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Sylvia Kaswabuli3, Serena Fong4, Stephen Stone4, Emily Chang4,5, J. Lucian Davis6,7, Ali Ahmad Faruqi1,
Mark R. Segal8, Laurence Huang4,5‡, and Susan V. Lynch1‡

1Division of Gastroenterology, Department of Medicine, 2Biomedical Sciences Graduate Program, 4HIV, Infectious Diseases and Global
Medicine Division, San Francisco General Hospital, 5Division of Pulmonary and Critical Care Medicine, San Francisco General Hospital,
and 8Division of Biostatistics, University of California San Francisco, San Francisco, California; 3Infectious Diseases Research
Collaboration, Mulago Hospital, Makerere University, Kampala, Uganda; 6Department of Epidemiology of Microbial Diseases, Yale
School of Public Health, New Haven, Connecticut; and 7Pulmonary, Critical Care, and Sleep Medicine Section, Yale School of Medicine,
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Abstract

Rationale: The potential role of the airway microbiota in dictating
immune responses and infection outcomes in HIV-associated
pneumonia is largely unknown.

Objectives: To investigate whether microbiologically and
immunologically distinct subsets of patients with HIV and
pneumonia exist and are related to mortality.

Methods: Bronchoalveolar lavage samples from Ugandan patients
with HIV and pneumonia (n = 182) were obtained at study
enrollment (following antibiotic treatment); patient demographics
including 8- and 70-day mortality were collected. Lower airway
bacterial community composition was assessed via amplification and
sequencing of the V4 region of the 16S ribosomal RNA gene. Host
immune response gene expression profiles were generated by
quantitative polymerase chain reaction using RNA extracted from
bronchoalveolar lavage fluid. Liquid and gas chromatography mass
spectrometry was used to profile serum metabolites.

Measurements and Main Results: Based on airway microbiome
composition, most patients segregated into three distinct groups,
each of which were predicted to encode metagenomes capable of
producing metabolites characteristically enriched in paired serum
samples from these patients. These three groups also exhibited
differences in mortality; those with the highest rate had increased
ceftriaxone administrationandculturableAspergillus, anddemonstrated
significantly increased inductionofairwayT-helper cell type2 responses.
The group with the lowest mortality was characterized by increased
expression of T-cell immunoglobulin and mucin domain 3, which
down-regulates T-helper cell type 1 proinflammatory responses and is
associated with chronic viral infection.

Conclusions: These data provide evidence that compositionally
and structurally distinct lower airway microbiomes are associated
with discrete local host immune responses, peripheral metabolic
reprogramming, and different rates of mortality.

Keywords: HIV; microbiota; pneumonia; immune response;
mortality
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Sub-Saharan Africa accounts for 71% of
persons estimated to be living with HIV
infection worldwide, with 63,000 AIDS-
related deaths per year in Uganda alone (1).
Pulmonary infections pose a common and
frequently fatal comorbidity in patients
with HIV in Africa; two of the most
prevalent are tuberculosis (TB) and
bacterial pneumonia, incident in
approximately 80% of this patient
population (2). Overall, TB is the leading
cause of death in patients with HIV
worldwide (3, 4). In HIV–TB coendemic
areas, bacterial pneumonia is a common
cause of hospital admission, with mortality
rates over 30% even with antiretroviral and
antibiotic treatments (5, 6).

Even in the absence of acute respiratory
infection, patients with HIV exhibit a
broader breadth of lower airway bacterial
taxa compared with that detected in healthy

subjects (7), indicating that HIV infection
may present a risk factor for developing
pulmonary infection. Despite high
morbidity and mortality within this
population, little is known about factors
that influence heterogeneity in patient
outcomes, and, specifically, whether
variation in airway microbiota composition
and immune response are related to patient
survival. We demonstrated, in a non–HIV-
infected, antimicrobial-treated pneumonia
cohort, that following antimicrobial
treatment, a precipitous decline in airway
microbiome diversity and domination of
the community by a distinct respiratory
pathogen (e.g., Streptococcus pneumonia or
Pseudomonas aeruginosa) is associated with
increased 28-day mortality (8). In a study of
60 Ugandan patients with HIV and
antimicrobial-treated pneumonia, patients
with reduced airway bacterial microbiota
richness and diversity exhibited higher
bacterial burden and increased expression
of proinflammatory tumor necrosis factor-
a and matrix metalloprotinase-9 (9), thus
providing the first evidence that HIV
airway microbiota composition is related
to immune response.

These observations led us to
hypothesize that in the context of HIV-
associated immune dysfunction and
antimicrobial administration, acute
pneumonia patient subsets can be identified
based on their lower airway bacterial
composition. We further rationalized that
these compositionally distinct airway
microbiota function as discrete pathogenic
units that induce characteristic airway
immune responses and are associated with
mortality. To address this hypothesis, we
examined clinical and demographic factors
related to the bacterial airway microbiome,
and relationships between community
composition, host immune response, and
patient outcomes in a large cohort of
Ugandan patients with HIV and
pneumonia. Some of the results of these
studies have been previously reported in
an abstract (10).

Methods

Subjects and Sample Collection
We enrolled subjects with HIV admitted to
Mulago Hospital in Kampala, Uganda for
acute pneumonia from October 2009 to
December 2011 as part of the Lung
MicroCHIP (Lung Microbiome in Cohorts

of HIV-Infected Persons) study. Patients
underwent two sputum acid-fast bacilli
smear examinations to diagnose pulmonary
TB. Acid-fast bacilli smear-negative
patients underwent bronchoscopy with
bronchoalveolar lavage (BAL) for clinical
diagnosis, with 10 ml set aside for
microbiome analysis (9). Bronchoscopy was
performed a median of 3 days after hospital
admission (interquartile range, 1–4 d).
More than 98% of subjects had received
antibiotics before bronchoscopy. Serum was
collected on hospital Day 1, at enrollment.
Clinical data were collected and diagnoses
were assigned as previously described (9).
Study endpoint was mortality follow-up at
70 days after bronchoscopy (seeMETHODS in
the online supplement).

Ethics Statement
The Makerere University School of
Medicine Research Ethics Committee, the
Mulago Hospital Research and Ethics
Committee, the Uganda National Council
for Science and Technology, and the
University of California San Francisco
Committee on Human Research approved
the protocol. Subjects provided written,
informed consent.

DNA and RNA Extraction
Total DNA and RNA were extracted from
whole BAL in parallel using an AllPrep
DNA/RNA extraction kit (Qiagen, Hilden,
Germany) (see METHODS in the online
supplement) (11). RNA quality and purity
were assessed as previously described (9).

16S Ribosomal RNA Gene
Amplification and Sequencing
The V4 region of bacterial 16S ribosomal
RNA (rRNA) gene was amplified using
primers with multiplex sequencing barcodes
(see Table E1 and METHODS in the online
supplement). A mock community was used
to monitor for contamination and
standardize across runs. Sequencing was
performed using a MiSeq platform and
MiSeq Control Software version 2.2.0
(Illumina, San Diego, California). Raw
sequencing data are available via the SRA
database under SRP077299.

Microbiome Data Processing
A total of 251-bp paired-end sequence reads
were assembled using FLASh (12), and
quality-trimmed using QIIME (see
METHODS section in the online supplement)
(13). Chimeras were removed using

At a Glance Commentary

Scientific Knowledge on the
Subject: Patients with HIV and
pneumonia exhibit greater lung
microbial diversity than patients with
pneumonia without HIV; however, it is
unknown if distinct pathogenic lower
airway microbiomes exist in patients
with HIV and pneumonia and whether
these relate to host immune response
and mortality within this population.

What This Study Adds to the
Field: Using a cohort of 182 patients
with HIV and pneumonia, we
identified three compositionally
distinct microbial community states in
the lower airways. Each exhibits unique
metagenomic functional capacity,
induces distinct lower airway immune
responses, and is associated with a
unique profile of circulating
metabolites and with different rates of
mortality. These results provide
evidence that microbiologically and
immunologically distinct subsets of
patients with HIV and pneumonia
exist and that these distinctions are
related to clinical outcomes, thus
arguing for the potential need to tailor
therapy based on the specific
microbiome dysbiosis and related
immune and metabolic dysfunction
exhibited by these patients.
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ChimeraSlayer (14). Each sample was
rarefied 100 times to 100,000 reads in the R
environment (15); the centroid of each
sample distribution was subsequently used
for analysis (n = 182). Greengenes database
May 2013 (16) was used to classify taxa;
singleton operational taxonomical units
were removed.

Immune Gene Expression
Total RNA (0.5 mg) was reverse transcribed;
cDNA gene expression was assayed using
real-time polymerase chain reaction and
analyzed using the delta-delta CT method
to normalize gene expression (see METHODS

in the online supplement) (17).

Metabolic Profiling
Metabolic profiles were generated from 100ml
of patient serum (n = 30) by ultrahigh-
performance liquid and gas chromatography-
tandem mass spectrometry at Metabolon
according to a standard protocol.

Microbial and Statistical Analyses
Microbial analyses were performed using
QIIME software (13). Results were visualized
using Emperor (18). Metagenomic
predictions were generated using
Phylogenetic Investigation of Communities
by Reconstruction of Unobserved States
(PICRUSt) (19). Procrustes (“transform_
coordinate_matrices.py” script, “-r 1000”)
and Mantel tests (“compare_distance_
matrices.py” script) were performed in
QIIME using Bray Curtis dissimilarity

(compositional dissimilarity based on taxon
relative abundance) (20). Statistical analyses
(e.g., one-way analysis of variance
[ANOVA], Kruskal-Wallis) were performed
in the R environment. Dirichlet multinomial
mixtures (DMM) and log-rank test were
performed using the DirichletMultinomial
(21) and survival packages, respectively.
Permutational multivariate analysis of
variance (PERMANOVA [22], vegan version
2.3.0, 1,000 permutations) and principal
coordinate analysis (PCoA) were performed
using weighted UniFrac (23, 24) and
Canberra dissimilarity measurements.
PERMANOVA independently considers
each factor (e.g., age, sex) against bacterial
community b-diversity variance, permuting
data independently, and thus does not
require false-discovery correction. The
resulting R2 provides the proportion of
variation explained (e.g., a factor that has a
R2 = 0.021, explains 2% of the variation in
community composition).

Results

Lower Airway Microbiota
Composition Is Associated with
Demographic, Clinical, and
Microbiologic Factors
Lower airway bacterial microbiota profiles
of 190 Ugandan patients with HIV with
acute pneumonia were generated by 16S
rRNA amplicon sequencing of whole BAL
fluid (see Figure E1A: read depth). Overall,

182 samples with sufficient sequence reads
and adequate bacterial community coverage
were used for all microbiota analyses
(see Figure E1B). A total of 6,915
operational taxonomical units (.97%
16S rRNA V4-sequence similarity; range,
124–869; median, 335.5 taxa per sample)
were identified indicating robust bacterial
presence.

Demographic and clinical data (see
Table E2) were used in PERMANOVA
analysis (22). PERMANOVA allows for the
identification of factors related to observed
variation in bacterial b-diversity
(intersample bacterial compositional
differences); we measured b-diversity using
a weighted UniFrac dissimilarity matrix,
which considers phylogenetic relatedness
and species abundance in distance
calculations (24). Sex (R2 = 0.021; P,
0.017) (see Figure E2A), consumption of
alcohol ever (R2 = 0.015; P, 0.045) (see
Figure E2B), the presence of culturable
Aspergillus in BAL (R2 = 0.038; P, 0.004)
(see Figure E2C), BAL or sputum culture
positivity for Mycobacterium (R2 = 0.027;
P, 0.021) (see Figure E2D), and
ceftriaxone administration within the last
2 weeks, or at the time of bronchoscopy
(R2 = 0.016; P, 0.040 and R2 = 0.061; P,
0.001, respectively ) (Table 1, Figure 1A)
were significantly related to airway bacterial
community composition. Seventy-day
mortality trended strongly toward a
relationship with airway microbiota
composition (Canberra [b-diversity

Table 1. Clinical, Demographic, and Microbiologic Features Are Significantly Associated with Airway Bacterial b-Diversity in
Patients with HIV and Pneumonia

Variable Sample (n) Yes/No* Min–Max (Median)

PERMANOVA

R2 P Value

Clinical and demographic
70-day mortality† 182 143/39 (live/dead) 0.006 0.053
Alcohol ever consumed 182 113/69 0.015 0.045
Ceftriaxone at bronchoscopy 174 54/120 0.061 0.001
Ceftriaxone within last 2 wk 178 137/41 0.016 0.040
Culture identified Aspergillus 157 15/142 0.038 0.004
Sex 182 110/72 (F/M) 0.021 0.017
TB-positive by culture 182 40/1/141 (positive/scanty/negative) 0.027 0.021

Microbiologic
Chao1 182 170–1,326 (484.1) 0.080 0.001
Faith’s phylogenetic diversity 182 8.792–45.83 (21.97) 0.091 0.001
Observed species 182 39–865 (340.5) 0.076 0.001
Shannon diversity 182 0.642–6.427 (4.011) 0.169 0.001
Simpson diversity 182 0.112–0.977 (0.867) 0.154 0.001

Definition of abbreviations: Max =maximum; Min =minimum; PERMANOVA = permutational multivariate analysis of variance; TB = tuberculosis.
*Unless otherwise noted.
†PERMANOVA value calculated using a Canberra distance matrix.
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distance based on taxa presence/absence];
R2 = 0.0061; P, 0.053). Mortality trended
strongly towards significance using a
Canberra but not a weighted UniFrac
dissimilarity matrix, suggesting that
presence (or absence) of particular taxa in
airway communities is related to mortality,
rather than relative abundance or
phylogenetic relatedness of community
members present.

Because microbes engage in
interspecies cell-cell communication that
dictates abundance and behavior of other
microorganisms in their environment
(25, 26), we rationalized that interspecies

interactions also occur in complex
multispecies bacterial microbiota, resulting
in deterministic community structures.
Indeed, Shannon diversity index (which
considers abundance and richness;
PERMANOVA: R2 = 0.17, P, 0.001)
(Figure 1B), Faith’s phylogenetic diversity
(phylogenetic variation, R2 = 0.09,
P, 0.001), Chao1 index (species richness
estimator, R2 = 0.08, P, 0.001), and
observed species richness (total species,
R2 = 0.08, P, 0.001), were all significantly
associated with airway bacterial b-diversity.
These a-diversity indices (measurements
of variation within samples) explained a

greater degree of microbial community
variability (8–17%) than clinical or
demographic features (reflected in the
strength of PCoA groupings in Figures 1
and E1), suggesting that microbiologic
influences seem to play a larger role in
defining airway taxonomic content than
clinical-demographic features.

Patients with HIV and Pneumonia
Stratify into Two Groups Based on
Bacterial Community Composition
DMM (21) modeling examines taxa
frequencies and determines how many
“metacommunities” or microbial
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Figure 1. Antibiotic administration, a-diversity, and probabilistic modeling differentiate bacterial community types within the lower airways of patients with
HIV and pneumonia. Principal coordinate analysis of n = 182 lower airway bronchoalveolar lavage bacterial community profiles of Ugandan patients with
HIV and pneumonia illustrates that (A) ceftriaxone (in yellow vs. no ceftriaxone in purple), a third-generation cephalosporin, administered at time of
bronchoscopy is significantly associated with community composition (PERMANOVA, R2 = 0.061, P, 0.001), as is (B) Shannon diversity (PERMANOVA,
R2 = 0.17, P, 0.001, scaled from high [red] to low [blue]). (C) Based on Laplace approximation, for which a lower value indicates a better model fit,
Dirichlet multinomial mixtures (DMM) identified two compositionally distinct bacterial microbiota (n = 136 and n = 46) in the lower airways of patients with
HIV and pneumonia. (D) Principal coordinate analysis illustrates that DMM-defined lower airway bacterial communities are compositionally distinct
(PERMANOVA, R2 = 0.246, P, 0.001). PC = principal coordinate; PERMANOVA = permutational multivariate analysis of variance.
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community states (MCS) exist within a
dataset. Application of DMM to our cohort
identified two significantly distinct MCS
(n = 46 and n = 136; R2 = 0.246; P, 0.001)
using a Laplace approximation (Figures 1C
and 1D), which evaluates model fit (lowest
Laplace value corresponds to the number of
metacommunities that best fit the model)
(Figure 1C). Specific cooccurring bacterial
families were characteristically enriched
in these two groups; MCS1 microbiota
was characteristically dominated by
Pseudomonadaceae, which typically
cooccurred with Sphingomonadaceae

and Prevotellaceae. The second, larger
group, exhibited a reciprocal gradient of
Streptococcaceae or Prevotellaceae
domination, which we designated MCS2A
and MCS2B, respectively. Streptococcaceae-
dominated MCS2A communities
coassociated with Prevotellaceae and
Veillonellaceae, and Prevotellaceae-
dominated MCS2B assemblages with
Veillonellaceae and Streptococcaceae
(Figure 2A). These distinct microbial states
exhibited significant differences in diversity,
with MCS1 exhibiting the lowest mean
diversity compared with MCS2A or MCS2B

communities (Faith’s phylogenetic diversity;
one-way ANOVA, P, 0.001) (Figure 2B).

Using dominant family to classify
samples, PCoA-ordination of weighted
UniFrac distance matrices confirmed a
strong and significant relationship between
MCS class and bacterial b-diversity
(PERMANOVA, R2 = 0.670, P, 0.001)
(Figure 2C), corroborating the existence
of compositionally distinct microbial states.
Removal of the dominant family reads and
reapplication of DMM to the remaining
data yielded the same two groups (n = 46,
n = 136), indicating that dominant family
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Figure 2. Two compositionally distinct lower airway microbial states exist in patients with HIV and pneumonia. (A) Mean community composition of
each state at the family level. (B) Lower airway phylogenetic diversity differs significantly across microbial states (one-way analysis of variance [ANOVA],
P, 0.001). (C) Principal coordinate analysis plot illustrating weighted UniFrac distances permits visualization of MCS1 (green) and the sister states
MCS2A (blue) and MCS2B (red), which collectively explain a significant proportion of bacterial community variation (PERMANOVA, R2 = 0.67, P, 0.001)
within the lower airways of this patient population. Patient lower airway communities that do not fit one of these three mean community compositions are
depicted in gray. MCS =microbial community state; PC = principal coordinate; PERMANOVA = permutational multivariate ANOVA.
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is not the sole defining feature of these
airway microbiota.

Lower Airway States Are Related to
Clinical and Microbiologic Factors
We next asked whether the specific factors
that explained the variation in bacterial
b-diversity were differentially associated
with microbial state (see Table E2). Neither
sex nor alcohol consumption significantly
differed across groups; however, MCS1
communities had significantly higher
Mycobacterium detection (chi-square,
P = 0.006) (Figure 3A), whereas MCS2B
communities exhibited increased culturable
Aspergillus (chi-square, P = 0.07)
(Figure 3B). In parallel, the MCS2B group
had significantly increased ceftriaxone
administered (n = 29/65), whereas MCS1
patients were almost never treated with
ceftriaxone (n = 1/36, chi-square, P,
0.0001) (Figure 3C). Because ceftriaxone
administration may be reflective of infection
severity, we compared variables associated
with disease severity on study enrollment
(e.g., fever, sputum production, chest pain)
between ceftriaxone-treated and -untreated
patients; however, no statistically significant
differences were observed.

Mortality was tracked from enrollment
through 70 days after bronchoscopy.
MCS2B patients exhibited the most deaths
at 1 week after enrollment (n = 5/67),
whereas MCS1 patients all survived
(P = 0.08) (Figure 3D). At 70 days,
MCS2B patients still had the highest

mortality (22%), followed by MCS2A (16%)
and MCS1 patients (13%), although this
trend did not reach significance (log-rank
test, P. 0.05) (see Figure E3).

Lower Airway Microbial States Are
Predicted to Encode Functionally
Distinct Metagenomes
We next predicted the metagenomic content
of each microbial state using the PICRUSt
(19) package. Each microbial state was
predicted to encode significantly distinct
metagenomes and enriched for a
characteristic set of gene pathways
(PERMANOVA, R2 = 0.10, P, 0.001)
(Figure 4A). A total of 238 Kyoto
Encyclopedia of Genes and Genomes
(27, 28) pathways differed significantly
between the three groups (Kruskal-Wallis,
329 pathways tested, q, 0.05) (see Table
E3). Despite decreased community
diversity, MCS1 communities were
predicted to encode a greater range of
functional pathways compared with the
other groups (Kruskal-Wallis, pairwise,
P, 0.001, q, 0.05). This group was
predicted to be significantly enriched for a
broad range of pathways involved in
b-lactam, linoleic, and arachidonic acid,
and tryptophan metabolism, most of which
(69%) were encoded by Pseudomonadaceae
in these communities. MCS2A bacterial
communities were enriched for pathways
involved in biosynthesis of flavonols and
ion channels, whereas MCS2B bacterial
communities encoded glycan metabolism

and glycosphingolipid biosynthesis pathways
and lacked type II polyketide biosynthesis.
Few pathways were predicted to be
significantly enriched in MCS2B, indicating
that associated increased mortality risk may
be either driven by differential expression of
pathways shared across compositionally
distinct communities, or that nonbacterial
species, such as Aspergillus, detected with
greater frequency in this microbial state,
contribute substantially to their associated
pathogenesis.

Microbial Community States Induce
Distinct and Characteristic Lower
Airway Immune Responses
RNA extracted from a subset of
compositionally representative BAL samples
(n = 10/MCS) was used to analyze expression
of a diverse panel of immune markers,
chosen for their known associations with
HIV, chronic bacterial infections, or airway
inflammatory responses. mRNA expression
levels (glyceraldehyde phosphate
dehydrogenase–normalized) were used to
generate a multivariate profile of host
immune response. PERMANOVA analysis,
which in this case was used to assess whether
profiles of immune gene expression were
related to MCS, indicated that a significant
relationship existed (PERMANOVA, R2 =
0.168, P, 0.005). Specific immune responses
were significantly enriched in particular MCS
(one-way ANOVA, P, 0.05) (Figure 4B).
For example, MCS1 patients exhibited
significantly higher expression of T-cell
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Figure 3. Culture positivity for Mycobacterium or Aspergillus, and antibiotic administration and mortality, differ between microbial community
states (MCS). (A) Mycobacterium (chi-square test, P = 0.006) or (B) Aspergillus (P = 0.07) culture positivity, (C) ceftriaxone administration at bronchoscopy
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Figure 4. Airway microbial states are predicted to encode distinct metagenomes, and each is shown to induce different lower airway immunologic
responses and is associated with significantly different serum metabolomes. (A) Principal coordinate analysis of in silico metagenomic predictions
(generated using Phylogenetic Investigation of Communities by Reconstruction of Unobserved States) indicates that the variation in predicted
metagenomic content is significantly explained by microbial community states (MCS) designation (PERMANOVA, R2 = 0.10, P, 0.001). Predicted
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immunoglobulin and mucin domain (TIM)-
3, a glycoprotein expressed by T and innate
cells, that down-regulates T-helper cell type
(Th) 1 activity and proinflammatory
responses (29), and plays a key role in T-cell
dysfunction that occurs during chronic viral
infection (30, 31).

By contrast, MCS2A demonstrated the
lowest TIM-3 expression and significantly
increased expression of protein-arginine
deiminase type-4 (PADI4), which converts
arginine to citrulline, an a-amino acid
post-translationally incorporated into
histones, filaggrin, and proteins involved
in myelination (32). Additionally, this MCS
trended toward significantly higher levels
of IL-10 (antiinflammatory cytokine) and
programmed cell death protein 1 (T-cell
negative regulator and exhaustion marker),
and lower levels of forkhead box P3 (master
regulator of regulatory T cells) expression.
MCS2B subjects displayed IFN-a, which
characteristically protects against infection
in immunocompetent subjects, but is
associated with rapid disease progression
in HIV infection (33). IL-13 (mediator of
Th2 cell function), occludin/ELL domain-
containing protein 1 (maintains and
regulates tight junctions), and protein
tyrosine phosphatase receptor type C
(expressed on microvesicles produced by
HIV-infected cells) were also significantly
increased. These patients also trended
toward increased expression of IL-5
(mediator of Th2 cell function, which
stimulates B-cell growth), MUC5AC (the
primary airway mucin), programmed cell
death protein 1, and IL-33 (proinflammatory
cytokine that induces Th2 responses),
indicating a significant Th2 skew.

Lower Airway Microbial States Are
Associated with Distinct Circulating
Metabolites
Paired serum from patients for whom
BAL immune profiles were generated
(n = 30) were examined using liquid and
gas chromatography–mass spectrometry
to determine whether distinct systemic
metabolic profiles were associated with

airway MCS. A total of 60 metabolites
differed significantly between all three
groups (Kruskal-Wallis, P, 0.05)
(Figure 4C; see Table E4). As the in silico
metagenomic analysis predicted, MCS1
patients were characterized by significant
enrichment of xanthurenate (a tryptophan
metabolite) and arachidonic acid
metabolites, including the eicosanoids
leukotriene B4, a proinflammatory lipid-
mediator, and 15-hydroxyeicosatetraenoic
acid, which induces pulmonary
vasoconstriction and edema (34). In
addition, MCS1 patients were significantly
enriched for multiple products of primary
and secondary bile acid metabolism (e.g.,
chenodeoxycholate, glycodeoxycholate,
taurochenodeoxycholate, and
ursodeoxycholate), several of which have
been shown to up-regulate inflammatory
responses along with LPS (35), indicating
that the activities of the gastrointestinal
microbiome may also contribute to the
tone of host inflammation in MCS1.

As predicted, MCS2B patients were
characterized by significantly reduced
relative levels of circulating metabolites
compared with MCS1 patients. However,
significant increases in amino acid
metabolites 3-methyl-2-oxobutyrate and
4-methyl-2-oxopentanoate (both involved
in valine and leucine metabolism),
monoacylglycerols associated with lipid
metabolism (1-dihomo-linolenylglycerol
and 1-myristoylglycerol), and inosine
(purine metabolism) were significantly
enriched. MCS2A patients exhibited a
mixture of metabolites identified in the
other MCS but at lower concentrations,
with a unique increase in lysolipid and
pyrimidine metabolism and a decrease in
monoacylglycerols. Thus, products of
several of the biosynthetic or metabolic
pathways predicted to discriminate between
patients with specific airway MCS were
significantly and differentially enriched in
their circulation.

To verify that specific MCS, their
predicted metagenomes, local airway
immune responses, and serum metabolites

were interrelated, we applied Procrustes
(13, 36) and Mantel (37) analyses. Both
confirmed a strong and significant
correlation between each of these data
matrices. We examined the correlation
between bacterial community composition
and (1) PICRUSt metagenomic prediction
(Procrustes: r2 = 0.513, P, 0.001; Mantel:
r2 = 0.674, P, 0.001), (2) airway immune
expression (Procrustes: r2 = 0.147, P =
0.031; Mantel: r2 = 0.122, P = 0.067), or (3)
serum metabolites (Procrustes: r2 = 0.414,
P, 0.001; Mantel r2 = 0.286, P, 0.001).
This result indicates that our patients with
HIV and pneumonia who possess distinct
airway MCS exhibit corresponding features
of immune dysfunction and a characteristic
peripheral metabolome.

Discussion

Factors that influence pneumonia outcomes
in patients with HIV are poorly defined. We
hypothesized that the airway microbiome
may influence these outcomes. Three
distinct microbial states were identified
in this study; they exhibited significant
differences in a-diversity, culturable
Aspergillus or Mycobacterium, ceftriaxone
administration, immune responses, and
metabolic signatures, and trended toward
differences in mortality. Recent work by
Cribbs and colleagues (38) demonstrated
patients with HIV are enriched for
pneumonia-associated bacteria, including
Streptococcus, even in the absence of airway
infection, and exhibit a distinct metabolic
microenvironment compared with healthy
subjects. Together with this study, our
work suggests that specific lower airway
microbial states may lead to functionally
relevant metabolic shifts that relate to
distinct pathways of disease pathogenesis
in individuals with HIV.

Segal and colleagues (39) have shown
that healthy individuals who have an
enrichment of oral taxa, including
Prevotella, within their lower airways,
exhibit increased inflammatory cytokines

Figure 4. (Continued). metagenomes of non-MCS samples (gray) share functional similarity with MCS samples. (B) Quantitative real-time polymerase
chain reaction array assessing immune-associated gene expression within the lower airways of patients identifies specific cytokines that
differ significantly in relative expression across MCS. Pathway significance: *P, 0.05; †P, 0.1; **P, 0.01. (C) Comparative liquid and gas
chromatography–tandem mass spectrometry metabolomic analysis of paired patient serum identified 60 metabolites that differed significantly
among all three groups (Kruskal-Wallis, P, 0.05). Enriched in MCS1 versus MCS 2A and 2B, green; MCS2A versus MCS1 and 2B, blue; MCS2B
versus MCS1 and 2A, red; bi-colored circles indicate enrichment in both MCS versus the non-depicted MCS. HETE = hydroxyeicosatetraenoic acid;
HODE = hydroxyoctadecadienoic acid; PC = principal coordinate; PERMANOVA = permutational multivariate analysis of variance; SAM = S-adenosyl
methionine; TCA = tricarboxylic acid cycle.
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and Th17 cells. This corroborates our
findings that Prevotellaceae-dominated
airway microbiota promote inflammation
within the lower airways, including
IL-17A expression. Recent studies have
demonstrated that composition of the
airway microbiota influences susceptibility
to Aspergillus infection (40), and that
HIV-associated airway disease is related
to fungal community alterations, including
Aspergillus enrichment (41). Our data
support these findings and suggest that
Aspergillus prospers in a Prevotellaceae-
dominated microbiota in the context
of a Th2-skewed airway immune
response.

Several recent studies have confirmed
the capacity of multiple Aspergillus species to
induce Th2 responses (42), particularly in
early stage airway infection (43), suggesting
that this species may not simply cocolonize
MCS2B airways, but may actively define
immunologic responses characteristic of this
patient subgroup. Patients with this airway
microbiota state were more likely to have
been administered ceftriaxone and exhibited
the highest mortality rates; one possible
conclusion from these observations is that
ceftriaxone administration selectively
enriches for an MCS2B microbial
community, and that their interkingdom
microbial activities elicit a host immune
response that increases mortality risk.
However, the paucity of preantibiotic
bronchoscopic samples, which are both
ethically and logistically difficult to obtain,
precludes definitive conclusions on whether
ceftriaxone administration is responsible
for the presence of this more severe
MCS, or whether MCS2B assemblages
preexisted in these patients’ airways before
hospitalization.

MCS1 patients, who exhibited the
lowest levels of profiled immune activation
markers, were predicted to be enriched
for pathways involved in linoleic and
arachidonic acid metabolism. Leukotriene
B4, a product of arachidonic acid
metabolism typically produced by
leukocytes in response to inflammatory
mediators, was detected in significantly
increased concentrations in these patients’
serum. Although circulating leukotriene B4
in MCS1 patients is likely produced by
leukocytes, our data suggest that microbial
metabolism of arachidonic acid may
contribute to their circulating leukotriene
B4 and that microbial-derived lipid
inflammation may underlie their immune

dysfunction. Mycobacterium was more
prevalent in MCS1 patients, who also
exhibited a significant increase in TIM-3
expression. This is consistent with the
findings of Sada-Ovalle and colleagues
(44) who demonstrated in vivo surface
expression of TIM-3 on macrophages
infected with Mycobacterium tuberculosis.

MCS2A seems to represent an
intermediate microbial state, between the
MCS2B and MCS1 groups in terms of
clinical associations, a-diversity,
composition, metabolites, and immune
expression. This raises the possibility that
airway microbiota may be dynamic and
transition through distinct microbiologic
states, particularly under antimicrobial
selective pressure; however, large
longitudinal studies are necessary to
address this possibility. Nonetheless,
patients with MCS2A were uniquely
characterized by increased lower airways
PADI4 expression. Extracellular bronchial
PADI4 has been shown to citrullinate the
innate immune defensin human
cathelicidin LL-37/human cationic
antimicrobial protein-18, rendering it less
efficient at neutralizing lipopolysaccharide.
PADI4 is detected in the airways of patients
with chronic obstructive pulmonary
disease, who also exhibit impaired
antibacterial response against Streptococcus
(45), indicating that MCS2A patients, who
exhibit expansion of Streptococcaceae and
induction of PADI4, may also have
diminished capacity to respond to the
dominant bacterial family present in their
airways.

Although lower airway colonization is
considered uniformly detrimental to
patients, we show that specific, repeated
airway microbiome states, discriminated on
the basis of microbial composition, function,
host immune response, and clinical
outcomes, exist in subsets of patients with
HIV and pneumonia. Although most
patients fall into the three microbial states
described, we recognize that not all patients
belong to these groupings, which is not
surprising in light of recent work by Twigg
and colleagues (7) showing far greater
variation across lower airway communities
in patients with advanced HIV than healthy
individuals. Though from a taxonomic
standpoint, these samples did not fall into a
specific MCS, their predicted metagenomes
were consistent with those of MCS samples.
This indicates that although currently
economically challenging for large sample

sets, metagenomic function may offer a
preferred approach to define community
states. In addition, larger cohorts of patients
are necessary to sufficiently power studies
examining other rarer microbial states
and their immunologic and clinical
implications. This cohort provides insight
into Ugandan patients with HIV and
pneumonia; however, these results may
have limited applicability to patients in
Western countries because of differences in
patient demographics, laboratory testing, and
antibiotic availability, and high HIV–TB
coprevalence in Uganda. Furthermore,
although BAL allows identification of
general microbiota patterns within the
lower airways, examining spatial-specific
microbiota and their interactions with the
host requires lung biopsies or brushings,
which are beyond the scope of this
study.

Although this study did not use paired
oral-BAL samples to control for oral
contamination, we have previously shown
that oral and lower airway microbiota
within patients with HIV and pneumonia
display niche specificity (11). Our data
trend toward a significant relationship
between mortality and airway MCS. We
calculated that to achieve an 80%
likelihood of detecting a significant
difference in mortality (power, 0.8),
100 patients per MCS would have to be
studied, underscoring the need and
utility of larger cohorts. Despite these
limitations, this study identified several
factors that shape microbial community
composition in the lower airways of
patients with HIV and pneumonia.
Moreover, it identifies distinct bacterial
microbiota states that repeat over
large numbers of patients and builds
an argument that pneumonia
patient heterogeneity, with respect to
both immunologic and clinical outcomes,
may be related to compositional and
functional differences in airway
microbiomes. n
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