above is a functional derivative and thus is an abuse of notation. At the
critical point δS[qc(t)] = 0 and so, since δq is not zero, it hold that

∂L

∂qc(t)
− d

dt

∂L

∂q̇c(t)
= 0 (2.5)

And the above is equivalent to (2.3). We call equation (2.5) the Euler-Lagrange equation.

Hamiltonian formalism

Instead of considering the space of paths, in Hamiltonian formalism we consider the phase
space of a system. In the phase space, we express a path in terms of its coordinates on the
cotangent bundle of R. We let q̃(t) = (q(t), p(t)) : [0, T ] → R2 and write the Hamilton-Jacobi
action as,

S̃ [q̃(t)] =

∫ T

0

(
p(t)q̇(t)−H (p(t), q(t))

)
dt (2.6)

We call H (p(t), q(t)) the Hamiltonian of the system, which is simply the Legendre trans-
form of the Lagrangian. For the system expressed by the Lagrangian in equation (2.1) the
equivalent Hamiltonian is,

H (p(t), q(t)) =
p(t)2

2m
+ V (q(t)) (2.7)

As in the Lagrangian formalism, we may compute the equations of motion of the critical
point by minimizing the variation of the action functional. In doing so we recover Hamilton’s
equations for the system at hand,

q̇c(t) =
1

m
pc(t) (2.8)

ṗc(t) = −V ′(qc(t)) (2.9)

An immediate difference we observe in the Hamiltonian formalism is that the equations of
motion are a system of first order equations, while in the Lagrangian formalism the equations
of motion are a single second order equation.
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2.2 Zeta-regularized determinants

We now wish to discuss a certain type of regularized (or functional) determinant that will be
necessary to understand Gelfand-Yaglom formulas. Regularized determinants are a general-
ization of determinants of matrices. Where matrices are operators acting on finite dimen-
sional spaces, we can think of differential operators as acting on some infinite dimensional
space. Understanding determinant in this setting is still insightful, however we have to
amend definitions in order to count for conditions of convergence.

Here we would like to define the ζ-regularized determinant of a class of operator. Let L
be a differential operator with a discrete spectrum that is bounded from below. We start
by remove any zero eigenvalues and enumerate the spectrum, λ1 ≤ λ2 ≤ · · · ≤ λn ≤ · · · .
Assuming the following series converges for sufficiently large ℜ(s), we define the ζ-function
of the operator L to be,

ζL(s) =
∑
i

1

λs
i

Then the ζ-regularized determinant is defined as,

det ζ(L) = e−ζ′L(0)

where we must analytically continue the derivative of the ζ-function of the operator to the
point s = 0. Note that this is possible by Seeley’s theorem, which states that the zeta-
function of an elliptic operator extends to a meromorphic function in the complex plane and
the origin is always a regular point. In the case of second order differential operators, see
[23] and [17] for examples of computing ζ-regularized determinants.

2.3 The Gelfand-Yaglom formula

The evaluation of certain integrals with respect to the Wiener measure is first studied in [9].
It was found that the solution to certain integrals of exponentials can be expressed in terms
of a solution to a Sturm-Liousville problem. Later this formula was interpreted as a relation
between the regularized-determinant of an elliptic operator and the solution to an initial
value problem. In particular, this formula can be understood in the context of quantum
mechanics.

In this section, we will consider the system described by the Lagrangian in (2.1) and
Hamiltonian in (2.7). The goal of this section is to motivate and state the Gelfand-Yaglom
formula in both the Lagrangian and Hamiltonian formalism.
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The statement in Lagrangian formalism

Let us start by considering the action stated in equation (2.2). Taking the second variation
of the action functional at the critical point, we obtain the expression

δ2S [qc(t)] =

∫ T

0

δq A δq dt (2.10)

where A is the differential operator,

A = − d2

dt2
− 1

m
V ′′ (qc(t)) (2.11)

that is equipped with Dirichlet boundary conditions. Recall the critical point is the path
t 7→ qc(t) that satisfies the equation give in (2.3). In particular, we will consider the critical
point to have the following initial conditions,

qc(0) = q q̇c(0) =
p

m

The Gelfand-Yaglom formula states,

∂qc(T )

∂p
=

1

2m
det ζ(A) (2.12)

where p is the parameter defined above. A proof of this statement can be found in [23],
among other places.

The statement in the Hamiltonian formalism

We would like to formulate a similar statement to the one in (2.12) that is expressed in
Hamiltonian formalism instead. Let us use q̃c(t) = (qc(t), pc(t)) to denote the solution to
Hamilton’s equations, equations (2.8) and (2.9), with the boundary conditions,

qc(0) = q, qc(T ) = q′

Now let us consider the action given by equation (2.6) with Hamiltonian given by (2.7). We
denote this action at the critical point by the notation,

S̃q̃c(t)(q, q
′) = S̃[q̃c(t)]

The left hand side of the above emphasizes the dependence of the action on the boundary
conditions given above. Clearly S̃[q̃c(t)] = S[qc(t)]. A quick computation yields,

∂qc(T )

∂p
=

(
∂S̃γ̃c(q, q

′)

∂q∂q′

)−1
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Inserting the above equality into (2.12) gives an analogous formula in terms of the phase
space formalism, (

∂S̃γ̃c(q, q
′)

∂q∂q′

)−1

=
1

2m
det ζ A (2.13)

Where A is again the operator given by equation (2.11).

2.4 A generalized Gelfand-Yaglom formula

We would like to amend the set up presented above in order to get a more generalized version
of the Gelfand-Yaglom formula. To do so we will work in the Hamiltonian formalism and edit
the action given in (2.6). To amend the action, we will define functions f1, f2 : R2 → R.
Explicitly, f1 is a function of the initial position q = q(0) and a parameter b1, while f2
is a function of the final position q′ = q(T ) and a parameter b2. These functions define
Lagrangian boundary conditions on the phase space. Do not confuse Lagrangian boundary
conditions with the Lagrangian introduced in section 2.1.1. The generalized action functional
can be written as,

S̃[q̃c(t)] =

∫ T

0

(
p(t)q̇(t)−H

(
p(t), q(t)

))
dt+ f1(q, b1)− f2(q

′, b2) (2.14)

We assume R2 has the standard symplectic structure with coordinates (p, q) and symplectic
form ω = dp ∧ dq. For now we will suppose H

(
p(t), q(t)

)
is an arbitrary Hamiltonian that

is at least twice differentiable in both variables. The critical points of the above generalized
action functional are solutions to the boundary problem,

ṗ(t) = − ∂H

∂q(t)

(
p(t), q(t)

)
q̇(t) =

∂H

∂p(t)

(
p(t), q(t)

)
where

p(0) =
∂f1
∂q

p(T ) =
∂f2
∂q′

(2.15)

Thus critical points are flow lines of the Hamiltonian vector field generated by H, connecting
the following two Lagrangian submanifolds

L1 =

{
(p, q) | p =

∂f1
∂q

(q, b1)

}
L2 =

{
(p, q′) | p =

∂f2
∂q′

(q′, b2)

}
in time T . The second variation of the action in (2.14) near the classical trajectory defines
a first order differential operator Ã,

δ2S̃[q̃c(t)] =

∫ T

0

(δp, δq)Ã

(
δp
δq

)
dt
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where Ã is defined explicitly as,

Ã =


− ∂2H

∂p(t)2
(pc(t), qc(t))

d

dt
− ∂2H

∂q(t)∂p(t)
(pc(t), qc(t))

− d

dt
− ∂2H

∂q(t)∂p(t)
(pc(t), qc(t)) − ∂2H

∂q(t)2
(pc(t), qc(t))

 (2.16)

with boundary conditions,

x2(0) =
∂2f1
∂q2

(q, b1)x1(0) x2(T ) =
∂2f2
∂q′2

(q′, b2)x1(T ) (2.17)

where Ã acts on the transpose of the vector (x1(t) x2(t)). The boundary conditions above
translate to the mixed boundary conditions when considering the second order differential
operator A. Explicitly, if A acts on the function y(t) we can express the mixed boundary
conditions as,

y′(0) =
1

m

∂2f1
∂q2

(q, b1)y(0) y′(T ) =
1

m

∂2f2
∂q′2

(q′, b2)y(T ) (2.18)

We desire a Gelfand-Yaglom formula that is analogous to equation (2.13) which uses the
operator Ã and the action given in (2.14), however when computing the ζ-regularized deter-
minant of a first order operator the result depends on choosing a spectral cut in the plane
and thus causes ambiguity.

Here we introduce an alternative regularization for the determinant of the operator Ã,
which we refer to as the lattice-regularization. We compare this proposed regularization to
the ζ-regularization with the goal of showing that they are agreeable. Moreover, computation
of the lattice-regularization is simply a problem in matrix determinants and limits. To define
the lattice-regularization, we first need to set up a discretized system.

2.5 A Discretized Generalized Gelfand-Yaglom

Formula

Discretized Quantum Mechanics System

In this section, we will develop a discretized version of the usual quantum mechanics system.
In this discrete setting, all determinants will be finite. This allows us to compute the follow-
ing with ease: a generalized Gelfand-Yaglom formula in the Hamiltonian formalism, and a
relationship between the determinants of the discretized versions of the operators A and Ã.
Later, in section 2.6, we will consider how these results behave in the continuum limit, thus
defining an alternative regularization for the determinants of A and Ã.
First we discretize any given path in Rn, q̃(t) =

(
q⃗(t), p⃗(t)

)
: [0, T ] → R2n, into N po-
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Figure 2.1: A discretization of a path into N = 6 position vectors and N −1 = 5 momentum
vectors.

sition and N − 1 momentum vectors as shown in figure 2.1, where q⃗i = q⃗
(
(i − 1) · ϵ

)
and

p⃗i = p⃗
(
(i−1) · ϵ

)
and ϵ = T

N
. From the above discretization and the action given in equation

(2.14), we propose the following discrete action functional

S̃d[q̃d(t)] =
N−1∑
i=1

p⃗i(q⃗i+1 − q⃗i)−
N−1∑
i=1

H(p⃗i, q⃗i)− f2(q⃗N , b⃗2) + f1(q⃗1, b⃗1) (2.19)

where f1 and f2 are the same functions appearing in equation (2.14). We will only consider
discrete Hamiltonians that arise from twice differentiable continuous Hamiltonians. Note
that q⃗1 = q⃗(0) = q and q⃗N = q⃗(T ) = q′ are exactly what appears in the continuous statement
of the action. From the above we derive a discrete version of Hamilton’s equations,

q⃗i+1 − q⃗i −
∂H

∂p⃗i
(p⃗i, q⃗i) = 0 i = 1, . . . , N − 1 (2.20)

p⃗i − p⃗i−1 +
∂H

∂q⃗i
(p⃗i, q⃗i) = 0 i = 2, . . . , N − 1 (2.21)

and the boundary conditions,

∂f1
∂q⃗1

= p⃗1 +
∂H

∂q⃗1
(p⃗1, q⃗1) (2.22)

∂f2
∂q⃗N

= p⃗N−1 (2.23)

which agree with the conditions from (2.15) in the continuum limit. The discretized path,
q̃d,c = {p⃗1, . . . , p⃗N−1, q⃗1, . . . , q⃗N}, that satisfies equations (2.20)-(2.23) will be known as the
(discrete) critical point or classical path.

When we take the second variation of the discretized action functional we obtain a matrix
operator which acts on the vector δq̃d,c in the following manner,

δ2Sd[q̃d,c] = δq̃d,cÃN(δq̃d,c)
T
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The matrix ÃN is the discrete analog of the Hamilton-Jacobi operator Ã with N time inter-
vals. To define ÃN explicitly, we should first note that it has a block form,

ÃN =

(
D1 D2

D3 D4

)
(2.24)

In the one-dimensional case the block above can be written explicitly as,

(D1)ij =

− ∂2H

∂pi∂pi
if i = j

0 if i ̸= j

(D2)ij = (D3)ji =


−1− ∂2H

∂pi∂qi
if i = j

1 if i+ 1 = j

0 otherwise

(D4)ij =



∂2f1
∂q1∂q1

− ∂2H

∂q1∂q1
if i = j = 1

− ∂2H

∂qi∂qi
if 2 ≤ i = j ≤ N − 1

− ∂2f2
∂qN∂qN

if i = j = N

0 if i ̸= j

where all derivatives are taken at the critical point. These matrices are immediately gener-
alized to the n-dimensional case, where partial derivatives become n× n matrices of partial
derivative and any constant is multiplied by the n× n identity matrix.

Discrete generalized Gelfand-Yaglom formula

We will restrict the following work to only include Hamiltonians that satisfy,

det

(
I+

∂2H

∂p⃗i∂q⃗i

)
̸= 0

and

det

(
∂2H

∂p⃗i∂p⃗i

)
̸= 0

for all i = 1, . . . , N − 1. From the above set up we derive a generalized GY formula. Note
all determinant below are determinants of finite matrices.
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Theorem 2.1. The discrete action functional defined by (2.19) satisfies the generalized
Gelfand-Yaglom formula

det

(
∂2S̃d,q̃c(b1, b2)

∂b⃗1∂b⃗2

)
=

N−1∏
i=1

det

(
− ∂2H

∂p⃗i∂q⃗i
− I
) det

(
∂2f1

∂q⃗1∂b⃗1

)
det

(
∂2f2

∂q⃗N∂b⃗2

)
det ÃN

(2.25)

where S̃d[q̃c] = S̃d,q̃c(b1, b2) is the action at the classical path and ÃN is the Hamilton-Jacobi
matrix operator.

Proof. Throughout the proof we assume all p⃗i and q⃗i satisfy equations (2.20)-(2.23). To
begin we directly compute the derivative of the action at the classical path with respect to
b⃗1,

∂S̃d,q̃c(b1, b2)

∂b⃗1
=

N−1∑
i=1

∂p⃗i

∂b⃗1
(q⃗i+1 − q⃗i) +

N−1∑
i=1

p⃗i

(
∂q⃗i+1

∂b⃗1
− ∂q⃗i

∂b⃗1

)
−

N−1∑
i=1

∂H

∂p⃗i
(p⃗i, q⃗i)

∂p⃗i

∂b⃗1

+
N−1∑
i=1

∂H

∂q⃗i
(p⃗1, q⃗i)

∂q⃗i

∂b⃗1
− ∂f2

∂q⃗N
(q⃗N , b⃗2)

∂q⃗N

∂b⃗1
+

∂f1

∂b⃗1
+

∂f1
∂q⃗1

(q⃗1, b⃗1)
∂q⃗1

∂b⃗1

Once we realize that the above derivative is taken at the classical path, many terms cancel.
The first sum cancels with the third sum by equation (2.20) and if we rearrange the second
sum to be,

N−1∑
i=1

p⃗i

(
∂q⃗i+1

∂b⃗1
− ∂q⃗i

∂b⃗1

)
= −∂q⃗1

∂b⃗1
p⃗1 −

N−1∑
i=2

∂q⃗i

∂b⃗1
(p⃗i − p⃗i−1) +

∂q⃗N

∂b⃗1
p⃗N

we see the above cancels out many of the other terms by (2.20), (2.22), and (2.23) and so
we obtain,

∂S̃d,q̃c(b1, b2)

∂b⃗1
=

∂f1

∂b⃗1
(2.26)

Next taking the derivative with respect to b⃗2 yields,

∂2S̃d,q̃c(b1, b2)

∂b⃗1∂b⃗2
=

(
∂2f1

∂q⃗1∂b⃗1

)T (
∂q⃗1

∂b⃗2

)
(2.27)

Note that the right hand side of equation (2.26) is truthfully,

∂f1

∂b⃗1
=

∂f1

∂b⃗1
(q⃗, b⃗1)

∣∣∣∣
q⃗=q⃗1

and thus it does not concern the dependence of q⃗1 on b⃗1. This will be the case whenever we
write derivatives of f1 or f2 with respect to b⃗1 or b⃗2.
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We would now like to replace ∂q⃗1/∂b⃗2 in equation (2.27). To do so we will take the derivatives

of equations (2.20)-(2.23) with respect to the Lagrangian parameter b⃗2,

∂q⃗i+1

∂b⃗2
− ∂q⃗i

∂b⃗2
− ∂2H

∂p⃗i∂p⃗i

∂p⃗i

∂b⃗2
+

∂2H

∂p⃗i∂q⃗i

∂q⃗i

∂b⃗2
= 0 (2.28)

∂p⃗i

∂b⃗2
− ∂p⃗i−1

∂b⃗2
+

∂2H

∂q⃗i∂q⃗i

∂q⃗i

∂b⃗2
+

∂2H

∂p⃗i∂q⃗i

∂p⃗i

∂b⃗2
= 0 (2.29)

∂2f1
∂q⃗1∂q⃗1

∂q⃗1

∂b⃗2
=

∂p⃗1

∂b⃗2
+

∂2H

∂q⃗1∂q⃗1

∂q⃗1

∂b⃗2
+

∂2H

∂q⃗1∂p⃗1

∂p⃗1

∂b⃗2
(2.30)

∂2f2

∂q⃗N∂b⃗2
+

∂2f2
∂q⃗N∂q⃗N

∂q⃗N

∂b⃗2
=

∂p⃗N−1

∂b⃗2
(2.31)

First it will be useful to write equations (2.28) and (2.29) as the following recursive system
of equations, 

∂q⃗i+1

∂b⃗2
∂q⃗i

∂b⃗2

 = Ui


∂q⃗i

∂b⃗2
∂q⃗i−1

∂b⃗2

 (2.32)

where Ui is the 2n× 2n block matrix,

Ui =

(
αi βi

I 0

)
and the matrices αi and βi are given by the equations,

αi =

(
I+

∂2H

∂p⃗i∂q⃗i

)
− ∂2H

∂p⃗i∂p⃗i

(
I+

∂2H

∂p⃗i∂q⃗i

)−1
∂2H

∂q⃗i∂q⃗i
+

∂2H

∂p⃗i∂p⃗i

(
I+

∂2H

∂p⃗i∂q⃗i

)−1(
∂2H

∂p⃗i−1∂p⃗i−1

)−1

βi = − ∂2H

∂p⃗i∂p⃗i

(
I+

∂2H

∂p⃗i∂q⃗i

)−1(
∂2H

∂p⃗i−1∂p⃗i−1

)−1(
I+

∂2H

∂p⃗i−1∂q⃗i−1

)
Note that there are no derivatives of p⃗i with respect to b⃗2 in equation (2.32), as we can
substitute equation (2.28) in equation (2.29) to eliminate it. Next we define the vector W1,
the initial vector of the recursive system, by,

W1
∂q⃗1

∂b⃗2
=


∂q⃗2

∂b⃗2
∂q⃗1

∂b⃗2


and so explicitly we have,

W1 =


(
I+

∂2H

∂p⃗1∂q⃗1

)
+

∂2H

∂p⃗1∂p⃗1

(
I+

∂2H

∂p⃗1∂q⃗1

)−1(
∂2f1
∂q⃗1∂q⃗1

− ∂2H

∂q⃗1∂q⃗1

)
I


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Combining W1 with the system in equation (2.32) we have the useful relation,
∂q⃗N

∂b⃗2
∂q⃗N−1

∂b⃗2

 = UN−1 · · ·U2W1
∂q⃗1

∂b⃗2

Next we rewrite equation (2.31) by rearranging the terms and writing ∂p⃗N−1/∂b⃗2 in terms

of ∂q⃗N−1/∂b⃗2 and ∂q⃗N−2/∂b⃗2,

∂2f2

∂q⃗N∂b⃗2
= W T

2


∂q⃗N

∂b⃗2
∂q⃗N−1

∂b⃗2


Putting this all together we get the following convenient way of expressing equation (2.31),

∂2f2

∂q⃗N∂b⃗2
=
(
W T

2 UN−1 · · ·U2W1

) ∂q⃗1
∂b⃗2

(2.33)

Observe in the one dimensional case (n = 1), the matrix product in (2.33) is a scalar.
Generally, this matrix product gives an n × n matrix. Plugging equation (2.33) back into
equation (2.27) yields,

∂2S̃d,q̃c(b1, b2)

∂b⃗1∂b⃗2
=

(
∂2f1

∂q⃗1∂b⃗1

)T (
W T

2 UN−1 · · ·U2W1

)−1
(

∂2f2

∂q⃗N∂b⃗2

)
and taking the determinant gives,

det

(
∂2S̃d,q̃c(b1, b2)

∂b⃗1∂b⃗2

)
=

det

(
∂2f1

∂p⃗1∂b⃗1

)
det

(
∂2f2

∂p⃗N∂b⃗2

)
det (W T

2 UN−1 · · ·U2W1)
(2.34)

Now let’s write the denominator of (2.34) in terms of the determinant of the Hamilton-Jacobi
matrix operator, ÃN . To do so we will need the following technical lemma,

Lemma 2.1.1. For the (2Nn− n)× (2Nn− n) Hamilton-Jacobi matrix ÃN ,

det ÃN = (−1)Nn

[
N−1∏
i=1

det

(
− ∂2H

∂p⃗i∂p⃗i

)]
det
(
V T
2 TN−1 · · ·T2V1

)
det (BN−1 · · ·B1) (2.35)
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Where we define the block matrices,

Ti =

(
−B−1

i Ei −B−1
i Ci−1

I 0

)
(2.36)

V1 =

(
−B−1

1 E1

I

)
(2.37)

V2 =

(
−EN

−CN−1

)
(2.38)

and the m×m matrices,

Ei =



∂2f1
∂q⃗1∂q⃗1

− ∂2H

∂q⃗1∂q⃗1
+

(
I+

∂2H

∂p⃗1∂q⃗1

)(
∂2H

∂q⃗1∂q⃗1

)−1(
I+

∂2H

∂p⃗1∂q⃗1

)
i = 1

− ∂2H

∂q⃗i∂q⃗i
+

(
∂2H

∂p⃗i−1∂p⃗i−1

)−1

+

(
I+

∂2H

∂p⃗i∂q⃗i

)(
∂2H

∂p⃗i∂p⃗i

)−1(
I+

∂2H

∂p⃗i∂q⃗i

)
2 ≤ i ≤ N − 1

− ∂2f2
∂q⃗N∂q⃗N

+

(
∂2H

∂p⃗N−1∂p⃗N−1

)−1

i = N

(2.39)

Bi =

(
I+

∂2H

∂p⃗i∂q⃗i

)(
∂2H

∂p⃗i∂p⃗i

)−1

(2.40)

Ci =

(
∂2H

∂p⃗i∂p⃗i

)−1(
I+

∂2H

∂p⃗i∂q⃗i

)
(2.41)

The above lemma is proved in Appendix A and depends largely on a result in [20]. An
easy computation reveals the relationships,

Vi =

(
−I 0
0 I

)
Wi

Ti =

(
−I 0
0 I

)
Ui

(
I 0
0 −I

)
and so we can rewrite equation (2.35) in terms of the W and U matrices,

det ÃN =

[
N−1∏
i=1

det

(
− ∂2H

∂p⃗i∂p⃗i

)
detBi

]
det
(
W T

2 UN−1 · · ·U2W1

)
(2.42)
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Using the definition of the Bi matrices and plugging the above into equation (2.34) we obtain,

det

(
∂2S̃q̃c(b1, b2)

∂b⃗1∂b⃗2

)
=

[
N−1∏
i=1

det

(
−I− ∂2H

∂p⃗i∂q⃗i

)] det

(
∂2f1

∂q⃗1∂b⃗1

)
det

(
∂2f2

∂q⃗N∂b⃗2

)
det ÃN

which is precisely the statement from Theorem 2.1.

We will be particularly interested in the case where H(pi, qi) = 1
2m

p2i + V (qi) where the
statement from Theorem 2.1 simplifies to,

det

(
∂2S̃γ̃c(b1, b2)

∂b⃗1∂b⃗2

)
= (−1)n(N−1)

det
(

∂2f1
∂q⃗1∂b⃗1

)
det
(

∂2f2
∂q⃗N∂b⃗2

)
det ÃN

Moreover, we will now assume N is odd, so the above formula becomes

det

(
∂2S̃q̃c(b1, b2)

∂b⃗1∂b⃗2

)
=

det

(
∂2f1

∂q⃗1∂b⃗1

)
det

(
∂2f2

∂q⃗N∂b⃗2

)
det ÃN

(2.43)

A Discretization of A

Now we will consider the operator A with boundary conditions given by equation (2.18). We
will define a discretized version of A which we will refer to as AN and compare the deter-
minant of this finite operator with the determinant of the aforementioned discrete operator,
ÃN . This will set us up to further analyze these operators in section 2.6.

Let us begin by defining a discrete analog of the operator A in the one-dimensional case.
This definition is under the assumption ϵ = 1 (as was the case when we defined ÃN). In
section 2.6, we will expand this definition for arbitrary ϵ in order to consider the convergence
of the operator (and its determinant).

(AN)jk =



−1 if j = k + 1 or k = j + 1
a1
m

+ 1− 1

m
V ′′
j if j = k = 1

2− 1

m
V ′′
j if j = k and 2 ≤ j ≤ N − 1

−a2
m

+ 1 if i = k = 1

0 otherwise

(2.44)

where V ′′
j = V ′′(qj) and

a1 =
∂2f1
∂q2

(q, b1) a2 =
∂2f2
∂q′2

(q′, b2)

With this in mind we state the following theorem,
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Theorem 2.2. Consider the discrete operators AN and ÃN , along with the corresponding
Hamiltonian is H(pi, qi) = 1

2m
p2i + V (qi). Their determinants are related by the following

formula for all N ≥ 2.
det ÃN = (−1)N−1m detAN (2.45)

Proof. The result follows immediately from the fact that, det ÃN = detD1 det(D4−D3D
−1
1 D2)

and the observation that, D4 − D3D
−1
1 D2 = m · AN for all N and all twice differentiable

function V (qi).

An immediate consequence of the above theorem is the following corollary,

Corollary 2.2.1. For the discrete operator AN with associated Hamiltonian H(pi, qi) =
1
2m

p2i + V (qi) and mixed boundary conditions from (2.18), the following discrete generalized
Gelfand-Yaglom formula holds

det(AN) =
1

m

∂2f1
∂b1∂q1

∂2f2
∂b2∂qN

∂2Sd,q̃c(b1, b2)

∂b1∂b2

2.6 Asymptotics and a Lattice Regularization

In this section we will show that the discrete operators ÃN and AN converge to their contin-
uous counterparts in the continuum limit. Moreover, we will show that we can make sense
of the determinants of the AN and ÃN in this limit. This will lead us to define a lattice
regularization in regards to the determinants of these operators.

As in section 2.5, we will be considering the one-dimensional case where N is odd and
H(pi, qi) =

1
2m

p2i + V (qi). We will also employ the following notation as short hand,

a1 =
∂2f1
∂q1∂q1

(q1, b1) a2 =
∂2f2

∂qN∂qN
(qN , b2) (2.46)

Convergence of ÃN

Here we consider the operator Ã given by equation (2.16). We denote the associated twice
differentiable, continuous Hamiltonian by H

(
p(t), q(t)

)
. The operator Ã acts on the domain,

D
(
Ã
)
=

{(
x1(t)
x2(t)

) ∣∣∣ x1, x2 ∈ C1
(
[0, T ]

)
and x1(0) = a1x2(0), x1(T ) = a2x2(T )

}
where the last two conditions are just the boundary conditions stated in (2.17).
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The associated discrete operator, ÃN arises from the discrete Hamilitonian H(pi, qi) = ϵ ·
H
(
p(ti), q(ti)

)
. Recall that the parameter ϵ = T

N−1
splits the interval [0, T ] into N equally

spaced time points. The domain of ÃN is,

D(ÃN) =





x1(t1)
...

x1(tN−1)
x2(t1)

...
x2(tN)


:

(
x1(t)
x2(t)

)
∈ D

(
Ã
)


Theorem 2.3. The discrete operator ÃN converges weakly to the operator Ã as N → ∞ for
any twice differentiable Hamiltonian H

(
p(t), q(t)

)
.

Proof. Let’s first define the vectors X, Y ∈ D
(
Ã
)
as

X =

(
x1(t)
x2(t)

)
, Y =

(
y1(t)
y2(t)

)
and the corresponding vectors XN , YN ∈ D(ÃN) as,

XN =



x1(t1)
...

x1(tN−1)
x2(t1)

...
x2(tN)


, YN =



y1(t1)
...

y1(tN−1)
y2(t1)

...
y2(tN)


To show weak convergence, we will show that

lim
N→∞

Y T
NDNXN =

∫ T

0

Y T ÃX dt (2.47)

We compute that,

Y T
N ÃNXN = −

N−1∑
i=1

ϵy1(ti)
∂2H
∂p2

x1(ti) +
N−1∑
i=1

ϵy1(ti)

[(
x2(ti+1)− x2(ti)

ϵ

)
− ∂2H

∂p∂q
x2(ti)

]

−
N−1∑
i=1

ϵy2(ti)
∂2H
∂q2

x2(ti)−
N−1∑
i=1

ϵy2(ti)
∂2H
∂p∂q

x1(ti)−
N−2∑
i=1

ϵy2(ti)

(
x1(ti+1)− x1(ti)

ϵ

)
−
(
x1(t1)− a1x2(t1)

)
+
(
x1(tN−1)− a2x2(tN)

)
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Now taking the limit gives,

lim
N→∞

Y T
N ÃNXN = −

∫ T

0

y1(t)
∂2H
∂p2

x1(t)dt+

∫ T

0

y1(t)

[
x′
2(t)−

∂2H
∂p∂q

x2(t)

]
dt

−
∫ T

0

y2(t)

[
x′
1(t) +

∂2H
∂p∂q

]
dt−

∫ T

0

y2(t)
∂2H
∂p2

x2(t)dt

−
(
x1(0)− a1x2(0)

)
+
(
x1(T )− a2x2(T )

)
lim

N→∞
Y T
N ÃNXN =

∫ T

0

Y T ÃXdt−
(
x1(0)− a1x2(0)

)
+
(
x1(T )− a2x2(T )

)
The boundary terms are zero for all X ∈ D

(
Ã
)
and so the above statement is exactly

equation (2.47).

Specifically restricting to the case where H
(
p(t), q(t)

)
= 1

2m
p(t)2 + V

(
q(t)

)
, we can take

the limit of equation (2.43). Under the convention that N is odd this gives,

lim
N→∞

det ÃN =

∂2f1
∂q∂b1

∂2f2
∂q′∂b2

∂2S̃q̃c(b1, b2)

∂b1∂b2

(2.48)

The right hand side of the above equation is well-defined and finite, therefore the limit on
the left hand side is also well-defined and finite. We will use this limit later in section 2.6 to
define lattice-regularization. Note that the convergence of this limit is no longer clear in the
case of a Hamiltonian with mixed terms.

Convergence of AN

We now return to the operator A from equation (2.11) and its finite counterpart AN .

Theorem 2.4. The operator AN weakly converges to the operator A.

Proof. We first must define the domains of the operators A and AN . The operator A has
the domain,

D(A) =
{
y(t) ∈ C2([0, T ]) | y′(0) = a1 · y(0), y′(T ) = a2 · y(T )

}
where the mixed boundary conditions match the boundary conditions on Ã given by equation
(2.17). The domain of the operator AN is,

D(AN) =


y(t1)

...
y(tN)

 ∣∣∣∣∣ y(t) ∈ D(A)


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Previously when defining AN we used the convention ϵ = 1, so we first need to reinsert
epsilons into AN where appropriate. For the case of N = 4 and A = − d2

dt2
− 1

m
V ′′(qc(t)) the

operator AN is,

A4 =



a1
m

+
1

ϵ
− ϵ

m
V ′′(qc(t1)) −1

ϵ
0 0

−1

ϵ

2

ϵ
− ϵ

m
V ′′(q(t2)) −1

ϵ
0

0 −1

ϵ
2− ϵ

m
V ′′(q(t2)) −1

ϵ

0 0 −1

ϵ
−a2
m

+
1

ϵ


The above is easily generalized for arbitrary N . Let x(t), y(t) ∈ D(A) and let XN , YN ∈
D(AN) be their corresponding discrete versions. We will show that,

lim
N→∞

Y T
NANXN =

∫ T

0

y(t)Ax(t)dt (2.49)

First we compute,

YNANXN = y(t1)

(
−x(t2)− x(t1)

ϵ
+

a1
m
x(t1)

)
−

N−1∑
i=1

y(ti)
ϵ

m
V ′′(qc(ti))x(ti)

−
N−1∑
i=2

ϵy(ti)

(
x(ti+1)− 2x(ti) + x(ti−1)

ϵ2

)
+ y(tN)

(
x(tN)− x(tN−1)

ϵ
− a2

m
x(tN)

)
Taking the limit yields,

lim
N→∞

YNANXN = y(0)
(
x′(0) +

a1
m
x(0)

)
−
∫ T

0

y(t)
1

m
V ′′(qc(t))x(t)dt

−
∫ T

0

y(t)x′′(t)dt+ y(T )
(
x′(T )− a2

m
x(T )

)
lim

N→∞
=

∫ T

0

y(t)Ax(t)dt+ y(0)
(
x′(0) +

a1
m
x(0)

)
+ y(T )

(
x′(T )− a2

m
x(T )

)
The boundary terms are zero for all x(t) ∈ D(A) and so the above statement is exactly
equation (2.49).

Again, lut us restrict to the case of H
(
p(t), q(t)

)
= 1

2m
p(t)2+V

(
q(t)

)
. After generalizing

for arbitrary ϵ, equation (2.45) becomes

det ÃN = mϵN−1 detAN (2.50)
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where we must now be cognisant of the epsilons in AN and ÃN . Plugging this into (2.43), in
order to get something convergent we must take a regularized determinant where we throw
out the factor of ϵ−N+1,

lim
N→∞

det ′AN =

∂2f1
∂q∂b1

∂2f2
∂q′∂b2

m
∂2S̃q̃c(b1, b2)

∂b1∂b2

where the apostrophe indicates that we have removed the epsilons. Again, the right hand
side above is well-defined and finite.

It should be noted that for arbitrary ϵ, the determinant of ÃN converges plainly, however
the determinant of AN does not. In the latter case we need to remove the divergence. This
might motivate the Hamilton-Jacobi operator being a more natural choice over Laplacian-
type operators.

Defining a Lattice Regularization

As show in sections 2.6 and 2.6, one can make meaning out of the limits limN→∞ det ÃN

and limN→∞ detAN in the case where H(pi, qi) =
p2i
2m

+ V (qi). The following definition is a
natural consequence,

Definition 2.1. We define the lattice regularized determinants of A and Ã by,

det reg(A) = lim
N→∞

det ′(AN) (2.51)

det reg

(
Ã
)
= lim

N→∞
det
(
ÃN

)
(2.52)

Tautologically, we have the identity

det reg

(
Ã
)
= m det reg

(
A
)

(2.53)

The above definitions accompanied with equation (2.48) give use a generalized GY formula
for the lattice regularized determinant of the operator A,

det regA =

∂2f1
∂q∂b1

∂2f2
∂q′∂b2

m
∂2S̃q̃c(b1, b2)

∂b1∂b2

(2.54)
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2.7 A Generalized Gelfand-Yaglom Formula for the

Zeta Regularization

In this section, we will first derive a Gelfand Yaglom formula for the ζ-regularized determi-
nant of the second order operator L = − d2

dt2
+u(t) equipped with mixed boundary conditions.

While this formula is not new, it was first derived more generally in [4], we will specifically
relate it to the operator A with relevant boundary conditions. Moreover, by restating these
results we will be able to make a comparison to the formula in equation (2.54).

Derivation of a generalized GY formula for the configuration space

We will start by letting u(t) ∈ C1 ([0, T ],R), then consider the differential operator,

L = − d2

dt2
+ u(t) (2.55)

on the interval t ∈ [0, T ] with the domain,

D(L) =

{
y(t) ∈ W 2,2(0, T ) :

dy(0)

dt
=

a1
m
y(0),

dy(T )

dt
=

a2
m
y(T )

}
(2.56)

where W 2,2(0, T ) denotes the Sobelov space and a1, a2 and m are nonzero constants named
suggestively. We will also need to consider the second order differential equation,

−ÿ + u(t)y = λy (2.57)

with parameter λ and where a dot denotes the derivative with respect to t. Let y1(t, λ) and
y2(t, λ) denote two solutions of (2.57) with the following boundary conditions,

y1(0, λ) = 1, ẏ1(0, λ) =
a1
m

(2.58)

y2(T, λ) = 1, ẏ2(T, λ) =
a2
m

(2.59)

We are now able to state the following result, which is a specialization of a theorem first
proved in [4],

Theorem 2.5 (Burghelea, Friedlander, Kappeler [4]). Let y1(t) = y1(t, 0) be the solution
given above. Then,

det ζ L = 2
(
ẏ1(T )−

a2
m
y1(T )

)
(2.60)

where L is the differential operator defined by equations (2.55) and (2.56).
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Proof. Let’s start by taking a closer look at the differential operator, L. The operator, L, is
a regular Sturm-Liouville operator and thus has a discrete spectrum with simple eigenvalues,
λ1 < λ2 < · · · < λn < · · · , accumulating to infinity. Moreover, the eigenvalues exhibit the
following asymptotic behavior,

λn =
π2n2

T 2
+O(1)

The details of this can be found in [18] among other texts. It then follows that the resolvent
of L, Rλ = (L− λI)−1, is a trace class operator. So we can write the useful relation,

d

dλ
log det ζ(L− λI) = −Tr Rλ (2.61)

where any zero eigenvalues are first removed. Using variation of parameter on the inhomo-
geneous equation,

−ÿ + u(t)y = λy + f(x), λ ̸= λn

we get the solution,

y(x) =

∫ T

0

Rλ(x, ξ)f(ξ)dξ

where

Rλ(x, ξ) =


y1(x, λ)y2(ξ, λ)

W (y1, y2)
if x ≤ ξ

y1(ξ, λ)y2(x, λ)

W (y1, y2)
if x ≥ ξ

(2.62)

is the resolvent of L. In the above, W (y1, y2) denotes the Wronskian of the two solutions.
We manipulate the right hand side of equation (2.61) as follows,

−Tr Rλ = −
∫ T

0

Rλ(x, x)dx

=
−1

W (y1, y2)

∫ T

0

y1(x, λ)y2(x, λ)dx

=
1

W (y1, y2)

[
W

(
dy1
dλ

, y2

)]T
0

=
d

dλ
log
[a2
m
y1(T, λ)− ẏ1(T, λ)

]
Plugging the above back into (2.61) gives,

det ζ(L− λI) = C ·
[a2
m
y1(T, λ)− ẏ1(T, λ)

]
(2.63)

where C is some constant. To compute C, we will let λ = −µ and consider the asymptotics of
both sides of the equation as µ → ∞. To start let’s compute the asymptotics of det(L+µI).
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We write the ζ-function of L+ µI using the contour integral method described in [17],

ζL+µI(s) =
1

2πi

∫
γ

dxx−s d

dx
logω(x− µ) (2.64)

where γ is the curve encircling all the eigenvalues of L+µI and ω(x−µ) is a smooth function
of x with zero at the eigenvalues of the operator L+ µI. Let

√
x = σ + ri, then

ω(x) = −
√
x sin

(
T
√
x
)
+O

(
e|r|T

)
(2.65)

The full computation of these asymptotics can be found in [8]. Next we deform the contour
and we rewrite the integral as,

ζL+µI(s) =
sin(πs)

π

∫ ∞

0

dxx−s d

dx
logω(−x− µ) (2.66)

The above integral converges near 0 for s = 0, however the integral does not converge near
infinity for s = 0. To analytically continue the function we write,

ζL+µI(s) = ζ1(s) + ζ2(s) + ζ3(s)

where

ζ1(s) =
sin(πs)

π

∫ 1

0

dxx−s d

dx
logω(−x− µ)

ζ2(s) =
sin(πs)

π

∫ ∞

1

dxx−s d

dx
log

(
ω(−x− µ)

2√
x
e−T

√
x

)
ζ3(s) =

sin(πs)

π

∫ ∞

1

dxx−s d

dx
log

(
1

2

√
xeT

√
x

)
The first two integrals converge for s = 0 and we can easily analytically continue the third
using the method described in [17]. Using the above we compute,

ζ ′L+µI(0) = − log 2w(−µ)

and so the determinant is,
det ζ(L+ µI) = 2w(−µ)

Asymptotically we can write,

det ζ(L+ µI) = 2
√
µ sinh (T

√
µ) +O

(
eT

√
µ
)

(2.67)

Now we will consider the right hand side of equation (2.63). Again, let
√
x = σ+ ri. We will

also let k =
∫ T

0
u(t)dt. The function y1(T, x) has the following asymptotic expansions [8],

y1(T, x) = cos(T
√
x) +

(
a1

m
√
x
+

k

2
√
x

)
sin(T

√
x) +O

(
1

|x|
eT |r|

)
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And so equation (2.63) becomes,

det ζ(L+ µI) = C ·
[
−√

µ sinh(T
√
µ) +O(eT

√
µ)
]

(2.68)

Comparing equations (2.67) and (2.68), we see that C = −2, so equation (2.63) becomes

det ζ(L− λI) = 2
(
ẏ1(T, λ)−

a2
m
y1(T, λ)

)
(2.69)

In particular, if we consider the case of λ = 0, we return the results from Theorem 2.5.

Note that in the case where a1 = a2 = 0 we recover the case of Neumann boundary conditions.
The case of Dirichlet boundary conditions cannot be extracted from the above theorem,
however the result is well known [23]. Let us now relate the above formula to the quantum
system described in section 2.4 with Lagrangian boundary conditions. First let,

u(t) = − 1

m
V ′′ (qc(t))

where qc(t) is the classical path. Note the classical path has the initial conditions,

qc(0) = q, q̇c(0) =
1

m

∂f1
∂q

(2.70)

which leads us to the following lemma,

Lemma 2.5.1. The function y(t) = ∂qc(t)
∂q

with boundary conditions,

y(0) = 1 ẏ(0) =
a1
m

satisfies the differential equation,

mÿ(t) = −V ′′ (qc(t)) y(t)

The above lemma is a simple exercises in derivatives. The following corollary is an immediate
result of Theorem 2.5 and Lemma 2.5.1.

Corollary 2.5.1. For the operator A with domain given by (2.56) we have the generalized
Gelfand-Yaglom formula,

det ζ A = 2

(
∂q̇c(T )

∂q
− a2

m

∂qc(T )

∂q

)
where qc(t) is the classical path satisfying equations (2.5) and (2.70).
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A generalized GY formula for the phase space and A

In this section, we will reformulate the prior corollary to be in terms of derivatives of the
action functional stated in (2.14). We claim,

Theorem 2.6. For the action given in equation (2.14) with a Hamiltonian of the form,

H(p, q) = p2

2m
+ V (q), the following generalized Gelfand-Yaglom formula holds,

∂2S̃γ̃c(b1, b2)

∂b1∂b2
= 2

∂2f1
∂q∂b1

∂2f2
∂q′∂b2

m det ζ A
(2.71)

Proof. Let’s start by taking derivatives of the action at the critical value,

∂2S̃γ̃c(b1, b2)

∂b1∂b2
=

∂2f1
∂b1∂q

∂q

∂b2
(2.72)

Recall the second boundary condition from equation (2.15). Taking the derivative with
respect to b2 gives,

∂2f2
∂q′∂b2

+ a2 ·
∂q′

∂b2
=

∂p′

∂b2

The above uses the notation q(T ) = q′, p(T ) = p′, and the shorthand given in equation
(2.46). Let us rewrite the above, using relation p(t) = mq̇(t).

∂2f2
∂q′∂b2

= −a2 ·
∂q′

∂q

∂q

∂b2
+m · ∂q̇

′

∂q

∂q

∂b2

Now let’s use Corollary 2.5.1 to rewrite the right hand side of the above equation in terms
of the ζ-regularized determinant of A,

∂2f2
∂q′∂b2

=
(m
2
det ζA

)
· ∂q

∂b2

All that is left to do is to solve for ∂q/∂b2 and plugging the results back into equation (2.72).
Doing so yields the statement in equation 2.71.

The following corollary is an immediate consequence of the above theorem and the prior
work from section 2.6,

Corollary 2.6.1. The lattice-regularize determinant and ζ-regularized determinant of A
relate in the following manner,

det regA =
1

2
det ζA

The above corollary, illustrates that the lattice-regularization is a viable alternative to
the ζ-regularization for the determinants of operators that arise in the Gelfand-Yaglom
type formulas. For the operator A above, we see that the regularizations are only off by a
constant factor. Moreover, the lattice-regularization amounts to a relatively simple exercise
in derivatives (so long as the operator is not too complicated).
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Chapter 3

Kasteleyn Operators

We now turn our attention to a problem regarding dimer models. Specifically, we spend
our time studying the inverse Kasteleyn operator for a partially non-periodic weighting of
the infinite square lattice. We begin in section 3.1 by discussing the necessary preliminary
information and the definition of the Kasteleyn operator. This is followed by section 3.2,
where we will go over some well known solutions in the periodic case that will be important
for understanding the motivation for the lattice weights chosen in section 3.3. Section 3.3
is dedicated to defining the Kasteleyn operator with interface and computing an asymptotic
form of the inverse operator. Lastly, in section 3.4 we use asymptotic methods to describe
the local behavior of the Kasteleyn operator in various regions of the lattice.

3.1 Defining the Kasteleyn operator

In this section, we aim to define the Kasteleyn operator on a simple, bipartite graph (possibly
infinite). While the graph need not be bipartite to define the Kasteleyn operator, we will
only consider such cases in this exposition.

Let G = (B,W,E) be any planar bipartite graph, where E denotes the set of edges and we
partition the vertices into the set of black, B, and white,W , vertices. We first equip our graph
with edge weights. For any edge, e ∈ E, we assign a weight wt(e) ∈ R>0. Suppose the edge
e connects the vertex v to the vertex u, then we use the notation wt(e) = wt(u, v) = wt(v, u)
to denote the edge weight interchangeably. There is no direction associated to the edge
weight.

Next, we assign an orientation to our graph, which we call a Kasteleyn orientation. For
the purpose of this exposition, it suffices to exhibit a Kasteleyn orientation on the square
lattice. Figure 3.1 gives an example of a Kasteleyn orientation on a portion of the square
lattice. Moreover, this will be our choice of orientation throughout this paper. Given a
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Figure 3.1: Example of a Kasteleyn orientation on the square lattice.

Kasteleyn orientation of a graph G we define the function s : V × V → R by,

s(v, u) =


0 if there is no edge between v and u

1 if there is an edge between v and u orientated from v to u

−1 if there is an edge between v and u orientated from u to v

(3.1)

Now we have all the information necessary to define the Kasteleyn operator.

Definition 3.1 (Kasteleyn operator). given a graph G, the Kasteleyn operator K(G;wt, s) :
V → V is defined by,

K(G;wt, s)v =
∑
u∼v

s(v, u)wt(v, u)u (3.2)

where the sum is taken over all vertices that neighbor v.

We will sometimes simplify the notation and use K := K(G;wt, s) when the choice of
graph, edge weights, and orientation is clear. Two different choices of Kasteleyn orientation
will result in Kasteleyn operators that are gauge equivalent.

When G is bipartite, it is useful to think of the Kasteleyn operator as acting on the space
B ⊕W , where it has the structure

K(G;wt, s) =

(
0 −K̃(G;wt, s)t

K̃(G;wt, s) 0

)
(3.3)

where K̃(G;wt, s) : B → W is the restriction of the Kasteleyn operator to the black vertices.
Notice from this structure that the Kasteleyn operator, K, is skew-symmetric on a bipartite
graph. Again we will use the notation, K̃ := K̃(G;wt, s), when the choice of graph, edge
weights, and orientation is clear. By choosing an identification of B ≃ W , for example a
reference perfect matching, we can consider objects like the determinant of K̃. With this in
mind, it suffices to consider just the operator K̃ when studying objects like the determinant
and inverse of K.
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The Kasteleyn operator is a central object in the study of dimer configurations (analo-
gously tilings) on bipartite graphs. The following theorem is a central result in the literature,

Theorem (Kasteleyn [11], Temperley and Fisher [24]). For a bipartite graph with wt(e) = 1
for all e ∈ E and any Kasteleyn orientation, the number of perfect matchings is equal to√
detK (where we take the positive root). Equivalently, the number of perfect matchings is

equal to | det K̃|.

For graphs with arbitrary edge weights, the Kasteleyn operator and its inverse also give us
information on the probability that a set of edges are simultaneously covered in an arbitrary
dimer model. This is detailed in the following theorem,

Corollary (Kenyon [13]). Given a set of edges of a bipartite planar graph, X = {e(w1, b1),
. . . , e(wk, bk)}, the probability that all edges in X are covered in a given dimer covering is,(

k∏
i=1

K(bi, wi)

)
det
(
K−1(wi, bj)

)
1≤i,j≤k

(3.4)

where the coefficient K(b, w) is defined by, K̃b =
∑

w K(b, w)w (and likewise for the inverse
coefficients).

Given a set of two edges, we define their dimer correlation function to be the difference
between their joint probability (of being covered) and the product of their individual prob-
abilities (of being covered). If we consider the two edges to be e(w1, b1) and e(w2, b2) then,
by the corollary above, the correlation function is proportional to K−1(w1, b2)K

−1(w2, b1).
In general, as two edges become further away from each other in a model, we expect

them to become less correlated. The components of the inverse Kasteleyn operator inform
us on how quickly the correlation functions decay.

This leads us to introduce another way of determining the phase in a certain region of
the model. It is known that the asymptotic behavior of the correlation function between
two dimers behaves predictably given the phase of the region of the model. In particular,
the correlation functions are deterministic in the deterministic regions, decay inversely with
respect to the square distance in the critical regions, and decay exponentially with respect to
the distance in the non-critical regions. While the correlation functions are local in nature,
they give an alternate method for understanding the phases and limit shape of the dimer
model. All of these facts show us that one way to understand the local statistics of a dimer
model is to understand the entries of the inverse Kasteleyn operator. This will be aim in
sections 3.3 and 3.4 of this exposition.

3.2 Periodic weights and the Kasteleyn operator

We will consider the Kasteleyn operator on the infinite square lattice with periodic weights
and periodic boundary conditions. In these instance, it is useful to define the fundamental
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domain of the lattice. Utilizing the fundamental domain will allow us to understand local
dimer statistics of the model without having to go through what are well-known, but often
long, computations.

Uniform weights

First we will consider the uniform weights, wt(e) = 1 for all e ∈ E. Figure 3.2 depicts the
2 × 2 fundamental domain of this lattice. The fundamental domain consists of two black
vertices vertices, b↑(n,m) and b↓(n,m), and two white vertices, w↑(n,m) and w↓(n,m). The
coordinates (n,m) denote the particular fundamental domain the vertices belong to.

b↑(n,m)

b↓(n,m)

w↑(n,m)

w↓(n,m)

Figure 3.2: The fundamental domain of the lattice with uniform edge weights.

Our goal is to compute the inverse Kasteleyn operator of this fundamental example. It
will suffice to just compute the inverse of K̃. We start off by computing how K̃ acts on the
two black vertices of an arbitrary fundamental domain,

K̃b↑(n,m) = w↑(n+ 1,m)− w↑(n,m) + w↓(n,m+ 1)− w↓(n,m) (3.5)

K̃b↓(n,m) = −w↑(n,m) + w↑(n,m− 1) + w↓(n,m)− w↓(n− 1,m) (3.6)

Since the lattice is translationally invariant in the n and m directions, we can Fourier trans-
form equations (3.5) and (3.6). We will let z and ω denote the Fourier variables in the n
and m directions, respectively. We define the Fourier transform of the bi(n,m) and wi(n,m)
functions as,

Bi(z, ω) =
∑
n,m

bi(n,m)z−nω−m (3.7)

Wi(z, ω) =
∑
n,m

wi(n,m)z−nω−m (3.8)

where i =↑, ↓. Plugging these into equations (3.5) and (3.6) gives,

K̃z,ωB↑(z, ω) = (z − 1)W↑(z, ω) + (ω − 1)W↓(z, ω) (3.9)

K̃z,ωB↓(z, ω) = (ω−1 − 1)W↑(z, ω) + (1− z−1)W↓(ω, z) (3.10)
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Using the above, we can write a matrix form of K̃z,w,

K̃z,w =

(
z − 1 w−1 − 1
w − 1 1− z−1

)
(3.11)

Inverting the above matrix directly gives,(
K̃z,ω

)−1

=
1

z + z−1 + w + w−1 − 4

(
1− z−1 1− w−1

1− w z − 1

)
(3.12)

where
(
K̃z,ω

)−1

: W → B. Using the inverse Fourier transform will yield a double integral

form for the coefficients of the inverse Kasteleyn. Since the lattice is translationally invariant,
it suffices to fix one of the vertices at the fundamental domain (0, 0). Let’s take a look at
the integral form of K̃−1 (w↑(0, 0), b↓(n,m)),

K̃−1 (w↑(0, 0), b↓(n,m)) =
1

4π2

∫
|z|=1

∫
|w|=1

(1− w)znwm

z + z−1 + w + w−1 − 4

dw

iw

dz

iz
(3.13)

Choosing different vertices of the fundamental domain would simply change the numerator
of the integrand according to the appropriate entry of equation (3.12).

Next, we consider the asymptotic behavior of K̃−1 (w↑(0, 0), b↓(n,m)) as n and m become
large. We will first approach this using integral methods. Let ω = eiθ and rewrite the
denominator in (3.13) as,

(z + z−1 + w + w−1 − 4)z = (z − λ−)(z + λ+) (3.14)

where,

λ± =
1

2

(
4− 2 cos θ ±

√
(2 cos θ − 4)2 − 4

)
We then use the residue theorem to handle the integral with respect to z, and we are left
with an integral with respect to θ. We use asymptotic techniques on this integral and we
find that K̃−1 (w↑(0, 0), b↓(n,m)) decays inversely with respect to the distance. We refer to
this lattice as critical because of this decay rate.

The spectral curve of the dimer model

We can see from the above analysis of K̃−1 (w↑(0, 0), b↓(n,m)) that the asymptotic behavior
depends on whether the roots, λ±, lie inside or outside the unit circle. Moreover, these
roots appear in the denominator of equation (3.13) which is, in fact, the determinant of K̃z,w

once we choose an identification, B ≃ W . We choose the identification which associates
b↑(n,m) ≃ w↑(n,m) and b↓(n,m) ≃ w↓(n,m) for all n and m. With this in mind we
compute,

det K̃z,w = p(z, w) = z + z−1 + w + w−1 − 4 (3.15)
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We call the function p(z, w) the spectral curve of the dimer model because it’s roots tell
us about the spectrum of the Kasteleyn operator and consequently the behavior of the
correlation functions [15]. We refer to the lattice model as being critical (rough) if the
entries of the inverse Kasteleyn operator decay inversely with respect to distance. We say
that the lattice is non-critical (smooth) if the entries of the inverse Kasteleyn operator decay
exponentially with respect to distance.

For periodic weightings and boundary conditions, we can determine whether the lattice
model is critical by simply observing the roots of the spectral curve. If the roots of p(z, w)
lie on the unit torus, then the lattice is critical, otherwise the lattice is non-critical. In the
next section we will look at a richer example to illustrate this fact more completely.

A periodic weighting

Let’s now consider the periodic weighting given by the fundamental domain in figure 3.3.
Using the process described in section 3.2, we can write the 2× 2 matrix K̃z,ω,

K̃z,ω =

(
z − 1 bω−1 − a
aω − b 1− z−1

)
(3.16)

and compute the determinant using the same identification that was discussed in section 3.2,

det K̃z,ω = p(z, ω) = −2− 2ab+ b2ω−1 + a2ω + z−1 + z (3.17)

The asymptotic behavior of the entries of the inverse Kasteleyn depend on the roots of the
above function. Moreover, the roots depend on the value of the positive parameters a and
b. If we fix the value of z on the unit torus, |p(z, ω)| is minimal for ω = 1. Applying this we

b

a

b

a

b

a

1 1 1

1 1 1

Figure 3.3: A periodic weighting on the 2 × 2 fundamental domain. We label the domain
vertices in the same manner as figure 3.2.

are left with,
0 = (a− b)2 − 2 + z + z−1 (3.18)

Thus, p(z, ω) has solutions on the unit torus if and only if |a− b| < 2. So the lattice weights
are critical when |a−b| < 2 and non-critical when |a−b| > 2. The fact that the above lattice
can be made critical or non-critical by changing the values of a and b is the motivation for
the lattice we will describe in the next section.
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3.3 Kasteleyn operator with interface

In this section, we will introduce a new weighting on the infinite square lattice that is periodic
only in one direction. We will refer to this lattice as the square lattice with interface and
to the corresponding Kasteleyn operator as the Kasteleyn operator with interface. We will
compute an integral form for the inverse Kasteleyn operator with interface. Later on, in
section 3.4, we will consider the asymptotic behavior of this integral form to determine the
local statistics of the lattice.

Square lattice with interface

To understand the square lattice with interface, it will be useful to understand a coordinate
system on the lattice. In the horizontal and vertical directions we will enumerate every other
face of the lattice, such that each vertex is associated to exactly one enumerated face. The
vertical direction will be known as the m-direction, while the horizontal direction will be
known as the n-direction. Thus every enumerated face, and the four vertices associated to
it, will have the coordinates (n,m). These coordinates on the lattice are depicted in figure
3.4. On the square lattice with interface, each enumerated face with n ≤ 0 will have edge

nn−1 n+1

m

m+1

(n,m)

(n,m+1)

(n−1,m) (n+1,m)

(n−1,m+1) (n+1,m+1)

Figure 3.4: Coordinates on the bipartite square lattice. Note that the face and the four
adjacent vertices are all denoted by the given coordinate.

weights defined by figure 3.3 and enumerated faces where n > 0 will have edge weights
defined by figure 3.6. Since the change of weights occurs at n = 0, we call this line in the
lattice the interface. The depiction of the lattice near the interface is shown in figure 3.5.
The aim of this ’interface’ weighting is to choose an appropriate a and b such that the two
halves of the lattice exhibit different fundamental behavior. In particular, we are interested
in the case where b − a > 2, because one might expect half the lattice to behave critically
while the other half behaves non-critically. From this set up, we can explicitly define what
we mean by the Kasteleyn operator with interface,
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n=0
interface

n=−1 n=1

m

m+1

b

a

b

a

b

a

b

a

b

a

b

a

b

a

b

a

b

a

b

a

a

a

a

a

a a

a

a

a

a

a

Figure 3.5: The planar, bipartite square lattice with interface at n = 0. All unlabeled edges
have weight one. We also equipped this lattice with the Kasteleyn orientation depicted in
figure 3.1.

a

a

a

a

a

a

1 1 1

1 1 1

Figure 3.6: The edge weights surrounding ennumerated faces when n > 0.

Definition 3.2 (Kasteleyn operator with interface). Let G be the square lattice with interface
defined in figure 3.5 equipped with the Kasteleyn orientation depicted in figure 3.1. We define
the Kasteleyn operator with interface to be,

Kint := K̃(G) (3.19)

Again, since we are using the operator K̃, it is important to mention that we use the
same identification of B ≃ W as was described in section 3.2. Since we aim to compute
the inverse of the Kasteleyn operator with interface, we need to comment on the boundary
conditions of the lattice. In the m-direction, we will assume periodic boundary conditions
since the lattice in translationally invariant in this direction. In the n-directions, instead of
applying typical boundary conditions we will apply conditions of convergence directly to the
inverse Kasteleyn. These conditions will be seen in action in the proof of Theorem 1.
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Inverse Kasteleyn with interface

In this section, we will state an explicit integral form of the entries of the inverse Kasteleyn
operator with interface defined above. Before stating we first define the following functions
with variable ω,

z1(ω) = aω − b (3.20)

z2(ω) = a(ω − 1) (3.21)

ri,±(ω) =
1

2ω

(
2ω + zi(ω)

2 ± zi(ω)
√

zi(ω)2 − 4ω
)

(3.22)

and the following vector valued function,

vi,±(ω) =

(
ω−1zi(ω)
ri,±(ω)− 1

)
(3.23)

where ri,±(ω) and vi,±(ω) are defined for i = 1, 2. Although the above functions explicitly
depend on ω, we will simplify the notation where it does not create confusion. In these
instances we will let,

zi := zi(ω)

ri,± := ri,±(ω)

vi,± := vi,±(ω)

With these functions in mind we can now define the functions central to the inverse Kasteleyn
operator with interface,

(
G>

↑↑(n, no;ω)

G>
↓↑(n, n0;ω)

)
=


c1(n0;ω)v1,+(ω)r1,+(ω)

n n ≤ 0

c2(n0;ω)v2,+(ω)r2,+(ω)
n + c3(n0;ω)v2,−(ω)r2,−(ω)

n 0 < n ≤ n0

c4(n0;ω)v2,−(ω)r2,−(ω)
n n > n0

(3.24)(
G>

↑↓(n, n0;ω)

G>
↓↓(n, n0;ω)

)
=


d1(n0;ω)v1,+(ω)r1,+(ω)

n n ≤ 0

d2(n0;ω)v2,+(ω)r2,+(ω)
n + d3(n0;ω)v2,−(ω)r2,−(ω)

n 0 < n < n0

d4(n0;ω)v2,−(ω)r2,−(ω)(ω)
n n ≥ n0

(3.25)(
G<

↑↑(n, n0;ω)

G<
↓↑(n, n0;ω)

)
=


c′1(n0;ω)v1,+(ω)r1,+(ω)

n n ≤ n0

c′2(n0;ω)v1,+(ω)r1,+(ω)
n + c′3(n0;ω)v1,−(ω)r1,−(ω)

n n0 < n ≤ 0

c′4(n0;ω)v2,−(ω)r2,−(ω)
n n > 0

(3.26)(
G<

↑↓(n, n0;ω)

G<
↓↓(n, n0;ω)

)
=


d′1(n0;ω)v1,+(ω)r1,+(ω)

n n < n0

d′2(n0;ω)v1,+(ω)r1,+(ω)
n + d′3(n0;ω)v1,−(ω)r1,−(ω)

n n0 ≤ n ≤ 0

d′4(n0;ω)v2,−(ω)r2,−(ω)
n n > 0

(3.27)
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where the coefficients ci(n0;ω), c
′
i(n0;ω), di(n0;ω), and d′i(n0;ω) are defined in the Appendix

B. The vertices w↑(n,m), w↓(n,m), b↑(n,m), and b↓(n,m) are the same vertices described
in figure 3.2.

Theorem 3.1 (Inverse Kasteleyn operator with interface). The inverse to the Kasteleyn
operator with interface has the integral form,

K−1
int (wi(n0, 0), bj(n,m)) =


1

2π

∫
|ω|=1

G>
ij(n, n0;ω)ω

mdω

iω
n0 > 0

1

2π

∫
|ω|=1

G<
ij(n, n0;ω)ω

mdω

iω
n0 < 0

(3.28)

where i =↑, ↓, j =↑, ↓. Since the lattice is translationally invariant in the m-direction we fix
m0 = 0 without loss of generality.

Proof. First let us compute how Kint acts on the vertices b↑(n,m) and b↓(n,m),

Kintb↑(n,m) =

{
w↑(n+ 1,m)− w↑(n,m) + aw↓(n,m+ 1)− bw↓(n,m) n ≤ 0

w↑(n+ 1,m)− w↑(n,m) + aw↓(n,m+ 1)− aw↓(n,m) n > 0
(3.29)

Kintb↓(n,m) =

{
bw↑(n,m− 1)− aw↑(n,m) + w↓(n,m)− w↓(n− 1,m) n ≤ 0

aw↑(n,m− 1)− aw↑(n,m) + w↓(n,m)− w↓(n− 1,m) n > 0
(3.30)

Since we are applying periodic boundary conditions to the lattice in the m-direction, we can
use the Fourier transform on the above. We will let ω to denote the Fourier variable and
define,

Bj
ω(n) =

∑
m

bj(n,m)ω−m

W j
ω(n) =

∑
m

wj(n,m)ω−m

for j =↑, ↓. We can now rewrite equations (3.29) and (3.30) using the Fourier variable,

Kint(n;ω)B
↑
ω(n) =

{
W ↑

ω(n+ 1)−W ↑
ω(n) + z1(ω)W

↓
ω(n) n ≤ 0

W ↑
ω(n+ 1)−W ↑

ω(n) + z2(ω)W
↓
ω(n) n > 0

(3.31)

Kint(n;ω)B
↓
ω(n) =

{
−ωz1(ω)W

↑
ω(n) +W ↓

ω(n)−W ↓
ω(n− 1) n ≤ 0

−ωz2(ω)W
↑
ω(n) +W ↓

ω(n)−W ↓
ω(n− 1) n > 0

(3.32)

The functions z1(ω) and z2(ω) are defined in equations (3.20) and (3.21). From the above
equations we can write Kint(n;ω) as a (piece-wise) difference operator acting on the vector
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(
B↑

ω(n)
B↓

ω(n)

)
,

Kint(n;ω) =



(
D+ − 1 −ωz1(ω)

z1(ω) 1−D−

)
n ≤ 0

(
D+ − 1 −ωz2(ω)

z2(ω) 1−D−

)
n > 0

(3.33)

Where D± are the discrete operators defined by, D±f(n) = f(n± 1). We are now interested
in finding the Green’s function of the difference operator above. The Green’s function will
satisfy,

Kint(n;ω)G(n, n0;ω) =

(
δn,n0 0
0 δn,n0

)
(3.34)

where δn,n0 is the Kronecker delta. We will use the following notation for the components of
G(n, n0;ω),

G(n, n0;ω) =

(
G↑↑(n, n0;ω) G↑↓(n, n0;ω)
G↓↑(n, n0;ω) G↓↓(n, n0;ω)

)
(3.35)

In the case where n ̸= n0, equation (3.34) can be epressed as two (piece-wise) linear system
each pertaining to two components of G(n, n0;ω). These systems can be written as,(

G↑j(n+ 1, n0;ω)
G↓j(n+ 1, n0;ω)

)
= Mn

(
G↑j(n, n0;ω)
G↓j(n, n0;ω)

)
(3.36)

Where j =↑, ↓ and

Mn =



(
1 ω−1z1(ω)

−z1(ω) 1− ω−1z1(ω)
2

)
n ≤ 0

(
1 ω−1z2(ω)

−z2(ω) 1− ω−1z2(ω)
2

)
n > 0

(3.37)

We are now able to solve for the Green’s function of Kint(n;ω) by simply stitching together
the appropriate linear solutions. For any |ω| = 1 the system above is non-degenerate, so we
may solve for the eigenvalues and eigenvalues of the system in terms of ω. The eigenvalues
of Mn are given by r1,±(ω) when n ≤ 0 and r2,±(ω) when n > 0. Recall these functions are
defined in equation (3.22). The eigenvectors of Mn are given by v1,±(ω) when n ≤ 0 and
v2,±(ω) when n > 0. Again these vector valued functions are defined in equation (3.23).

Before we write the general solution, we must use our boundary condition in the n-
direction. In this direction, we will require that the entries of the inverse Kasteleyn converge
as n becomes large in magnitude. It will suffice to define the following constraint on the
Green’s function as n → ±∞,

lim
n→±∞

Gij(n, n0;ω) = 0 (3.38)
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For each i =↑, ↓ and j =↑, ↓. In order to write a solution that satisfies the above, we should
understand the norm of the eigenvalues as ω varies along the unit circle. Figure 3.7 shows
plots of the norms of the roots r1,±(ω) given various values of a and b. Note that when a = b,
r1,±(ω) = r2,±(ω).
With all this in mind, we may write the general solution for the Green’s function. Since

r1,+

r1,-
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Figure 3.7: The above plots depict the norms of the eigenvalues as ω varies along the unit
circle and for various values of a and b. The x-axis indicates the argument of ω. The gray
dashed line depicts norm equal to 1. Note that criticality of the weighting can also be seen
in these graphs. The system is critical if |r1,+(ω)| = |r1,−(ω)| = 1 for some |ω| = 1. Thus,
the the weighting is critical for the top two plots, and non-critical for the bottom two.

the solution depends on whether n0 ≤ 0 or n0 > 0, we will write these solutions are separate
cases. We will denote the solutions for when n0 ≤ 0 and n0 > 0 by G<

ij(n, n0;ω) and
G>

ij(n, n0;ω), respectively. The general solutions are repeated below,

(
G>

↑↑(n, no;ω)

G>
↓↑(n, n0;ω)

)
=


c1(n0;ω)v1,+(ω)r1,+(ω)

n n ≤ 0

c2(n0;ω)v2,+(ω)r2,+(ω)
n + c3(n0;ω)v2,−(ω)r2,−(ω)

n 0 < n ≤ n0

c4(n0;ω)v2,−(ω)r2,−(ω)
n n > n0

(
G>

↑↓(n, n0;ω)

G>
↓↓(n, n0;ω)

)
=


d1(n0;ω)v1,+(ω)r1,+(ω)

n n ≤ 0

d2(n0;ω)v2,+(ω)r2,+(ω)
n + d3(n0;ω)v2,−(ω)r2,−(ω)

n 0 < n < n0

d4(n0;ω)v2,−(ω)r2,−(ω)(ω)
n n ≥ n0
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(
G<

↑↑(n, n0;ω)

G<
↓↑(n, n0;ω)

)
=


c′1(n0;ω)v1,+(ω)r1,+(ω)

n n ≤ n0

c′2(n0;ω)v1,+(ω)r1,+(ω)
n + c′3(n0;ω)v1,−(ω)r1,−(ω)

n n0 < n ≤ 0

c′4(n0;ω)v2,−(ω)r2,−(ω)
n n > 0

(
G<

↑↓(n, n0;ω)

G<
↓↓(n, n0;ω)

)
=


d′1(n0;ω)v1,+(ω)r1,+(ω)

n n < n0

d′2(n0;ω)v1,+(ω)r1,+(ω)
n + d′3(n0;ω)v1,−(ω)r1,−(ω)

n n0 ≤ n ≤ 0

d′4(n0;ω)v2,−(ω)r2,−(ω)
n n > 0

All that is left is to solve for the coefficients. To do this, we consider equation (3.34) when
n = 0, n = n0, and n = n0 − 1. All of the coefficients are explicit stated in Appendix B.

Lastly, to get an explicit formula for the entries of K−1
int we simply use the inverse Fourier

transform on the above.

K−1
int (wi(n0, 0), bj(n,m)) =

1

2π

∫
|w|=1

Gk
ij(n, n0;ω)ω

mdω

iω
(3.39)

for any i =↑, ↓, j =↑, ↓ and k =>,<. Note that k depends on the value of n0. We are
allowed to fix the vertex wi at m0 = 0 since the lattice is translationally invariant in the
m-direction.

3.4 Asymptotic behavior of the inverse Kasteleyn

with interface

In this section, we will compute the asymptotic behavior of K−1
int (wi(n,m), bj(n0, 0)) with the

goal of understanding the limit shape behavior of the lattice. By determining the decay of
the inverse Kasteleyn entries, we will learn whether certain regions of the lattice are critical
or non-critical. In the critical case, we expect the decay of the inverse Kasteleyn to be
inversely related to the distance, while in the non-critical regions we expect the decay to be
exponential in distance.

Throughout this analysis we will assume that the m0 = 0 as the lattice is translationally
invariant in the m-direction. We will also assume that b− a > 2 as we expect this scenario
of weights to produce a lattice with both critical and non-critical regions, which it does.

Asymptotic behavior for large m and fixed n and n0

First we will consider the asymptotic behavior when n and n0 are close to the boundary
and the vertical distance grows. Regardless of what half of the plane the two vertices are
in, the inverse Kasteleyn component decays inversely in m. However, it is worth noting
that when one of the vertices lies to the left of the interface, it will contribute a term that
decays exponentially in the relevant coordinate, even though these values are fixed. We will
elaborate on this more after the statement and proof of the corollary,
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Corollary 3.1.1. For n and n0 fixed, the inverse Kasteleyn entries have the following asymp-
totic expansion,

K−1
int (wi(n0, 0), bj(n,m)) =

1

πm
ℑ
(

lim
θ→0+

Gk
ij(n, n0; e

iθ)

)
+O(m−2) (3.40)

as m → ∞. Where i =↑, ↓, j =↑, ↓, and k =>,< depending on the value of n0.

Proof. To start, let’s substitute ω = eiθ into equation (3.39),

K−1
int (wi(n0, 0), bj(n,m)) =

1

2π

∫ 2π

0

Gk
ij(n, n0; e

iθ)eiθmdθ (3.41)

We wish to employ the method of steepest decent to compute the asymptotics of the above.
The coefficient Gk

ij(n, n0; e
iθ) is well-behaved on the interval (0, 2π). We only need to be

aware of the jump discontinuity at the endpoints.
To start we need to deform the contour in the manner depicted by figure 3.8. Consider

the three integrals that arise from breaking the contour into the two vertical components
and the one horizontal component. Along the horizontal component, we note that

ℜ(z)

ℑ(z)

0 2π

2π + iRiR

Figure 3.8: For the method of steepest descent we deform the original contour (in black) to
the contour in red. Note that we let R → ∞.

∥∥∥Gk
ij(n, n0; e

−Reis)e−Rmeism
∥∥∥ ≤ e−R (3.42)

so the integrand vanishes as R → ∞. Now we are left to deal with the integrals along the
vertical components of the contour. We write the integral along the left most path as,

lim
θ→0+

i

2π

∫ ∞

0

G>
↑↑(n, n0; e

−s+iθ)e−smds (3.43)
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and along the right most path as,

− lim
θ→2π−

i

2π

∫ ∞

0

G>
↑↑(n, n0; e

−s+iθ)e−smds (3.44)

Note that we need to take limits due to the discontinuity at the endpoints. Since the exponent
is real and decaying, we can now use Laplace’s method on both these integrals. Immediately
we obtain,

K−1
int (wi(n0, 0), bj(n,m)) =

1

2πim

(
lim

θ1→0+
Gk

ij(n, n0; e
iθ1)− lim

θ2→2π−
Gk

ij(n, n0; e
iθ2)

)
+O(m−2)

(3.45)
Lastly, we can notice that

lim
θ1→0+

Gk
ij(n, n0; e

iθ1)− lim
θ2→2π−

Gk
ij(n, n0; e

iθ2) = 2ℑ
(

lim
θ→0+

Gk
ij(n, n0; e

iθ)

)
(3.46)

and so equation (3.45) simplifies to what is given in equation (3.40).

We would like to take a closer look at the result in Corollary 1 and so it will be useful
to consider three specific cases: (1) the case where the vertices both lie to the left of the
interface (n < n0 < 0), (2) the case where the vertices both lie to the right of the interface
(0 < n0 < n), and (3) the case where the vertices lie on opposite sides of the interface (n0 <
0 < n). These cases, and their asymptotics are depicted in figure 3.9. There are certainly
more cases we can consider, but looking at these three will be sufficient to understand the
behavior around the interface.

interface

(n0,0)

(n,m)

∼ 1
m
en+n0

interface

(n0,0)

(n,m)

∼ 1
m

interface

(n0,0)

(n,m)

∼ 1
m
en0

Figure 3.9: The three cases we consider when m is large and n and n0 are finite. From left
to right the cases are, n < n0 < 0, 0 < n0 < n, and n0 < 0 < n.

In the first case, where n < n0 < 0, let’s compute the leading order term of the expansion
of the ↑↑ case for a = 1 and b = 4,

K−1
int (w↑(n0, 0), b↑(n,m)) ∼ 1

3mπ

(
−7− 3

√
5

2

)n(
−7 + 3

√
5

2

)1−n0

(3.47)
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And we can see that n and n0 contribute terms that exponentially decay. The analysis
follows suit for the other components (↑↓, ↓↑, and ↓↓) and different values of a and b (so
long as |b− a| > 2).

For the case where 0 < n0 < n we can also compute the first order term of the expansion
for the ↑↑ case where a = 1 and b = 4. We find,

K−1
int (w↑(n0, 0), b↑(n,m)) ∼ 1

3mπ
(3.48)

Since both vertices now lie on the right side of the interface, there are no longer exponentially
decaying terms and all decay is inverse in m.

And lastly, for the case where n0 < 0 < n we write out the first order term of the
expansion for the ↑↑ case where a = 1 and b = 4 as,

K−1
int (w↑(n0, 0), b↑(n,m)) ∼ 1

3mπ

(
−7 + 3

√
5

2

)−n0

(3.49)

We see that the leading order term decays exponentially in n0 but not n, since only n0 lies
to the left of the interface. It’s important to note that although n0 < 0, the term being
exponentiated has norm less than 1 for any value of a and b such that |b− a| > 2.

Asymptotic behavior for large horizontal distances

Now we would like to comment on the asymptotic behavior of the inverse Kasteleyn matrix
when m is fixed and n and n0 are manipulated in a way so that the vertices are far away.
There are many ways in which we can accomplish this. In this section, we will consider a
few methods to compute the asymptotic behavior for large horizontal distances.

Overall, we find that the asymptotic behavior in the horizontal direction depends on
which side of the interface the two vertices lie. For example, if both vertices lie on to the left
of the interface, the decay will be exponential in the horizontal distance. However, if both
vertices lie to the right of the interface, the decay will be linear in the horizontal distance.

Across the interface, n0 fixed.

First let us consider the case where n0 is fixed, |n| → ∞, and the two vertices are on opposite
sides of the interface. This encompasses two cases where one vertex remains close to the
interface while the other vertex is far away. These scenarios are shown in figure 3.10. We
expect the asymptotic behavior to be dominated by which side of the interface the vertex
indexed by n lies on.

Before stating the results, it will be useful to define what I will call little-g functions.
These functions are the result of stripping away the n dependence of Gk

ij(n, n;ω) and are
only defined for the first and last cases in equations (3.24)-(3.27). For example, when n0 < 0
and n > 0 we define,

g<ij,n>0(n0;ω)r2,−(ω)
n = G<

ij(n, n0;ω) (3.50)
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interface

(n0,0)

(n,m)

interface

(n0,0)

(n,m)

Figure 3.10: The two cases we consider where the vertices are located across the interface
and |n| is large.

and for n < n0 < 0 we have,

g<ij,n<n0
(n0;ω)r1,+(ω)

n = G<
ij(n, n0;ω) (3.51)

We define the rest of the relevant cases analogously. We will now state two corollaries
addressing the scenarios in figure 3.10. First we have,

Corollary 3.1.2. For n0 < 0 < n and n0 and m fixed the inverse Kasteleyn entries have
the following asymptotic expansion,

K−1
int (wi(n0, 0), bj(n,m)) =

1

2πan

(
lim

θ1→0+
g<ij,n>0(n0; e

iθ1) + lim
θ2→2π−

g<ij,n>0(n0; e
iθ2)

)
+O(n−2)

(3.52)
as n → ∞.

Proof. Not that for any |ω| = 1, the root r2,−(ω) is real. Thus solving for the asymptotics
of this integral is a direct application of Laplace’s method. Plotting the value’s of the root
over the unit circle (shown in figure 3.11) shows that there are two maximums of equal
value (r2,−(ω) = 1) at θ = 0 and θ = 2π, where we let ω = eiθ. We must account for the
contributions from both when applying Laplace’s method.

The second case consider is when n < 0 < n0 and thus the vertex indexed by n lies to
the left of the interface and in the non-critical region. In this instance we have,

Corollary 3.1.3. For n < 0 < n0 and n0 and m fixed the inverse Kasteleyn operator has
the following asymptotic expansion,

K−1
int (wi(n0, 0), bj(n,m)) = − 1

π
ℑ
(

lim
θ→0+

g>i,j,n<0

(
n0, e

iθ
))√(a− b)2 − 4

(a+ b)n
enr1,+(1)

+O
(
enr1,+(1)

n2

)
(3.53)

as → −∞.
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Figure 3.11: Plot of r2,−(ω) over the unit circle for a = 1.

In this case, the asymptotic variable n lies to the left of the interface and thus we get
exponential decay that depends on n in the leading order term.

Proof. We cannot immediately apply Laplace’s method because the root r1,+(e
iθ) is complex.

However, if we deform the contour in the manner shown in figure 3.8 we will be able to apply
Laplace’s method appropriately. With this in mind, the proof now follows the methods used
in section 3.4. First we make sure to write,

rn1,+ = en log r1,+ (3.54)

where we suppressed the ω dependance in the notation, and we use the series expansion,

log r1,+(e
−s) = log r1,+(1) +

(a+ b)√
(a− b)2 − 4

s+O(s2) (3.55)

From this we get the formula stated above in Corollary 3.1.3.

Critical side of the lattice, n0 fixed.

Now let’s again consider a set up where n0 is fixed, however now we both vertices will lie to
the right of the interface. In particular, n > n0 > 0. The set up is show in figure 3.12. As
we see in the corollary below, the asymptotic expansion decays inversely with respect to n
in the leading order.

Corollary 3.1.4. For n > n0 > 0 and m and n0 are finite, the asymptotic behavior of the
inverse Kasteleyn is given by,

K−1
int (wi(n0, 0), bj(n,m)) =

1

πan

(
lim
θ→0+

g>ij,n>n0
(n0; e

iθ)

)
+O(n−2) (3.56)

for i =↑, ↓ and j =↑, ↓.

Proof. Just like in the case of equation (3.52), this is a direct application of Laplace’s method.
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interface

(n0,0)

(n,m)

Figure 3.12: The case where both vertices are to the right of the interface, n0 is finite and n
is large.

Non-critical side of the lattice, n0 fixed

We will consider the complement of the case presented above, that is we will consider the
case where n < n0 < 0 and n0 is fixed and −n becomes large. This scenario is depicted in
figure 3.13.

interface

(n0,0)

(n,m)

Figure 3.13: The case where both vertices are to the left of the interface, n0 is fixed, and −n
is large.

Corollary 3.1.5. For n > n0 > 0 and m and n0 are finite, the asymptotic behavior of the
inverse Kasteleyn is given by,

K−1
int (wi(n0, 0), bj(n,m)) = − 1

π
ℑ
(

lim
θ→0+

g<i,j,n<n0

(
n0, e

iθ
))√(a− b)2 − 4

(a+ b)n
enr1,+(1)

+O
(
enr1,+(1)

n2

)
(3.57)

for i =↑, ↓ and j =↑, ↓.

Proof. The proof of this corollary follows the same procedure as the proof of equation (3.53).
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Same side of the interface, n and n0 proportional

Now let’s look at the two cases where the vertices are far apart (horizontally) and well to
one side of the interface, i.e. neither vertex is fixed by the boundary. The two scenarios of
interest are depicted in figure 3.14. To describe the asymptotic behavior succinctly, it will be

interface

(n0,0)

(n,m)

interface

(n0,0)

(n,m)

Figure 3.14: The above diagrams depict the cases where n and n0 lie on the same side of the
interface and both indices become large at a proportional rate.

useful to define some notation. We define the coefficients c4,1(ω), c4,2(ω), c
′
1,1(ω) and c′1,2(ω)

by the equations
c1(ω) = r2,−(ω)

−n0c4,1(ω) + r2,+(ω)
−n0c4,2(ω) (3.58)

c′1(ω) = r1,+(ω)
−n0c′1,1(ω) + r1,−(ω)

−n0c′1,2(ω) (3.59)

One should note that the newly defined coefficients have no dependence on n0. We will first
state the corollary describing the asymptotic behavior for when both vertices lie to the right
of the interface, in other words the scenario depicted on the right side of figure 3.14.

Corollary 3.1.6. For n0 = N , n = pN for some p > 1, and m finite, the inverse Kasteleyn
operator has the following behavior as N → ∞,

K−1
int (w↑(n0, 0), b↑(n,m)) =

1

aNπ

(
1

p− 1
lim
θ→0+

c4,1(e
iθ)z2(e

iθ)

+
1

p+ 1
lim
θ→0+

c4,2(e
iθ)z2(e

iθ)

)
+O(n−2) (3.60)

Proof. We need to first split the integral up into two,

K−1
int (wi(n0, 0), bj(n,m)) =

1

2π

∫ 2π

0

c4,1(e
iθ)z2(e

iθ)e−iθr2,−(e
iθ)−n0r2,−(e

iθ)neiθmdθ

+
1

2π

∫ 2π

0

c4,2(e
iθ)z2(e

iθ)e−iθr2,+(e
iθ)−n0r2,−(e

iθ)neiθmdθ

(3.61)
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and rewrite them in the following manner,∫ 2π

0

c4,1(e
iθ)z2(e

iθ)e−iθr2,−(e
iθ)−n0r2,−(e

iθ)neiθmdθ =

=

∫ 2π

0

c4,1(e
iθ)z2e

i(m−1)θ exp (N(p− 1) log r2,−) dθ∫ 2π

0

c4,2(e
iθ)z2(e

iθ)e−iθr2,+(e
iθ)−n0r2,−(e

iθ)neiθmdθ =

=

∫ 2π

0

c4,2(e
iθ)z2e

i(m−1)θ exp(−N log r2,+ + pN log r2,−)dθ

In both the the above integrals, the function in the exponent has constant imaginary part
and the real part decays appropriately. Thus we may use Laplace’s method on the two
integrals and the result is given by the asymptotic expansion in equation (3.60).

As expected, 3.1.6 shows us the the inverse Kasteleyn entries decay inversely in N . Now
for the case seen in the left most diagram of figure 3.14 we state the following corollary,

Corollary 3.1.7. For n0 = −N , n = −pN for some p > 1, and m finite, the inverse
Kasteleyn operator has the following behavior as N → ∞,

K−1
int (w↑(n0, 0), b↑(n,m)) =

= −
√

(a− b)2 − 4

π(a+ b)(1 + p)N
exp(−pN log r1,+(1) +N log r1,−(1))

(
lim
θ→0+

c′1,2(e
iθ)z1(e

iθ)

)
+O

(
exp(−pN log r1,+(1) +N log r1,−(1))

N2

)
(3.62)

Proof. Similarly to the work shown in corollary 6, we can expand the one integral into two
integrals,

1

2π

∫ 2π

0

G<
↑↑(n, n0; e

iθ)eimθdθ =

=
1

2π

∫ 2π

0

c′1,1(e
iθ)z1(e

iθ)ei(m−1)θ exp(−N(p− 1) log r1,+(e
iθ))dθ

+
1

2π

∫ 2π

0

c′1,2(e
iθ)z1(e

iθ)ei(m−1)θ exp(−pN log r1,+(e
iθ) +N log r1,−(e

iθ))dθ

However these exponents are complex, and so we have to deform the contour in the plane.
The contour given in figure 3.8 will again work. When we deform the first integral on the
right side above, the integrals sum to zero. Thus,

1

2π

∫ 2π

0

G<
↑↑(n, n0; e

iθ)eimθdθ =

=
1

2π

∫ 2π

0

c′1,2(e
iθ)z1(e

iθ)ei(m−1)θ exp(−pN log r1,+(e
iθ) +N log r1,−(e

iθ))dθ
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Computing the asymptotic expansion of this follows the work detail in 3.1.3.
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Chapter 4

Dirac Operator

In this chapter, we will consider a continuous (two-dimensional) operator that is reminiscent
of the Kasteleyn operator with interface described in Chapter 3. This Dirac-like operator is
motivated by the result in [14], which proves that the Kasteleyn operator on the uniformly
weighted lattice converges to the massless Dirac operator in the continuum limit.

We will start by defining the Dirac operator with interface. We will then compute the
Green’s function of the operator and look at it’s asymptotic behavior in the interesting case
where the two points are located across the interface. Lastly, we will draw connections
between the results here and those in Chapter 3, as well as draw connections between the
operators in question.

4.1 The Dirac operator with interface

Let us start by defining the two-dimensional Dirac operator with interface.

Definition 4.1. The Dirac operator with interface acts on two component wave functions,
Ψ(x, y) ∈ L2 (R2,C)⊕ L2 (R2,C), and is defined by,

D(x) =



(
m1 −i∂x − ∂y

−i∂x + ∂y −m1

)
x < 0

(
m2 −i∂x − ∂y

−i∂x + ∂y −m2

)
x > 0

(4.1)

Where m1, m2 ≥ 0.

This definition is immediately inspired by the Kasteleyn operator with interface defined
in chapter 3. It was shown in [14] that the Kasteleyn operator on the uniformly weighted
lattice converges to the massless Dirac operator.
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The goal of this chapter is to compute the Green’s function of the above operator and
commute the asymptotic behavior of the Green’s function as the source and point become
far away.

4.2 Green’s function of the Dirac operator with

interface

Our first goal is to compute an integral form of the Green’s function associated with the Dirac
operator with interface. This integral form of the Green’s function should be reminiscent of
the formula for the inverse Kasteleyn computed back in Theorem 3.1.

Let us first be reminded that the Green’s function will satisfy the equation,

D(x)G(x, y;x0, y0) =

(
δ(x, x0)δ(y, y0) 0

0 δ(x, x0)δ(y, y0)

)
(4.2)

Where δ(s, t) denotes the Dirac delta distribution centered at s = t. Since the operator
defined in equation (4.1) is invariant in the y-direction, we should first Fourier transform
equation (4.2) in this direction. Doing this we obtain,

D(x|q)G(x, x0|q) =
(
δ(x, x0) 0

0 δ(x, x0)

)
(4.3)

where,

D(x|q) =



(
m1 −i∂x − iq

−i∂x + iq −m1

)
x < 0

(
m2 −i∂x − iq

−i∂x + iq −m2

)
x > 0

(4.4)

and we denote the components of the transformed Green’s function by,

G(x, x0|q) =

(
G11(x, x0|q) G12(x, x0|q)
G21(x, x0|q) G22(x, x0|q)

)
(4.5)

We define the following function of q,

ϵi(q) =
√
q2 +m2

i (4.6)
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for i = 1, 2. We can now express the form of the transformed Green’s function, G(x, x0|q)
when we fix x0 > 0.

G(x, x0|q) =



(
ic1(q)

(
q + ϵ1(q)

)
id1(q)

(
q + ϵ1(q)

)
c1(q)m1 d1(q)m1

)
eϵ1(q)x x < 0

(
ic2(q)

(
q + ϵ2(q)

)
id2(q)

(
q + ϵ2(q)

)
c2(q)m2 d2(q)m2

)
eϵ2(q)x

+

(
ic3(q)

(
q − ϵ2(q)

)
id3(q)

(
q − ϵ2(q)

)
c3(q)m2 d3(q)m2

)
e−ϵ2(q)x 0 < x < x0

(
ic4(q)

(
q − ϵ2(q)

)
id4(q)

(
q − ϵ2(q)

)
c4(q)m2 d4(q)m2

)
e−ϵ2(q)x x > x0

(4.7)
Note the the coefficients ci(q) and di(q) for i = 1, 2 seen above are defined in appendix C.
We now state the theorem which defines the integral form of the Green’s function for the
Dirac operator with interface,

Theorem 4.1 (Green’s function for the Dirac operator with interface). When we fix some
x0 > 0, the Green’s function for the Dirac operator with interface has the integral form,

G(x, y;x0, 0) =
1

2π

∫ ∞

−∞
G(x, x0|q)eiqydq (4.8)

where we define the integration above to be component-wise.

Note that in the above theorem we are allowed to set y0 = 0 without loss of generality
because the operator is translationally invariant in the y-direction. Moreover, the case when
we fix x0 < 0 follows the work done here with minor adjustments. We will not compute this
case in this exposition for brevity.

Proof. To solve the system in (4.3), we should first note that the solution depends on whether
x0 < 0 or x0 > 0. In this proof, we will only focus on the case where x0 > 0. For the former
case, the proof follows a similar set up so we will omit it. For x0 > 0, we will consider the
solution in the domains x < 0, 0 < x < x0, and x > x0 and stitch the solutions together
using the appropriate conditions. Note we also need to consider the boundary conditions on
the lattice as |x| → ∞. In particular, we will assume that Gjk(x, x0|q) → 0 as |x| → 0 for
j = 1, 2 and k = 1, 2.

Let’s first consider the solution to (4.3) in the domain where x < 0. In this domain,
equation (4.3) can be expressed as,(

m1 −i∂x − iq
−i∂x + iq −m1

)(
G11(x, x0|q) G12(x, x0|q)
G21(x, x0|q) G22(x, x0|q)

)
=

(
0 0
0 0

)
(4.9)
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The general solution to the above is,

G(x, x0|q) =
(
ic1(q + ϵ1(q)) id1(q + ϵ1(q))

c1m1 d1m1

)
eϵ1(q)x+

(
ic2(q − ϵ1(q)) id2(q − ϵ1(q))

c2m1 d2m1

)
e−ϵ1(q)x

(4.10)
We need to consider the general solution under the conditions stated for x → −∞. Taking
these into account, we can eliminate the second matrix term above.

G(x, x0|q) =
(
ic1(q + ϵ1(q)) id1(q + ϵ1(q))

c1m1 d1m1

)
eϵ1(q)x (4.11)

We can apply the same procedure for finding the solution in the domains 0 < x < x0 and
x > x0. The general solution when 0 < x < x0 is

G(x, x0|q) =
(
ic2(q + ϵ2(q)) id2(q + ϵ2(q))

c2m2 d2m2

)
eϵ2(q)x+

(
ic3(q − ϵ1(q)) id3(q − ϵ1(q))

c3m2 d3m2

)
e−ϵ2(q)x

(4.12)
Note we reused the coefficients c2 and d2 above since they did not end up appearing in
(4.11). The solution for when x > x0, which takes into account the appropriate boundary
conditions, is

G(x, x0|q) =
(
ic4(q − ϵ2(q)) id4(q − ϵ2(q))

c4m2 d4m2

)
e−ϵ2(q)x (4.13)

We now want to stitch together the general solutions described by equations (4.11)-(4.13)
to solve for the unknown coefficients. Note that in actuality, the coefficients are functions
of q with parameter x0, so from here on we will use the notation ci(q) and di(q), where
i = 1, 2, 3, 4.

To solve for the coefficients we should first make sure that equation (4.11) and (4.12)
agree when x = 0, as the Green’s function should be continuous across the interface. We
then need to stitch together the solution appropriately when x = x0. Because of the delta
distributions the components G11(x, x0|q) and G22(x, x0|q) should be continuous at x = x0,
however this will not be the case for G12(x, x0|q) and G21(x, x0|q). The details for solving
for the coefficients, and their explicit form can be found in Appendix C.

All that’s left to do is use the inverse Fourier transform to get an expression for the original
Green’s function. Doing this results in the integral given in the statement of Theorem 4.1.

The massive-massless interface

We are particularly interested in the case where m1 > 0 and m2 = 0. In other words, the
interface separates a massive Dirac operator and a massless Dirac operator. In this instance,
we can easily give an explicit integral form of the Green’s function. To do so let’s first define
the notation we will use for the Heaviside function,

H(x) =

{
1 x > 0

0 x < 0
(4.14)
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We define the following function, which we denote Gm1,0(x, x0|q).

Gm1,0(x, x0|q) =



−(ϵ1(q) + q)

m1

H(−q) −iH(q)

iH(−q)
−m1

ϵ1(q) + q
H(q)

 eϵ1(q)x−|q|x0 x < 0

−i

(
0 H(q)

H(−q) 0

)
e|q|(x−x0)

+

ϵ1(q) + q

m1

H(−q) 0

0
−m1

ϵ1(q) + q
H(q)

 e−|q|(x+x0) 0 < x < x0

i

(
0 H(−q)

H(q) 0

)
e−|q|(x−x0)

+

−(ϵ1(q) + q)

m1

H(−q) 0

0
−m1

ϵ1(q) + q

 e−|q|(x+x0) x > x0

(4.15)
This leads us to the following corollary,

Corollary 4.1.1. The Green’s function for the Dirac operator with a massive-massless in-
terface has the integral form,

Gm1,0(x, y;x0, 0) =
1

2π

∫ ∞

−∞
Gm1,0(x, x0|q)eiyqdq (4.16)

Proof. The function Gm1,0(x, x0|q) is derived by taking the limit of G(x, x0|q) as m2 → 0.
The result immediately follows.

4.3 Asymptotics of the Green’s function

We would like to compute the asymptotics of the Green’s function, Gm1,0(x, y;x0, 0), for the
case when the two points lie on opposite sides of the interface. In particular, it will suffice to
study the case where x < 0 and x0 > 0. This case is depicted in figure 4.1. The asymptotics
are neatly described in the following corollary,

Corollary 4.1.2. Let x = −(ay+ c) and x0 = by+ d, where a, b, c, and d are non-negative
(real) constants. The Green’s function for the Dirac operator with massive-massless interface
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interface
x = 0

(x,y)

(x0,0)

Figure 4.1: The case where the two points lie on opposite sides of the interface.

has the following leading order behavior

Gm1,0(x, y;x0, 0) =


1

b+ i

i

b− i

−i

b+ i

−1

b− i

 exm1

2πy
+


−1− dm1

m1(b+ i)2
id

(b− i)2

id

(b+ i)2
1 + dm1

m1(b− i)2

 exm1

2πy2
+O

(
exm1y−3

)
(4.17)

as y tends to positive infinity.

Proof. To compute the asymptotic behavior, we will consider the proof for two cases. First
we will consider the special case where a = b = 0. In this case, both vertices are close to the
interface and the vertical distance between them is large. After that, we will consider the
more general case where either a ̸= 0, b ̸= 0, or both.

The asymptotics should be computed component-wise, although the procedure for each
component is the same. In this proof, we will prove the asymptotics for the (1, 1)-component
of the matrix. We will refer to this component as G11(x, y;x0, 0) and the Fourier transformed
version as G11(x, x0|q). Even though we are dropping the m1, 0 subscript for conciseness,
we will be working strictly with the Green’s function for the Dirac operator with massive-
massless interface.

Let’s start by simplifying the expression in equation (4.16) and restricting to the case of
G11. This yields the integral,

G11(x, y;x0, 0) =
1

2πm1

∫ 0

−∞
(q + ϵ1(q)) e

ϵ1(q)x+qx0eiqydq (4.18)

Notice that the first exponential does not depend on the asymptotic parameter, y. We would
like to use Watson’s lemma to approximate the above integral, however we must first deform
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the contour so that the exponential part that depends on y has a decaying real part. We
will deform the contour so it sits along the positive imaginary axis. Doing so, we obtain

G11(x, y;x0, 0) =
1

2πim1

∫ ∞

0

(
is+

√
m2

1 − s2
)
e
√

m2
1−s2x+isx0e−syds (4.19)

Now we will approximate the part of the integrand that is not dependent on y by using its
Taylor series about s = 0.(

is+
√

m2
1 − s2

)
e
√

m2
1−s2x+isx0 = m1e

m1x + i(1 +m1x0)e
m1xs+O(s2) (4.20)

Using the above approximation and Watson’s lemma we obtain,

G11(x, y;x0, 0) =
−i

2πy
em1x +

1 +m1x0

2πm1y2
em1x +O

(
y−3
)

(4.21)

Which agrees with equation (4.17). The leading order of the decay of the above function
is inversely related to the asymptotic variable y. While there is an exponential term that
depends on x, since x is fixed in this instance the term is effectively a constant.

We now need to consider the case where either a or b is non-zero (or both). In this case,
the integral form of G11 looks like,

G11(x, y;x0, 0) =

∫ 0

−∞
f(q)eg(q)ydq (4.22)

where,

f(q) =
1

2πm1

(q + ϵ1(q)) e
−ϵ1(q)c+qd (4.23)

g(q) = −aϵ1(q) + bq + iq (4.24)

Note that, on the domain (−∞, 0], both functions are maximum at q = 0. Moreover, the
function eg(q)y decays exponentially as q → −∞. We can series expand both f(q) and g(q),

f(q) =
1

2π
e−cm1 +

1 + dm1

2πm1

e−cm1q +Q(q2) (4.25)

g(q) = −am1 + (b+ i)q +O(q2) (4.26)

And using the first few terms of these expansion, we can approximate the integral with
Laplace’s method,

G11(x, y;x0, 0) =
1

b+ i

exm1

2πy
− 1 + dm1

m1(b+ i)2
exm1

2πy2
+O

(
em1xy−3

)
(4.27)

Again the above agrees with the Corollary. Note that now the decay is exponential, because
x depends linearly on y. The proof for the other components of the Green’s function follow
the same procedure and thus we omit them.
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4.4 Connections to the Kasteleyn operator

We can immediately draw similarities between the asymptotic behavior of the Dirac operator
with massive-massless interface to the asymptotic behavior of the Kasteleyn operator with
(non-critical/critical) interface. In particular, we can compare Corollaries 4.1.2, 3.1.2, and
3.1.1 to see that the asymptotic behavior is the same for the two operators in these instances.

Because of these similarities, it is reasonable to ask if the Kasteleyn operator with
(non-critical/critical) interface converges in the continuum limit to the Dirac operator with
massive-massless interface. This is not true, and we can see this through a simple computa-
tion.

We will simply consider the Kasteleyn operator that results from the lattice weighting
where the fundamental domain is given by figure 3.3. It will be useful to employ the notation,

f(n,m) =


b↑(n,m)
b↓(n,m)
w↑(n,m)
w↓(n,m)

 (4.28)

The Kasteleyn operator has the form,

Kf(n,m) =


w↑(n+ 1,m)− w↑(n,m) + a (w↓(n,m+ 1)− w↓(n,m))
−b (w↑(n,m)− w↑(n,m− 1)) + w↓(n,m)− w↓(n− 1,m)
b↑(n+ 1,m)− b↑(n,m)− b (b↓(n,m+ 1)− b↓(n,m))
a (b↑(n,m)− b↑(n,m− 1)) + b↓(n+ 1,m)− b↓(n,m)



+


(a− b)w↓(n,m)
(b− a)w↑(n,m)
(a− b)b↓(n,m)
(b− a)b↑(n,m)

 (4.29)

The above is expressed in a manner that will make it easier to compute the continuum limit.
We will equipped the lattice, Z2, with a mesh size of ϵ and let x = ϵn and y = ϵm. In the
continuum limit the Kasteleyn operator becomes,

Kf(x, y) =


0 0 ∂x a∂y
0 0 −b∂y ∂x
∂x −b∂y 0 0
a∂y ∂x 0 0

 f(x, y) + ϵ−1


0 0 0 a− b
0 0 b− a 0
0 a− b 0 0

b− a 0 0 0

 f(x, y)

(4.30)
In the case where a = b we get,

Kf =


0 0 ∂x a∂y
0 0 −a∂y ∂x
∂x −a∂y 0 0
a∂y ∂x 0 0

 (4.31)
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and

K2 =


∂2
x + a2∂2

y 0 0 0
0 ∂2

x + a2∂2
y 0 0

0 0 ∂2
x + a2∂2

y 0
0 0 0 ∂2

x + a2∂2
y

 (4.32)

So up to appropriate scaling this is essentially a massless Dirac operator. However, when
a ̸= b we do not immediately recover the massive Dirac operator. Moreover, we see that
there is a singular part which appears in (4.30).

While the work in chapters 3 and 4 shows a deep connection between the Kasteleyn
operator with interface and the Dirac operator with interface, more work needs to be done
to show the relationship between these two operators. In particular, it would be beneficial
to find a Kasteleyn type operator on the lattice which immediately converges to the massive
Dirac operator. It would then be worthwhile to study the connection between this Kasteleyn-
like operator and the Kasteleyn operator used here.
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Appendix A

Proof of Lemma 2.1.1

In this appendix we will prove Lemma 2.1.1 which is essential in the proof of theorem 2.1.
For this proof, we will assume the matrices ∂2H/∂p⃗i

2 are invertible for all i = 1, . . . , n. Under
this assumption, we can use the Schur complement to help us express the determinant of
ÃN ,

det(ÃN) = det(D1) det(D4 −D3D
−1
1 D2)

where the matrices Di for i = 1, 2, 3, 4. are described by equation (2.24). The matrix
D4 −D3D

−1
1 D2 is a block tridiagonal matrix and so we can use techniques described in [20]

to compute the determinant of the matrix. We compute,

det(D4 −D3D
−1
1 D2) = (−1)Nm det(T

(0)
11 ) det(B1 · · ·BN−1)

The matrices Bi for i = 1, . . . , N − 1 are defined in equation (2.40) and the matrix T
(0)
11 is

given by,
T

(0)
11 = V T

2 TN−1 · · ·T2V1

where Ti for i = 2, . . . , N − 1 are defined by equation (2.36). Lemma 1 follows immediately
from the above.
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Appendix B

Computation of the coefficients in
Theorem 3.1

Below we explicitly state the coefficients present in the Green’s function of the Kasteleyn
operator with interface that is given in equations (3.24)-(3.27). While most of the functions
presented here are dependent on the parameter ω, we drop the notation to fit the equations
nicely on the page.

c1 =
(1− r2,−)r

−n0
2,+ ω

r1,+z1(−1 + r2,−) + r2,−z2(1− r1,+)
(B.1)

c2 =
(−1 + r2,−)r

−n0
2,+ ω

z2(r2,+ − r2,−)
(B.2)

c3 =
(−1 + r2,−)r

−n0
2,+ ω (r1,+z1(1− r2,+) + r2,+z2(−1 + r1,+))

(r2,− − r2,+)z2 (r1,+z1(1− r2,−) + r2,−z2(−1 + r1,+))
(B.3)

c4 =
r−n0
2,− (−1 + r2,+)ω

z2(r2,+ − r2,−)
+ c3 (B.4)

d1 = −
r2,−r

1−n0
2,+ z2

r1,+z1(1− r2,−) + r2,−z2(−1 + r1,+)
(B.5)

d2 =
r2,−r

1−n0
2,+

r2,− − r2,+
(B.6)

d3 =
r2,−r

1−n0
2,+ (r1,+z1(−1 + r2,+) + r2,+z2(1− r1,+))

(r2,+ − r2,−) (r1,+z1(−1 + r2,−) + r2,−z2(1− r1,+))
(B.7)

d4 =
r2,+r

−n0+1
2,−

r2,− − r2,+
+ d3 (B.8)
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c′1 =
(−1 + r1,−)r

−n0
1,+ ω

(r1,+ − r1,−)z1
+ c′2 (B.9)

c′2 =
r−n0
1,− (−1 + r1,+)ω (r1,−z1(−1 + r2,−) + r2,−z2(1− r1,−))

(r1,− − r1,+)z1 (r1,+z1(−1 + r2,−) + r2,−z2(1− r1,+))
(B.10)

c′3 =
r−n0
1,− (−1 + r1,+)ω

(r1,+ − r1,−)z1
(B.11)

c′4 =
r−n0
1,− (−1 + r1,+)ω

r1,+z1(1− r2,−) + r2,−z2(−1 + r1,+)
(B.12)

d′1 =
r1,−r

1−n0
1,+

r1,− − r1,+
+ d′2 (B.13)

d′2 =
r1−n0
1,− r1,+ (r1,−z1(−1 + r2,−) + r2,−z2(1− r1,−)))

(r1,+ − r1,−) (r1,+z1(−1 + r2,−) + r2,−z2(1− r1,+))
(B.14)

d′3 =
r1−n0
1,− r1,+

r1,− − r1,+
(B.15)

d′4 =
r1−n0
1,− r1,+z1

r1,+z1(−1 + r2,−) + r2,−z2(1− r1,+)
(B.16)
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Appendix C

Computation of coefficients in
Theorem 4.1

Here we will explicitly compute the coefficients ci(q) and di(q) for the transformed Green’s
function given by equation (4.7). First we get four equations from the continuity of the
component of G(x, x0|q) at x = 0. These equations are,

ic1(q)
(
q + ϵ1(q)

)
= ic2(q)

(
q + ϵ2(q)

)
+ ic3(q)

(
q − ϵ2(q)

)
(C.1)

c1(q)m1 = c2(q)m2 + c3(q)m2 (C.2)

id1(q)
(
q + ϵ1(q)

)
= id2(q)

(
q + ϵ2(q)

)
+ id3(q)

(
q − ϵ2(q)

)
(C.3)

d1(q)m1 = d2(q)m2 + d3(q)m2 (C.4)

Next we get two equations for the continuity of G11(x, x0|q) and G22(x, x0|q) at x = x0,

ic2(q)
(
q + ϵ2(q)

)
eϵ2(q)x0 + ic3(q)

(
q − ϵ2(q)

)
e−ϵ2(q)x0 = ic4(q)

(
q − ϵ2(q)

)
e−ϵ2(q)x0 (C.5)

d2(q)m2e
ϵ2(q)x0 + d3(q)m2e

−ϵ2(q)x0 = d4(q)m2e
−ϵ2(q)x0 (C.6)

Lastly, we have two equations that express the discontinuity of G12(x, x0|q) and G21(x, x0|q)
at x = x0,

id4(q)
(
q − ϵ2(q)

)
e−ϵ2(q)x0 − id2(q)

(
q + ϵ2(q)

)
eϵ2(q)x0 − id3(q)

(
q − ϵ2(q)

)
e−ϵ2(q)x0 = i (C.7)

c4(q)m2e
−ϵ2(q)x0 − c2(q)m2e

ϵ2(q)x0 − c3(q)m2e
−ϵ2(q)x0 = i (C.8)
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The eight equations given by (C.1)-(C.8) are a linear system for the coefficients ci(q) and
di(q) for i = 1, 2, 3, 4. Solving this system yields,

c1(q) =
i(ϵ2(q)− q)

m1(ϵ2(q)− q) +m2(ϵ1(q) + q)
e−ϵ2(q)x0 (C.9)

c2(q) =
−i(ϵ2(q)− q)

2ϵ2(q)m2

e−ϵ2(q)x0 (C.10)

c3(q) =
−i(ϵ2(q)− q)

(
m1(ϵ2(q) + q)−m2(ϵ1(q) + q)

)
2ϵ2(q)m2

(
m1(ϵ2(q)− q) +m2(ϵ1(q) + q)

) e−ϵ2(q)x0 (C.11)

c4(q) =
i(ϵ2(q) + q)

2ϵ2(q)m2

eϵ2(q)x0 −
i(ϵ2(q)− q)

(
m1(ϵ2(q) + q)−m2(ϵ1(q) + q)

)
2ϵ2(q)m2

(
m1(ϵ2(q)− q) +m2(ϵ1(q) + q)

) e−ϵ2(q)x0 (C.12)

d1(q) =
−m2

m1(ϵ2(q)− q) +m2(ϵ1(q) + q)
e−ϵ2(q)x0 (C.13)

d2(q) =
−1

2ϵ2(q)
e−ϵ2(q)x0 (C.14)

d3(q) =
−m1(ϵ2(q) + q) +m2(ϵ1(q) + q)

2ϵ2(q)
(
m1(ϵ2(q)− q) +m2(ϵ1(q) + q)

)e−ϵ2(q)x0 (C.15)

d4(q) =
−1

2ϵ2(q)
eϵ2(q)x0 +

−m1(ϵ2(q) + q) +m2(ϵ1(q) + q)

2ϵ2(q)
(
m1(ϵ2(q)− q) +m2(ϵ1(q) + q)

)e−ϵ2(q)x0 (C.16)
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