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Leveraging linkage evidence to identify low-frequency and rare 
variants on 16p13 associated with blood pressure using 
TOPMed whole genome sequencing data

A full list of authors and affiliations appears at the end of the article.

Abstract

In this study, we investigated low frequency and rare variants associated with blood pressure (BP) 

by focusing on a linkage region on chromosome 16p13. We used whole genome sequencing 

(WGS) data obtained through the NHLBI Trans-Omics for Precision Medicine (TOPMed) 

program on 395 Cleveland Family Study (CFS) European Americans (CFS-EA). By analyzing 

functional coding variants and non-coding rare variants with CADD score > 10 residing within the 

chromosomal region in families with linkage evidence, we observed 25 genes with nominal 

statistical evidence (burden or SKAT p < 0.05). One of the genes is RBFOX1, an evolutionarily 

conserved RNA-binding protein that regulates tissue-specific alternative splicing that we 

previously reported to be associated with BP using exome array data in CFS. After follow-up 

analysis of the 25 genes in 10 independent TOPMed studies with individuals of European, 

African, and East Asian ancestry, and Hispanics (N = 29,988), we identified variants in SLX4 (p = 

2.19 × 10−4) to be significantly associated with BP traits when accounting for multiple testing. We 

also replicated the associations previously reported for RBFOX1 (p = 0.007). Follow-up analysis 

with GTEx eQTL data shows SLX4 variants are associated with gene expression in coronary 

artery, multiple brain tissues, and right atrial appendage of the heart. Our study demonstrates that 

linkage analysis of family data can provide an efficient approach for detecting rare variants 

associated with complex traits in WGS data.

Keywords

Linkage analysis; whole genome sequencing; blood pressure; rare variants

*Correspondence: Xiaofeng Zhu, PhD; xxz10@case.edu; Phone: (216) 368-0201. 

Declaration of Interests
The authors declare no competing interests.

Disclaimer
The views expressed in this manuscript are those of the authors and do not necessarily represent the views of the National Heart, Lung, 
and Blood Institute; the National Institutes of Health; or the U.S. Department of Health and Human Services.

Data Availability
The datasets analyzed during the current study are available in the dbGaP repository. Instructions for accessing TOPMed data can be 
found on: https://www.nhlbiwgs.org/topmed-data-access-scientific-community

Online Resource
Online Resource include seven tables, four figures, and a note containing consortium authors and affiliations. Tables are included in 
the Excel spreadsheet. Figures and note are included in the PDF file.

HHS Public Access
Author manuscript
Hum Genet. Author manuscript; available in PMC 2020 February 01.

Published in final edited form as:
Hum Genet. 2019 February ; 138(2): 199–210. doi:10.1007/s00439-019-01975-0.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

https://www.nhlbiwgs.org/topmed-data-access-scientific-community


Introduction

Blood pressure (BP) is a complex trait that has been widely studied in genome-wide 

association studies (GWAS) (International Consortium for Blood Pressure Genome-Wide 

Association et al. 2011; Levy et al. 2009; Liang et al. 2018; Sung et al. 2018; Warren et al. 

2017; Zhu and Cooper 2007; Zhu et al. 2015; Zhu et al. 2005; Zhu et al. 2011). High blood 

pressure or hypertension is a major modifiable risk factor for cardiovascular disease and an 

important risk factor for stroke and kidney disease. Family and twin studies suggest 30–50% 

of the variation in BP is attributable to genetic heritability (Cooper et al. 2002; Kupper et al. 

2005; Miall and Oldham 1963; van Rijn et al. 2007). To date, over 900 loci have been 

identified to be associated with BP, accounting for nearly 6% of the heritability of this trait 

(Evangelou et al. 2018; Hoffmann et al. 2017; Liu et al. 2016a). However, rare variants are 

not well examined by GWAS due to their poor tagging by common variants. When multiple 

rare variants contribute to inter-individual trait variation, these rare variants can be enriched 

through ascertainment of families (Jun et al. 2018; Zhu et al. 2010). Correspondingly, 

linkage analysis of family data is a valid and promising approach for detecting genetic 

signals because it is insensitive to allelic heterogeneity and facilitates the discovery of 

missing heritability due to rare variants (Ott et al. 2015). Using this approach, we identified 

multiple low frequency and rare variants in several genes on chromosome 16 contributing to 

BP variation using exome array data (He et al. 2017), further demonstrating that family-

based study designs are valuable for identifying rare variants.

We reexamined a previously identified BP linkage region on chromosome 16 using whole 

genome sequencing (WGS) data from the National Heart, Lung, and Blood Institute’s 

(NHLBI) Trans-Omics for Precision Medicine (TOPMed) program. The 16p13 linkage 

region was initially identified in European Americans from the Cleveland Family Study 

(CFS), which included 517 individuals in 130 families, genotyped with the Illumina 

OmniExpress Exome array (focused on protein-coding regions of the genome) (He et al. 

2017). We utilized a two-stage approach in this study (Fig. 1): stage I is the discovery of 

single variants as well as signals from gene-based tests in the discovery cohort and stage II is 

the independent external replication. Here, we report association analysis in 30,383 

individuals aged 18–91 years at collection, with deep coverage WGS and harmonized BP 

measurements.

Material and Methods

Study Population

The TOPMed program is sponsored by the NHLBI and generates data from multiple omics 

platforms aimed to improve our understanding of the underlying biological mechanisms for 

heart, lung, blood, and sleep disorders. TOPMed generated WGS data on all contributed 

samples with a target of 30x coverage on average. WGS provides a comprehensive view of 

the human genome; thus, these data offer an unprecedented resource to study the genetic 

architecture of many heart, lung, blood, and sleep disorders. We used the CFS European 

American samples (CFS-EA; N = 395; 116 families) for discovery analysis in stage I. All of 

these families were also in the exome array data for the original linkage analysis and 390 

subjects were in both exome array and TOPMed WGS. In stage II, independent replication 
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was performed in 10 TOPMed studies (18 ancestry- and study-specific cohorts). These 10 

studies (N = 29,988) contain European Americans (EA), African Americans (AA), 

individuals of East Asian ancestry as well as Hispanic Americans from the following 

studies: Atherosclerosis Risk in Communities Study from the Venous Thromboembolism 

(VTE) project (ARIC; EA and AA), Cleveland Family Study African Americans (CFS; AA), 

Framingham Heart Study (FHS; EA), Genetic Epidemiology Network of Salt Sensitivity 

(GenSalt; East Asian), Genetics of Cardiometabolic Health in the Amish (Amish; EA), 

Genetic Studies of Atherosclerosis Risk (GeneSTAR; EA and AA), Hypertension Genetic 

Epidemiology Network and Genetic Epidemiology Network of Arteriopathy 

(HyperGEN_GENOA; AA), Jackson Heart Study (JHS; AA), Multi-Ethnic Study of 

Atherosclerosis (MESA; EA, AA, Asian American, and Hispanic), and the Women’s Health 

Initiative (WHI; EA, AA, Asian American, and Hispanic). These studies vary in design: 

ARIC, JHS, and MESA are community-based studies; Amish, CFS, FHS, GeneSTAR, 

GenSalt, and HyperGEN_GENOA are family-based studies; and WHI is a population-based 

cohort study in which a case-control sample was selected for TOPMed. The study was 

approved by the institutional review board (IRB) at Case Western Reserve University. Each 

individual cohort study was approved by the appropriate IRB in the corresponding institute 

and appropriate informed consent was obtained from human subjects for participation in the 

study.

Quality Control

We included only biallelic single nucleotide polymorphisms (SNPs) and insertion-deletion 

polymorphisms (indels) that passed all filters and had a Phred-scaled quality score (QUAL) 

> 127, following the quality control (QC) procedures performed centrally by the TOPMed 

Sequencing Centers, the Informatics Research Center (IRC), and the Data Coordinating 

Center (DCC). Genotypes for all individuals at all sites passing QC have a minimum 10x 

sequencing depth. We included participants from 10 TOPMed studies from the freeze_5b 

release (aligned to GRCh38) and retained only unique subjects that the DCC reported to 

have no currently known identity problems, reflecting the December 1st, 2017 sample 

annotation. We further restricted our analyzed sample to individuals who were at least 18 

years old at time of measurement and excluded principal component (PC) outliers. The PCs 

were calculated by the TOPMed DCC using the PC-AiR method, which makes robust 

population structure inference in the presence of known or cryptic relatedness (Conomos et 

al. 2015). Lastly, we included only individuals whose harmonized blood pressure 

measurements were available for our analysis, resulting in a combined sample size of N = 

30,383.

Phenotype Harmonization

Phenotype data were collectively harmonized by members of the TOPMed Blood Pressure 

Working Group. Inclusion criteria for phenotype harmonization include: 1) resting/sitting 

systolic blood pressure (SBP) and diastolic blood pressure (DBP) recorded as part of a 

research examination, 2) at least 2 BP measurements were made, and 3) availability of 

information on the use of antihypertensive medication. With the exception of CFS that 

utilized data from its last longitudinal examination, when measurements were most 

comprehensive, all other studies reported measurements from their baseline examinations. 
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For studies with 2 BP measurements at the baseline visit, the average of the first and second 

measurement was reported. Studies with 3 or more BP measurements at baseline reported 

the average of the second and third measurement. For each of the 19 ancestry- and study-

specific cohorts analyzed, we used harmonized SBP and DBP values and for those reporting 

current use of antihypertensive medication (32% of study subjects), we added 15 mmHg to 

their SBP and 10 mmHg to their DBP (Law et al. 2009). Pulse pressure (PP) was calculated 

as the difference between the (medication-adjusted) SBP and DBP. Covariates used in the 

analyses were measured at the same visit as the blood pressure measurements.

We calculated regression residuals for medication-adjusted SBP, DBP, and PP after adjusting 

for age, age2, sex, body mass index (BMI), field center (if data within a study were collected 

from multiple centers), case-control status (WHI only; grouped all stroke and VTE cases 

together), and principal components (3 PCs for individuals of European ancestry and 10 PCs 

for individuals of African or East Asian ancestry, or Hispanics). Because the residuals are 

approximately normally distributed, no phenotype transformation was performed on any of 

the studies (Online Resource Figures 1-4). Residuals of these regressions were used as the 

phenotype for association analysis.

Statistical Analyses

Instead of pooling all the data together, we analyzed each of the 19 ancestry- and study-

specific cohorts separately and meta-analyzed the results using Fisher’s method to reduce 

potential bias with study design heterogeneity (Fig. 1). We conducted single SNP and gene-

based associations for all protein-coding genes within the linkage region on 16p13 

(chr16:2737103–16223464) using the software EPACTS (EPACTS: Efficient and 

Parallelizable Association Container Toolbox). A kinship matrix was generated for each of 

the 10 TOPMed studies analyzed using EPACTS (EPACTS: Efficient and Parallelizable 

Association Container Toolbox) and these were incorporated into all of the association 

analyses to adjust for within-study relatedness.

In the stage I discovery analysis, using TOPMed CFS-EA WGS data, we selected for 

variants in protein-coding genes that segregate at least 2 times in at least 1 of the 11 

identified families contributing to the linkage evidence (He et al. 2017). Within the linkage 

region, we first filtered the variants by protein-coding genes and consequently excluded the 

intergenic regions. The gene region is defined by Ensembl Variant Effect Predictor (Ensembl 

Variation - Calculated variant consequences) as a part of the functional annotations curated 

by WGSA (Liu et al. 2016b), which is provided by the TOPMed DCC. These variants are 

hereafter referred to as linkage-based selected variants and they were divided into 2 groups 

using WGSA (Liu et al. 2016b) functional annotations for single variant and gene-based 

association tests: a) functional coding variants that result in an amino acid change and b) the 

remaining non-coding variants. The functional coding variants include the following 

classifications: inframe deletions/insertions, exon loss variant (deletion of an exon), 

frameshift variant, initiator codon variant non-canonical start codon, splice acceptor variant, 

splice region variant, start lost variant, stop lost/gained variant, and missense variant. The 

remaining non-coding variants include any classifications that are not listed previously 

except for intergenic variants; however, this subset of variants also includes synonymous 
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variants, which although coding, do not lead to amino acid changes. The majority of the 

non-coding variants are intronic variants.

Single variant association tests for SNPs and indels were performed for all linkage-based 

selected variants in the linkage region using the Efficient Mixed-Model Association 

eXpedited (EMMAX) test for quantitative traits (Kang et al. 2010). Gene-based tests for 

SNPs and indels were performed using the variable-threshold burden test (burdenVT) (Price 

et al. 2010), combined multivariate and collapsing burden test (burdenCMC) (Li and Leal 

2008), and mixed-model sequence kernel association test (SKAT) (Wu et al. 2011). We 

incorporated linkage-based selected functional coding variants with any MAF and non-

coding rare variants (MAF < 1%). Although the focus of our study is on rare and low 

frequency variants, we included common functional coding variants in the analysis as they 

may have important biological implications. We imposed an additional filter for non-coding 

variants using the CADD Phred-like score (Liu et al. 2016b). We used a threshold of CADD 

Phred-like score > 10 to retain the top 10% most deleterious variants for analysis. In the 

stage II replication analysis, we replicated variants across studies using the same set of 

variants identified from CFS-EA, regardless of their availability or study-specific MAF in 

the independent replication studies. For the gene-based tests, meta-analyses of 6 EA 

replication cohorts and 18 multi-ancestry replication cohorts were calculated using Fisher’s 

combined P-value method. Initially, we analyzed functional coding and rare non-coding 

variants separately under the assumption that the functional coding variants are more likely 

to have a unidirectional effect, whereas non-coding variants are likely to have bi-directional 

effects on the BP traits. However, to minimize potentially issues with multiple comparisons, 

in the stage II independent replication analysis, we further combined functional coding and 

non-coding variants for gene-based analysis and the final reported genes were based on this 

analysis. The significance level for stage II p-values was determined by two independent 

traits for SBP, DBP, and PP, 25 unique genes tested for the analysis, and three gene-based 

tests, resulting in a conservative threshold (p = 3.3 × 10−4). While the genetic correlation 

between SBP and DBP is high (0.93–0.98), the genetic correlation between DBP and PP is 

low (0.05) (van Rijn et al. 2007).

GTEx V6p cis-eQTL gene expression data and covariates were downloaded from the GTEx 

Portal (https://www.gtexportal.org/home/datasets). Imputed genotype data (N = 450) were 

downloaded from dbGaP. From this dataset, we performed gene-based association analysis 

between gene expression and linkage-based selected variants in a corresponding gene in the 

currently available 44 tissues (including 2 cell lines). We used the residual of the gene 

expression level as the phenotype, after adjusting for sex, platform, PCs 1–3, and tissue-

specific latent factors inferred by GTEx using the PEER method (Stegle et al. 2012). The 

analyzed variants were limited to variants replicated across studies, where we aggregated 

linkage-based selected functional coding variants and rare non-coding variants identified 

from CFS-EA. For the imputed genotype data, the rare variant filters imposed by GTEx 

(maf05, maf01) were removed in order to include as many linkage-based selected rare 

variants as possible for this analysis. Imputation info score and Hardy-Weinberg Equilibrium 

filters were kept for QC.
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While some variants in the promoter and non-coding regulatory region can be captured by 

our defined gene units, it’s possible that many functionally important intergenic variants are 

left out by our variant selection criteria and must be supplemented with regulatory 

annotations. Enhancer elements were defined by GeneHancer, a database that integrates 

enhancers reported from the Encyclopedia of DNA Elements (ENCODE), the Ensembl 

regulatory build, and Functional ANnoTation Of the Mammalian genome (FANTOM) 

project, and the VISTA Enhancer Browser (Fishilevich et al. 2017). We only included 

enhancer elements that were denoted as “elite” on GeneCards (http://www.genecards.org/), 

defined as enhancer-gene relations reflecting both a high-likelihood enhancer definition and 

a strong enhancer-gene association. Gene-enhancer associations were generated by 

integrating multiple sources of information, including expression quantitative trait loci 

(eQTLs), enhancer RNA (eRNA) co-expression, transcription factor (TF) co-expression, 

capture Hi-C (CHi-C), and gene target distance. The analysis groups were aggregated by 

gene units and each group consists of linkage-based selected functional coding variants and 

rare non-coding variants within the reported enhancer element. We performed gene-based 

association analysis using our defined variant sets and BP traits for each gene.

Results

Descriptive characteristics are provided for all subjects (Online Resource Table 1). Our 

previous study identified a linkage region on 16p13 with a maximum LOD score of 2.81 (He 

et al. 2017). In children, blood pressure increases with age and the normal blood pressure 

ranges are different from those of adults. Thus, we updated the 2 LOD-score drop region 

after removing individuals under 18 years old (MLOD = 2.54), resulting in a targeted region 

chr16:2737103–16223464.

It is important to verify whether common variants in the linkage region could be driving the 

linkage or association analysis. To the best of our knowledge, only 3 common variants have 

been identified through BP GWAS in the linkage region on 16p13: rs35450617 (g.

6839674T>G), rs12921187 (g.4893018T>G), rs3915425 (g.15818687T>C) (Evangelou et 

al. 2018). These 3 variants reside within RBFOX1, PPL, and MYH11, respectively. We 

performed conditional association analysis in the discovery cohort by including these 3 

variants as covariates. These 3 SNPs (MAFs > 0.27 for all) and were not associated with any 

BP trait in CFS-EA, suggesting that they have minimal effect on the linkage and association 

analyses in this study.

In CFS-EA linkage analysis with exome array data, we observed 11 families with family-

specific LOD score (fsLOD) ≥ 0.1 at the most significant SNP (rs6501060; g.8041950T>C), 

regardless of the inclusion of participants under 18. In CFS-EA TOPMed WGS data, we 

used the same 11 families and selected for variants in protein-coding genes that segregate at 

least twice in at least one of these families. The size of these 11 families ranges from 2 to 11 

individuals, with a total of 72 individuals. Our selection of variants using family information 

resulted in 76 genes with functional coding variants and 131 genes with remaining non-

coding variants. From the CFS-EA discovery cohort, we observed 20 genes containing 

functional coding variants with at least 1 gene-based test p-value < 0.05 (Online Resource 

Table 2) and 8 genes containing non-coding variants (MAF < 1%, CADD > 10) with at least 
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1 gene-based test p-value < 0.05. Three genes overlap between these 2 groups. The linkage-

based selected functional coding and non-coding variants from these 25 unique candidate 

genes (burden or SKAT p < 0.05) in CFS-EA (stage I) were carried forward for stage II 

replication analysis in 10 independent, multi-ancestry TOPMed studies (Online Resource 

Tables 3, 4, and 5).

We initially analyzed functional coding and rare non-coding variants separately in the 

replication gene-based analysis. Our previously identified RBFOX1 gene association 

remains nominally significant (SBP, p = 0.021 for burdenCMC) in the meta-analysis of 6 

European-American cohorts involving functional variants within 20 genes. We observed 3 

additional genes (CLUAP1, TRAP1, and SLX4) with functional coding variants that are 

nominally associated with BP traits (Online Resource Table 3). The association evidence 

became less significant when cohorts of African and East Asian ancestry and Hispanics were 

included (Online Resource Table 3), which is expected given many of these variants are not 

present in those cohorts. For non-coding variants in the 8 genes carried forward for 

independent replication, we observed 4 unique genes (MYH11, MTRNR2L4, RBFOX1, and 

SLX4) that were nominally significant in the meta-analysis of 6 EA cohorts (Online 

Resource Table 4), but none of the four genes pass multiple testing. Again, adding cohorts 

other than European Americans weakened the association evidence for the same reason as 

before.

Next, we aggregated linkage-based selected functional coding variants and non-coding 

variants in all 25 unique genes carried forward for replication (Online Resource Table 5). In 

particular, we focused on MTRNR2L4, RBFOX1, and SLX4 because they showed the most 

significant association evidence (Table 1). Since there were no linkage-based selected 

functional coding variants in MTRNR2L4, the aggregated gene-based test had the same 

results as the non-coding variant gene-based test for this gene. We observed an improvement 

in the association evidence for both RBFOX1 and SLX4 after aggregating both functional 

coding and non-coding variants for gene-based analysis. In the EA replication cohorts, 

SLX4 variants are significantly associated with PP (p = 2.19 × 10−4 for burdenVT), after 

Bonferroni correction, which accounts for 25 genes, 3 tests, and 2 independent traits for 

SBP, DBP, and PP.

We further explored the tissue-specific gene expression associations using GTEx V6p data 

for the RBFOX1, SLX4, and MTRNR2L4. We investigated the gene expression levels of 

these 3 genes among individuals with imputed genotyping array data. Although we analyzed 

all of the currently available tissues, there are many systems of the human body that affect 

BP so we only presented the association evidence for a few tissues that may be relevant to 

BP, including the brain, heart, and blood vessels (Table 2). For tissue-specific gene-based 

analysis, we analyzed functional coding and non-coding variants replicated across studies 

and tested for gene-based association in all available tissues. Gene expression of RBFOX1 is 

available in 29 tissues. The linkage-based selected variants of RBFOX1 were associated with 

tissues in the nervous system, including the hypothalamus (p = 0.040 for burdenCMC), 

putamen (p = 0.014 for burdenVT), and tibial nerve (p = 4.35 × 10−5 for burdenCMC). 

SLX4 gene expression levels are available in 44 tissues and linkage-based selected variants 

within this gene are associated with several brain and heart tissues, including the cerebellar 
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hemisphere (p = 0.027 for SKAT), hypothalamus (p = 0.033 for SKAT), coronary artery (p = 

0.011 for burdenCMC), and heart atrial appendage (p = 0.028 for burdenCMC). For 

MTRNR2L4, none of the linkage-based selected variants can be found in the imputed 

genotyping array data; thus, there were no eligible variants for analysis.

In order to identify potential regulatory variants that fall outside of the genes of interest (e.g. 

intergenic variants), we used GeneHancer to detect candidate enhancer elements for 

RBFOX1, SLX4, and MTRNR2L4 (Fishilevich et al. 2017). For each gene, we aggregated 

linkage-based selected functional coding variants of the enhancer gene target with available 

non-coding variants (MAF < 5%; CADD > 10) within these enhancer elements. Then we 

conducted group-wise burden and SKAT tests for each gene (Table 3). As expected, most of 

the non-coding variants in enhancer elements were intergenic or intragenic enhancers. For 

these 3 genes, there was no overlap between variants within enhancer elements and linkage-

based selected non-coding variants identified from CFS-EA. Because the GeneHancer data 

are based on multiple tissues, tissue-specific results are unavailable. We focused on the 

meta-analysis for all 7 European-American cohorts (N = 18,420). We found that variants in 

RBFOX1, SLX4, and MTRNR2L4 were associated with all 3 BP traits (p < 0.05), before but 

not after adjusting for multiple comparisons. The association evidence weakens after adding 

cohorts of African and East Asian ancestry and Hispanics (results not shown).

Discussion

This study demonstrates the added power and promise of linkage evidence when 

investigating low frequency and rare variants in complex diseases like hypertension. 

Previously, another study (Roeder et al. 2006) presented a method that uses linkage data to 

weight the association p-values. They implemented an exponential weighting scheme or 

cumulative weighting scheme using LOD scores. The samples used in linkage analysis and 

association analysis are independent. However, the weighting approach by Roeder et al. does 

not work for rare variant analysis within a gene or locus because there is no variation of the 

LOD scores. In our study, we weight the contribution of a rare variant to linkage evidence 

rather than directly weighting the LOD scores. Thus, our approach can be applied to rare 

variant analysis in a gene or locus.

Overall, our association evidence is stronger in European ancestry cohorts compared to 

African and East Asian ancestry cohorts and Hispanics. This finding is not surprising given 

rare variants were initially identified from European-American families, increasing the 

probability that linkage-based selected variants will be monomorphic or extremely rare in 

other ancestries or ethnicity. The majority of our study subjects are of European ancestry 

(61%). We were able to verify the association between RBFOX1 and BP traits as well as 

identify a novel gene SLX4.

For RBFOX1, SLX4, and MTRNR2L4, we looked at characteristics of CFS-EA subjects and 

families who carried the linkage-based selected variants used in this study. Our previous 

analysis of RBFOX1 was limited to linkage-based selected functional coding variants in the 

exome array data (He et al. 2017). By using TOPMed WGS data, we were able to further 

investigate the non-coding variants in RBFOX1. Summary characteristics for CFS-EA 
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carriers of linkage-based selected variants are provided (Online Resource Table 6). Using 

family information, we identified two rare (MAF < 5%) and one common functional coding 

variants. The common variant is a splice region variant and the two rare variants are 

missense variants. For both functional coding rare variants of RBFOX1 (rs149974858 

[p.Pro38Ala] and rs145873257 [p.Gly374Ser]), the directions of effect from meta-analysis 

of all 19 cohorts are negative for all 3 BP traits (Online Resource Table 7), consistent with a 

protective effect. All 3 carriers of rs149974858 reside within 1 family and were morbidly 

obese with a median BMI of 62.37. They had a median BP measure (SBP/DBP) of 115/84 

mm Hg and median residuals of −27.05 and −2.38 for SBP and DBP, respectively. Given 

their elevated BMI, the blood pressure of these 3 carriers were lower than expected, which 

deviate from the positive correlation between BMI and BP found in previous studies 

(Droyvold et al. 2005; Dua et al. 2014). Nine carriers of rs145873257 reside in 3 families. 

They were overweight (median BMI 28.35) and had negative median residuals for BP 

(−15.83 and −12.26 for SBP and DBP, respectively). Again, this variant showed a protective 

effect on BP given their high BMI. On the other hand, non-coding variants had bidirectional 

effects with nearly half of the variants having a protective effect and the rest having a 

deleterious effect for all 3 BP traits (Online Resource Table 7). This is consistent with our 

gene-based meta-analysis, which shows a significant association in SKAT for non-coding 

variants (Online Resource Table 4).

In CFS-EA, we identified 10 functional coding variants and 3 non-coding rare variants in 

SLX4 (Online Resource Tables 6 and 9). All 10 functional variants are missense variants and 

only 1 of them is rare (rs140051968; p.Ser1342Gly; MAF = 0.0038). Out of the 9 common 

functional coding variants, 7 variants are in high LD (r2 > 0.9) with each other. However, 

excluding variants in high LD in the gene-based tests barely changes the EA meta-analysis 

association results (functional coding variants only: p = 0.005 for burdenVT in PP; 

functional coding and rare non-coding variants together: p = 2.5 × 10−4 for burdenVT in PP. 

In the single SNP meta-analysis, rs140051968 is presented in 4 EA cohorts and it had a 

positive direction of effect for all 3 BP traits, suggesting a deleterious effect that elevates BP. 

In CFS-EA, 3 subjects within the same family carry rs140051968. They have a median BP 

of 136/80 mmHg with a median BMI of 25, which indicates the carriers have an elevated BP 

without being overweight or obese. For the 3 non-coding variants in SLX4, the carriers are 

obese (median BMI > 30 for carriers of each SNP) and have an elevated BP (median 

SBP/DBP > 146/88 mmHg), which is expected based on published literature (Droyvold et 

al. 2005; Dua et al. 2014). The gene SLX4 plays an important role in DNA double-strand 

break repair (Yamamoto et al. 2011). Based on GTEx gene expression data, it is highly 

expressed in the cerebellum, a region implicated in BP control through the cerebellar 

adrenomedullary system (Figueira and Israel 2018).

We identified 2 non-coding rare variants in MTRNR2L4 (rs146514363 [n.84+2329C>T] and 

rs540895452 [n.84+7135G>A]) from CFS-EA. The SNP rs146514363 (MAF = 0.0038) is 

presented in 3 subjects (2 families) and can be found in 11 out of 16 replication cohorts and 

all 6 EA replication cohorts. There are 3 carriers for rs540895452 (MAF = 0.0038) and all of 

them are in the same family. This variant is only presented in 4 out of 16 replication cohorts, 

all of which are European. Because each gene-based test must have at least 2 variants, gene-

based meta-analysis can only be done in EA cohorts. Similar to rs140051968 in SLX4, 
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carriers of either rs146514363 or rs540895452 have elevated BP (median BP > 132/80) 

without being obese (median BMI < 27). MTRNR2L4 plays a role in neuroprotective and 

anti-apoptotic factor (Bodzioch et al. 2009), but its role in BP regulation remains unclear.

Although our statistical evidence for rare variants in MYH11 is modest, there is biological 

and clinical evidence that MYH11 could impact the risk of cardiovascular disease. MYH11 
encodes the protein myosin-11, which is a component of the myosin heavy chain in smooth 

muscle. Mutations in MYH11 have been reported to cause thoracic aortic aneurysms and/or 

dissections (Takeda et al. 2015; Zhu et al. 2006). High blood pressure and high cholesterol 

are both risk factors for atherosclerosis and consequently may lead to thoracic aortic 

aneurysm.

Our study illustrates some important implications. We observed that rare variants are more 

likely to be ancestry-specific. In the stage II replications, we found that many variants 

identified from the European-American discovery cohort are monomorphic in other 

ancestries. It is possible that different variants within the same genes may be associated with 

BP traits in different ancestral populations. Thus, we did gene-based analyses for 

MTRNR2L4, RBFOX1, and SLX4 in the replication cohorts using variants passing the 

following criteria in each cohort: any functional coding variants and rare non-coding variants 

with cohort-specific MAF < 1% and CADD > 10. All singletons (i.e. allele count = 1 within 

the cohort) have been removed from each cohort prior to gene-based analysis. We used these 

criteria as they are similar to the selection criteria we used previously with CFS-EA for 

association analysis. Based on these results, we noticed an improvement in the association 

evidence between RBFOX1 variants and SBP in the EA (burdenCMC p = 3.7 × 10−4) and 

multi-ethnic (burdenCMC p = 0.004) meta-analysis (Online Resource Table 8). The 

association evidence in EA is driven by FHS (SKAT p = 0.010), GeneSTAR-EA 

(burdenCMC p = 0.001), and WHI-EA (burdenCMC p = 0.007), which account for over half 

of the EA replication samples (12,106 out of 18,025 individuals). FHS and GeneSTAR-EA 

are both family studies, in which rare variants can be enriched. There are a number of coding 

variants identified in these 3 cohorts that are not found in CFS-EA: 18 for FHS, 6 for 

GeneSTAR, and 22 for WHI. Overall, these findings suggest that there are BP-associated 

variants within RBFOX1 that are absent in CFS-EA. This conclusion provides further 

evidence supporting our previous study (He et al. 2017), which states that RBFOX1 variants 

are associated with BP traits in European Americans. In non-European samples, SLX4 
variants are associated with PP (SKAT p = 0.037) in African Americans before but not after 

Bonferroni correction.

When we looked at characteristics of CFS-EA carriers for the analyzed variants, individuals 

who are overweight or obese did not consistently have elevated BP or more severe 

hypertension, which departs from the expected positive correlation between BMI and BP. 

Due to limited information on comorbidities, we were unable to further examine the clinical 

characteristics of these carriers.

There are a few limitations in this study. First, BP measurement method and procedure 

varied among studies. Second, the gene expression data for TOPMed subjects were 

unavailable at the time of the study. Therefore, the gene expression analysis was done using 
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GTEx subjects with a relatively small sample size. Gene expression data for TOPMed 

cohorts may become available in the future and allow us to conduct further analysis on the 

cellular transcriptome. Third, the discovery sample size is very small (N=395 in CFS-EA), 

although the exome array data with the linkage evidence had more complete families with 

additional individuals (N = 517). Carrying out the same study in much larger discovery 

studies may lead to additional discoveries. Lastly, we also had limited data on Hispanics and 

individuals of African and East Asian ancestry.

In summary, we performed association analysis of functional coding and rare non-coding 

variants within the 16p13 region using 30,383 subjects from the TOPMed WGS project. To 

improve power, we utilized linkage findings, enabling the discovery of a novel gene SLX4 
and replication of a previously identified gene RBFOX1 for BP traits. While these variants 

may only explain a small proportion of BP variation at the population level, some variants 

could substantially impact blood pressure in individual carriers and may help identify 

pharmacological targets; thus, potentially making it a promising approach for personalized 

medicine. This study has shown that family information can be used to help discover genes 

and variants that may be missed by GWAS in isolation.
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Fig. 1. Study design for discovery and replication data
Figure was produced in Adobe Illustrator CS6.
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