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ABSTRACT

Cities are making infrastructure investments to make travel by bicycle safer and more attractive. A
challenge for promoting bicycling is effectively using data to support decision making and ensur-
ing that data represent all communities. However, ecologists have been addressing a similar type
of question for decades and have developed an approach to stratifying landscapes based on eco-
zones or areas with homogenous ecology. Our goal is to classify street and path segments and
map streetscape categories by applying ecological classification methods to diverse spatial data
on the built environment, communities, and bicycling. Piloted in Ottawa, Canada, we use GIS data
on the built environment, socioeconomics and demographics of neighborhoods, and bicycling
infrastructure, behavior, and safety, and apply a k-means clustering algorithm. Each street or path,
an intuitive spatial unit that reflects lived experience in cities, is assigned a streetscape category:
bicycling destination; wealthy neighborhoods; urbanized; lower income neighborhoods; and cen-
tral residential streets. We demonstrate how streetscape categories can be used to prioritize moni-
toring (counts), safety, and infrastructure interventions. With growing availability of continuous
spatial data on urban settings, it is an opportune time to consider how street and path classifica-
tion approaches can help guide our data collection, analysis, and monitoring. While there is no
one right answer to clustering, care must be taken when selecting appropriate input variables, the
number of categories, and the correct spatial unit for output. The approach used here is designed
for bicycling application, yet the methods are applicable to other forms of active transportation
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1. Introduction

To support policies that help achieve sustainability targets
by increasing bicycling, cities need data for planning and
monitoring. Recent technical advances mean that there are
extensive and diverse data available in cities to support plan-
ning, including data about people (e.g., the census), the built
environment (e.g., road networks, and crowdsourced reports
on safety and infrastructure), and bicycling behavior (e.g.
traditional count programs and spatially and temporally
continuous count data from apps) (Nelson et al., 2021a) An
emerging challenge is making practical use multiple dimen-
sions of data to support human decision making in plan-
ning, and it is particularly challenging but important to
ensure that spatial data are collected in a way that represents
all communities (Nelson et al., 2022).

As an example of this challenge, there has been a surge
of interest in building and deploying robust bicycle counting
programs (Brown et al, 2021; Lee & Sener, 2021). With
bicycle count data, policy makers are better able to justify
where and when to make infrastructure investments and can

monitor the impact of pro-bicycling policies (Boss et al,
2018). As well, bicycle counts are important for addressing
safety issues, which is needed to overcome barriers to more
people using bikes (Winters et al., 2011). With ridership
data, safety evaluations can include measures of exposure, or
the number of bicycling trips. Without exposure data, safety
issues tend to be associated with areas of high bicycling
ridership rather than other issues such as poor urban design
(Ferster et al., 2021).

As cities sharpen their focus on designing and deploying
robust bicycle count programs, the question of where to install
bicycle counters has arisen as a practical problem for city plan-
ners (Brum-Bastos et al., 2019). Bicycle counts are frequently
collected by deploying temporary counters, using either tem-
porary equipment (e.g., pneumatic tubes or cameras) or people
to conduct counts, or by using permanent counters to measure
continuously at a single location. Permanent counters provide
data on the number of bicyclists that pass by a location at very
high temporal resolutions (i.e., 15-minute intervals) and can
determine direction of travel. The quality of permanent
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counter data combined with the development of data dash-
boards and visualizations have made having a network of per-
manent counters an ideal approach for robust bicycling
ridership data collection. However, the cost of permanent
counters is not trivial, and transportation planners must opti-
mize the locations of counters to ensure data provide a repre-
sentative overview of bicycling levels and changes throughout a
city. Often permanent counters are in ideal bicycling locations
to demonstrate trips as returns on infrastructure investments;
starting discussions about representation are important to
ensure the equitable sharing of bicycling infrastructure invest-
ments (Agyeman & Doran, 2021). Incorporating data about
people and the built environment in designing count programs
could help to evaluate and improve the representation and effi-
ciency of bicycle count programs. Further, delineating catego-
ries makes it easier to discuss safety (Ferster et al, 2021),
optimize data collection (Brum-Bastos et al., 2019), and to dis-
cuss who has access to high quality bicycling infrastructure
(Boss et al.,, 2018).

The growing availability of spatial data on urban environ-
ments (Nelson et al., 2021a) creates an opportunity to leverage
methods from ecology to stratify landscapes for systematic
sampling, including the systematic siting of bicycle count loca-
tions. Regionalization, or spatial classification, is the grouping
of geographical entities into categories based on similarity of
properties or relationships (Chorley & Haggett, 1967; Johnston,
1968). Regionalization schemes often rely on clustering
approaches. Clustering is a type of unsupervised classification
used to identify natural patterns and structure by partitioning
observations into subsets (or groups) using statistical distance
measures of attributes and is capable of considering multiple
variables simultaneously. Clustering algorithms group observa-
tions so that groups have similar attributes, and observations
in different groups have dissimilar attributes. Clustering is an
important step in exploratory data analysis in many fields
because it can organize unstructured datasets into sensible
groups (Ghosal et al., 2020; Omran et al., 2007).

Regionalization schemes exist at a range of scales including
ecozones and ecoregions that commonly delineate areas with
similar vegetation, soils, elevation, and climate (e.g., Riitters
et al, 2002; Wulder et al., 2008). These regions can be used to
monitor rates of disturbance (e.g., forest harvesting, wildfire,
and land use change) (White et al, 2017), the representation
of parks and protected areas (Andrew et al,, 2014), and inform
regional management strategies (Schultz, 2005). Ecological clas-
sifications can occur at a range of scales and resolutions using
similar methods, from broad ecozones that delineate zones
within nations, to much more detailed classifications within
individual forest stands to delineate wetlands based on topog-
raphy, vegetation, and soils based on high-spatial resolution
aerial photographs (Meidinger & Pojar, 1991). Ecozones have
proven a practical spatial unit for stratifying sampling (Graef
et al, 2005), delineating study areas (Hargrove & Hoffman,
2004), and monitoring change through time (Fitterer et al,
2012; Wulder et al., 2011). In recent years, ecologists have used
spatially continuous satellite data to map ecozones and have
regionalized urban environments to monitor ecology
(Schneider et al., 2010); similar approaches have been used to

reduce uncertainty in the census for minority groups
(Spielman & Folch, 2015).

Data analogous to continuous data used by ecologists to
define ecozones is available in the bicycling realm, from fit-
ness apps, such as Strava, which provide continuous space
time data on observed ridership behavior. Though demo-
graphically biased toward app users, in cities with high app
usage the patterns of Strava bicycling correlate with the spa-
tial patterns for all bicycling ridership (Nelson et al., 2021b).
Furthermore, because data are collected across all space it
can be used as input into clustering algorithms similar to
those used by ecologists to delineate ecozones. Additionally,
Strava can be combined with a growing number of other
bicycling relevant data sets, such as bicycling infrastructure
and built environment data from OpenStreetMap (OSM)
(Ferster et al,, 2020) and crowdsourced data on bicycling
safety (Nelson et al, 2021a), which provide data about
roads, land use, amenities, and safety.

Our goal is to map streetscape categories by applying
ecological classification methods for delineation of ecore-
gions to diverse spatial data on the built environment, com-
munities, and bicycling and highlight how they can be used
for prioritizing bicycling safety and promotion interventions.
We demonstrate an approach to classify street segments, an
intuitive spatial unit that reflect how people experience cit-
ies, using variables that are relevant for current bicycling
research. Streetscape categories are useful for stratifying cit-
ies to identify locations of bicycle counts. As well, street-
scape categories provide a spatial unit that can be used for
monitoring bicycling ridership trends, impacts of policy and
investments, and provide a spatial framework for monitoring
changes in bicycling ridership, infrastructure, and safety.

2, Study area

We used the City of Ottawa, Canada in 2016 as a case study
to demonstrate the approach. The year 2016 is a useful base-
line given it is the date of the census and coincides with an
outreach campaign that the city undertook to increase
Strava use by all bicyclists. Ottawa has a population of
934,243, and in area covers a wide range of land uses from
urban (downtown) to rural areas (in less central locations)
(Statistics Canada, 2016). Approximately 2.6% of workers
commuted by bicycle as their primary mode of travel to
work across the census subdivision (Statistics Canada, 2016).
The region has invested significant financial resources in
bicycle and multi-use infrastructure over the past several
years and currently has over 600 km of bicycle paths
(National Capital Commission, 2017). Infrastructure that we
monitor for change in ridership patterns: are Adawe bike
and pedestrian bridge (opened December 2015), Hickory
bike and pedestrian bridge (opened August 2015),
MacDonald-Cartier pathway (opened December 2015).
Within the City of Ottawa, we selected a study area that fell
within 3km of the Rideau Canal and Trillium Line multi-
use path, encompassing the city center and nearby neighbor-
hoods to demonstrate an approach that can be scaled to
other places and extents.



Table 1. List of variables and their operationalization along with data sources.
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Group Variable

Operationalization

Data Source

bus_dist
commercial_retail_perc

Built Environment

natural_dist
parking_dist

shopping_entertainment_dist

Socioeconomic &Demographic indigenous_perc

income_med

minorities_perc

pop_dens

Bicycling Infrastructure, Behavior, bike_mode_share

Distance (m) to nearest bus stop

% of commercial and retail centers
within a 30 m buffer of a
street segment

Distance to nearest park, natural land
use, or water.

Distance (m) to nearest motor
vehicle parking

Distance (m) to nearest
entertainment and
shopping centers

% of total population that
is indigenous

Median income

% of total population that belong to
visible minority groups

Population density

Bicycle mode share

OpenStreetMap highway = bus_stop
OpenStreetMap landuse =
[commercial, retail]

OpenStreetMap natural = * OR
leisure = park OR waterway = *
OpenStreetMap amenity = parking

OpenStreetMap shop=* OR amenity
= [bar, cinema, cafe,
restaurant, fast_food]

Canadian Census total aboriginal
identity in the population / the
total population

Canadian Census median income of
economic families in 2015

Canadian Census total visible
minority population / the
total population

Canadian Census population density
per square kilometer

Canadian Census main mode of

& Safety travel to work for the working
population aged 15 or older / the
working population aged 15 or
older who commute to work

Can_BICS Bike infrastructure comfort class, no City of Ottawa open data
infrastructure or non-conforming,
low (painted lanes on busy roads),
medium (multi-use paths), or high
(cycle tracks, bike paths, and local
street bikeways).
incident_dist Distance (m) to nearest bike incident BikeMaps.org, Ottawa police dept.
Strava_commute_perc % of activities classified Strava Metro
as commutes.
Strava_trip_count Mean daily Strava trips on a street Strava Metro
segment on summer weekdays
3. Data center. These data were acquired by querying OSM using

To define streetscape categories, we used data on a number
or variables known to impact bicycle ridership (Buehler &
Dill, 2016). We separate these into three categories: 1) built
environment; 2) socioeconomics and demographics; and 3)
bicycling infrastructure, behavior, and safety (Table 1).
Variables are mapped to the spatial unit of the street seg-
ments which, we obtained from OpenStreetMap.org (OSM).
To attribute the variables to the street segments, for points
and polygons representing the built environment we meas-
ured nearest neighbor distance to the street segment (i.e.,
the shortest distance to any point on the street segment).
Line data were directly attributed to each street segment.
For other polygon data, the approach for each variable is
described below.

3.1. Built environment

Individual bicycling behavior is known to be influenced by
land use and the built environment (Cui et al, 2014;
Winters et al., 2010). Built environment variables we used in
this analysis included the distance to the nearest bus stop, a
measure of land use represented as the percentage of com-
mercial centers within 30 m buffer, the distance to the near-
est natural area or park, distance to the nearest parking lot,
and the distance to nearest shopping or entertainment

the R package osmdata (Padgham et al, 2017). These fea-
tures were represented by both points and polygons,
depending on mapping convention on OSM. For many vari-
ables we calculated the nearest distances to minimize the use
of arbitrary thresholds. However, we did calculate an areal
measure of land use, measured as the % of land area used
for commercial and retail land use within a 30 m buffer area
of the road centerline. This buffer distance was a practical
and theoretical value selected to capture most of the build-
ings facing a street without overlap between blocks in the
densest parts of the city. Related to this category, is bicycling
infrastructure, described in the Bicycling Infrastructure,
Behavior, & Safety section below.

3.2. Socioeconomic and demographic

Bicycling ridership is also known to vary based on income
and race (Lubitow et al,, 2019). We are particularly inter-
ested in transportation services for Indigenous communities
and other racial minorities given that such communities are
underserved with respect to active transportation infrastruc-
ture (Lubitow et al., 2019), so using data from the Canadian
Census we calculated the percent of the total population
who are 1) Indigenous; and 2) visible minorities. We used
median household income as an area-level measure of socio-
economic status. We also used population density because it
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Category
=== 1) Bicycling destinations
=== 2) Wealthy neighborhoods
3) Urbanized
=== 4) Lower income neighborhoods

=== 5) Central residential

Figure 1. The Ottawa streetscape categories. Basemap tiles by Stamen Design, under CC BY 3.0. Data by OpenStreetMap, under ODbL.

is strongly related to urban form. To map the census areal
unit to a street segment we calculated the area weighted
mean of the value within dissemination areas within a
200 m buffer (since streets are often the boundaries for dis-
semination areas); for example, if a street was located
equally between two dissemination areas, the mean value of
the two would be assigned. We chose 200m as a comfort-
able walking distance that represents the immediate sur-
roundings of a street segment. We used the R package
cancensus (von Bergmann et al., 2021) to obtain census
data, and the function st_interpolate_aw from the package sf
(Pebesma, 2018) to calculate area weighted means.

3.3. Bicycling infrastructure, behavior, and safety

Using data from multiple sources, we included six variables
on bicycling infrastructure, behavior, and safety. First, we
used the Canada Census journey to work bicycle mode share
using the same methods as the other census variables. To
characterize bicycling infrastructure, we classified 2016
bicycle infrastructure data from the City of Ottawa into
three bicycling comfort classes following the Canadian
Bikeway Comfort and Safety Classification System (Can-
BICS) (Winters et al, 2020). High comfort infrastructure
includes cycle tracks and bike paths that are separated from
other modes. Medium comfort infrastructure includes multi-
use paths that are shared with pedestrians. Low comfort
infrastructure includes painted lanes with no physical

separation from motorized traffic. Shared lanes on major
roads (i.e., sharrows) and painted shoulders were not
included since they do not improve safety compared to no
infrastructure (Teschke et al., 2014, TAC, 2020, Ferenchak &
Marshall, 2016). The Can-BICS variable incorporates the
number of lanes and traffic diversion as an indicator of
motorized vehicle volumes, speeds, and road function suit-
able for all-ages-and-abilities bicycling, similar to the varia-
bles used in more traditional street classifications (e.g.,
number of lanes, speed limit, volume, and functional class)
(Forbes, 1999), but focused on all-ages-and-abil-
ities bicycling.

Real and perceived concerns about bicycling safety are a
primary barrier to people bicycling (Winters et al., 2011).
For safety we used self-reported safety incidents from
BikeMaps.org (Nelson et al, 2015; Laberee et al, 2021;
n=158) and police records of bicycling safety incidents
from Ottawa open data (City of Ottawa 2020; n ="740) for
the years 2015 and 2016, matching the Strava bicycling
behavior data and census data. For each street segment, we
calculated the nearest-neighbor distance to the closest inci-
dent. To summarize safety, post-classification, we counted
the number of incidents within a 15m buffer (intended to
cover a typical roadway width from the centerline) of each
streetscape category and the full study area.

Bicycle behavior, which we consider both the purpose
and frequency of bicycle trips, was represented using Strava
data. Strava is a fitness app that bicyclists use to track rides.
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Table 2. Summary of the geometry, length-weighted means (for continuous variables), and proportions (for categorical variables) for the streetscape category.

Streetscape category

Lower
Bicycling Wealthy income Central Study
Variable type Variables Type (unit) destinations  neighborhoods  Urbanized  neighborhoods  residential Area
Geometry Length kilometers 143 263 87 262 459 1,215
Length % of study area 12 22 7 22 38 100
Built Environment bus_dist meters 183 223 58 91 78 123
comm_retail_perc % 3 0 75 4 5 8
natural_dist meters 17 83 150 112 66 80
parking_dist meters 86 178 21 49 50 80
shop_ent_dist meters 290 566 101 181 152 260
Socioeconomic & indigenous_perc % 2 2 2 4 2 3
Demographics income_med $ 119,029 148,287 103,811 80,637 113,014 113,712
minorities_perc % 20 16 24 31 20 22
pop_dens people / km? 2,538 2,077 4,168 3,868 4,569 3,610
Bicycling Infrastructure, bike_mode_share % 8 8 6 4 9 7
Behavior, & Safety incident_dist meters 309 532 286 626 202 384
Can-BICS low comfort % of category 7.5 13 3.6 2.5 49 3.8
Can-BICS medium comfort % of category 89.5 0 0.5 0 0 10.6
Can-BICS high comfort % of category 3 0 0 0 0 0.4
Strava_commute_perc % 54 44 56 52 57 53
Strava_trip_count count 35 13 16 9 16 16

Data are compiled and shared by Strava Metro to support
active transportation planning. From Strava we used data on
the total number of bicyclists by street segment and the trip
purpose. Trip purpose can be commute or recreation. While
it is possible for Strava users to set the trip purpose, most
often it is not consistently labeled and as such Strava has a
classification algorithm that they use to label commute trips
based on patterns in bicycling. While Strava is used most
commonly by recreational bicyclists, it has been shown to
correlate well with all bicycling, especially in urban areas
correlates (Jestico et al, 2016). In Ottawa, we expect a
higher proportion of commuters than typical in Strava data
due to a marketing campaign led by the city for commuters
to contribute data to Strava in advance of acquiring
the data.

4. Methods

We used the street network provided by Strava Metro (ori-
ginally sourced from OpenStreetMap) and extracted the
attributes to street segments—the length of street, paths, and
trails between two intersections. The street segments had a
mean length 100 m, with a standard deviation of 107 m, and
ranging from 1m to 2km. We created a data matrix com-
bining all attributes listed in Table 1. The ordinal categorical
variable (Can-BICS class: no infrastructure, low, medium,
and high comfort) was represented by integers from 0 to 3
(assuming monotonically increasing steps between the
classes). To compare variables with different units and
scales, we scaled all variables using the R function “scale” to
divide each value by the root mean square of the variable to
produce positive scaled values. We used a correlation matrix
to check for collinearity and found that the Pearson correl-
ation coefficient was less than 0.7 for all variables. K-means
clustering is an unsupervised classification approach that
aims to partition the data so that intra-cluster similarity is
high and the inter-cluster similarity is low. We generated
streetscape categories using the R function “kmeans” with

default parameters. To determine the optimum number of
clusters, we used the elbow method by plotting the within-
cluster sum of squares from k=1 to 20 and selected the
value of k where the rate of change in the within-cluster
sum of squares started to diminish. While methodologically
we are using a clustering algorithm, the way we are concep-
tualizing the application of the clustering algorithm is to
delineate streets into categories representative of bicycling
behavior, and for the remainder of the paper use the term
category synonymous with cluster. We named the street-
scape categories by comparing means and distributions for
the different regions and by viewing street-level imagery.

5. Results

The study area compared 1,215km of street segments and
trails. Based on the evaluation of an elbow plot, the k-means
clustering resulted in classification into five streetscape cate-
gories, or groups of street segments with similar built envir-
onment, socioeconomics and demographics, bicycling
behavior, infrastructure, and safety characteristics (Figure 1).

Streetscape category 1 represents bicycling destinations. It
includes higher-than-average proportions of bicycling infra-
structure - mostly medium-comfort multi-use paths (89.5%)
(Table 2). The bicycling destinations category is closer to
natural features than the other categories, while further than
average to shopping and entertainment, and commercial and
retail, and incomes are higher than average (Figure 2). This
category has the most Strava activities, while incidents per
kilometer or per trip are less than half of category 3 (Figure
3). The bicycling destinations region is often located along
rivers and canals.

Streetscape category 2 represents wealthy neighborhoods.
The high-income category has the lowest access to amenities
such as public transportation, parking, commercial and retail,
and shopping and entertainment. It also has the smallest per-
centage of the total population belonging to visible minority
groups, and the lowest population density of all the regions. It
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Figure 2. Distributions by street segment (n=12,170, 1,215 km) for the variables used to classify streetscape category. Scaled values are shown to compare mul-

tiple units. Note varying x axis.

is nearer than average to natural areas. Compared to the other
categories, it has very few safety incidents per kilometer, The
wealthy neighborhoods region is often located in less central
areas, and often near water bodies.

Streetscape category 3 represents urbanmized. It has the
best access to public transportation, shopping and entertain-
ment, and commercial and retail. It has the highest average
population density, but the distribution was bimodal, with
some streets having very high population densities (where

apartments are located), and some streets having very low
population densities (e.g., where office buildings are
located). It had the highest journey to work by bicycle mode
share. It had slightly lower than average incomes. It has the
second highest Strava activity, and the highest percentage of
Strava commute trips. The urbanized region has the highest
rate of incidents per kilometer. This region is located in cen-
tral locations (i.e., downtown), and in other patches and
corridors across the city.
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Streetscape category 4 represents lower income neighbor-
hoods. This category has better than average access to public
transportation and motor vehicle parking and is mostly
served by low comfort bike infrastructure (painted lanes)
and has better than average access to shopping and enter-
tainment. Compared to the other categories, category 4 had
the lowest median household income, the highest proportion
of Indigenous population and the highest proportion of vis-
ible minority populations, less access to natural areas, and
the lowest bike mode share. While category 4 had lower
average population density, the distribution had a long tail,
meaning that some streets were suburban with single family
houses, while other had apartment blocks and higher popu-
lation density. Category 4 had a low rate of bike incidents,
but it also had very few trips recorded on Strava. Category 4
was located on the periphery of the study area.

Streetscape category 5 represents central residential.
Category 5 was similar to category 4, but with higher
incomes, a lower percentage the population who are
Indigenous, a lower percentage the population belonging to
visible minorities, and higher than average population dens-
ity. Category 5 had a similar number of incidents per kilo-
meter as category 1, but it had fewer Strava trips. Category
5 was in central areas near adjacent to all other clusters.

6. Discussion

Applying ecological theory to urban environments is not
new, yet changes in data and new management questions

makes it beneficial to revisit how regionalization approaches
can support data needs in cities. Ecological theory, including
regionalization, was applied in cities as early as the 1920s by
urban sociologists including the concentric city-zone model,
(i.e., central business district, zone of transition, residential
zone, and commuter zone) using ecology-inspired spatial
methods to find gradients and transitions (Zorbaugh, 1929).
More recently, researchers have mapped categories within
cities using social media posts show mobility and connec-
tions between places (Yin et al.,2017), urban climate zones
(Stewart & Oke, 2012), crime zones (Hayner, 1946), and the
queer city (Bell, 2001). To define bicycling behavior zones,
Brum-Bastos et al. (2019) performed regionalization using
temporal patterns in Strava data to show that regions of
similar bicycling behavior can be mapped across the street
segments of a city. With growing availability of spatial data
and more nuance in questions regarding urban environ-
ments it is timely to consider how regionalization can serve
specific purposes, such as bicycle data collection and
planning.

Groups of streets are a logical and intuitive way to clas-
sify city structure and function that represents the lived
experience and perception of city life, matches new street-
level data, and can be aggregated to areas if desired. A
similar utility is demonstrated by street class used in trans-
portation planning (e.g., terms like arterial, collector, and
local roadways are often used to discuss function, access,
and safety for roadways), however, these types of classifica-
tion often do not consider active travel and they do not
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consider roadway functions outside of car and truck mobil-
ity and travel (Forbes, 1999). In this paper, we map five
streetscape categories by applying a classification to GIS
covariates. GIS covariates included information on: the built
environment, population socioeconomic and demographic
characteristics, and bicycling infrastructure, behavior and
safety in Ottawa. This approach can be scaled up and
applied elsewhere, or applied to other topics (using different
variables). The resulting streetscape categories were labeled
as: bicycling destinations, high-income, urban, peripheral
residential, and central residential street.

Streetscape categories can be used to stratify a city so
that a representative sample of bicycling counts can be
obtained by placing some counting stations on streets in
each category. In the example of Ottawa, where we mapped
five streetscape categories. In Ottawa, all permanent coun-
ters (n=12) are located within the bicycling destinations
category. This classification could be used to start conversa-
tions about spatial representation in Dbicycle counts.
Stratified sampling can help ensure adequate representation
of categories and increase sampling efficiency. A count pro-
gram may deploy temporary counters (e.g., pneumatic tubes,
camera counters, or human counters) within each of the cat-
egories with enough density and duration to sample with
the desired precision depending on the variance within the
zone. Crowdsourced data (such as Strava) are compelling
because they provide continuous spatial coverage across all
the categories, and it could be used to estimate variance
within categories to estimate the sampling effort needed to
reach a desired precision for count estimates (Brum-Bastos
et al., 2019). Within each streetscape category expert know-
ledge and consultation will be required to determine the
exact location. If you have more counters, you may want to
increase counts in streetscape categories with high ridership
or where change is expected due to planned infrastructure
or policy changes. While we pilot this method in Ottawa,
the approach is generalizable to other cities, and the number
of clusters will need to be determined based on the size of
cities, statistical variation in data used to represent city char-
acteristics. The manual steps of choosing variables, defining
the number of categories, and assigning labels provides an
opportunity to consult with people with local knowledge to
think about urban form and function. The streetscape cat-
egory approach can also be useful for creating spatial units
for monitoring bicycle ridership, safety, and infrastructure.
Both the streetscape category labels and the patterns on the
map are intuitive, and they provide a formal way to group
streets with similar urban form and function. The street-
scape categories allow meaningful comparisons within
groups (for lateral comparisons, i.e., “apples-to-apples”) and
between groups (i.e., different types of places). While the
results of this specific study are relevant for bicycle data col-
lection, a valuable contribution of this research is that we
present a framework for urban classification that could be
applied to a variety of transportation applications and are
particularly relevant to active transportation including walk-
ing and electric modes of travel (micromobility).

The street level is the scale at which bicycling occurs
making street level mapping the ideal spatial unit for our
work and supports decision making which often occurs at
the street level in active transportation. Spielman and Folch
(2015) demonstrated that within census blocks in the
American Community Survey (ACS) there is low statistical
power for minority groups with low numbers within indi-
vidual blocks; to address this problem, they used variables
from the ACS that represent the population (age, race, edu-
cation, family structure, and education), environment (sta-
bility, density, and housing), and economy (commuting
practices, occupation, and wealth) to group similar blocks
together to increase counts and statistical power. Similarly,
we benefit from this approach by grouping streets together.
Bicycling safety analyses are typically conducted for intersec-
tions or street segments (Laberee et al., 2021), traffic analysis
zones (Osama & Sayed, 2017), by infrastructure type
(Ferster et al., 2020), injury severity (Fischer et al., 2020), or
using kernel density estimates (Boss et al, 2018).
Classification that is bicycling specific and mapped at the
street level, provide a management tool to better understand
safety, access to amenities, connectivity between different
types of categories, and create units that represent the scale
of the bicycling experience across cities. The categories we
mapped are often spatially contiguous, but there is also
value in highlighting different streets within larger classes
(e.g., an urbanized street within a residential area; or a bicy-
cling destination within an urbanized area).

The streetscape categories we mapped in Ottawa provide
a framework for evaluating bicycling safety and ridership in
the city. The bicycling destinations streetscape category rep-
resented bicycling destinations and has many trips recorded
with few incidents. It primarily provides access to natural
areas (the Laurier cycle track provides access to urban
areas). On average, Ottawa avoids some of the safety con-
cerns in other cities on multi-use paths (Jestico et al., 2017)
because they run adjacent to water ways, reducing motor
vehicle crossings (i.e., the paths cross under roadway
bridges) and feature mode separation from pedestrians in
busy areas (Ferster et al., 2020). The wealthy neighborhoods
category had relatively higher rates of bicycling trips and
mode share and few incidents, so it is an unlikely priority
for bicycling promotion or safety interventions. The urban-
ized category demonstrates that areas with urban form and
function are located throughout the city, not only in the
downtown core. This category had higher rates of trips, and
the highest rate of incidents per kilometer, so providing
infrastructure to safely access amenities in urban areas
across the city may be a priority for safety interventions.
Within the lower income neighborhoods category, there were
few trips and few incidents. Given that there is little bike
infrastructure, the low bike mode share is unsurprising; this
category may be a priority area for interventions that pro-
mote active travel, such as building bicycling infrastructure
to motivate more trips (Winters et al.,, 2011). The central
residential category had a widely ranging distribution of
Strava trips, so safety interventions might be focused where
bicycle travel is greatest. In this category, there were few



trips and few incidents. Given that there is little bike infra-
structure, the low bike mode share is unsurprising.

When applying clustering methods, there is no single
“right” solution. Results will vary depending on the choice
of input variables, which should be determined based on the
intended use of your categories as well as practical con-
straints of available data. If regionalization is being used to
stratify sampling, as in the case of using streetscape catego-
ries for informing bike count locations, it is important to
include variables that you are trying to representatively cap-
ture data on. In the case of bicycling in Ottawa, we wanted
to create streetscape categories that reflected variability in
the racial makeup of communities, with an emphasis on
ensuring visibility for communities with higher proportions
of Indigenous people and other racial minorities. Given that
our regionalization includes race, we can now, for example,
make the decision to prioritize bicycle counts within the
peripheral residential category, which has the highest pro-
portion of Indigenous people and racial minorities.

It is important to consider how input data quality can
impact categorization results. Both official and crowdsourced
data may include errors and may represent some groups
and interests better than others. Census data does not reach
all groups, there are limitations in self-reporting, and there
are limitations in the reach of questions - for example,
bicycle mode share as main mode of commuting does not
capture non-commute trips or occasional trips. There are
errors in attribution and geometry on the OSM street seg-
ments and Strava may capture sport cycling more com-
pletely than utility cycling. These data can be considered a
sample of ridership that has been demonstrated to correlate
with overall ridership measured at permanent counters in
the study area (Boss et al., 2018). Users of this classification
should consider where bicyclists are making trips that are
not counted in the census or Strava, and this is motivation
to collect more count data to perform bias correction for
crowdsourced data.

A massive opportunity in micromobility research are the
new data sets that are becoming available on bicycling and
walking from big data sets like Strava, but also from sources
such as Streetlight (Turner et al, 2020) and Safegraph
(Juhasz & Hochmair, 2020). These data use a variety of
approaches, but at a fundamental level they are all generated
from movement data generated from GPS enabled phones.
The ability to include observed mobility behavior in region-
alization is something that is new (Brum-Bastos et al., 2019)
and has the potential to transform how we understand,
map, and monitor changes in cities. With observed measures
of mobility, we can contextually quantify both the spatial
and temporal variation in movement and begin to character-
ize the dynamic dimensions of urban mobility that have
been challenging to generate data on. However, as we use
these data an issue that needs to be considered is sample
representation. For instance, we know that Strava data are a
sample of ridership generated by app users. However, we
have conducted research that demonstrates Strava can be
used to model all bicycling, when count data are available to
build statistical relationships, because the Strava sample of
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bicycling correlates with all bicycling in urban areas (Jestico
et al., 2016; Nelson et al., 2021b). Similar assessments should
be made of all big spatial data used in mobility analysis and
efforts made to ensure that we transparently assess who is
missing from our samples. While a large proportion of peo-
ple have GPS enabled cell phones, app usage varies and data
generated by phones likely under samples some groups
already experiencing underservice by transportation systems
such as older adults, homeless people, and children.

7. Conclusion

Using regionalization methods common to ecology, it is
possible to design a data driven approach to stratifying
urban environments into streetscape categories. One applica-
tion for streetscape categories in bicycling research and
practice could be to create a stratification of cities that can
improve representativeness of bicycle counts, when count
locations are sited in each category. The variables used as
input to the categorization will impact the final solution.
For instance, if capturing how ridership varies with race or
income is important, race and income variables should be
input when conducting categorization. While we demon-
strate a street categorization approach to siting bicycle count
locations, categorization could be used to design data collec-
tion and monitoring pedestrians and other forms of micro-
mobility, such as electric mobility.
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