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 1  

A Quasilinear Model for Solute Transport under Unsaturated Flow 1 

 2 

J.E. Houseworth and J. Leem †  3 

 4 

Abstract 5 

 6 

This paper presents an analytical solution for solute transport under steady-state two-7 

dimensional unsaturated flow and transport conditions developed for the investigation of 8 

high-level radioactive waste disposal. The two-dimensional unsaturated flow problem is 9 

treated using the quasilinear flow method for a system with homogeneous material 10 

properties. Dispersion is modeled as isotropic and is proportional to the effective 11 

hydraulic conductivity. This leads to a quasilinear form for the transport problem in terms 12 

of a scalar potential that is analogous to the Kirchhoff potential for quasilinear flow. The 13 

solutions for both flow and transport scalar potentials take the form of Fourier series. The 14 

particular solution given here is for two sources of flow, with one source containing a 15 

dissolved solute. However, the solution method may easily be extended for any 16 

combination of flow and solute sources under steady-state conditions. The analytical 17 

results to multi-dimensional solute transport problems, which previously could only be 18 

solved numerically, also offer an additional way to benchmark numerical solutions. 19 

 20 

Introduction 21 

 22 
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J. Leem, Expat - Baku, Azerbaijan, P.O. Box 4381, Houston, TX 77210 



 2  

General analytical solutions for problems of transport during unsaturated flow in porous 1 

media are not possible because of the nonlinear relationships between water saturation, 2 

water pressure, and relative permeability. These non-linear relationships result in 3 

complex flow phenomena that cannot, in general, be evaluated by analytical methods for 4 

use in transport problems. Despite the severe restrictions for analytical methods, the 5 

special cases where analytical solutions are possible provide information concerning the 6 

behavior of the theoretical model without the uncertainties introduced by numerical 7 

approximations. For the same reason, analytical solutions are valuable for checking 8 

numerical solutions.  9 

 10 

Various approximations that lead to linearized forms of the governing equations for 11 

unsaturated flow have been developed that are amenable to analytical solutions. 12 

However, only some of these cases have been extended to develop analytical results for 13 

transport problems. Most of the current available analytical methods for solute transport 14 

are restricted to steady or transient one-dimensional problems (e.g., Barry et al., 1991; 15 

Toride at al., 1993; Lessoff and Indelman, 2004; Vanderborght et al., 2005; Fityus et al., 16 

1999). Two-dimensional solute transport under radial flow conditions was analyzed using 17 

analytical methods by Broadbridge et al. (2002).  18 

 19 

The quasilinear form of the steady-state unsaturated flow problem has been used to 20 

investigate a variety of one-dimensional and multi-dimensional unsaturated flow 21 

problems through analytical methods (Pullan, 1990; Philip et al., 1989; Tartakovsky et al. 22 

1999; Raats 1974, Raats et al. 1977a; Raats et al. 1977b). In particular, flow for a single 23 
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strip source is presented in Warrick (2003). This form is developed using the Kirchhoff 1 

transformation and Gardner (1958) relationship between relative permeability and 2 

capillary pressure under steady-state flow conditions. Transient problems may also be 3 

investigated analytically assuming constant soil-water diffusivity. However, 4 

corresponding solutions for solute transport under multi-dimensional flow conditions are 5 

not available in the literature. Convective transport for unsaturated flow without 6 

dispersion is investigated by Raats (1974) and Raats et al. (1977a, b). Advective-7 

dispersive transport solutions for homogeneous, unidirectional flow in one, two and three 8 

dimension are presented in Warrick (2003). The method developed here allows for the 9 

solution of two-dimensional, unsaturated flow and transport for steady-state flow and 10 

transport conditions. This method requires a particular form for the dispersion coefficient, 11 

homogeneous material properties, and simple domain boundaries. However, the method 12 

can accommodate any number of sources with different flow and solute concentration 13 

conditions. The solution method may be easily extended to three dimensions and, under 14 

more restrictive conditions, may be applied to steady-state flow with transient transport 15 

boundary conditions. The usefulness of the analytical solutions is also demonstrated by 16 

applying them to a specific example. 17 

 18 

Mathematical Formulation 19 

 20 

Flow Problem 21 

 22 

The flow problem is developed for two sources are located along the upper boundary as 23 

shown in Figure 1. Source 1 enters the two-dimensional porous medium  at a position 1x  24 
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with a flux, 1sq . Source 2 enters at a position 2x  with a flux 2sq . The remainder of the top 1 

boundary is a no-flow boundary. Both side boundaries are no-flow boundaries. The 2 

bottom boundary is a free-drainage boundary, which means that the water pressure 3 

gradients are zero along the bottom boundary. 4 

 5 

The flow is governed by Darcy’s law for unsaturated flow, 6 

 7 

( ) ( )κψψψ
rr KKq +∇−=         (1) 8 

 9 

where qr  is the flux, ( )ψK  is the effective hydraulic conductivity to water, ψ  is the 10 

moisture potential, and κr  is the unit vector in the vertical direction. Mass conservation 11 

for steady, incompressible flow is, 12 

 13 

∇ • 0=qr           (2) 14 

 15 

Therefore, 16 

 17 

∇ •
z
KK
∂
∂

=∇ψ          (3) 18 

 19 

The boundary condition for the top boundary specifies the flux entering the domain from 20 

the two sources,  21 

 22 
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( ) ( ) ( ) ( ) ( ) ( )222211110,0, xxHxxxHqxxHxxxHqxKx
z

K ssss −−++−−+=+
∂
∂

−
ψ   (4) 1 

 2 

where ( )xH  is the step function ( ) 1=xH  for 0>x , ( ) 0=xH  for 0<x , and ( ) .2/10 =H  3 

The boundary condition on the bottom boundary is a “free gravity drainage” condition in 4 

which flow exits the bottom boundary by pure gravity-driven flow, i.e., the vertical water 5 

pressure gradient along the bottom boundary is zero, 6 

 7 

( ) 0, =
∂
∂

mzx
z
ψ           (5) 8 

 9 

Because flow in the x-direction requires a water pressure gradient, no flow conditions 10 

along each side boundary is obtained by setting the horizontal water pressure gradients 11 

along these boundaries to zero, 12 

 13 

( ) 0,0 =
∂
∂ z

x
ψ           (6) 14 

 15 

( ) 0, =
∂
∂ zx

x m
ψ           (7) 16 

 17 

Introduce the Kirchhoff potential (Philip et al. 1989) 18 

( ) ( ) ϑϑψ
ψ

dK∫
∞−

=Φ          (8) 19 

 20 
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Using Equation (8) in Equation (3) gives, 1 

 2 

z
K
∂
∂

=Φ∇ 2           (9) 3 

 4 

The constitutive relationship used for the effective permeability is the Gardner 5 

relationship (Gardner 1958), 6 

 7 

( ) ( ){ }00 exp ψψαψ −= KK         (10) 8 

 9 

where α  is the capillary strength of the material. Let  10 

 11 

α
2

=sl           (11) 12 

 13 

be the sorptive length scale. 14 

 15 

Using Equations (10) and (11) in Equation (8) gives, 16 

 17 

Ks

2
l

=Φ           (12) 18 

 19 

Therefore, Equation (9) becomes, 20 

 21 
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zs ∂
Φ∂

=Φ∇
l

22           (13) 1 

 2 

Introduce the dimensional coordinates, 
s

z
l

=ξ , 
s

x
l

=η , and 
ss

d q l1

Φ
=Φ  to give, 3 

ξ∂
Φ∂

=Φ∇ d
dd 22          (14) 4 

 5 

where ∇≡∇ sd l . Introduce the change of variables, 6 

 7 

( )ξχ exp=Φd          (15) 8 

 9 

to give, 10 

 11 

χχ =∇2
d           (16) 12 

 13 

Using Equations (1), (8), (12), and (15), the dimensionless flux vector may be expressed 14 

in terms of the dimensionless Kirchhoff potential or the transformed potential function, 15 

( )ξχ exp , to be, 16 

 17 

( )( )χκχξκ dddddq ∇−=Φ∇−Φ=
rrr exp2       (17) 18 

where 
1s

d q
qq
r

r
= . 19 
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Let the dimensionless boundary coordinates be 
s

mz
l

=ω ,
s

mx
l

=σ . The boundary 1 

conditions become, 2 

 3 

( ) ( ) ( ) ( ) ( ) ( )22221110,0, ηηηηηηηηηηη
ξ
χηχ −−++−−+=
∂
∂

− HHqHH sdss  (18) 4 

 5 

( ) ( ) 0,, =+
∂
∂ ωηχωη
ξ
χ          (19) 6 

 7 

( ) 0,0 =
∂
∂ ξ
η
χ           (20) 8 

 9 

( ) 0, =
∂
∂ ξσ
η
χ           (21) 10 

 11 

Transport Problem 12 

 13 

The transport problem is developed for the same two sources located along the upper 14 

boundary as shown in Figure 1. However, only Source 1 carries solute.  The steady-state  15 

flow from the source has a Darcy velocity, 1sq and a solute concentration of 1sC . The 16 

steady-state flow from the other source has a Darcy velocity, 2sq , and radionuclide 17 

concentration, 02 =sC . The remainder of the top boundary is a no-flux boundary. Both 18 

side boundaries are no-flux boundaries. The bottom boundary is a no diffusive flux 19 

boundary (advection only), which means that the solute concentration gradients in the z-20 



 9  

direction are zero along the bottom boundary. Given these boundary conditions, transport 1 

in the two-dimensional porous medium is governed by a balance of advective and 2 

dispersive fluxes (mass conservation), 3 

 4 

qr • =∇C ∇ • ( )CD∇θ         (22) 5 

 6 

where θ  is the water content and D  is the dispersion coefficient. 7 

 8 

The top boundary conditions specify the radionuclide mass flux entering the domain, 9 

 10 

( ) ( ) ( ) ( ) ( ) ( ) ( )1111
0,0,0,0,0, xxHxxxHM

z
xCxDxxCxq ss −−+=
∂

∂
− &θ    (23) 11 

 12 

where ( )xH  is the step function ( ) 1=xH  for 0>x , ( ) 0=xH  for 0<x , and ( ) .2/10 =H  13 

The radionuclide mass flux from Source 1 is 111 sss CqM =& . The bottom boundary 14 

condition specifies that solute mass exits the domain through advective transport only, 15 

i.e., the dispersive flux in the z-direction along the bottom boundary is zero. Therefore, 16 

the vertical concentration gradient along the bottom boundary is set to zero. 17 

 18 

( ) 0, =
∂
∂

mzx
z
C           (24) 19 

 20 

Radionuclide mass flux in the x-direction along the side boundaries is specified to be 21 

zero. This is accomplished by setting the concentration gradients in the x-direction along 22 



 10  

these boundaries to zero, i.e., zero dispersive flux in the x-direction along these 1 

boundaries. Note that the advective flux is also zero because the flow analysis specifies 2 

zero flow across these boundaries (see boundary conditions in Equations (6) and (7)). 3 

 4 

( ) 0,0 =
∂
∂ z

x
C           (25) 5 

 6 

( ) 0, =
∂
∂ zx

x
C

m           (26) 7 

 8 

The Darcy water flux, qr , is defined by the flow solution. To proceed, the dispersion 9 

coefficient needs to be specified. In its most general form, the dispersion coefficient is an 10 

anisotropic tensor (Bear 1972). For unsaturated flow, the dispersivities are also found to 11 

be functions of water saturation (Toride at al. 2003). Only a limited amount of 12 

experimental data is available for dispersion in unsaturated flow, and little is known 13 

about dispersion for two or three-dimensional flow conditions. Given these uncertainties, 14 

the dispersion tensor will be simplified to be a scalar function of water saturation. The 15 

following simplification allows for analytical treatment of transport, 16 

 17 

( )ψθ Φ=D           (27) 18 

 19 

where Φ  is the Kirchhoff potential. This form for the dispersion coefficient is shown to 20 

be consistent with experimental data later in this paper. It should be pointed out, 21 

however, that the representation of dispersion given in Equations (27) is not expected to 22 
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be accurate for conditions where molecular diffusion is important relative to 1 

hydrodynamic dispersion. 2 

 3 

Using Equation (27), Equation (22) becomes, 4 

 5 

qr • =∇C ∇ • ( )C∇Φ          (28) 6 

 7 

Putting Equation (28) into nondimensional form gives, 8 

 9 

dqr • =∇ dd C d∇ • ( )ddd C∇Φ         (29) 10 

 11 

where 
1

1

s

s
d M

Cq
C

&
= . 12 

 13 

Equation (29) may also be expressed as, 14 

 15 

d∇ • ( ) =dd Cqr d∇ • ( )ddd C∇Φ        (30) 16 

 17 

because of the mass conservation for steady, incompressible flow, d∇ • 0=dqr .  18 

 19 

Substituting for dqr from Equation (17) into Equation (30) gives, 20 

 21 
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( ) ( )
ξ∂

Φ∂
=Φ∇ dd

ddd
CC 22         (31) 1 

 2 

Therefore, the transport problem is now expressed in terms of the dimensionless scalar 3 

potential, 4 

 5 

ddCΦ≡Ω           (32) 6 

 7 

Equation (31) becomes, 8 

 9 

ξ∂
Ω∂

=Ω∇ 22
d           (33) 10 

 11 

Using the transformation 12 

 13 

( )ξexpΘ=Ω           (34) 14 

 15 

Equation (34) transforms to the modified Helmholtz equation, 16 

 17 

Θ=Θ∇2
d           (35) 18 

 19 

and boundary conditions (23) through (26) become, 20 

 21 
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( ) ( ) ( ) ( )1110,0, ηηηηηη
ξ

η −−+=
∂
Θ∂

−Θ HH s        (36) 1 

 2 

( ) ( ) 0,, =Θ+
∂
Θ∂ ωηωη
ξ

         (37) 3 

 4 

( ) 0,0 =
∂
Θ∂ ξ
η

          (38) 5 

 6 

( ) 0, =
∂
Θ∂ ξσ
η

          (39) 7 

 8 

Mathematical Solutions 9 

 10 

Flow Problem 11 

 12 

Equations (16) with boundary conditions (18) through (21) may be solved by the method 13 

of separation of variables (e.g., Weinberger 1965). The solution is given by, 14 

 15 

( ) ( )[ ] ( ) ( )[ ] ( ){ }[ ]
( )( ) ( )

( ){ } ( ){ }
( ) ( ) ( )ωω

ξωξω

ηλ
σλ

ηληηληληηλξηχ

llll

lll

l
l

l

llll

l

Λ+Λ+ΛΛ
−Λ+−ΛΛ

•

−+
−++−+

=∑
∞

=

sinh1cosh2
sinhcosh

cos
21

sinsinsinsin2,

2

0

2222111

H
q sdss

 (40) 16 

 17 

where 
σ
πλ l

l =  and 21 ll λ+=Λ . The flux field is computed using equation (17) to give, 18 
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 1 

( ) ( )[ ] ( ){ } ( )[ ] ( ){ }[ ]
( )( ) ( )

( )( ) ( ) ( ){ }
( ) ( ) { }ω

ξωξ

ηλ
σλ

ηληηληληηλξξ

lll

lll
l

l
l

l

llll

l

Λ−−Λ−+Λ
−Λ−−Λ−+Λ

Λ−•

−+
−++−+

= ∑
∞

=

2exp11
2exp11exp

cos
21

sinsinsinsin2exp

22

22

0

2222111

H
qq sdss

d

 2 

(41) 3 

 4 

( ) ( )[ ] ( ){ } ( )[ ] ( ){ }[ ]
( )( ) ( )

( ) ( ) ( ) ( ){ }
( ) ( ) { }ω

ξωξ

ηλ
σ

ηληηληληηλξη

lll

lll
l

l
l

llll

l

Λ−−Λ−+Λ
−Λ−−Λ++Λ

Λ−•

−+
−++−+

= ∑
∞

=

2exp11
2exp11exp

sin
21

sinsinsinsin2exp

22

0

2222111

H
qq sdss

d

 5 

(42) 6 

 7 

Transport Problem 8 

 9 

The problem given in Equations (36) through (40) is the same as for the dimensionless 10 

flow potential with 02 =sq  (Equation (16) and boundary conditions (18) through (21)). 11 

Therefore, the solution for the scaled dimensionless transport potential may be obtained 12 

directly from Equation (41) to give, 13 

 14 

( ) ( ){ } ( )[ ]
( )( ) ( )

( ) ( ) ( ) ( ){ }
( ) ( ) ( )ω

ξωξ

ηλ
σλ

ηληηλξη

lll

lll
l

l

l

ll

l l

Λ−−Λ−+Λ
−Λ−−Λ++Λ

Λ−•

−+
−+

=Θ ∑
∞

=

2exp11
2exp11exp

cos
21

sinsin2,

22

111

0 H
s

   (43) 15 

 16 

Furthermore, the solute concentration is given by, 17 
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 1 

( ) ( )
( )ξηχ

ξηξη
,
,, Θ

=dC          (44) 2 

 3 

Relationship between the Kirchhoff Potential and Dispersion Coefficient 4 

 5 

The transformation of the transport equation into a form expressed in terms of a scalar 6 

potential (Equations (35) and (37)) requires that the dispersion coefficient times the water 7 

content equals the Kirchhoff potential, as given in Equation (27). Longitudinal dispersion 8 

in unsaturated flow systems has been measured under conditions of uniform, one-9 

dimensional, unsaturated flow (Toride et al. 2003). Hydraulic parameters for the granular 10 

media were based on the measured moisture potential as a function of water content fit 11 

with the van Genuchten (1980) parameterization. Table 1 gives the hydraulic parameters 12 

were determined for the test system: 13 

 14 

Table 1.Hydrologic Parameters from Toride et al (2003) 15 

parameter value

maximum water content 0.35

residual water content 0.05

van Genuchten m 0.808

van Genuchten vGα  5 m-1

saturated hydraulic conductivity 6.36×10-5 m/s

 16 
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The mathematical model used for hydraulic conductivity as a function of moisture 1 

potential is the Gardner relationship, as given in Equation (10). Therefore, the data 2 

provided by Toride et al. (2003) were used to parameterize the Gardner relationship. 3 

Hydraulic conductivity was computed as a function of moisture potential using the van 4 

Genuchten model and the parameters in Table 1. The values are computed at the 5 

saturation levels measured in the unsaturated flow and transport experiments conducted 6 

by Toride et al. (2003). These values are shown as points on the log-linear plot given in 7 

Figure 2. The Gardner model plots as a straight line on a log-linear scale, therefore, the 8 

slope of the straight-line fit to the points gives the value of the Gardner capillary strength 9 

parameter, α .  The value of the Gardner capillary strength parameter is found to be 10 

37.4 m-1, which may also be expressed as the sorptive length scale, α/2=sl  = 0.0535 m. 11 

  12 

The Kirchhoff potential is given by Equation (12), which is dimensionally equivalent to a 13 

diffusion or dispersion coefficient. A comparison of the magnitude of the Kirchhoff 14 

potential computed from Equation (12), versus the experimentally determined 15 

longitudinal dispersion multiplied times the water content from Toride et al. (2003) is 16 

given in Figure 3. This figure shows that the Kirchhoff potential provides a reasonable 17 

estimate for the longitudinal dispersion as a function of hydrologic conditions. Because 18 

transverse dispersion is generally smaller than longitudinal dispersion under saturated 19 

flow conditions (Bear, 1972), the same may be expected for unsaturated systems. If so, 20 

the use of the Kirchhoff potential as an isotropic dispersion coefficient likely 21 

overestimates lateral dispersion. Also, note that data for dispersion under more complex 22 

unsaturated flow patterns are not available and remain uncertain. 23 
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 1 

Specific Example for Flow and Transport in a Granular Invert 2 

 3 

The example presented here was developed for investigations of geologic disposal of 4 

high-level radioactive waste. The radioactive waste is contained in a waste package that 5 

is a cylindrical vessel approximately 2 m in diameter and 5 m long. The waste package is 6 

located in a roughly horizontal, underground drift having a circular cross section. The 7 

base of the drift is filled with granular crushed rock called the invert. The waste package 8 

is placed in the drift with its cylindrical axis parallel to the axis of the drift. If a waste 9 

package is breached, water may enter the waste package and contact, dissolve, and 10 

transport the waste. The water flowing through the waste package enters the invert and 11 

mixes with water flowing adjacent to the waste package. The mathematical model 12 

presented in this paper is for a two-dimensional cross-section oriented orthogonal to the 13 

axes of the waste package and drift to investigate flow and transport behavior in the 14 

invert. The rectangular geometry for the invert shown in Figure 1 is an approximation 15 

used to simplify the model boundary conditions. 16 

 17 

The parameters required for flow and transport calculations are, the depth and width of 18 

the domain, mz  and  mx , respectively, the locations of the two source regions, 1x  and 2x , 19 

the sizes of the two source regions, 1sx  and 2sx , the water fluxes for the two source 20 

regions, 1sq  and  2sq , the capillary strength parameter, α . The solute mass flux for the 21 

source region, 1sM& , is also needed if mass concentrations are required from the transport 22 
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calculation. However, in this analysis only relative concentrations are computed using 1 

Equation (44), so 1sM&  is not needed.  2 

 3 

For the specific case presented here, Source 1 is on the left-hand boundary and Source 2 4 

occupies a more substantial region, 0.59 m, to the right of Source 1. This is a symmetry 5 

model where the left-hand boundary represents the center of the waste emplacement drift. 6 

Source 1, represents flow through the waste package, while water from Source 2, located 7 

to the right of Source 1 represents water that has not contacted the waste. Parameters used 8 

for the calculation are given in Table 2.      9 

 10 

Table 2. Parameters for Invert Flow and Transport Problem 11 

Parameter Symbol  Parameter Value 

1x  0 m 

2x  1 m 

1sx  0.01 m 

2sx  0.59 m 

mx  1.59 m 

mz  0.864 m 

1sq  9,800 mm/yr 

2sq  66 mm/yr 

α   7.22 m-1 

 12 

Results for Invert Flow and Transport Problem 13 
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 1 

The solute source flow into the domain, Source 1, is a narrow 2-cm zone at the left hand 2 

boundary. The solute source water mixes with a second water source, Source 2, which is 3 

distributed uniformly over a larger portion of the domain along the right-hand boundary.  4 

 5 

The streamlines are shown in Figure (4). A uniform flux of 66 mm/year is introduced 6 

through Source 2 along the top of the domain from a horizontal coordinate of 1 m to 1.59 7 

m. The stronger Source 1 flow is seen in Figure (4) to intrude beneath the weaker and 8 

more diffuse Source 2.  9 

 10 

The results of this flow pattern on the relative concentrations are shown in Figure (5). 11 

The separation streamline between the two sources is indicated on the figure, which 12 

would be the limiting boundary for transport of solutes issued from Source 1 under a non-13 

dispersive transport process. A broad mixing zone is found, where the maximum extent 14 

of the 1% mixing zone spans the horizontal dimension of the domain. 15 

 16 

Convergence of the series depends on the parameter values as well as the values of the 17 

flux and concentration. Regions where flux is small may require thousands of terms to 18 

achieve 1% accuracy whereas regions with larger values can achieve even greater 19 

accuracy with less than 100 terms. The infinite series were truncated at 10,000 terms for 20 

the calculations presented here. Problems with numerical accuracy become significant for 21 

calculations of relative concentrations if α is on the order of 100 m-1 or larger. Large 22 

values of α lead to relatively simple, near-vertical flow patterns with low solute 23 

dispersion. The numerical problem for large values of α occurs because of the nature of 24 



 20  

the concentration solution given in Equation (45). For large values of α, large areas of the 1 

invert have very small values of both the transport potential, Θ , and flow potential, χ . 2 

These small potentials are generated from the summation of terms of much greater 3 

magnitude that nearly cancel. This situation leads to a loss in numerical accuracy. For the 4 

flow fields, the lack of accuracy is not critical because as χ  becomes small, so do the 5 

fluxes. Therefore areas where χ  loses accuracy also have nearly zero flux. But for 6 

concentration this is not the case. As both Θ  and χ  become small, the relative 7 

concentration, which is computed as the ratio of these potentials, can be any value 8 

ranging between 0 and 1. The loss in accuracy can affect significant ranges of the relative 9 

concentration, not just values near zero. 10 

 11 

Possible Extension to Three Dimensions and Transient Transport  12 

 13 

Three-dimensional steady-state flow and transport problems are easily treated using the 14 

methods discussed above without any further restrictions than needed for the two-15 

dimensional problem. The solution results in a double summation representing the 16 

Fourier modes for the two transverse directions. 17 

Unsteady transport in a steady-state flow field may be treated using an extension of the 18 

same methodology. In this case, however, an additional restriction is required. The 19 

unsteady term contains the product of the water saturation and the solute concentration. 20 

The effective hydraulic conductivity must be proportional to the water saturation to relate 21 

this term into the scalar potential for transport given in Equation (32). This is analogous 22 

to the approximation of a constant hydraulic diffusivity used for analytical treatment of 23 



 21  

unsteady quasilinear flow problems. With this approximation, a quasilinear, unsteady 1 

transport equation may be derived in terms of the scalar potential for transport. A similar 2 

restriction is required to treat simple decay processes under steady or unsteady transport 3 

conditions. 4 

Conclusions  5 

 6 

An analytical method has been developed for transport under quasilinear flow for a 7 

particular parameterization of the dispersion coefficient. This parameterization has been 8 

shown to be plausible, if not quantitatively exact for a particular problem. Although the 9 

domain geometry required for analytical treatment is restrictive, virtually any 10 

configuration of water and solute source terms may be treated under two-dimensional or 11 

three-dimensional steady flow conditions. The main uses of the solution may be for 12 

testing numerical models and for poorly characterized problems where simplified 13 

parameterization may be appropriate.  14 
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Nomenclature  

  

≡C solute mass concentration 

≡=
1

1

s

s
d M

Cq
C

&
dimensionless concentration  

≡1sC solute mass concentration in source 1 

≡D dispersion coefficient  

( ) ≡xH  step function, ( ) 1=xH  for 0>x , ( ) 0=xH  for 0<x , and ( ) 2/10 =H   

( ) ≡wSK  effective hydraulic conductivity 

≡=
α
2

sl sorptive length scale 

≡= 111 sss CqM& solute mass flux from source 1  

≡qr darcy water flux  

≡=
1s

d q
qq
r

r dimensionless flux  

≡dqη dimensionless flux in horizontal direction  

≡dqξ dimensionless flux in vertical direction  

≡1sq water flux for source 1  

≡2sq water flux for source 2 

≡=
1

2
2

s

s
ds q

qq dimensionless water flux for source 2  

≡wS water saturation  

≡x horizontal coordinate  
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≡1x position of source 1  

≡1sx size of source 1  

≡2x position of source 2  

≡2sx size of source 2  

≡z vertical coordinate  

≡mx horizontal boundary coordinate  

≡mz vertical boundary coordinate  

  

≡α  capillary strength  

σ
πλ l

l =    

21 ll λ+=Λ   

≡=
s

z
l

ξ  dimensionless vertical coordinate  

≡κ
r

unit vector in vertical direction  

≡=
s

x
l

η dimensionless horizontal coordinate  

≡1η dimensionless position of source 1  

≡1sη  dimensionless size of source 1  

≡2η  dimensionless position of source 2 

≡2sη  dimensionless size of source 2  

( ) ≡Φ ψ Kirchhoff potential 

≡
Φ

=Φ
ss

d q l1
dimensionless Kirchhoff potential  
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≡θ water content  

( ) ≡−Ω=Θ ξexp scaled dimensionless transport potential 

( ) ≡wSψ moisture potential  

≡=
s

mx
l

σ  dimensionless horizontal boundary coordinate  

( ) ≡−Φ= ξχ expd scaled dimensionless flow potential  

≡=
s

mz
l

ω dimensionless vertical boundary coordinate  

≡Φ≡Ω dd C dimensionless transport potential   

 

Figure 1. Domain and boundary conditions for flow


Figure 2. Effective Permeability – Moisture Potential Plot for Toride et al. (2003) Experiments.


Figure 3. Comparison of Kirchhoff Potential with Dispersion as a Function of Water Content using Toride et al. (2003)

               Experimental Results.


Figure 4. Streamlines for Invert Transport Problem


Figure 5. Relative Concentration Contours for Invert Transport Problem 
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