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Abstract 

 

 The proliferation of urban sensing, IoT, and big data in cities provides unprecedented opportunities for 

a deeper understanding of occupant behaviour and energy usage patterns at the urban scale. This enables 

data-driven building and energy models to capture the urban dynamics, specifically the intrinsic occupant 

and energy use behavioural profiles that are not usually considered in traditional models. Although there 

are related reviews, none investigated urban data for use in modelling occupant behaviour and energy use 

at multiple scales, from buildings to neighbourhood to city. This survey paper aims to fill this gap by 

providing a critical summary and analysis of the works reported in the literature. We present the different 

sources of occupant-centric urban data that are useful for data-driven modelling and categorise the range 

of applications and recent data-driven modelling techniques for urban behaviour and energy modelling, 

along with the traditional stochastic and simulation-based approaches. Finally, we present a set of 

recommendations for future directions in data-driven modelling of occupant behaviour and energy in 

buildings at the urban scale. 
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1. Introduction 

Cities occupy only two percent of the world’s land, but they account for more than seventy percent of global 

CO2 emissions and two-thirds of the world’s energy [1].Although simulation technologies are usually the 

first choice for modelling energy efficiency in the building, transportation and industrial sectors, human 

behaviours are often overlooked [2]. Understanding how to model human activities at the urban scale is 

crucial to enable efficient and reliable urban infrastructure, resilient to natural disasters and extreme 

weather events. In the past decade, occupant behaviour within a building has been largely studied using 

indoor environmental sensor and energy data [1, 3]. Given the advancements of Internet of Things (IoT) 

and wireless networks, unprecedented growth of occupant-centric urban data,  from various sources 

within urban areas, such as traffic, social media, telecommunication data, and different sensors deployed 

within cities, new opportunities to scale this study up have emerged.  

Existing review papers in the area of urban computing and big data mainly focus on the different data 

mining and machine learning techniques to deal with such data (e.g. [4, 5, 6]). Modelling occupant 

behaviour at the urban-scale and their corresponding energy use have not been the focus. In urban 

computing, for example, the focus is more on fusing multiple data sources [4] and enabling the multi-

task capabilities of the frameworks to harness these types of data simultaneously. Recently, there have 

been efforts to use this data to analyse occupant behaviours in buildings [7] and the corresponding energy 

models thereof at an urban scale [8]. This survey paper aims to fill this gap by presenting a detailed 

overview of the research landscape for occupant behaviour in buildings and cities and how they influence 

energy use. We review the data sources and methods that have been used to model human activities and 

energy use in multiple buildings and at urban scale. 

We seek to gain insights into the following research questions: 

1. What are the important urban-scale human activities and behaviours that influence energy use? 

e.g. mobility, human outdoor comfort? 

2. Which datasets are available and relevant to support and validate those models? 

3. What are the key applications of urban-scale occupant modelling and the corresponding ways 

of modelling that can represent human activities and behaviours at various levels of detail at the 

urban scale? 

Therefore, in this paper, we investigate these questions with opportunities and challenges that come with 

occupant centric urban data. 

1.1. Definition of Occupant-Centric Urban Data 
Occupant-centric urban data can be used to characterise occupant behaviours, encompassing activities 

done indoors and outdoors, which influence energy use in buildings, and at an urban scale. This data is 

typically derived and aggregated from multiple heterogeneous sources from building sensors and IoT, 

mobility data, occupancy and energy data, and surveys. 



 

Kitchin [9] explicitly took the more well-known attributes of big data and associated these with cities. 

This is largely because cities have become more instrumented and have now experienced the data deluge, 

useful for more real-time, fine-grained, improved understanding and control of the city infrastructures. 

According to Kitchin [9], urban big data can have one to many of the following attributes: big in scale, 

fast-paced, highly dynamic, high in variety, detailed or fine grained, longitudinal or collected over a long 

period of time, inter-relatable, and scalable.  

To clarify the scope of the paper, we focus on urban data that comes from different sensors deployed 

within cities, and performance and occupant data of multiple buildings in a district, neighbourhood or, 

possibly, the entire city. The focus is on the usage of urban data for describing occupant behaviour to 

improve occupant-centric building operations, energy management, building performance simulations, 

or other related tasks. This, therefore, brings a unique contribution to the body of literature. 

Although modelling urban behaviour should ideally also consider transportation, roads, and other 

infrastructures in the built environment, this paper will only cover relevant papers on mobility with 

applications related only to dynamic population estimation [10] for occupant behaviour and energy 

modelling at multiple buildings, neighbourhoods, and city scale. 

 

1.2. Review Methodology 
In order to explore those questions, we have reviewed more than 400 papers from multiple disciplines, 

although only 269 are finally included in the reference list. This multidisciplinary review includes state-

of-the-art approaches in building science, physics, engineering, mathematics, and computer science,in 

particular, data science and machine learning, to solve the problems covered in this paper. 



 

 

Figure 1: Manuscript road map 

 

The review paper aims at pointing out occupant-centric data availability to develop both occupants’ 

behaviour and energy use models referring to the urban scale. In this framework, a multi-disciplinary 

research is conducted focusing on classifying existing datasets related to both the fields of study, i.e. 

occupants’/citizens’ behaviour and building energy usage (review section 3). In particular, the authors 

recognise six main categories as follows: occupancy, mobility, environmental, building-related, urban 

spatial and survey data. The highlighted categories are therefore explored by paying attention on data 

sources which have to be occupant centric. Specific focuses are pointed out in each category section to 

present different existing and developing technologies dedicated to occupant-centric data collection in 

complex urban systems. Therefore, the research survey explores modelling approaches moving from the 

defined datasets distinguishing in between the two macro-areas. Given the outlined research framework, 

we chose papers from Google Scholar with publication year after 1990. 

 



 

Figure 2: From Occupant-Centric Urban Data to Building, Occupant Behaviour, and Energy 

Modelling 

 

This paper is organised as the following. Section 2 provides an overview of the opportunities and 

challenges that comes with occupant-centric urban data. Section 3 introduces sources of occupant-centric 

urban data with a range of examples. Section 4 discusses applications and modelling approaches of urban- 

scale occupant and mobility behaviours. Section 5 provides an overview of applications and modelling 

techniques of urban-scale human-building interactions, environmental comfort, and energy use. An 

overarching outlook with discussions, perspective and future directions is given in section 6. Finally, 

Section 7 concludes the paper. Figure 1 shows the structure of the whole manuscript, and it can be used 

as a content navigator. 

 

2. Opportunities and Challenges 

The widespread adoption of sensing technologies, in smartphones, home devices, and high-speed wireless 

connectivity, as well as the high availability of The Internet of Things and open data from government 

and other organizations provide an untapped source of rich knowledge of the city. This brings an 

unprecedented opportunity to sense and model occupant behaviour and energy usage patterns of 

buildings at a neighbourhood, regional, or an urban scale.  

Prior to this ubiquitous computing era, physics-based models have been used extensively to model 

occupant behaviours and energy usage, based on thermodynamics and other established principles. 



 

However, this is mostly done only at a building scale, due to the high-dimensionality and linearity of many 

physics-based models, making them expensive to compute, even for a single building [11].  To scale this 

up, recent efforts on physics-based modelling are combined with calibration processes, tested through 

simulations, as discusssed in Section 2.1.  

Physics-based models also pose some limitations in capturing the high non-stationarity relationships 

from the input variables [12]. Data-driven models have therefore become more popular as the complex 

and dynamic relationships can be captured with the available data, as discussed further in Section 2.2.  

This data is typically voluntary generated by users (e.g. through crowdsourcing, or crowdsensing), or 

automatically generated due to a system or application usage (e.g. logged by mobile devices, or apps, or 

smart home sensors), as discussed further in Section 3. Therefore, dealing with occupant-centric urban 

data leads to privacy implications, as discussed in Section 2.3. 

Finally, physics-based models and data-driven models can have inherent bias, due to the limited 

observations and the approximations that are used to generalize this model. In addition, the black-box 

nature of data-driven models, lead to the need to ensure FATE (Fairness, Accountability, Transparency, 

and Ethics) in these models. This is further discussed in Section 2.4. 

There are additional opportunities and challenges given the rise of cyber-physical systems, digital twins, 

and new actuating systems. However, this review paper only focuses on sensing and modelling occupant 

and energy behaviours, therefore, those are out of the scope of this paper. 

 

2.1. Simulation-based building energy modelling at urban scale 
The very first application of big data at the urban scale is to model building energy use. Traditionally, 

urban building energy models (UBEMs) apply physics-based modelling approaches to simulate heat flow 

in and around buildings and estimate their operational energy as well as indoor and outdoor 

environmental conditions [13, 8]. They can either rely on detailed multi-zone building performance 

simulation engines (e.g. EnergyPlus, IDA-ICE) or simplified thermal resistance-capacitance (R-C) models 

[14]. To integrate occupant-centric urban data in UBEMs, Geographic information systems (GIS) has 

been very useful [15, 16] and were previously used in the Energy Atlas Berlin initiative [17], and the work 

by the European Institute for Energy Research [18]. For many urban areas, the open standard CityGML 

was also introduced, which provides 3D city models that can be used as inputs for UBEMs. CityGML 

represents 3D city models at varying levels of detail, which may include additional information for each 

building in a city, such as the year of construction, building type, and energy use [15].  

Irrespective of the level of detail used in creating physics-based UBEMs, uncertainties that arise in the 

modelling process from various sources, including assumptions regarding occupancy patterns and 

occupant behaviour, may limit their capabilities [14]. One approach to represent this stochasticity is to 

use the Monte Carlo simulation to capture the correlations between the variations of the model input and 

output parameters [19, 20, 21, 22]. Another approach is through a calibration process to refine UBEM 



 

inputs, so the simulated results match collected data. In the existing literature, Bayesian calibration is a 

commonly used approach for probabilistic calibration [23, 24, 25, 26, 27, 28]. Overall, occupant-centric 

urban data can provide more information to address the more complex and multi-faceted behaviours and 

uncertainties in UBEMs, which are typically not captured in modelling outcome and input parameters. 

 

2.2. Occupant-centric urban data processing for data driven modelling 
Occupant-centric urban data is usually generated from various sources, thus data-driven modelling aims 

to turn this vast amount of real-world data into actionable knowledge through practical and applied 

results [29]. The increased amount of urban data expedites the data-driven approaches to study occupant 

behaviours or energy usage in city level rather than individual building level only [30, 31]. Several steps 

are involved with any data-driven modelling, including occupant behaviours and energy usage modelling. 

In general, the associated steps are data acquisition, data cleaning and extraction, data aggregation and 

representation, data mining and machine learning, modelling and interpretation (Figure 3).  

Occupant-centric urban data can come from heterogeneous sources, as described in Section 3, including 

diverse individual users and organisations occupying the built environment. Often there is no schema 

that has been designed to fit the purpose of the data collection. Therefore, acquisition is the first step, and 

the next one after is data preprocessing and representation. This includes data cleaning, to deal with 

highly sparse and noisy data. Since the data comes in different shapes and forms, a common approach is 

to represent the data in memory or storage, prior to the next step, which is feature extraction and 

engineering. With deep learning, this step is replaced with representation learning, often in an end-to-

end manner. The next step is analysis and modelling, although this can also be done in parallel with the 

previous step, in order to decide on the architecture and models to best capture the behaviours to be 

estimated or predicted. Finally, these models need to generate actionable insights for the range of 

applications as discussed further in Section 4. The steps are discussed further in the Appendix. 

 



 

 

Figure 3: An overarching view of occupant-centric urban data processing 

 

2.3. Privacy implications 
Urban-scale data include several data types, including crowd-sourced and mobility data that are produced 

or relate to individuals. Therefore, if urban-scale data include references to individuals, this result in 

privacy implications. Many data providers address this problem using either pseudonymization or 

anonymization [32].  

Fung et al. [33, 34] present the different categories of attack models comprising of record, attribute and 

table linkage alongside probabilistic attack to classify the state-of-art privacy models that can guarantee 

and suffice for privacy protection for each attack model. Using this categorization, a number of 

frameworks [35, 36, 37, 38] utilizing the highlighted privacy models have been proposed for protecting 

the sensitive information of individuals corresponding to either some form of mobility dataset or dataset 

obtained from a cyber-physical system.  

Recently, a number of empirical studies [39, 40, 41, 42] are beginning to assess these privacy models for 

pseudonymizing and anonymizing urban-scale and cyber-physical data. The result obtained from these 

studies indicates that no privacy model is suited to protect all protection goals as a combination of 

different attacks still poses a problem to existing approaches. Similar results are obtained in similar 

studies presented in [40, 41, 42]. These results are indicative of the difficulty and complexity for 

protecting urban-scale data.41, 42]. These results are indicative of the difficulty and complexity for 

protecting urban-scale data. 

 

2.4. FATE in AI 
The rapid proliferation of pervasive technologies has made our living environments (i.e. cities) “smart”. 

At the same time, the evolution of smart environments exposes potential risks for individuals and society. 



 

For instance, the automation of our everyday activities could delegate the governance of such activities 

and the whole city to the intelligent engines that can use a set of algorithmically defined policies. Many of 

these algorithms are designed as black boxes. The end users have very little or no understanding of how 

they work. However, this lack of understanding does not prevent people from relying on them in most of 

the cases [43]. Recently, people started questioning the trustworthiness of these models.  

The results derived from the available data can have serious issues (e.g., cultural biases and non-

conforming logic) when the observation is prioritised over ethical considerations which has an adverse 

effect in the long run [44, 45]. The research in FATE (Fairness, Accountability, Transparency, and Ethics) 

in AI has been driving investigations into these questions [46]. The early solutions include local surrogate 

models or interpretable models such as LIME [47] which can be used to explain individual predictions of 

black-box models. 

 

 

3. Occupant-Centric Urban Data: Categories and Datasets 

This section summarizes the occupant-centric urban datasets from different sources which are widely 

used in urban-scale occupant behaviour and energy modelling. Datasets covered in this section are 

divided into six different categories: Occupancy data, Mobility data, Crowdsourced Environmental data, 

Building performance and operational data, urban spatial data and survey data. 

 

3.1. Occupancy Data 

3.1.1. IoT and Smart Cities data 
Sensors have been used in previous studies to predict the number of pedestrians in a location including 

visual, laser and thermal-based sensors. Recently, some researchers estimated the dynamic population 

by measuring the vehicle density using subway and traffic camera in New York City [48].  

One important aspect of understanding occupant behaviours in an urban environment is by analysing 

occupancy of car parks. In the past, most researchers can only study the simulation environment [49]. 

Recent works on urban-scale parking analytics have largely utilised data from parking sensors, cameras 

and loop detectors [50, 51, 52, 53, 54, 55, 56, 57, 58, 59]. Many cities around the world have published 

open parking datasets. 

 

3.1.2. WiFi, Bluetooth, and other wireless network data 
A step towards scaling up to urban-level datasets is the campus-level or complexes of blocks of buildings. 

Existing work has considered collecting large-scale occupant dataset from such settings using WiFi 

infrastructures supplemented with other sensors. Ruiz et al. [60] presents a study that utilises WiFi 

infrastructure to collect spatial data on a whole campus-level and analysed the data for relevant patterns. 

Sevtsuk et al.[61] presents a similar study for a campus scale. Sangogboye et al. [62] combines WiFi data 



 

and datasets from count sensors [63] to provide datasets on occupancy and occupant trajectories. 

Christensen et al. [64] also considered WiFi enabled devices and other Information and Communications 

Technologies (ICT) network data to provide data on building occupancy. Das et al. [65] considered how 

to provide occupant presence datasets based on multi-modal sources based on WiFi data, electricity data, 

water consumption data. Lastly, Schauer et al. [66] proposed a method for estimating crowd densities 

and pedestrian flows based on WiFi and bluetooth data in an airport. In large commercial and mixed-use 

buildings, such as shopping malls and offices, WiFi and Bluetooth data are often used for monitoring 

visitors [67, 68, 69]. 

 

A step towards scaling up to urban-level datasets is the campus-level or complexes of blocks of buildings. 

Existing work has considered collecting large-scale occupant dataset from such settings using WiFi 

infrastructures supplemented with other sensors. Ruiz et al. [60] present a study that utilises WiFi 

infrastructure to collect spatial data on a whole campus-level and analysed the data for relevant patterns. 

Sevtsuk et al. [61] presents a similar study for a campus scale. Sangogboye et al. [62] combine WiFi data 

and datasets from count sensors [63] to provide datasets on occupancy and occupant trajectories. 

Christensen et al. [64] also considered WiFi enabled devices and other Information and Communications 

Technologies (ICT) network data to provide data on building occupancy. Das et al. [65] considered how 

to provide occupant presence datasets based on multi-modal sources based on WiFi data, electricity data, 

water consumption data. Lastly, Schauer et al. [66] proposed a method for estimating crowd densities 

and pedestrian flows based on WiFi and Bluetooth data in an airport. In large commercial and mixed-use 

buildings, such as shopping malls and offices, WiFi and Bluetooth data are often used for monitoring 

visitors [67, 68, 69]. 

 

3.2. Mobility data 
 A variety of datasets have been used to study human mobility, each being a potentially valuable resource 

to inform occupant behaviours in built environment and facilitate energy simulations. While exotic 

datasets have been analysed occasionally (e.g., $100 banknotes in [89]), datasets from different resources 

are used in most of the mobility studies. 

 

3.2.1. Geospatial trajectories / GPS data 
The first data set is collected from GPS equipment and have a variety of sampling rates ([90]). Most of 

the trajectories are logged in a dense representation, e.g. every 1 5 seconds or every 5-10 meters per point, 

making the recorded movements with almost complete spatial information. Some of the datasets have 

been made open, such as GeoLife [90], PrivaMov [91], Nokia Mobile dataset [92], etc., making them 

standard datasets to test new measures and/or algorithms. Smartphone-based Global Positioning System 

(GPS) log dataset was studied to understand occupant behaviour in urban scale [7]. The dataset was 



 

obtained from Cuebiq company which collects data from about 70 million U.S. smartphones through 

smartphone applications. Human mobility in the city of Chicago has been investigated based on GPS data 

collected from the social network - Twitter. This dataset contains electricity consumption figures of 

residential buildings for 801 spatial divisions in Chicago, as well as 8,798,090 GPS records in the city 

[93]. Another study was conducted by Kang et al. 2019, which utilised GPS data of social network software 

from Tencent - one of the largest IT company in China. In this research, active positioning data contains 

information of occupancy patterns was collected from the social network software [94]. 

 

Table 1: Overview of different data sources to collect human mobility 
 

Types of Data Purpose 

 

 

 

 

Check-in Data 

- Predicting friendship between users [70] 

- Measuring the social diversity [71] 

- Next location Prediction [72] 

- Studying the spatial-temporal 

regularity of user activity [73] 

- Studying the impact of mobility and 

social relationship on each other[74] 

- POI demand modelling [75] 

Social media data - Understanding collective movement 

pattern [76] 

 

CDR Data 
- Population Displacement 

measurement in natural disaster [77] 

- Understanding human mobility [78] [79] 
[80] 

Building Energy 

Data 

- Electrical data from smart meter [83] 

[84] [85] [86] [87] [88] 

 

3.2.2. Call Detail Records (CDR) dataset 
This dataset is collected from cell phone communications by telecom companies. When a person makes 

a phone call or receives/sends a text message, the nearest cell phone tower routes the communication, 

and its location—roughly the user’s locationis recorded [95]. The records include anonymous User ID, 

longitude, latitude, and timestamp of the phone activity. The accuracy of the location is about 200 to 300 

meters.  

Research-based on the CDR dataset has uncovered some fundamental knowledge on human mobility 

including high uniformity [95], ultraslow diffusion [96], high predictability [97], and motif composition 

[78, 98]. 834,690,725 anonymized CDRs of 1 million users in the Boston metropolitan area were collected 



 

for a period of two months in 2010 [79] to study urban scale human mobility. Wheatman [99] studied 

population dynamics based on the CDR data collected from a small European country over nine months 

in 2015. Despite having enabled important findings, CDR data have their own limitations. First, the 

precision of the data is determined by the distributions and coverage areas of cell phone towers which is 

13km2 per cell phone tower. Such precision has been instrumental when studying human mobility over 

larger scales (e.g., a state or a country), but it may not be able to capture human mobility at smaller scales 

(e.g., a district or a city). Second, data privacy and ownership sometimes make verification and validation 

work challenging [100]. 

 

3.2.3. Social media check-ins and apps 
When a person uses social media applications, his or her geographical location is recorded. Social media 

data enables large-scale analyses and scientific discovery, such as universal mobility pattern around the 

world [101, 102] and across cities [103], mobility-based inequality across U.S. cities [104], disaster-

induced mobility perturbation [105], etc. Despite these important findings, the representativeness of 

social media data has been questioned since the beginning; people from certain socio-demographic 

groups are more likely to use social media and this can especially be true for smaller platforms. In this 

case, results may only reflect the mobility behaviours from biased sample rather than the entire 

population. Though there are a few studies that investigated this representativeness issue [106, 107, 108], 

we still lack a comprehensive solution. 

 

3.2.4. Location Based Service (LBS) data 
 Location-based service (LBS) data are collected by location-based service providers who usually embed 

their functions into many smart phone apps. In such a way, these datasets often cover large percentage 

of populations with decent quantity (e.g., 100 or more records per day) and resolution. LBS data has 

supported promising new directions of research. However, there are some challenges associated with 

human mobility data from LBS data. Data acquired from LBS is sparse in nature.  Again, data from LBS 

are generally bias to tech savvy young people [109]. 

 

3.2.5. Transportation data 
Another source to collect human mobility is from daily transportation, including bicycle, bus, train, or 

taxi in their daily life. Mobility dynamics in real-time was measured in [110] using location data from the 

public transportation system along with cellular network data. The human mobility pattern of a particular 

area was captured with a spatiotemporal analysis of the shared bicycling system in [111, 112]. In [113], the 

authors acquired indoor and outdoor traffic traces from traffic and occupancy sensing system installed 

by the local government of Hong Kong. This dataset contains traffic information about 617 roads and 118-

story building. 



 

 

3.3. Crowdsourced Environmental Data 
Urban environment presents peculiar conditions mainly related to city internal structure, intensity and 

typology of anthropogenic activities, and lack of greenery and water bodies compared to suburban areas. 

Cities are further characterized by high heterogeneity which produces dynamic patterns of all the main 

parameters influencing citizens’ life quality (including environmental comfort) and buildings energy 

consumption. Focusing on pedestrians’ well-being, human perception involves different spheres, and 

thus scientific effort includes data collection related to (i) urban air quality, (ii) noise pollution,  

(iii) and outdoor thermal comfort. An overview of the most recent studies [114, 115, 116, 117, 118, 119, 120, 

121, 122, 123, 124, 125, 126, 127] involving these types of data collection at the urban scale is presented 

distinguishing among different involved monitoring systems as summarized in Table 2. 

 

3.4. Building performance and operational data 
Building data that describe different aspects of building performance may include energy use (i.e., smart 

meter data) or operational data (e.g., smart systems data, as well as occupancy data). The following sub-

sections provide details on the availability of such data at an urban-scale (see Table 3). 

 

3.4.1. Indoor environmental data 
The proliferation of indoor environment sensing technologies has enabled the collection of various data 

points related to the indoor environment. These sensors can collect various information regarding indoor 

environments such as temperature, humidity, light, CO2 and air velocity in a time-series manner. 

Combining these data from various environment sensors can provide an unprecedented level of 

environmental situation awareness inside buildings. There are many indoor environment datasets 

collected for various purposes [143, 144, 145, 146]. Comfort Database [147], and UCI Occupancy Detection 

Data Set [148]. Some of those are available for public use including ASHRAE Global Thermal. 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

 

Table 2: Overview of different data sources to collect environmental data according to pedestrians’ 

perspective. 

 

  

 

 

 

 

 

Types of Data Purpose 

 
 

Sensor networks 

- Real time noise/pollution measures for population alert [115] 

- Fine-grained city air quality map through automobile built-in sensors [119] 

- Visualize air pollution propagation [118] 

- IoT platform for public consultancy of air quality [116] 

- Prototype of IoT-based technology for noise and air quality pollution real-time 

monitoring [117] 

Sensor & Social 
media 

- Monitoring and mitigation of urban noise pollution [126] 

 

Environmental sen- 

sor & Survey 

- Investigation of dynamic thermal comfort [128] 

- Extreme learning machine approach to predict thermal comfort in outdoors 

[129] 

 
 

 
Wearables 

- Map PM2.5 distribution through miniaturized, personal devices [121] 

- Map transient outdoor comfort [123] 

- Understanding dynamic thermal comfort [124] 

- Environmental mapping according to pedestrian perspective [130] 

- Enhancement of crowd-sourcing air quality through low costs participating 

[120] 

 
 

Wearables & Social 

media 

- Evaluation and representation of sound environment [130] 

- Soundscapes related to people perception [127] 
- Sound classification and mapping [131] 

Wearables & 
physiological data 

- Physiological response to different microclimates [132] 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 3: Overview of different data sources to collect building operation and energy use data  

 

Types of Data Purpose 

 

 

 

 

BMS data 

- Predicting occupant behaviour at the 

zone level for using lights [133], blinds 

[134], windows [135] 

- Predicting thermostat setpoint 

change requests [136] 

- Identifying operational variables and 

their optimal settings to minimize 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

3.4.2. BMS / smart systems data 
Data from building management systems (BMS) can provide a wealth of information regarding 

occupancy, operational patterns and occupant behaviour. Previous studies used these datasets to develop 

stochastic occupant behaviour  models, albeit at the zone or building level [134, 135, 133]. BMS data is 

typically available for individual buildings and privately owned. However, some researchers obtained 

BMS data from groups of buildings. For example, Gunay et al. [136] used BMS data from a cluster of three 

governmental office buildings to collect records of zone temperature, outdoor temperature, and 

temperature set-points at 30-minutes intervals. In contrast to BMS, IoT devices such as smart 

thermostats a provide much larger datasets from thousands of buildings. For example, the ‘Donate Your 

energy use and mantain occupant 

comfort [137] 

Smart thermostat and HVAC 

use data 

- Understanding thermostat usage 

patterns in different climate zones [138] 

- Predicting occupancy patterns in 

residential homes [138] 

- Estimating thermal time constant values 
for 

residential buildings [139] 

 

Smart meter data 
- Developing and validating energy 

disaggregation methods to identify 

end-use patterns [88, 140, 85] 

- Identifying consumers with the 

most potential for energy 

reduction through 

demand response [141, 142] 



 

Data’ program administered by Ecobee Inc., contains over three million days of data from more than 

112,000 thermostats across North American homes [138]. It consists of measurements recorded at 5-

minutes intervals for the indoor and outdoor air temperature, set-points, indoor RH, motion sensors, as 

well as HVAC equipment run times. Additionally, metadata such as type of home, construction date, and 

geographical location are available [138]. Other datasets, such as Pecan Street Research Institute’s 

DataPort [87] also contains indoor temperature readings; some of which are using Google Nest’s 

connected thermostats. 

 

3.4.3. Building energy data 
Smart meters record electricity usage of households. It is estimated that the number of readings will surge 

from 24 million a year to 220 million per day for a large utility company with advanced metering 

infrastructure (AMI) [149]. A review of available smart meter datasets is conducted by Babaei [150]. Two 

datasets covered more than 100 buildings. The first dataset [83] includes 1-minute whole building 

electricity consumption data of 1 day for 400 houses. The other dataset [84] contains whole buildings 

level consumption data of 400 residential buildings during one to two years. Other datasets covered fewer 

buildings [83, 85, 86]. Pecan Street Research Institute [151] provides the world’s largest source of 

disaggregated customer energy data, which contains electricity data collected from 722 houses in the U.S. 

[87]. It also includes energy audit results and annual surveys which provided physical characteristics of 

the homes and sociodemographic descriptions of the occupants [88].  

The databases of building characteristics and their annual energy consumption can present an overview 

of building energy use trends at the national scale. In the U.S., the Commercial Building Energy 

Consumption Survey (CBECS) collects building information such as the address, building name, size, and 

use category, which is provided along with energy use and its breakdown by energy source. In its most 

recent available datasets from 2012, 6,720 records are provided representing commercial buildings from 

every state [152]. Similar information is provided for residential buildings in the Residential Energy 

Consumption Survey (RECS), whose latest datasets published in 2015 includes data from 5,686 

households in that year [153]. 

 

3.5. Urban Spatial Data 
More cities are making their data public, e.g., building footprint, assessor’s records, building permits, 

available at their open data portals. These data after curation and integration with other data sources 

enable the creation of 3D city models that describe physical urban objects at various levels. Cities like 

New York City and Berlin make their 3D city models available in CityGML which is an international Open 

Geospatial Consortium standard for the representation and exchange of 3D city models. CityGML defines 

the 3D geometry, topology, semantics, and appearance of urban objects, including buildings and their 

components, bodies of water, city furniture (street lighting, traffic lights), transportation infrastructure 



 

(streets, roads, bridges, tunnels), and vegetation. CityGML has the flexibility of representing urban 

objects at various levels of details which is a critical feature enabling 3D city models to be enriched with 

more becoming available data. In this paper, we discussed urban spatial data based on their sources, 

including a) geospatial information, maps and floor plans and b) Microsoft building footprint datasets. 

 

3.5.1. Geospatial Information, Maps, and Floor plans 
The route information in the world map can be acquired from Open Street Map (OSM) [154] and Google 

Maps API [155]. OSM is a user-generated open-world street map which is free to use and editable [156]. 

The road network on OSM maps can be fused with other data sources to aid various mobility applications 

[157, 158]. Google Maps API provides the static and dynamic world map with route and place information. 

The road network on google map provides real-time traffic information. Travel distance between two 

places can be measured on this map. Different geospatial information, like Point of Interest (POI), can be 

obtained from Google Maps API. Location of POI in longitude and latitude format and the type of POI 

can be obtained from Google Places API [159]. However, some geospatial information like airport tarmac, 

pedestrianized paths and shortcuts may not be available in these maps. In [160], the authors proposed a 

GPS trajectory-based deep-learning framework named COLTRANE to generate maps for different 

environments. 

 

3.5.2. Microsoft building footprint datasets 
Creating a UBEM typically starts with having building footprints of the area of study. Then gradually 

adding data such as building use and building height to each footprint. These footprints can be gathered 

from local authorities or in some cases are available online to the public. Microsoft made very significant 

efforts by providing building footprint datasets free of cost. As of today, these datasets contain over 125 

million [161] building footprints of all 50 U.S. states and near 12 million [162] building footprints in all 

Canadian provinces and territories. The datasets are in GeoJSON format which includes the information 

of building coordinates and building footprint polygon geometries. 

 

3.6. Survey Data 
 

3.6.1. Mobility survey 
The United States Federal Highway Administration (FHWA) released the National Household Travel 

Survey (NHTS) data1, which is the authoritative source on the travel behaviour of the American public. It 

is the only source of national data that allows one to analyse trends in personal and household travel. It 

includes daily non-commercial travel by all modes, including characteristics of the people traveling, their 

household, and their vehicles. 

Another comprehensive data source that combines different personal travel patterns of residents is the 

Household Travel Survey (HTS) data [163] collected by Transport for New South Wales, Australia. The 



 

Victorian state government in Australia also conducted a similar survey called ‘Victorian Integrated 

Survey of Travel and Activity (VISTA) survey’ over four financial years from 2012 to 2016. This survey 

dataset covers a total of 18,152 households and 46, 562 people [164]. The participants selected randomly 

were asked to complete a travel diary on a single specified day as part of their tasks. The collected 

information includes all personal travel information - from walking the dog, through to interstate travel. 

 

3.6.2. Time use survey 
As one of the major approaches of occupant behaviour profile survey, time of use survey has been 

conducted by many countries as a part of national census. Time use survey aims to report statistics on the 

amount of time people spend on various activities on daily basis. Researchers have taken advantage of 

time use survey to support occupant behaviour research and building scale energy modelling. For details, 

see Table 4. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 4: Overview of time-use survey in occupant behaviour research at urban scale 

Survey Data size Methods and Purpose 



 

French time-use survey 15,441 individuals of 7949 house- 

holds. from Feb.1998 to Feb. 

1999, at 10-min interval 

Methods: Stochastic models based on statistics and Markov 

process. Purpose: Predicted at-home probability, the conditional 

probability 

to start an activity, probability distribution of activity duration 
[166] 

American time-use 
survey 

Data from 13,000 individual 24-h 

time diaries from 2006, time step 

unfixed 

Methods: Bootstrap sampling. 

Purpose: Typical household occupancy profiles and overall 

residential energy use profiles [165] 

UK time-use survey Data of 11,700 UK citizens from 

6,500 households in 2000, at 10- 

min interval 

Methods: Markov Chain Monte Carlo (MCMC), K-mode 

clustering. Purpose: Household occupancy model as an input for 

energy mod- elling [167]. Occupancy model to generate stochastic 

appliance-use or occupancy profiles at daily basis [168]. 

Occupancy profiles as an 

input for residential building energy end-use models [169]. 

Korean time-use survey Data from 5,193 occupants, 24-h 

profiles at 10-min interval 

Methods: K-modes clustering, Gaussian process regression. 
Purpose: 

Energy use profiling and classification according to time use data 

and household basic information [170] 

Spanish time-use 
survey 

Data of 19,295 people from 9,541 

homes in 2009-2010, at 10-min 

interval 

Methods: Markov Chain Monte Carlo (MCMC). Purpose: The 

profile of electricity demand in the residential sector [171] 

Belgian time-use survey 

And  Household 

 Budget Survey 

Data of 6,400 respondents from 

3,474 households, 24-h profiles at 

10-min interval 

Methods: Hierarchical Clustering. Purpose: The occupancy 

profiles of households and its relation to socio-economic 

variables [172] 

Japan time-use survey Data from 80,000 households in 

Japan, at 10-min interval 

Methods: Markov Chain. Purpose: Stochastic model for occupancy 

profiles in residential buildings [173] 

Japanese Survey on 

Time Use and Leisure 

Activities 

(STULA) 

Occupant daily activities at 15- 

min interval 

Methods: Probability analysis. Purpose: Aggregated energy saving 

potential on daily basis [174] 

Danish time-use survey Data of 9,640 individuals from 

4,679 households, at 10-min 

interval 

Methods: Probability analysis. Purpose: Representative electricity 

profile based on synthetic occupancy profiles for households. [175] 

1https://nhts.ornl.gov/assets/2017UsersGuide.pdf 

4. Urban-Scale Occupant and Mobility Behaviour 



 

 

In this section, we provide an overview of specific application-wise modelling, methodologies and 

approaches.  

4.1. Occupant behaviour modeling 
Space utilization and occupant behaviour analytics from different building systems data is very crucial as 

it can provide intelligent insights. To better understand the impact of occupant behaviour on building 

energy consumption at an urban scale, building occupancy at an unprecedented scale was studied based 

on massive and passively collected mobile phone data [80]. By integrating the simulated occupancy data 

with the urban building energy model, the estimated energy consumption showed a significant difference 

compared to the reference data from DOE. Based on the same data set, Jiang [79] examined semantic-

enriched land uses surrounding destinations in individual’s motifs to infer trip purposes.  

Urban scale occupancy patterns of two buildings were derived from smartphone-based GPS data to 

understand urban mobility [7]. Daily and weekly occupancy profiles were extracted based on positional 

data from social network software [94]. The difference of energy consumption was analysed according to 

occupancy schedules derived from positional data and energy codes, showing that occupancy data has a 

significant influence on energy consumption. After studying the positional record data, a spatiotemporal 

dependency was demonstrated between human mobility and energy use in urban area [93].  

Occupancy data has been used to study short term occupancy in commercial and residential buildings 

[176, 177, 178, 179]. Space utilisation prediction has been investigated leveraging historical and current 

contextual data (i.e. occupancy, spatial, temporal [180]). Occupancy data also has been used for building 

energy management [181]. A recent research uses the WiFi technology to detect and predict building 

occupancy [182, 183]. A fusion-based approach that combines cross-source data related to CO2 

concentration, temperature, and Wi-Fi signal indicator is used for building occupancy analysis [184].  

Another research uses occupancy and occupant activity data to investigate different patterns in hospital 

patient rooms [185] while researchers in [186] utilised building layout and occupant activity data to devise 

associations between building layout, physical activity and sitting time in an office setting. Ren et. al. [67, 

187] analysed how people use WiFi to access the Web in indoor retail spaces while navigating through a 

mall. Using only WiFi logs, Ren et. al. also found strong correlations between behaviours and user 

demography [188]. Further, it is also shown that the online and movement patterns can be used to predict 

the visiting intent of building occupants [189].  

Researchers also utilise survey data to investigate building occupancy profiles at homes and support 

building or community level energy modeling. Kim et al. [170] used k-modes clustering methods to extract 

and generate 7 typical energy use patterns and its occupancy features from 5,193 samples of Korean time-

use survey in 2014. Some research [172, 169] investigated the time-use survey data and generated 

occupancy profiles for households. Barbour [80] developed a method for estimating building occupancy 

at urban-scale by extending the TimeGeo framework [190]. It classified all the sample urban buildings 

into three categories: residential, commercial, and industrial. Jiang [79] identified stays and pass by from 

each user’s trajectory by setting the roaming distance as 300 meters and setting temporal constraint as 10 

minutes. A grid-based clustering method which is over the k-means algorithm and the density-based 

OPTICS (ordering points to identify the clustering structure) clustering algorithm [191] was used to cluster 



 

stay-points to get stay-regions.  Jiang’s work showed the process of translating large urban mobile phone 

traces into trip chains, activity sequences, and travel paths which will be helpful for urban planning. When 

extracting occupancy patterns from positional data collected by social network software, max 

normalization and k-means clustering method was used [94].  Discrepancy scores (DS) was computed to 

quantify the degree of divergences between DOE reference occupancy pattern and empirical hourly 

occupation rates [7].  

Occupancy in two residential homes was monitored using the coarse-grained data produced by commodity 

smart meters, which record a home’s electricity usage anywhere between one to fifteen minutes [192]. 

Occupants’ smartphone data were used as the ground truth occupancy, then a threshold-based Non-

Intrusive Occupancy Monitoring (NIOM) Algorithm was developed to analyse the electricity data from 

smart meters for obtaining occupancy information in two homes.  

Researchers also utilised data from time-use survey to acquire building occupancy information. This 

enables detailed occupant behaviour modelling. One of the approaches is clustering-based methods, to 

extract representative and determinant occupancy or energy use profiles among massive samples [165, 

172]. Clustering methods are most likely top-down approaches and commonly associate with statistic [170] 

or probabilistic analysis [174, 175]. 

Another approach is Markov-process based methods, which are usually used for dynamic and stochastic 

modelling of occupancy and appliance energy use. Markov-process based methods are designed to explore 

change of state by time shift, and is very efficient for stochastic occupant behaviour modelling The most 

popular algorithm is Markov Chain Monte Carlo (MCMC), and is widely applied in many researches for 

bottom-up modelling [169, 166, 167, 168, 171, 173] 

 

4.2. Understanding mobility patterns 
The study of mobility patterns is to understand and analyse the movements of occupants in spatio-

temporal resolution.  The unprecedented scale and resolution of mobility data have generated impactful 

application for intra-urban mobility analysis [193]. The functionality of a spatial region can be investigated 

with an assist of human mobility inferred from shared bicycle system or taxi trajectories [194, 195, 196]. 

Recently, researchers in the field of energy simulation in the built environment started to integrate energy 

consumption and mobility analysis. Mohammadi and Taylor [93] used a full year of individual footprints 

collected from Twitter and developed a multivariate autoregressive model in reduced principal component 

analysis space. Their work, incorporating the spatiotemporal energy use fluctuations of urban population 

activities, created more reliable predictions of demand in a major U.S. city.  Dong et al. [7] developed 

occupant behaviour model based on mobile position data for 456 buildings in San Antonio, Texas, U.S., 

and compares it with commonly used occupant schedules from U.S. Department of Energy Commercial 

Building Reference Model.  In [113], the authors studied mobility patterns from the mobile network and 

indoor and outdoor traffic data.  

Existing mobility studies primarily use mathematical frameworks and physical models to capture human 

mobility patterns. Brockmann et al.[89] proposed to extrapolate the universality of human travel patterns 

as a random-walk process with the displacements (i.e., the consecutive steps of movements) following a 

power-law distribution while the stay duration at each location was observed with exponential decay. 



 

Confirming the validity of the models, Gonzalez et al. [95] showed human mobility has a high degree of 

temporal and spatial regularity which can be captured by a unified spatial probability model. Rhee et al. 

[197] developed a truncated Levy walk mobility (TLW) model based on human mobility traces collected 

from five cities worldwide. Song et al. [96] developed the Exploration and Preferential Return (EPR) 

model to describe the ultra-diffusion of human mobility.  

Other models can capture the macro-level mobility patterns based on individual patterns, forming critical 

foundations in linking human mobility to energy usage in urban areas. Isaacman et al. [198] developed a 

framework to forecast individuals’ visitation destinations and found that individuals tend to choose 

popular destinations from overall populations over their most frequently visited locations. Jiang et al. 

[190] formulated the TimeGeo model, which integrates location information (home/work/other) for each 

visit. It also incorporates the regional land use data to estimate collective daily mobility patterns and 

achieved high accuracy. Pappalardo et al. [199] introduced the d-EPR model that infuses the gravity model 

into the original EPR model, extending the model to monitor the large-scale spatial mobility flux. Hoteit 

et al. [200] used location data from smartphones and tested multiple trajectory interpolation methods 

that have been previously proposed on subsampled user paths.  The radiation model [201] can accurately 

estimate the interurban commuting fluxes compared to the gravity model for it considers the population 

in between both locations and resembles the process of radiation in physics. Recently, Mazzoli et al. [202] 

compared both models using Twitter data. It was found that the gravity-based model outperformed 

radiation-based models in terms of both accuracies on the flow and angles (with R2 greater than 0.95 for 

both).   

In [203], the authors presented a graph-based optimization algorithm to design patrol route using large-

scale mobility information from Foursquare. Also, graph-based approaches enabled modeling the parking 

space locations and the connections between them to manage the car parking violation in [54]. More 

recently, in [113], the authors proposed a semi-absorbing urban mobility model, which is designed to 

capture the structural impacts on urban mobility pattern in 3-D space. 

 

4.3. Critical Gap Review and Recommendations 
 

Significant challenges exist despite advances in modelling occupant movement and behaviours in 

buildings. Lack of adequate dataset to represent diverse occupants, at various social-demographics, 

various building types, various locations, is a big gap. Models that capture the diversity of occupants are 

still rare as most of them represent aggregated occupant behaviours. Fit-for-purpose occupant modeling 

[204] is the direction to go, which can help address the tradeoff between model complexity and value. 

Presenting and interpreting the stochastic nature of results from the use of stochastic occupant models 

can be a challenge also. An occupant modelling guide, with available dataset, models and simulation tools, 

is needed to promote industry adoption of occupant modelling to support building design and operations.  

In urban scale occupant behaviour modelling based on crowdsourced data, there are both theoretical and 

practical gaps which call for linking human mobility and building occupancy. Theoretically, despite that 

intra-urban social mobility could be well captured and modelled to predict urban scale energy demand in 

the cities, there is still a lack of understandingg of how both the occupant behaviour and the temporal 



 

shifts of building energy performance are associated with the recurrent human mobility. Emerging studies 

start to utilise mobility data as a proxy of occupancy in buildings, yet the detailed occupant behaviour and 

building facility heterogeneity have not been quantified and incorporated into the models. The 

transformative next step is to integrate dynamic modeling, information on occupant behaviour, and more 

complete data sets.  

In practice, when the aforementioned human mobility models are applied with the real-world data, 

potential issues rise. For example, the scarcity of fine-grained human mobility data and uncertainty from 

representativeness of the populations are observed and discussed [93]. Also, large-scale models demand 

high scalability. Hence, it is critical to devise a framework to identify the proper urban scale model based 

on the quantity and the quality of the data for optimal spatiotemporal modeling. In addition, human 

mobility data usually comes from crowdsourcing platforms which are often with biases in terms of both 

quantity and quality across different populations. Therefore, it is critical to developing new mitigation 

strategies to quantify and reduce the risk caused by such inherent sociodemographic bias. 

 

5. Urban-Scale Human-Building Interactions, Environmental Comfort, 
and Energy Use 

Urban big data have been applied in several areas including building retrofitting studies, modeling of 

human-building interactions, environmental comfort inferences, and energy usage at an urban scale. This 

section provides an overview of previous studies in those areas. 

 

5.1. Understanding human-building interactions through connected thermostats 
The availability of connected thermostats provides large-scale datasets that enable studying and 

predicting occupant-building interactions at the urban or regional scales.  Huchuck et al. 2018 [205] 

investigated how users’ comfort decisions and thermostat usage patterns are affected by exterior stimuli 

such as climate regions, seasonal patterns, and utility rates.  In a different study, Huchuk et al. 2019 [138] 

used the same dataset to predict future motion states in homes and explored the prediction quality versus 

seasonal effects, time of day, and occupancy behavioural types. Another study [142] used analysed HVAC 

cycling data and weather data and derived metrics to indicate 1) which households are most likely to have 

extraordinarily high or low thermostat setpoints, 2) which households are most likely to have thermostat 

setpoints that change at fixed times each day, and 3) which households could benefit from a change in the 

hysteresis setting of a thermostat. Gunay et al. 2018 [136] used BMS data from groups of government 

office buildings to predict the frequency of temperature setpoint change requests. Models were developed 

to identify indoor temperatures that minimize the frequency of thermal complaints or thermostat 

overrides. With regards to modelling techniques, Huchuck et al. 2018 [205] used statistical methods such 

as linear regression to investigate the relationship between outdoor temperature and system interactions 

(i.e. thermostat usage). Other clustering techniques were also used to identify user types based on how 

they operate their thermostats. In a different study, Huchuk et al. 2018 [138] used machine learning 

models ranging from logistic regression, random forest, Markov model, hidden Markov model (HMM), 

and recurrent neural networks (RNN) to evaluate their accuracy in predicting occupancy patterns. Using 

a set of candidate features consisting of previous motion states, time of day, and weekday vs. weekend 



 

status, they found that a simple random forest machine learning model outperforms all other models. 

Gunay et al. 2018 [136] used multivariate logistic regression models to predict the likelihood of observing 

a setpoint decrease and increase in the next 30 minutes in a thermal zone based on the indoor and outdoor 

temperature. 

 

5.2. Environmental comfort inference 
Human perception deals with multi-physical stimuli and thus a comprehensive assessment leans on 

thermal, air quality, acoustic, and visual investigation. Moving from experimental data collection and 

surveys campaigns, correlations among built environment and citizens perception have been highlighted 

and implemented for environmental comfort modelling in space and time [206]. Environmental data 

collection in cities is mainly adopted to map real-time urban status in terms of air quality, noise pollution, 

and citizens’ thermal stress. In order to get prediction of parameters distribution even under alternative 

scenarios, i.e. urban space renovation, or future weather forecast in the main framework of climate change, 

researchers rely upon models. Microclimate models reproduce the thermal performance of the built 

environment.  

Two main physics-based approaches can be distinguished:(i) energy balance-based scheme, such as Town 

Energy Budget (TEB) [207] and Urban Canopy Models (UCM), both of which solve for the energy budget 

of the urban canopy layer [208] thanks to urban surface parametrization [209], and (ii) CFD-based 

models. The introduction of human physiology in microclimate models allow to compute human comfort 

by means of some of the most widely diffused thermal-comfort indicators such as PMV (Predicted Mean 

Vote) and PET (Physiological Equivalent Temperature). This possibility paved the way to a synergistic 

approach combining microclimate modelling, in-field surveying, and outdoor comfort investigations in a 

compelling method for assessing urban development effect on temperature distribution, wind flows, and 

consequently, pedestrians’ thermal comfort [210, 211]. Concerning acoustic comfort in cities, two main 

numerical approaches can be used: purely physical and soundscape models. The former, focuses on the 

effect of urban geometry on sound pressure levels and distribution [212]. In this context, full-wave-finite-

difference time-domain method (FDTD) represents one of the most widely applied computational 

methods [213]. It can be used to explore sound quality by coupling information from emission and 

propagation models to geo-references data [214].  

Soundscape models, on the contrary, integrate human perception and sound pressure modelling in search 

for interrelationships among spatio-temporal patterns in soundscape, acoustic and urban morphological 

indicators. In this approach, physical acoustic and subjective data are measured, morphological indicators 

from specific geographic information system (GIS) are analysed, and the most important relationships 

among them are explored [215]. Through this approach, researchers point to establish links between 

human senses, human perception and optimized urban design, through global and local spatial regression 

models [216], and ultimately artificial neural networks [217].  

Energy saving potentials and occupants well-being, health, mood, and productivity are strongly influenced 

by daylight availability into buildings and thus a careful design of city shape could improve visual comfort 

in indoors and simultaneously reduce electrical energy consumption [218, 219]. On the other hand, 

modelling of artificial lighting generally leans on different software such as DIALux [220] and Relux [221] 



 

which are used for indoors but even street lighting design. Multi-objective evolutionary algorithms can be 

implemented in order to account for both illuminance uniformity (safe and comfortable night vision) and 

energy efficiency or installation costs as Hammad and Akbarnexhad did in [222]. In [223], the authors 

revealed that multi-nodal thermal regulation model is potential to address different features for outdoor 

environment. 

 

5.3. Energy Use Study 
 

The study of energy usage is to infer and understand various factors that influence various energy usage 

patterns. The data-driven investigations of energy usage and associated factors can aid better building 

design as well as energy-efficient urban planning. 

 

5.3.1. Urban Energy Modeling for Buildings and Districts 
Existing UBEMs in the literature are generally dominated by two approaches: top-down and bottom-up. 

Top-down (i.e., data-driven) models are based on macro-economic modelling principles and techniques 

are intended to include important economic variables and statistical information. Such models tend to be 

used to investigate the inter-relationships between the energy sector and the economy at large. They are 

also used to analyse energy use of building stock and identify energy conservation measures for retrofits.  

A top-down method was concluded which treated the residential buildings energy consumption as an 

energy sink rather than individual end-users [224]. The common variables for the top-down models were 

enumerated, including macroeconomic indicators, gross domestic product (GDP), employment rates, 

price indices, climatic conditions, housing construction/demolition rates, and estimates of appliance 

ownership in the residential sector. This approach is used to provide long-term future predictions in the 

absence of energy supply, pricing shocks, and technological breakthroughs [225]. [226] used topic 

modelling, specifically latent Dirichlet allocation, to discover the thematic structure and spatial-temporal 

patterns of building renovation and adaptive reuse in cities. Because of its lack of energy consumption 

breakdowns by end-users, top-down models are not suitable to determine key parameters for energy use 

reductions, such as identifying the effectiveness of implementing an energy-saving measure [227].  

In contrast, the bottom-up approach (i.e., Model-based building performance simulation) aims to group 

buildings with similar characteristics, such as building main use, structural properties, and construction 

geometries, into one category known as an archetype. It traditionally includes thermal and energy 

modeling, lighting and daylighting modeling, acoustic modeling, and indoor air quality modeling. These 

models are often treated as a method to identify the most cost-effective options to achieve given carbon 

reduction [228, 229] or comfort [230 targets among available technologies and processes. Multiple models 

have been developed based on collected building energy consumption data [231] and occupancy profile 

[80, 232, 233] via different mathematical and statistical approaches, including Integrated Nested Laplace 

Approximation (INLA) [230], Automatic Building Energy Model (AutoBEM) [228], and deep learning 

[234, 235, 236]. Modeling of each functionality can use different approaches at various levels of details to 

capture the physics in buildings. For example, building thermal/energy performance can be modeled 

physically (white-box models) considering the detailed and dynamic heat and mass transfer in all inter-



 

connected zones of a building (e.g., tools like EnergyPlus, ESP-r, and DeST). It can also be done with 

reduced-order (grey-box) RC models like ISO 13790. Kavgic et al. [227] created a detailed comparison 

between the two approaches and concluded that although the bottom-up approach was widely used in 

building energy models to study the impact of different combinations of input data and energy-saving 

measures, there were several limitations associated with those models. The most common challenge of 

this approach is the lack of publicly available input data due to privacy issues. 

 

5.3.2. Urban Building Energy Modelling Platforms 
Urban building energy modelling (UBEM) platform can provide key support for energy management of 

city-scale buildings during planning, design and operation stages. Popular platforms include SUNtool 

[237], CitySim [238], UMI [239], CityBES [240], TEASER [241], and HUES [242] . These platforms often 

apply a bottom-up approach for energy modeling at the urban scale. UBEM tools like CityBES are designed 

for urban buildings modeling, analysis and visualization. It uses an international open data standard, 

CityGML, to represent and exchange 3D city models. CityBES employs EnergyPlus to simulate building 

energy use and savings from energy-efficient retrofits. It can be used for urban building energy 

benchmarking, energy retrofit analysis, renewable energy analysis, building performance visualization, as 

well as urban climate data analysis and visualization.  

UBEM platforms also rely on inputs of occupant schedules. There are three major modeling approaches 

of occupant behaviours in UBEM: static schedules, stochastic generation of schedules and 

stochastic/probabilistic models. Static schedules rely on pre-defined temporal schedules of occupants, 

lighting, plug-loads and HVAC system operation, and are used in CityBES and UMI [239, 240]. Stochastic 

schedule generation, which is used by HUES and TEASER, combines Richardson’s model [243] to 

generate schedules for occupant presence and other behaviours [241, 244]. These schedules are only 

related to time, building type and occupant number. The stochastic model, however, considers the 

occupant presence model from Page et al. [245]. In the stochastic model, the probability of occupant’s 

presence can be calculated based on the Markov Chains and their previous status. The present states of 

lighting, window, blind and appliances rely on the probability of corresponding actions. This model is 

applied in SUNtool and CitySim [237, 238, 246, 247]. Also, different UBEM platforms use different 

building geometry model definitions, rely on different thermal energy simulation engines, and expect 

different model outputs and applications. Table 5 offers an overview of occupant behaviour modelling 

approaches in UBEMs. 

Table 5: Overview of occupant behaviour modelling approaches in urban-scale building energy 

simulation platforms 

Platform City model 

generation 

Occupant behavior 

rules 

Thermal 

 en

ergy simulation 

engine 

Outputs 



 

 

 

 

5.4. Critical Gap Review and Recommendations 
Modelling human-building interactions at the urban-scale have been largely enabled due to large-scale 

datasets originating from various building systems. However, access to these datasets is typically 

restricted, especially if they are obtained through building automation systems. In many studies, the 

analysis of human-building interactions only focused on a handful of buildings in which researchers were 

able to gain permissions for retrieving data from the BMS. Although smart and connected thermostats can 

theoretically overcome this issue since data is stored centrally or in cloud platforms, many smart 

thermostat companies (e.g., Google Nest) do not provide access to their data, while those that provide 

them only cover residential buildings, thus no information is available for other building types. Another 

limitation when using such data to investigate human-building interactions at the urban-scale is that 

SUNtool Based on XML input 

files defined by 

users through GUI 

Stochastic models Gray-box model Operational 

building energy use 

CitySim Based on XML input 

files defined by 

users through GUI 

Both 

 determinist

ic schedules and 

stochastic rules 

Custom R-C 

model 

Operational 

building energy use 

UMI Defined by users in 

Rhinoceros 3D 

environment 

Deterministic 

schedules 

EnergyPlus Operational 

building energy use 

profiles, 

daylighting, 

outdoor comfort, 

and walkability 

analysis 

CityBES Automatic genera- 

tion from CityGML 

/ GeoJson 

Deterministic 

schedules 

EnergyPlus 
Operational 

building 

 energy  use, 

retrofit analysis 

HUES Reuse of existing 

models, or defined 

by user-self 

Stochastic 

generation of 

occupancy and 

appliance use 

schedules 

EnergyPlus Operational 

building energy 

use, optimization 

results of buildings 

and energy system 

TEASER Automatic 

generation from 

CityGML 

Both deterministic 

schedules and 

stochastic 

generation of 

schedules 

ROMs in 

Modelica 

Operational 

building energy use 



 

despite their relatively broad coverage of thousands of buildings, they are not randomly sampled and 

represents a specific segment of consumers (e.g., early technology adopters). Therefore, one of the main 

challenges is to generalise results to draw conclusions on overall trends of human-building interactions at 

the urban-scale. One solution to address this challenge is to validate findings with different datasets that 

are randomly sampled to be statistically representative, such as time of use surveys although they do not 

typically have the same level of granularity. Concerning environmental comfort inference on citizens’ well-

being and energy consumption, interesting results have been achieved in perception modelling and 

mapping by taking into account each different comfort spheres singularly. These models are mainly 

physical-based model, e.g. accounting for urban energy balance or sound propagation laws, while human 

physiological and psychological filters to the physical data are still not critically addressed. A further effort 

of the scientific community should thus move forward a comprehensive assessment of human comfort 

perception simultaneously accounting for different comfort spheres and domains, i.e. physical, 

psychological, and physiological. In this perspective, new research is needed for novel models taking 

advantage of different data collection methods and thus, the type and amount of data needed. 

 

6. Future Directions on Urban-Scale Occupant Behaviour and Energy 

Modelling 

This section provides discussions, perspectives and future directions based on the review. Specifically, 

privacy issues and data quality are discussed, and perspectives on new ways of multidisciplinary modelling 

are presented.  

As cities’ major energy and environmental goals cannot be met by a single sector, there is a need to 

integrate the modeling and analysis of multi-domain models including buildings, transportation, urban 

climate, and the electrical grid. Representing and capturing the inter-dependencies of these sectors (e.g., 

buildings release heat to the urban environment which leads to temperature raise; the urban temperature 

rise further influences energy demand in buildings, i.e., increasing cooling demand and reducing heating 

demand) are crucial to achieve optimization of planning, design and operation of urban energy and 

environment. Future developments of a computational framework are needed to facilitate the coupled 

simulation of multi-physics models at multi-scale, leveraging the emerging urban big data, exascale 

computing, and advances in artificial intelligence.  

Major challenges in urban scale data include: (1) low-cost and reliable sensing technologies that can be 

deployed at the urban scale to continuously collect the data, (2) standardized data models and schema to 

represent the collected data for interoperability and ease of applications, (3) a business model to motivate 

and enable creation and sharing of the data, and (4) applications to demonstrate the application and values 

of the collected data.  

Standardized data models and schema are particularly crucial for developing UBEMs to simulate energy 

use in neighbourhoods, districts and urban areas. Although some of the existing UBEM tools automate 

model generation using GIS-based building datasets. These datasets, if available, are typically provided in 

very different formats which requires significant manual consolidation efforts. Because these datasets also 

originate from different sources (e.g. tax assessment records, CityGML, or land use data), data quality is 



 

typically not consistent and requires manual checking and cleaning.  

To deal with the challenges of collecting high-quality data from multiple urban areas, in particular high-

quality labels or annotated data, approaches such as semi-supervised learning [248], or transfer learning 

[249] could be used to adapt data-driven models from one city to another. However, for these techniques, 

or similar black-box AI techniques, to be widely accepted in practice, not just in research domain, future 

works require models that enable feedback and collaboration across disciplines, incorporating expert 

views of the models. Thus, models need to be explainable. More efforts that enable neural network and 

deep learning models to be explainable is required, for models to be trustworthy and transparent, and 

relevant actions to be prescribed or recommended. This is why integrating physics-based models with 

machine-learning (or deep-learning) is a promising research direction in this field, requiring physics-

guided design of ML or DL architectures [12] for applications in this field. 

Finally, occupant behaviour is influenced by many factors including physical, biological, psychological, 

and social (the interaction among occupants). Unfortunately, there is not a single model considering all 

the aforementioned factors. Fundamentally, future computational models of occupant behaviour need to 

integrate with domain experts and modeling methods from building science, social science and psychology 

to simulate the root cause of occupant behaviour within the built environment. Future research also may 

include the study of causal relationship among different factors. Furthermore, modeling occupant 

behaviour from a single building to the urban scale is another challenge. A few research questions could 

be explored: 1) level of details (LoD) of the modeling methods: a fine-grained occupant behaviour for a 

single space or a building may not be applicable for urban scale. It worth to explore the model complexity 

v.s. accuracy of modeling occupant behaviour; 2) energy v.s. urban infrastructure: at a single building 

level, almost all studies of occupant behaviour are related to the energy consumption of the building. 

However, at an urban scale, modeling occupant behaviour is not only for the urban scale energy 

consumption but also urban infrastructures such as transportation or urban mobility services. Although 

the averaging effect of occupant behaviour at the urban scale may limit its influence on total energy use, 

their effect on spatial and temporal peak demand patterns can be significant.  

Based on the above discussion, we categorize future research directions on urban-scale occupant 

behaviour and energy modelling into different categories and illustrate them in Figure 4. 

 



 

    

Figure 4: Taxonomy of future research directions on urban-scale occupant behaviour and energy 

modelling 

 

7. Conclusion 
In this paper, we present a holistic multidisciplinary overview of the opportunities and challenges from 

occupant-centric urban data for modelling occupant and mobility behaviour and energy usage patterns at 

the urban scale. We started by reviewing concepts and definitions of occupant-centric urban data. We then 

review multiple datasets that have been used to capture human activities at various levels of details, from 

spatial data, occupancy data, building system and control data, crowdsourced sensor data, to mobility and 

survey data. Several categories of applications are reviewed, ranging from the analysis of building 

functionality to occupant and energy usage behaviour at building and urban scale,along with the range of 

approaches and methodologies that have been proposed, targeting the aforementioned applications. . 

Lastly, we discussed how different disciplines could collaborate on this challenging and complex problem 

of modelling occupant and energy behaviour at the urban scale, for the sustainable design, planning, and 

development of our future cities, and present several key problems and research directions for modelling 

with occupant-centric urban data.   
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Appendix A. Steps for Urban big data processing for data driven modelling 

Appendix A.1. Data Acquisition 
Data acquisition from open data released by governments, voluntary-generated (e.g. crowdsourced), or 

system-generated (e.g. IoT, sensor data loggers) sources is the very first step in data-driven modelling. 

Since data acquisition is generally a pipeline of data crawlers and loggers collecting data from open data 

and APIs. Since occupant-centric urban data can capture activities from a wide variety of individual users 

and organisations occupying the built environment, often there is no schema that has been designed to fit 

the purpose of the data collection. Various platforms have been designed to acquire data from different 

sources. For example, one of the European FP7 projects, SOCIETIES (Self Orchestrating CommunIty 

ambiEnT IntelligEnce Spaces) design and develop platform for pervasive communities to collect urban 

mobility data [250]. The nature and types of the urban data, which are potential for implementing data-

driven approaches for occupant behaviours and energy usage modelling will be discussed further in 

Section 3. 

 

Appendix A.2. Data Preprocessing and Representation 
Urban data collected from various platforms come in different structure and format. Hence, data 

preprocessing or cleaning is required in data-driven modelling. For example, occupant-centric building 

and energy data are usually noisy, which requires special attention. Data preprocessing involves data 

curation and cleaning of noisy data. This may involve imputation of missing data as well. Sometimes data 

fusion techniques are applied to combine the data from heterogeneous sources [251].  

As discussed, urban data has different structure and format. Since there is often no established schema 

before the need for urban big data collection arises, therefore, various methods are applied to represent 

data in a common format.  

One popular approach to represent aggregated data from multiple sources is using matrices or tensors. 

Matrix-based approaches such as collaborative filtering and latent matrix factorization are popular in 

modelling the space occupancy behaviours.  

Another popular representation approach is graphs or networks. In a real-world scenario, many 

applications regarding space occupancy behaviours can be represented with graph-based approaches. A 

graph is used to characterize the interaction between objects which consists of a set of nodes and edges 

[252]. The nodes generally represent some data points, and the edges connect the nodes based on the 

relationship between the nodes. 

 

Appendix A.3. Feature Extraction and Engineering 
  

Once, data is processed for implementation, and feature engineering is required to develop a predictive 

model. Feature engineering involves extracting useful features from different raw data in the data mining 

task. It determines the important factors in machine learning model for a specific task [253]. The extracted 

features represent either spatial or temporal or spatio-temporal characteristics. Sometimes, feature 



 

normalization, feature selection may be necessary before applying the extracted features from urban data 

in predictive models.  

With deep neural networks, this step is often skipped completely, with raw data that have been represented 

as matrices or graphs, as discussed in the previous section, channelled directly into deep learning models. 

 

Appendix A.4. Analysis and Modelling 
  

Analysis and modelling is a decider step in data-driven modelling. Predictive models are used to decide 

the occupant behaviours or energy usage in building or city level. A few machine learning methods have 

been applied in analysing and modelling big data. It includes clustering, classification, regression and deep 

learning-based models.  

Clustering is used in identifying the patterns of energy usage in building [254, 255]. Some popular 

classification algorithms are Random Forest [256], Support Vector Machine [257], Logistic Regression 

[258], Decision Tree [259], which have been used in predictive modelling of building energy and occupant 

behaviour.  

Regression is another predictive modelling approach, which is used for predicting numerical outcomes. 

Each model is trained with a set of features to predict the numerical output value. Some popular regression 

algorithms are Linear Regression [260], Negative Binomial [261] etc. Energy usage density is generally a 

numerical value. Therefore, regression-based approaches have been widely used to predict future energy 

consumption [262]. 



 

 

Table A.6: Overview of different deep learning neural networks 

Types of DNN Main Usage 

Auto-Encoder (AE) [263] Feature extraction and de-noise 

Convolutional Neural Network (CNN) [264] Image-processing, object recognition and tracking 

Recurrent Neural Network (RNN) [265] Time-series prediction 

Graph Neural Network (GNN) [266] Traffic, optimization problem and biology 

Generative adversarial network (GAN) [267] Data augment, video games and advertisement 

Reinforcement Learning [268] Navigation, game play and control system 

 

Recently, deep learning has attracted extensive attention in predicting building energy consumption [269, 

234]. However, the different deep learning architectures listed in Table A.6 can be used for various 

purposes. 

 

Appendix A.5. Model Interpretation 
  

Data-driven models need to be interpreted to help and improve decision making processes in specific 

application areas. Several papers [270, 271] refers to this step as to reach actionable knowledge as the 

goal of data ingestion. The interpretability of the models, however, varies between different machine 

learning models. Deep learning models are least interpretable. Statistical models like Naive Bayes or 

decision-tree are more interpretable.  

Several techniques are used to extract insights from outputs of data-driven models, aside from 

visualization. Correlation analysis across features can be used to evaluate the most dominant variables 

influencing the performance of the models. The scoring and ranking of different contributing variables 

can also be derived from ablation study and statistical test, such as the paired t-test. Sensitivity analysis 

can be used to check the robustness of the models against the input data or sample size. Causality analysis 

can be used to check whether a variable affects another independent variable. This, however, needs to be 

done with rigorous control experiments and causality testing, and clear hypothesis and metrics to be 

established. 

 

 

 

 

 



 

Appendix B. Table of Terminologies 

Table B.7: Table of Terminologies 

Abbreviation Definitions 

AI Artificial Intelligence 

API Application Programming Interface 

BMS Building management system 

CBECS Commercial Building Energy Consumption Survey 

CDR Call Detail Records 

CFD Computational Fluid Dynamics 

CityBES 

DL 

City Building Energy Saver 

Deep Learning 

DNN Deep learning neural network. List of different DNN in Table A.6 

EPR Exploration and Preferential Return 

FATE Fairness, Accountability, Transparency, and Ethics in AI 

GIS Geographic information system 

HMM Hidden Markov model 

HUES Holistic Urban Energy Simulation Platform for Effective Model Integration 

IoT Internet of Things 

LBS 

ML 

Location-Based Service data 

Machine Learning 

NHTS National Household Travel Survey 

NPTS Nationwide Personal Transportation Survey 

POI Point of Interest 

RC First-order Resistance-Capacitance model 

ROMs Reduced Order Models 

SUNtool New modelling paradigm for simulating and optimising urban sustainability 

TEASER Open tool for urban energy modelling of building stocks 

TimeGeo Modeling framework for urban mobility 

UBEM Urban Scale Building Energy Modelling 

UCM Urban Canopy Model 

UMI Urban Modeling Interface 
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