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Abstract

Advances in sequencing technologies have tremendously reduced the time and costs associated 

with sequence generation, making genomic data an important asset for routine public health 

practices. Within this context, phylogenetic and phylogeographic inference has become a popular 

method to study disease transmission. In a Bayesian context, these approaches have the benefit of 

accommodating phylogenetic uncertainty and popular implementations provide the possibility to 

parameterize the transition rates between locations as a function of epidemiological and ecological 

data to reconstruct spatial spread while simultaneously identifying the main factors impacting 

the spatial spread dynamics. Recent developments enable researchers to make use of travel 

history data of infected individuals in the reconstruction of pathogen spread, offering increased 

inference accuracy and mitigating sampling bias. We here describe a detailed workflow on how to 

reconstruct the spatial spread of a pathogen through Bayesian phylogeographic analysis in discrete 

space using these novel approaches implemented in BEAST. The individual protocols focus on 

how to incorporate molecular data, covariates of spread and individual travel history data into the 

analysis.

INTRODUCTION

Bayesian Evolutionary Analysis Sampling Trees (BEAST) [Suchard et al., 2018] is a 

software package that provides a general framework for phylogenetic inference and 

evolutionary hypothesis testing using molecular sequence data [Drummond and Rambaut, 

2007, Drummond et al., 2012, Suchard et al., 2018]. As such, BEAST employs a 

combination of different types of models (including but not limited to molecular clock 

models, coalescent models and substitution models) to infer time-calibrated phylogenetic 
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trees from an alignment of time-stamped sequences. Phylogeographic analyses based on 

simple ancestral trait reconstruction models incorporate sampling locations as additional 

data. For discrete locations, the trait evolution process, modelled as a continuous-time 

Markov chain process, can be parameterized in terms of covariates to help uncover the key 

factors that facilitate or prevent the spread of a pathogen. Inference under these models 

is performed through Markov chain Monte Carlo (MCMC) sampling and the likelihood 

evaluations make use of BEAGLE, a high-performance computational library for statistical 

phylogenetics [Ayres et al., 2019]. BEAST is widely used in the field of phylodynamics and 

molecular epidemiology of infectious disease as it allows obtaining insights from molecular 

data through an expanding array of statistical models and estimation procedures.

Here, we focus on Bayesian phylogeographic inferences that aim to answer the question 

of “how did an epidemic spread through space and time?” through jointly reconstructing 

the evolutionary and geographical history of a pathogen population in the form of 

(geographically) annotated time-scaled phylogenies. Specifically, we focus on the discrete 

model in which transition rates are a function of potential predictors of spatial spread 

according to a simple generalized linear model (GLM). Such an approach has previously 

enabled researchers to, for example, assess the impact of air travel on the global spread of 

influenza [Lemey et al., 2014]. Importantly, the GLM formulation generally also offers a 

sparser parameterization of the spatial transition process as it avoids having to estimate all 

pairwise transitions rates, which scale quadratically with the number of locations and can be 

difficult to inform.

While phylogeographic analyses incorporate the location of sampling as a discrete trait 

associated with each pathogen genome, it is possible that sampled patients had recently 

travelled to different locations. In fact, during epidemics travelers may be specifically 

screened if they return from areas with high incidence. This has been the case for SARS-

CoV-2 and it has motivated the development of model extensions that incorporate the 

specific times and locations of travel [Lemey et al., 2020]. This may be particularly useful 

for capturing diversity in the locations that remain under-sampled, and as such, it can 

mitigate bias associated with disparate sampling efforts. These are important considerations 

because the computationally convenient ancestral reconstructions are highly sensitive to 

sampling bias.

We here provide four related protocols to reproduce the travel history-aware 

phylogeographic reconstructions performed in [Lemey et al., 2020]. Protocol 1 introduces 

the GISAID database [Elbe and Buckland-Merrett, 2017] (https://www.gisaid.org/) and 

provides the required steps to construct a SARS-CoV-2 multiple sequence alignment 

from this database. In Protocol 2, we provide instructions on how to set up a discrete 

state phylogeographic inference under the GLM parametrization using BEAUti, a GUI 

tool shipped with BEAST. Protocol 3 introduces an automated script to modify a BEAUti-

generated XML file to incorporate travel history data, which can subsequently be run 

using BEAST. Finally, in Protocol 4, we guide the user through the process of visualizing 

individual spatial dispersal histories from the posterior distribution of trees estimated by 

BEAST.
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PROTOCOL 1: CREATING A SARS-CoV-2 MSA USING SEQUENCES FROM 

GISAID

The first step in any phylogenetic or phylogeographic analysis is to obtain a high-quality 

multiple sequence alignment (MSA). The largest publicly accessible repository of genomes 

is available through the GISAID database. The GISAID initiative provides a platform to 

openly share genomic data of influenza viruses as well as SARS-CoV-2 under specific rules 

[Elbe and Buckland-Merrett, 2017]. Access to the database is free (https://www.gisaid.org/

registration/register/), but requires the user to register and agree to GISAID’s terms of use in 

order to obtain access.

This protocol describes how to construct a SARS-CoV-2 MSA from sequences downloaded 

from GISAID. Specifically, we will construct an alignment for the 282-taxa dataset analyzed 

in [Lemey et al., 2020].

Necessary Resources

Hardware—Standard computer running Linux, MacOS or Windows 10.

Software—A modern web browser (Google Chrome and Mozilla Firefox recommended).

The latest MAFFT [Katoh and Standley, 2013] version (v7.453 used in this protocol). The 

latest Aliview [Larsson, 2014] version (v1.26 used in this protocol).

A terminal emulator running a standard Unix shell.

Note: For Windows, a BASH shell can be installed through the Windows Subsystem for 
Linux. For more information, see https://docs.microsoft.com/en-us/windows/wsl/.

Files—A list of GISAID accession numbers/identifiers.

A FASTA file with the untranslated regions (UTR) from the SARS-CoV-2 reference genome 

sequences.

Example files can be found at

https://github.com/hongsamL/travHistProtocol/tree/main/files/Protocol1

Protocol steps and annotations

1. Search and download the desired sequences in the GISAID database.

Log on to GISAID and click on EpiCoV™’s Browse tab to access a table 

with all available SARS-CoV-2 sequences in the database. To bulk download 

sequences by accession ID, click on the Fulltext button, paste your comma-

separated list of accessions (see Files for an example) in the search box, and 

download the FASTA sequences using the download button (Figure 1). In this 

example, we will save the sequences in a file called gisaid_selection.fasta.
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Note: We can also use the EpiCoV Browse portal to download a custom selection 
of genomes. On the header section of the table you will see multiple search fields 
and dropdown menus to filter sequences according to different criteria.

2. Remove whitespace from the FASTA file:

sed -i.bkp "s//_/g" gisaid_selection.fasta

Note: To avoid potential issues when parsing the FASTA headers with 
whitespaces (e.g. in country names), we replace all whitespace in the file with 
underscores using sed. We use the -i flag to find and replace the file in-place 
while keeping a backup of the original file.

3. Align the sequences using MAFFT

cat utr.fasta >> gisaid_selection.fasta

mafft --thread -1 --nomemsave gisaid_selection.fasta > 

gisaid_aln.fasta

Note: To remove potential sequencing errors in the error-prone 5’ and 3’ ends 

of the virus, we include the reference sequences for the 5’ and 3’ UTRs of the 

SARS-CoV-2 genome (see example files). We do this so that we can later trim 

these regions from the final alignment. We concatenate these sequences to the 

FASTA file containing our genomes of interest, and align all sequences using 

MAFFT.

4. Manually trim UTRs in the MSA using Aliview. In Aliview, visually identify 

the UTR sequences and manually select the corresponding sites. Remove the 

selected sites using the Edit menu. Remove the now-empty reference sequences 

and save the trimmed MSA (Figure 2).

PROTOCOL 2: SETTING UP A DISCRETE TRAIT PHYLOGEOGRAPHIC 

RECONSTRUCTION IN BEAUTI

Performing Bayesian phylogeographic inference while accommodating individual travel 

history data constitutes an extension of the standard Bayesian ancestral reconstruction 

approach available in BEAST [Lemey et al., 2009]. We will first generate an XML file 

for the phylogeographic inference using the interactive BEAUti graphical application, which 

will serve as a basis for Protocol 3. BEAUti facilitates the design of the analysis you want 

to perform in BEAST and generates an XML file that will serve as the input file for BEAST 

or as the basis for manually specifying advanced models not available in BEAUti. The 

BEAUti-generated XML file contains all the required data, the models (and priors) that were 

selected in BEAUti, and the computational settings which will be used to run the MCMC 

algorithm that will collect samples of all relevant parameters (including the phylogenetic 

tree with annotated ancestral locations) from the joint density.
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This protocol describes how to set up a phylogeographic analysis with a GLM extension 

to simultaneously reconstruct spatiotemporal history and test the contribution of potential 

predictors of spatial spread using BEAST [Lemey et al., 2014]. This extension parameterizes 

each rate of among-location movement in the phylogeographic model as a log linear 

function of the provided predictors. In this example, we will use the MSA generated in 

Protocol 1 to set up a phylogeographic GLM reconstruction using a flight connectivity 

matrix, a great-circle distance matrix and an asymmetry matrix as covariates (but see 

[Lemey et al., 2020] for more detailed information).

Necessary Resources

Hardware—Standard computer running Linux, MacOS, or Windows.

Software—Latest BEAUti version (v1.10.5)

Files—Multiple sequence alignment Tab-delimited metadata file

Covariate matrices in CSV format

Example metadata and covariate files available at https://github.com/hongsamL/

travHistProtocol/tree/main/files/Protocol2

Protocol steps and annotations

1. Import the MSA from Basic Protocol 1 into BEAUti.

Load the MSA into BEAUti by selecting Import Data from the File menu (do not 

use Open…). You can also do this by dragging the FASTA file into the Partitions 

panel.

2. Specify the sampling dates for the tips.

Select the Tips tab and check the “Use tip dates” box. By default, all taxa will 

show as having a date of zero (i.e., all sequences were sampled at the same 

time in the present). To specify each sampling date, select “Import Dates” and 

load the metadata file. This metadata file contains a tab separated table mapping 

the FASTA header of each sequence in the alignment with the corresponding 

sampling date. When loading the file, select the “Parse calendar dates with 

variable precision” option. This allows for taxon dates to have different degrees 

of resolution (e.g., year-month-day vs. year-month). We estimate the sampling 

dates for those sequences without day-level resolution by selecting “Sampling 

uniformly from precision” in the “Tip date sampling” menu at the bottom of the 

table.

Note: It is also possible to specify the sampling dates without using a metadata 

file. This is done by parsing the FASTA headers of each sequence. To do this, 

click on “Parse Dates”, and specify the rules for delimiting the date from all 

taxon labels. For an example of what this looks like, see [Hill and Baele, 2019] 

Figure 2a.
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3. Specify the sampling location of each taxon as a discrete trait

Click on the Traits tab. To associate each taxon with a sampling location, click 

on “Import traits” and select the metadata file (Figure 3). This will create a 

new trait for each column on the metadata file. Delete all non-relevant traits 

by clicking on the “−” button at the bottom-left of the page (keep only the 

“location” trait for this example). Select the desired trait and click on “create 

partition from trait”. A new partition containing the trait data will be created 

under the Partitions tab.

Note: It is also possible to add a discrete trait without using a metadata file. This 

is done by parsing the FASTA headers of each sequence. To do this, click on 

“Add Trait” to create a new trait with a corresponding data partition. Select all 

taxa and click on “Guess trait” values to parse the trait values from the taxon 

labels.

4. Set up the nucleotide and trait substitution models.

Click on the “Sites” tab. Following [Lemey et al., 2020], we will specify an 

HKY+Γ nucleotide substitution model, and a GLM-CTMC for the location 

trait. Load the covariates by clicking on “Setup GLM” and “Import Predictors” 

(Figure 4). In this example, we inform the rates of spread between locations 

using three predictors: a flight matrix containing air travel data between 

locations, a distance matrix containing intra-continental distances, and an 

asymmetry matrix where entries for transitions “from” and “to” Hubei are 

denoted with 1 and −1 respectively. Check the “Log” and “Std” boxes to log-

transform and standardize the air travel and distance GLM predictors.

Note: In this context, the terms ‘predictor’ and ‘covariate’ are used 

interchangeably. By default, each predictor name will be the same as the name 

of the file it originates from. Non-pairwise covariates can also be setup as origin 

and destination predictors in this window. Predictor files are comma-separated 

value (CSV) files formatted in two different ways depending on the nature of the 

predictor. For pairwise predictors, the CSV file is in the form of a square matrix 

with the different locations as column and row names alphabetically ordered, 

with rows denoting the origin and columns the destination. For origin-destination 

predictors, the CSV file is in the form of a two-column table with location names 

alphabetically ordered and predictor values. You can also specify new predictor 

names by double clicking on each name, which allows you to enter a name of 

your choosing.

5. Specify a clock model.

Following the model specifications in [Lemey et al., 2020], click on the “Clocks” 

tab to specify a strict clock model for both the nucleotide and trait partitions.

Note: BEAST analyses operate under the assumption of a molecular clock 
to estimate time-stamped phylogenies from the molecular sequence data 
and associated sampling times. For this to hold valid, there needs to be 
sufficient temporal signal in the data (see the section Critical parameters and 
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troubleshooting). The presence of temporal signal in a data set can be assessed 
using TempEst [Rambaut et al., 2016] and more formally tested using Bayesian 
Evaluation of Temporal Signal (BETS) [Duchene et al., 2020]. For more 
information on the different molecular clock models available in BEAST: https://

beast.community/clocks

6. Specify a demographic model.

Click on the “Trees” tab to specify the Tree prior. Following [Lemey et al., 

2020], we specify an exponential growth coalescent model parameterized with a 

growth rate parameter. We refer to http://beast.community/tree_priors for a more 

detailed explanation on a subset of the available coalescent models in BEAST.

Note: By default, BEAST will initialize the analysis with a randomly generated 

starting tree. It is also possible to start the analysis from a user-specified time-

scaled phylogeny. This is usually done to reduce the burn-in time required for the 

tree topologies to converge. Specify a starting tree by clicking on “Import Data” 

under the “File” menu, to load a phylogenetic tree in Nexus format into BEAUti.

7. Set up the ancestral state reconstruction for the location trait.

Click on the “States” tab and select the location partition. Check the 

“Reconstruct state change counts” and “Reconstruct complete change history 

on tree” boxes to save complete realizations of the spatial spread process on the 

output trees. Be warned that this latter option might lead to large file sizes.

8. Specify the priors.

Click on the “Priors” tab. Following [Lemey et al., 2020], we use default priors 

and only specify a Lognormal prior with mu=1 and sigma=10 for the effective 

population size (where mu and sigma represent the log-mean and log-standard 

deviation), and a Laplace prior with mean=0 and scale=100 for the exponential 

growth rate parameter.

Note: BEAST aims to offer sensible default priors when informative 

prior information is unavailable, most of which can be considered largely 

uninformative. A wide range of prior distributions is also available to customize 

each analysis as needed.

9. Set up the transition kernels.

Click on the “Operators” tab. Identify the tip-date sampling transition kernels 

in the table. These have the description “Uniform sample from precision of 

age of this tip”. The parameters associated with these transition kernels tend to 

converge rapidly and have good mixing (i.e., their effective sample size – or 

ESS – accumulates rapidly). Decrease the weight of these operators to 0.25 but 

leave the weights of the other transition kernels at their default values, to sample 

these parameters less frequently so that the analysis gets to spend more time on 

estimating other parameters of interest.
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Note: Transition kernels (called “operators” in BEAST) are used to propose 

new values for each parameter being estimated during the analysis. Different 

combinations of transition kernels can be used to customize the analysis as 

needed. For example, we can remove transition kernels to fix the value of certain 

parameters to their starting values (e.g. fixing the rate of the molecular clock or 

estimating spatial spread on a fixed user-provided tree).

10. Set up the MCMC options and generate the BEAST XML file.

Click on the “MCMC” tab. Set “Length of chain” to 200,000,000 states and “Log 

parameters every” to 100,000 states. This will thin the MCMC results so that 

only 2,000 samples are collected by the end of the run. Set your file name stem 

to generate the desired output file names (e.g., 282_GISAID_sarscov2), and click 

on “Generate BEAST File” to create the BEAST XML file for this analysis.

Note: Thinning consists of storing only every nth sample from an MCMC 

analysis. This subsampling is performed to decrease the autocorrelation in the 

posterior sample and reduce the file size of the output. This can be important 

since Bayesian phylogenetic analyses often require very long chains and storing 

every single state would be prohibitive for file storage.

PROTOCOL 3: PHYLOGEOGRAPHIC RECONSTRUCTION INCORPORATING 

TRAVEL HISTORY INFORMATION

Phylogeographic reconstruction using discrete locations has been shown to be sensitive to 

spatiotemporal sampling bias. The ancestral reconstruction of locations will depend on the 

availability of samples from each location. In practice, this means that over/under-sampling 

of sequences from a given location can greatly impact the estimated ancestral locations. 

One way to mitigate sampling bias is through the incorporation of available travel history 

information from infected individuals. Travel history data can be used to correct for gaps 

in sampling by allowing for ancestral nodes to be in a given location even when molecular 

sequence data for that location are not available.

This protocol explains how augment a phylogeographic analysis generated in BEAUti by 

incorporating individual travel history data. In this example, we will use the XML file 

generated in Protocol 2 and modify it to include the available travel history data (See 

[Lemey et al., 2020] for more detailed information). Importantly, BEAST requires the 

high-performance BEAGLE library [Ayres et al., 2019] to be installed in order to optimize 

computational performance on a variety of hardware resources.

Necessary Resources

Hardware—Standard computer running Linux, MacOS, or Windows.

A CUDA- or OpenCL-compatible GPU is optional, but recommended for speeding up the 

analyses

Software—Python v3.6+ with packages numpy and lxml BEAGLE v3+
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Latest BEAST jar file (v1.10.5) (provided with this protocol)

add_travel_history.py Python script (provided with this protocol)

Files—XML file for a phylogeographic analysis (using a GLM parameterization) set up in 

BEAUti Travel history metadata CSV file Augmented covariate data files

Example files are provided in the repository https://github.com/hongsamL/travHistProtocol/

tree/main/files/Protocol3.

Note: The example in this protocol assumes an XML file for a phylogeographic GLM 

reconstruction with new travel history locations not present in the original BEAST XML 

file generated by BEAUti. Covariate files augmented to include the new locations are thus 

required to accommodate for the increase in location state space.

Protocol steps and annotations

1. Update the BEAST XML file to incorporate travel history data

python add_travel_history.py --xml 282_GISAID_sarscov2.xml

       --hist travel_metadata.csv

       --covariate augmented_flight_matrix.csv

       --covariate augmented_intra_cont_dist.csv

       --out 282_GISAID_sarscov2_travelHist.xml

Note: Although this example uses a phylogeographic GLM analysis, the 
add_travel_history.py script also works for standard discrete phylogeographic 
models using symmetric and asymmetric CTMC parametrizations. For such 
cases, run the same command without the --covariate flags. This script also 
requires for the travel history metadata to follow a specific format (Figure 5). 
The metadata file is in CSV format and must contain the following columns: 
“name” (taxon name), “travelHistory” (travel location), “travelDays” (date of 
travel as days before to sampling date), “priorMean” and “priorStdev” (prior 
specifications for the mean and standard deviation of a normal prior on travel 
dates when exact data are unavailable).

2. Run the updated XML file using BEAST

java -cp beast.jar dr.app.beast.BeastMain -seed 2020

       -beagle_double

       -beagle_gpu

       -save_every 1000000
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       -save_state travelHist.checkpoint

        282_GISAID_sarscov2_travelHist.xml

Note: Here, we run BEAST on the command line using the latest build of 
BEAST. You can create your own beast.jar file by checking out and compiling 
the main branch of the beast-mcmc GitHub repository. We specify a starting 
seed with the -seed flag, and use the -beagle gpu flag to accelerate the 
likelihood computations using a graphics processing unit (GPU) (only applicable 
if you have a powerful GPU with sufficient double precision – or FP64 – 
compute performance available). This option is recommended when available, 
as using a GPU reduces runtime by accelerating likelihood computations when 
performing phylogeographical analyses on large datasets. Be sure to check the 
technical specifications of the GPU you want to use; ideally, at least 3 TFLOPS 
FP64 performance is recommend. We also take advantage of the BEAST 
checkpointing functionality [Gill et al., 2020] to save a snapshot of the MCMC 
run into travelHist. checkpoint every 1,000,000 states. This allows us to resume 
the analysis from the checkpoint in case the run becomes interrupted, or more 
iterations are required than initially anticipated.

PROTOCOL 4: VISUALIZING ANCESTRAL SPATIAL TRAJECTORIES FOR 

SPECIFIC TAXA

Necessary Resources

Hardware—Standard computer running Linux, MacOS, or Windows.

Software—Latest BEAST jar file (v1.10.5) (provided with this protocol)

R with package MarkovJumpR (https://github.com/beast-dev/MarkovJumpR)

Files—Trees output with Markov jump annotations from a BEAST phylogeographic 

analysis with travel history

Example .trees file provided in the repository https://github.com/hongsamL/

travHistProtocol/tree/main/files/Protocol4

Protocol steps and annotations

1. Extract all Markov jump histories for an isolate of interest

java -cp beast.jar dr.app.tools.TaxaMarkovJumpHistoryAnalyzer

       -taxaToProcess "hCoV-19/Brazil/

SP-02/2020∣EPI_ISL_413016∣2020-02-28"

       -StateAnnotation location
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       -burnin 100

       -msrd 2020.1748633879781

        282_GISAID_GLM.location.history.trees 

EPI_ISL_412975_MJhist.csv

Note: The BEAST jar file packages a number of standalone applications that 
can be accessed by using the -cp flag when calling Java from the command 
line. Here, we use the TaxaMarkovJumpHistoryAnalyzer application to extract 
all Markov jump histories for isolate EPIJSL 413016, into a CSV file. This 
application takes a trees file with complete Markov jump or state change history 
as an input (which is being generated by running the XML constructed in the 
protocol), and outputs the posterior set of spatial trajectories for a taxon or 
selection of taxa. We specify the desired taxon labels through the -taxaToProcess 

flag and specify the annotation name of the discrete trait that was reconstructed 
using -StateAnnotation. We can also remove a number of trees corresponding 
to the burn-in using the -burnin flag and scale the output results to reflect 
chronological time instead of node heights using the -msrd flag by specifying 
the most recent sampling date. An example output file can be found in https://

github.com/hongsamL/travHistProtocol/tree/main/files/Protocol4

2. Load spatial trajectories into R.

library(MarkovJumpR)

spatial_paths <- loadPaths(fileName = "EPI_ISL_413016_MJhist.csv")

3. Inspect spatial trajectories reconstructed spatial_paths$minTime yields the 

earliest time along a spatial path across all trees 2019.892. To look at the 

frequency of locations visited across all spatial paths we type:

loc_freq <- table(spatial_paths$paths$location)

loc_freq[order(loc_freq,decreasing = T)]

which yields a frequency table of locations in descending order (Table 1). In 

this example, we see that Italy, Brazil, ChinaHubei and Switzerland appear most 

commonly across the spatial paths.

4. Set up plot colors.

We here specify four colors of choice corresponding to the four locations of 

interest that make up the spatial trajectory of isolate EPI_ISL_413016.

locations <- c("ChinaHubei", "Italy", "Brazil", "Switzerland")

locationColors <-c("#E3272F", "#31B186", "#931ECF", "#C695BD")
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locationMap <- data.frame(location = locations,

               position = c(1, 2, 3, 4))

locationMap$color <- sapply(locationColors,as.character)

5. Set up plot labels

dateLabels <- c("01-Dec-19", "15-Dec-19", "01-Jan-20", "15-Jan-20",

                "01-Feb-20", "15-Feb-20", "01-Mar-20")

6. Plot path spatial trajectories

plotPaths(travelHistPaths$paths, locationMap = locationMap,

       yJitterSd = 0.1, alpha = 0.1, minTime = 

spatial_paths$minTime,

       addLocationLine = TRUE,

       xAt = decimal_date(dmy(dateLabels)),

       xLabels = dateLabels,

       mustDisplayAllLocations = TRUE)

GUIDELINES FOR INTERPRETING RESULTS

The BEAST software package offers a flexible approach for combining demographic, 

molecular clock, nucleotide and trait evolution models to infer time-scaled trait-annotated 

phylogenies. BEAST employs Bayesian inference through MCMC to sample trees and all of 

the model parameters from the joint density (often simply called the posterior). Protocols 2 

and 3 show how to set up the different models and run the corresponding BEAST analyses 

to collect samples from the posterior. The phylogenetic trees that are sampled from the 

posterior are stored in a .trees file and samples of the model parameters are stored in a .log 

file. Here we present some of the standard applications that are commonly used to interpret 

the output that BEAST generates.

Assessing convergence

The MCMC sampling strategy is to construct a Markov chain that (eventually) converges 

to a stationary distribution, which is the joint density in the case of Bayesian inference. 

For complex models and data sets, it may take considerable time for a chain to converge. 

We can visually assess the convergence of a BEAST run by inspecting the sampled 

parameter values across an MCMC analysis. To do so, we can load a .log file into 

Tracer (https://beast.community/tracer, [Rambaut et al., 2018]), and visually inspect the 

trace plot, which shows a time series of the parameter values sampled throughout the 
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analysis. A detailed guide on how to use Tracer can be found at https://beast.community/

tracer_convergence.html

Effective sample size and parameter estimates

A characteristic of inference through MCMC is that the samples collected tend to be 

correlated. This in turn poses a challenge, since having a large number of samples does 

not guarantee a considerable reduction of the uncertainty in our posterior estimates. A 

way to control for this is to look at the effective sample size (ESS) value associated with 

parameter estimation. The ESS of a parameter sampled from an MCMC method is the 

number of effectively independent draws from the posterior distribution that the Markov 

chain is equivalent to. ESS values are expected to increase as an increasing number of 

samples are collected. Higher ESS values will result in more precise posterior estimates but 

require higher computational resources. Loading a .log file in Tracer will also show the ESS 

values and estimates for each model parameter. Note that ESS values are only defined for 

continuous parameters that are being estimated. Tracer will automatically calculate the ESS 

for all parameters part of the log file, and flag values above 100 and 200 (preferable).

Summarizing trees and phylogeographic estimates

Individually inspecting every tree from the posterior obviously constitutes an impractical 

way to interpret the MCMC results. We are thus required to summarize the distribution 

of trees sampled as a point estimate with associated uncertainties. The TreeAnnotator 

application in BEAST enables creating a maximum clade credibility (MCC) tree to 

summarize the sampled trees for this purpose. For every tree in the distribution, a posterior 

clade probability for each node (i.e., the support for a node) is calculated by computing 

the frequency of the clustering that is defined by the relevant node. The MCC tree is then 

defined as the tree that maximizes the product of the posterior clade probabilities across 

the tree. Instructions on how to use TreeAnnotator can be found at http://beast.community/

second_tutorial.

In some data sets, the posterior support for all nodes in a tree is such that many clusters 

in sampled topologies do not end up represented in the MCC tree. When that is the case, a 

point estimate of a tree is unable to capture the diverse phylogeographic histories compatible 

with the data. Protocol 4 allows us to inspect individual spatial trajectories by summarizing 

across all possible phylogenetic ancestries in the joint density. This was proposed as a 

visual summary for SARS-CoV-2 phylogeographic inferences that are poorly resolved. Each 

spatial trajectory in the joint density is represented by a stepwise curve, where vertical lines 

represent transitions between two locations, and horizontal lines time intervals during which 

the pathogen remains in the same location. The relative density of lines reflects the posterior 

uncertainty in spatiotemporal ancestry.

COMMENTARY

Background Information

Modern models for phylogeographic inference can be broadly categorized into two classes 

or types, depending on the assumptions used to model the spatial spread of a pathogen. 
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The first type consists of structured coalescent approaches that model movement in terms 

of a migration matrix and relate migration rates with population sizes in a location and 

therefore involve population size dynamics estimates for each location [De Maio et al., 2015, 

Müller et al.,2018]. Under this type of approach, the shape and structure of the genealogy 

(i.e., the pattern of time intervals between coalescent, migration and sampling events) will 

inform the geographic reconstruction. The second type consists of diffusion approaches that 

consider sampling locations as observed traits independent from the tree-generative process, 

and model movement across space using a random walk process [Lemey et al., 2009, Lemey 

et al., 2010]. Structured coalescent models are more robust to sampling bias, but due to 

the difficulty to scale this approach to larger datasets diffusion methods remain popular. 

Currently, BEAST v1.10.5 focuses on providing phylogeographic inference using CTMC 

diffusion models for discrete location data.

Diffusion models for phylogeographic inference can be further categorized depending on the 

location data type used. Discrete locations are parameterized using the same CTMC models 

as used for the sequence substitution process [Lemey et al., 2009]. In contrast, continuous 

locations are modeled using Brownian diffusion-based random walk models [Lemey et al., 

2010]. Much of the genomic data collected has a spatial resolution coarser than latitude and 

longitude, which restricts phylogeographic applications to the discrete approach.

The CTMC parameterization models movement between K discrete locations in terms 

of a K x K infinitesimal rate matrix Λ, where Λij is the instantaneous movement rate 

from location i to j. Parameterization is available for both symmetrical and asymmetrical 

transition rates, and extensions adopt Bayesian Stochastic Search Variable Selection 

(BSSVS) to limit the number of rates to only those that adequately explain the 

phylogeographic diffusion process. The GLM parameterization models the transition rates 

as a log linear combination of P of potential explanatory predictors (xij1, … , xijP), with 

corresponding coefficients (β1, …, βP) and indicator variables (δ1, …, δP) such that:

log(Λij) = ∑p = 1
P βρ δρχijp Equation 1

This model specification allows us to use BSSVS to explore the space of 2P predictor 

combinations and obtain a posterior probability on the indicator variables in order to 

determine the support for inclusion of each predictor in the model.

Incorporating individual travel history data does not require the use of a GLM and can 

be used with standard CTMC models [Lemey et al., 2009]) by augmenting the available 

dataset to include ancestral nodes associated with a known state but not necessarily with 

a known sequence [Lemey et al., 2020]. This provides a richer source of information for 

phylogeographic reconstructions as compared to only using sampling location. Ambiguous 

ancestral locations can also be allowed by integrating over all possible locations with equal 

or user specified weights [Scotch et al., 2019]. An example would be the case where an 

individual traveled to multiple locations prior to being sampled. Given that the individual 

may have become infected in any of the visited countries, we can integrate this uncertainty 
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by marginalizing over all possible locations for the unsampled ancestor when performing 

phylogeographic inference.

CRITICAL PARAMETERS AND TROUBLESHOOTING

A critical assumption for any BEAST analysis is that the data set under consideration 

constitutes a sample from a measurably evolving population (MEP). MEPs [Drummond et 

al., 2003, Biek et al., 2015] refer to time-stamped sequence data where a sufficient amount 

of molecular evolution has occurred throughout the sampling period to establish a statistical 

relationship between genetic divergence and time. A data set conforming to this criterion 

is said to contain sufficient temporal signal. A lack of temporal signal may result in poor 

behavior and unreliable divergence time estimates. Popular ways to assess temporal signal 

include explorations through root-to-tip regression of genetic divergence and sampling 

times based on maximum likelihood trees [Rambaut et al., 2016] and permuting tip date 

labels through date-randomization [Ramsden et al., 2009]. Recently, a formal way to assess 

temporal signal has been developed in a Bayesian framework using model comparison 

through Bayes factors [Duchene et al., 2020]. In cases where the temporal signal is deemed 

insufficiently strong, one can resort to adding more data to increase temporal coverage or 

using prior knowledge to inform the molecular clock rate or specific divergence times.

Another commonly encountered issue is that of low ESS values for parameters relevant to 

the analysis. At the end of a BEAST analysis, some parameters may have much higher ESS 

values associated to them compared to others. One way to increase the ESS values of a 

parameter is to increase the weight of the relevant operator in order to increase the sampling 

frequency of the (problematic) parameter (e.g., Protocol 2, step 9). Other ways to obtain 

more samples – and as a result increase the ESS value – include increasing the MCMC chain 

length and combining the output of multiple independent BEAST analyses, i.e., analyzing 

the same XML file using BEAST but with different starting seeds.

ACKNOWLEDGEMENTS

The research leading to these results has received funding from the European Research Council under the European 
Union’s Horizon 2020 research and innovation programme (grant agreement no. 725422-ReservoirDOCS) and 
from the European Union's Horizon 2020 project MOOD (grant agreement no. 874850). The Artic Network 
receives funding from the Wellcome Trust through project 206298/Z/17/Z. PL acknowledges support by the 
Research Foundation - Flanders (‘Fonds voor Wetenschappelijk Onderzoek - Vlaanderen’, G066215N, G0D5117N 
and G0B9317N). GB acknowledges support from the Interne Fondsen KU Leuven / Internal Funds KU Leuven 
under grant agreement C14/18/094, and the Research Foundation – Flanders (‘Fonds voor Wetenschappelijk 
Onderzoek - Vlaanderen’, G0E1420N, G098321N). MAS acknowledges support from the National Institutes of 
Health grant U19 AI135995 and R01 AI153044.

References

[Ayres et al. , 2019]Ayres DL, Cummings MP, Baele G, Darling AE, Lewis PO, Swofford 
DL, Huelsenbeck JP, Lemey P, Rambaut A, and Suchard MA (2019). BEAGLE 3: Improved 
performance, scaling, and usability for a high-performance computing library for statistical 
phylogenetics. Syst. Biol 68(6):1052–1061. [PubMed: 31034053] 

[Biek et al. , 2015]Biek R, Pybus OG, Lloyd-Smith JO, and Didelot X (2015). Measurably evolving 
pathogens in the genomic era. Trends Ecol. Evol, 30(6):306–313. [PubMed: 25887947] 

Hong et al. Page 15

Curr Protoc. Author manuscript; available in PMC 2021 December 15.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



[De Maio et al. , 2015] De Maio N, Wu C-H, O’Reilly KM, and Wilson D (2015). New routes to 
phylogeography: A Bayesian structured coalescent approximation. PLoS Genet., 11(8):e1005421. 
[PubMed: 26267488] 

[Drummond et al. , 2003] Drummond AJ, Pybus OG, Rambaut A, Forsberg R, and Rodrigo AG 
(2003). Measurably evolving populations. Trends Ecol. Evol, 18(9):481–488.

[Drummond and Rambaut, 2007] Drummond AJ and Rambaut A (2007). BEAST: Bayesian 
evolutionary analysis by sampling trees. BMC Evol. Biol, 7:214. [PubMed: 17996036] 

[Drummond et al. , 2012] Drummond AJ, Suchard MA, Xie D, and Rambaut A (2012). Bayesian 
phylogenetics with BEAUti and the BEAST 1.7. Mol. Biol. Evol, 29(8):1969–1973. [PubMed: 
22367748] 

[Duchene et al. , 2020] Duchene S, Lemey P, Stadler T, Ho SYW, Duchene DA, Dhanasekaran V, and 
Baele G (2020). Bayesian evaluation of temporal signal in measurably evolving populations. Mol. 
Biol. Evol

[Elbe and Buckland-Merrett, 2017] Elbe S and Buckland-Merrett G (2017). Data, disease and 
diplomacy: GISAID’s innovative contribution to global health. Glob Chall, 1(1):33–46. [PubMed: 
31565258] 

[Gill et al. , 2020] Gill MS, Lemey P, Suchard MA, Rambaut A, and Baele G (2020). Online Bayesian 
phylodynamic inference in BEAST with application to epidemic reconstruction. Mol. Biol. Evol, 
37(6):1832–1842. [PubMed: 32101295] 

[Hill and Baele, 2019] Hill V and Baele G (2019). Bayesian estimation of past population dynamics in 
BEAST 1.10 using the skygrid coalescent model. Mol. Biol. Evol

[Katoh and Standley, 2013] Katoh K and Standley DM (2013). MAFFT multiple sequence alignment 
software version 7: improvements in performance and usability. Mol. Biol. Evol, 30(4):772–780. 
[PubMed: 23329690] 

[Larsson, 2014] Larsson A (2014). AliView: a fast and lightweight alignment viewer and editor for 
large datasets. Bioinformatics, 30(22):3276–3278. [PubMed: 25095880] 

[Lemey et al. , 2020] Lemey P, Hong SL, Hill V, Baele G, Poletto C, Colizza V, O’Toole Á, McCrone 
JT, Andersen KG, Worobey M, Nelson MI, Rambaut A, Suchard MA (2020). Accommodating 
individual travel history and unsampled diversity in Bayesian phylogeographic inference of SARS-
CoV-2. Nat. Commun, 11(1):5110. [PubMed: 33037213] 

[Lemey et al. , 2014] Lemey P, Rambaut A, Bedford T, Faria N, Bielejec F, Baele G, Russell CA, 
Smith DJ, Pybus OG, Brockmann D, and Suchard MA (2014). Unifying viral genetics and human 
transportation data to predict the global transmission dynamics of human influenza H3N2. PLoS 
Pathog., 10(2):e1003932. [PubMed: 24586153] 

[Lemey et al. , 2009] Lemey P, Rambaut A, Drummond AJ, and Suchard MA (2009). Bayesian 
phylogeography finds its roots. PLoS Comput. Biol, 5(9):e1000520. [PubMed: 19779555] 

[Lemey et al. , 2010] Lemey P, Rambaut A, Welch JJ, and Suchard MA (2010). Phylogeography 
takes a relaxed random walk in continuous space and time. Mol. Biol. Evol, 27(8):1877–1885. 
[PubMed: 20203288] 

[Müller et al. , 2018] Müller NF, Rasmussen D, and Stadler T (2018). MASCOT: parameter and state 
inference under the marginal structured coalescent approximation. Bioinformatics, 34(22):3843–
3848. [PubMed: 29790921] 

[Rambaut et al. , 2018] Rambaut A, Drummond AJ, Xie D, Baele G, and Suchard MA (2018). 
Posterior summarization in Bayesian phylogenetics using Tracer 1.7. Syst. Biol, 67(5):901–904. 
[PubMed: 29718447] 

[Rambaut et al. , 2016] Rambaut A, Lam TT, Max Carvalho L, and Pybus OG (2016). Exploring 
the temporal structure of heterochronous sequences using TempEst (formerly Path-O-Gen). Virus 
Evol, 2(1):vew007. [PubMed: 27774300] 

[Ramsden et al. , 2009] Ramsden C, Holmes EC, and Charleston MA (2009). Hantavirus evolution 
in relation to its rodent and insectivore hosts: no and evidence for codivergence. Mol. Biol. Evol, 
26(1):143–153. [PubMed: 18922760] 

[Scotch et al. , 2019] Scotch M, Tahsin T, Weissenbacher D, O’Connor K, Magge A, Vaiente M, 
Suchard MA, and Gonzalez-Hernandez G (2019). Incorporating sampling uncertainty in the 

Hong et al. Page 16

Curr Protoc. Author manuscript; available in PMC 2021 December 15.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



geospatial assignment of taxa for virus phylogeography. Virus Evol, 5(1):vey043. [PubMed: 
30838129] 

[Suchard et al. , 2018] Suchard MA, Lemey P, Baele G, Ayres DL, Drummond AJ, and Rambaut A 
(2018). Bayesian phylogenetic and phylodynamic data integration using BEAST 1.10. Virus Evol, 
4(1):vey016. [PubMed: 29942656] 

Hong et al. Page 17

Curr Protoc. Author manuscript; available in PMC 2021 December 15.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 1: 
EpiCoV GISAID portal. Here, we search for all 282 sequences analysed in [Lemey et al., 

2020], and download them by selecting the checkbox on the left of the table and pressing the 

download button. We can also download metadata for the sequences and the corresponding 

GISAID acknowledgement table using the same approach.
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Figure 2: 
Alignment visualizations in Aliview before (top) and after (bottom) trimming the 5’ and 3’ 

UTR regions. Here, we remove a total of 286 sites on the 5’ side and 301 sites on the 3’ side, 

bringing the alignment length to 29,412 sites.
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Figure 3: 
Adding the sampling locations as a trait. From back to front: i) tab-separated metadata file 

containing sequence names and sampling locations ii) columns in the metadata file other 

than “name” loaded as traits. iii) traits different from “location” removed from the analysis 

iv) partition corresponding to the “location” trait created.
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Figure 4: 
Setting up the predictors for the GLM-based spatial diffusion model. In this example, 

we load the air travel and intra-continental distance predictors, and log-transform and 

standardize them by checking the corresponding boxes.
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Figure 5: 
Travel history metadata. The metadata file must contain the columns “name”, 

“travelHistory”, “travelDays”, “priorMean” and “priorStdev”. Other columns can be 

included but will not be parsed to update the XML. For sequences where either exact travel 

dates are not available, we set the “travelDays” column to NA, such that the MCMC samples 

from a range of possible travel dates with a Gaussian prior distribution of mean “priorMean” 

(in units of days) and standard deviation “priorStdev”. For sequences where exact travel 

dates are available, we set the prior columns to NA.
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Figure 6: 
Spatial trajectory plot of isolate EPI_ISL_413016. The plot depicts the posterior 

spatiotemporal ancestral transition history for a single isolate. Each line represents a single 

Markov jump history in the posterior distribution. The time spent in each location is denoted 

in the horizontal dimension, and transitions between two locations are depicted with vertical 

lines. The relative density of lines reflects the posterior uncertainty in location state and 

transition time between states. Here we see that the most supported ancestral history for 

isolate EPI_ISL_413016 is that of an origin in Hubei, with a jump into Italy late January, 

and an introduction into Brazil close to March 1st.
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Table 1.

Frequency Table of Locations

Italy Brazil ChinaHubei Switzerland Finland

444 437 436 85 23

ChinaBeijing UK Australia Germany USA

9 8 7 6 6

France Singapore Spain ChinaHongKong Japan

5 5 5 4 3

Netherlands Sweden Vietnam ChinaGuangdong ChinaShandong

3 3 3 2 2

NewZealand Thailand Belgium Cambodia Canada

2 2 1 1 1

ChinaChongqing ChinaFujian ChinaYunnan India Iran

1 1 1 1 1

Mexico Nepal Portugal SouthKorea Taiwan

1 1 1 1 1
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