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Abstract: Multi-state modeling of biomolecules refers to
a series of techniques used to represent and compute the
behavior of biological molecules or complexes that can
adopt a large number of possible functional states.
Biological signaling systems often rely on complexes of
biological macromolecules that can undergo several
functionally significant modifications that are mutually
compatible. Thus, they can exist in a very large number of
functionally different states. Modeling such multi-state
systems poses two problems: the problem of how to
describe and specify a multi-state system (the ‘‘specifica-
tion problem’’) and the problem of how to use a
computer to simulate the progress of the system over
time (the ‘‘computation problem’’). To address the
specification problem, modelers have in recent years
moved away from explicit specification of all possible
states and towards rule-based formalisms that allow for
implicit model specification, including the k-calculus [1],
BioNetGen [2–5], the Allosteric Network Compiler [6], and
others [7,8]. To tackle the computation problem, they
have turned to particle-based methods that have in many
cases proved more computationally efficient than popu-
lation-based methods based on ordinary differential
equations, partial differential equations, or the Gillespie
stochastic simulation algorithm [9,10]. Given current
computing technology, particle-based methods are some-
times the only possible option. Particle-based simulators
fall into two further categories: nonspatial simulators,
such as StochSim [11], DYNSTOC [12], RuleMonkey [9,13],
and the Network-Free Stochastic Simulator (NFSim) [14],
and spatial simulators, including Meredys [15], SRSim
[16,17], and MCell [18–20]. Modelers can thus choose from
a variety of tools, the best choice depending on the
particular problem. Development of faster and more
powerful methods is ongoing, promising the ability to
simulate ever more complex signaling processes in the
future.

This is a ‘‘Topic Page’’ article for PLOS Computational
Biology.

Introduction

Multi-state biomolecules in signal transduction
In living cells, signals are processed by networks of proteins that

can act as complex computational devices [21]. These networks

rely on the ability of single proteins to exist in a variety of

functionally different states achieved through multiple mecha-

nisms, including post-translational modifications, ligand binding,

conformational change, or formation of new complexes [21–24].

Similarly, nucleic acids can undergo a variety of transformations,

including protein binding, binding of other nucleic acids,

conformational change, and DNA methylation.

In addition, several types of modifications can coexist, exerting a

combined influence on a biological macromolecule at any given

time. Thus, a biomolecule or complex of biomolecules can often

adopt a very large number of functionally distinct states. The

number of states scales exponentially with the number of possible

modifications, a phenomenon known as ‘‘combinatorial

explosion’’ [24]. This is of concern for computational biologists

who model or simulate such biomolecules, because it raises

questions about how such large numbers of states can be

represented and simulated.

Examples of combinatorial explosion
Biological signaling networks incorporate a wide array of

reversible interactions, post-translational modifications, and

conformational changes. Furthermore, it is common for a protein

to be composed of several—identical or nonidentical—subunits

and for several proteins and/or nucleic acid species to assemble

into larger complexes. A molecular species with several of those

features can therefore exist in a large number of possible states.

For instance, it has been estimated that the yeast scaffold protein

Ste5 can be a part of 25,666 unique protein complexes [22]. In E.
coli, chemotaxis receptors of four different kinds interact in groups

of three, and each individual receptor can exist in at least two

possible conformations and has up to eight methylation sites [23],

resulting in more than 109 potential states. The Ca2+/calmodulin-

dependent protein kinase II (CaMKII) is a dodecamer of twelve

catalytic subunits [25], arranged in two hexameric rings [26].

Each subunit can exist in at least two distinct conformations, and

each subunit features various phosphorylation and ligand binding

sites. A recent model [27] incorporated conformational states, two
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phosphorylation sites, and two modes of binding calcium/

calmodulin, for a total of around 109 possible states per hexameric

ring. A model of coupling of the EGF receptor to a mitogen-

activated protein (MAP) kinase cascade presented by Danos and

colleagues [28] accounts for ,1023 distinct molecular species, yet

the authors note several points at which the model could be further

extended. A more recent model of ErbB receptor signaling even

accounts for more than one googol (10100) distinct molecular

species [29]. The problem of combinatorial explosion is also

relevant to synthetic biology, with a recent model of a relatively

simple synthetic eukaryotic gene circuit featuring 187 species and

1,165 reactions [30].

Of course, not all of the possible states of a multi-state molecule

or complex will necessarily be populated. Indeed, in systems in

which the number of possible states is far greater than that of

molecules in the compartment (e.g., the cell), they cannot be. In

some cases, empirical information can be used to rule out certain

states if, for instance, some combinations of features are

incompatible. In the absence of such information, however, all

possible states need to be considered a priori. In such cases,

computational modeling can be used to uncover to what extent the

different states are populated.

It is worth noting that the existence (or potential existence) of

such large numbers of molecular species is a combinatorial

phenomenon: it arises from a relatively small set of features or

modifications (such as post-translational modification or complex

formation) that combine to dictate the state of the entire molecule

or complex in the same way that the existence of just a few choices

in a coffee shop (small, medium, or large; with or without milk;

decaf or not; extra shot of espresso) quickly leads to a large number

of possible beverages (24 in this case; each additional binary choice

will double that number). Although it is difficult for us to grasp the

total number of possible combinations, it is usually not concep-

tually difficult to understand the (much smaller) set of features or

modifications and the effect each of them has on the function of

the biomolecule. The rate at which a molecule undergoes a

particular reaction will usually depend mainly on a single feature

or a small subset of features. It is the presence or absence of those

features that dictates the reaction rate. The reaction rate is the

same for two molecules that differ only in features that do not

affect this reaction. Thus, the number of parameters will be much

smaller than the number of reactions. (In the coffee shop example,

adding an extra shot of espresso will cost 40 cents, no matter what

size the beverage is and whether or not it has milk in it). It is such

‘‘local rules’’ that are usually discovered in laboratory experiments.

Thus, a multi-state model can be conceptualized in terms of

combinations of modular features and local rules. This means that

even a model that can account for a vast number of molecular

species and reactions is not necessarily conceptually complex.

Specification versus computation
The combinatorial complexity of signaling systems involving

multi-state proteins poses two kinds of problems. The first problem

is concerned with how such a system can be specified, i.e., how a

modeler can specify all complexes, all changes those complexes

undergo, and all parameters and conditions governing those

changes in a robust and efficient way. This problem is called the

‘‘specification problem.’’ The second problem concerns

computation. It asks questions about whether a combinatorially

complex model, once specified, is computationally tractable given

the large number of states and the even larger number of possible

transitions between states, whether it can be stored electronically,

and whether it can be evaluated in a reasonable amount of

computing time. This problem is called the ‘‘computation

problem.’’ Among the approaches that have been proposed to

tackle combinatorial complexity in multi-state modeling, some are

mainly concerned with addressing the specification problem, and

some are focused on finding effective methods of computation.

Some tools address both specification and computation. The

sections below discuss rule-based approaches to the specification

problem and particle-based approaches to solving the computation

problem. A list of the tools discussed here is presented in Figure 1.

A comprehensive overview and discussion of various tools

available for multi-state modeling can be found in Chylek et al.

[31].

The Specification Problem

Explicit specification
The most naı̈ve way of specifying a biomolecule in a biological

model is to specify each of its states explicitly and use each of them

as a molecular species in a simulation framework that allows

transitions from state to state. For instance, if a protein can be

ligand or not, exist in two conformational states (e.g., open or

closed), and be located in two possible subcellular areas (e.g.,

cytosolic or membrane), then the eight possible resulting states can

be explicitly enumerated as follows:

N bound, open, cytosol

N bound, open, membrane

N bound, closed, cytosol

N bound, closed, membrane

N unbound, open, cytosol

N unbound, open, membrane

N unbound, closed, cytosol

N unbound, closed, membrane

Enumerating all possible states is a lengthy and potentially

error-prone process. For macromolecular complexes that can

adopt multiple states, enumerating each state quickly becomes

tedious, if not impossible. Moreover, the addition of a single

additional modification or feature to the model of the complex

under investigation will double the number of possible states (if the

modification is binary), and it will more than double the number of

transitions that need to be specified.

Rule-based model specification
It is clear that an explicit description, which lists all possible

molecular species (including all their possible states), all possible

reactions or transitions these species can undergo, and all

parameters governing these reactions, very quickly becomes

unwieldy as the complexity of the biological system increases.

Modelers have therefore looked for implicit, rather than explicit,

ways of specifying a biological signaling system. An implicit

description is one that groups reactions and parameters that apply

to many types of molecular species into one reaction template. It

might also add a set of conditions that govern reaction parameters,

e.g., the likelihood or rate at which a reaction occurs or whether it

occurs at all. Only properties of the molecule or complex that

matter to a given reaction (either affecting the reaction or being

affected by it) are explicitly mentioned, and all other properties are

ignored in the specification of the reaction.

For instance, the rate of ligand dissociation from a protein might

depend on the conformational state of the protein but not on its

subcellular localization. An implicit description would therefore list

two dissociation processes (with different rates, depending on

conformational state) but would ignore attributes referring to
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subcellular localization, because they do not affect the rate of

ligand dissociation nor are they affected by it. This specification

rule has been summarized as ‘‘don’t care, don’t write’’ [28].

Since it is not written in terms of reactions but in terms of more

general ‘‘reaction rules’’ encompassing sets of reactions, this kind

of specification is often called ‘‘rule-based’’ [4]. This description of

the system in terms of modular rules relies on the assumption that

only a subset of features or attributes are relevant for a particular

reaction rule. Where this assumption holds, a set of reactions can

be coarse-grained into one reaction rule. This coarse-graining

preserves the important properties of the underlying reactions. For

instance, if the reactions are based on chemical kinetics, so are the

rules derived from them.

Many rule-based specification methods exist. In general, the

specification of a model is a separate task from the execution of the

simulation. Therefore, among the existing rule-based model

specification systems [4], some concentrate on model specification

only, allowing the user to then export the specified model into a

dedicated simulation engine. However, many solutions to the

specification problem also contain a method of interpreting the

specified model [3]. This is done by providing a method to

simulate the model or a method to convert it into a form that can

be used for simulations in other programs.

An early rule-based specification method is the Kappa (k)-

calculus [1], a process algebra that can be used to encode

macromolecules with internal states and binding sites and to

specify rules by which they interact. A review of k is provided by

Danos et al. [28]. The k-calculus is merely concerned with

providing a language to encode multi-state models, not with

interpreting the models themselves. A simulator compatible with

Kappa is KaSim [32,33].

BioNetGen is a software suite that provides both specification

and simulation capacities [2–5]. Rule-based models can be written

down using a specified syntax, the BioNetGen language (BNGL)

[4]. The underlying concept is to represent biochemical systems as

graphs, in which molecules are represented as nodes (or collections

of nodes) and chemical bonds as edges. A reaction rule then

corresponds to a graph rewriting rule [3]. BNGL provides a syntax

for specifying these graphs and the associated rules as structured

strings [4]. BioNetGen can then use these rules to generate

ordinary differential equations (ODEs) to describe each biochem-

ical reaction. Alternatively, it can generate a list of all possible

species and reactions in the Systems Biology Markup Language

(SBML) [34,35], which can then be exported to simulation

software packages that can read SBML. One can also make use of

BioNetGen’s own ODE-based simulation software and its

capability to generate reactions on the fly during a stochastic

simulation [5]. In addition, a model specified in BNGL can be

read by other simulation software, such as DYNSTOC [12],

RuleMonkey [13], and NFSim [14].

Figure 1. An overview of tools discussed here that are used for the rule-based specification and particle-based evaluation (spatial
or nonpatial) of multi-state biomolecules.
doi:10.1371/journal.pcbi.1003844.g001
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Another tool that generates full reaction networks from a set of

rules is the Allosteric Network Compiler (ANC) [6]. Conceptually,

ANC sees molecules as allosteric devices with a Monod-Wyman-

Changeux (MWC)-type regulation mechanism [36], whose inter-

actions are governed by their internal state, as well as by external

modifications. A very useful feature of ANC is that it automatically

computes dependent parameters, thereby imposing

thermodynamic correctness [37].

An extension of the k-calculus is provided by React(C) [38].

The authors of React(C) show that it can express the stochastic p
calculus [39]. They also provide a stochastic simulation algorithm

based on the Gillespie stochastic algorithm [40] for models

specified in React(C) [38].

ML-Rules [41] is similar to React(C) but provides the added

possibility of nesting: a component species of the model, with all

its attributes, can be part of a higher-order component species.

This enables ML-Rules to capture multi-level models that can

bridge the gap between, for instance, a series of biochemical

processes and the macroscopic behavior of a whole cell or group

of cells. For instance, Maus et al. have provided a proof-of-

concept model of cell division in fission yeast that includes cyclin/

cdc2 binding and activation, pheromone secretion and diffusion,

cell division, and movement of cells [41]. Models specified in ML-

Rules can be simulated using the Java Framework for Modeling

and Simulation (JAMES) II [42]. A similar nested language to

represent multi-level biological systems has been proposed by

Oury and Plotkin [43].

Yang et al. [8] have proposed a specification formalism based

on finite automata. Models specified in their Molecular Finite

Automata (MFA) framework can then be used to generate and

simulate a system of ODEs or for stochastic simulation using a

kinetic Monte Carlo algorithm.

Some rule-based specification systems and their associated

network generation and simulation tools have been designed to

accommodate spatial heterogeneity in order to allow for the

realistic simulation of interactions within biological compartments.

For instance, the Simmune project [44,45] includes a spatial

component: users can specify their multi-state biomolecules and

interactions within membranes or compartments of arbitrary

shape. The reaction volume is then divided into interfacing voxels,

and a separate reaction network is generated for each of these

subvolumes.

The Stochastic Simulator Compiler (SSC) [46] allows for rule-

based, modular specification of interacting biomolecules in regions

of arbitrarily complex geometries. Again, the system is represented

using graphs, with chemical interactions or diffusion events

formalized as graph-rewriting rules [46]. The compiler then

generates the entire reaction network before launching a stochastic

reaction-diffusion algorithm.

A different approach is taken by PySB [47], in which model

specification is embedded in the programming language Python. A

model (or part of a model) is represented as a Python program.

This allows users to store higher-order biochemical processes such

as catalysis or polymerization as macros and reuse them as needed.

The models can be simulated and analyzed using Python libraries,

but PySB models can also be exported into BNGL [4], Kappa [1],

and SBML [34].

Models involving multi-state and multi-component species can

also be specified in level 3 of the SBML [34] using the multi

package. A draft specification is available [48], and software

support is under development.

Thus, by only considering states and features important for a

particular reaction, rule-based model specification eliminates the

need to explicitly enumerate every possible molecular state that

can undergo a similar reaction and thereby allows for efficient

specification.

The Computation Problem

When running simulations on a biological model, any

simulation software evaluates a set of rules, starting from a

specified set of initial conditions and usually iterating through a

series of time steps until a specified end time. One way to classify

simulation algorithms is by looking at the level of analysis at which

the rules are applied: they can be population-based, single-

particle-based, or hybrid.

Population-based rule evaluation
In population-based rule evaluation, rules are applied to

populations. All molecules of the same species in the same state

are pooled together. Application of a specific rule reduces or

increases the size of one of the pools, possibly at the expense of

another.

Some of the best-known classes of simulation approaches in

computational biology belong to the population-based family,

including those based on the numerical integration of ordinary

and partial differential equations and the Gillespie stochastic

simulation algorithm.

Differential equations describe changes in molecular concen-

trations over time in a deterministic manner. Simulations based on

differential equations usually do not attempt to solve those

equations analytically but employ a suitable numerical solver.

The stochastic Gillespie algorithm changes the composition of

pools of molecules through a progression of random reaction

events, the probability of which is computed from reaction rates

and from the numbers of molecules, in accordance with the

stochastic master equation [40].

In population-based approaches, one can think of the system

being modeled as being in a given state at any given time point,

where a state is defined according to the nature and size of the

populated pools of molecules. This means that the space of all

possible states can become very large. With some simulation

methods implementing numerical integration of ordinary and

partial differential equations or the Gillespie stochastic algorithm,

all possible pools of molecules and the reactions they undergo are

defined at the start of the simulation, even if they are empty. Such

‘‘generate-first’’ methods [4] scale poorly with increasing numbers

of molecular states [49]. For instance, it has recently been

estimated that even for a simple model of CaMKII with just six

states per subunits and ten subunits, it would take 290 years to

generate the entire reaction network on a 2.54 GHz Intel Xeon

processor [50]. In addition, the model generation step in generate-

first methods does not necessarily terminate, for instance, when the

model includes assembly of proteins into complexes of arbitrarily

large size, such as actin filaments. In these cases, a termination

condition needs to be specified by the user [3,5].

Even if a large reaction system can be successfully generated, its

simulation using population-based rule evaluation can run into

computational limits. In a recent study, a powerful computer was

shown to be unable to simulate a protein with more than eight

phosphorylation sites (28 = 256 phosphorylation states) using

ordinary differential equations [14].

Methods have been proposed to reduce the size of the state

space. One is to consider only the states adjacent to the present

state (i.e., the states that can be reached within the next iteration)

at each time point. This eliminates the need for enumerating all

possible states at the beginning. Instead, reactions are generated

‘‘on the fly’’ [4] at each iteration. These methods are available
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both for stochastic and deterministic algorithms. These methods

still rely on the definition of an (albeit reduced) reaction network—

in contrast to the ‘‘network-free’’ methods discussed below.

Even with ‘‘on-the-fly’’ network generation, networks generated

for population-based rule evaluation can become quite large and

thus difficult—if not impossible—to handle computationally. An

alternative approach is provided by particle-based rule evaluation.

Particle-based rule evaluation
In particle-based (sometimes called ‘‘agent-based’’) simulations,

proteins, nucleic acids, macromolecular complexes, or small

molecules are represented as individual software objects, and their

progress is tracked through the course of the entire simulation

[51]. Because particle-based rule evaluation keeps track of

individual particles rather than populations, it comes at a higher

computational cost when modeling systems with a high total

number of particles but a small number of kinds (or pools) of

particles [51]. In cases of combinatorial complexity, however, the

modeling of individual particles is an advantage because, at any

given point in the simulation, only existing molecules, their states,

and the reactions they can undergo need to be considered.

Particle-based rule evaluation does not require the generation of

complete or partial reaction networks at the start of the simulation

or at any other point in the simulation and is therefore called

‘‘network-free.’’

This method reduces the complexity of the model at the

simulation stage and thereby saves time and computational power

[9]. A detailed discussion of the computational cost of population-

based versus particle-based methods is provided in a recent study

by Hogg et al. [10]. The simulation follows each particle, and at

Figure 2. Principles of particle-based modeling. In particle-based modeling, each particle is tracked individually through the simulation. At any
point, a particle only ‘‘sees’’ the rules that apply to it. This figure follows two molecular particles (one of type A in red, one of type B in blue) through
three steps in a hypothetical simulation following a simple set of rules (given on the right). At each step, the rules that potentially apply to the particle
under consideration are highlighted in that particle’s colour.
doi:10.1371/journal.pcbi.1003844.g002

Figure 3. Screenshot from an MCell simulation of calcium signaling within the spine. Although other types of calcium-regulated
molecules were included in the simulations, only CaMKII molecules are visualized. They are shown in red when bound to calmodulin and in black
when unbound. The simulation compartment is a reconstruction of a dendritic spine as presented by Kinney et al. [59]. The area of the postsynaptic
density is shown in red, the spine head and neck in gray, and the parent dendrite in yellow. The figure was generated by visualizing the simulation
results in Blender.
doi:10.1371/journal.pcbi.1003844.g003
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each simulation step, a particle only ‘‘sees’’ the reactions (or rules)

that apply to it. This depends on the state of the particle and, in

some implementations, on the states of its neighbors in a

holoenzyme or complex. As the simulation proceeds, the states

of particles are updated according to the rules that are fired.

Figure 2 illustrates the process of particle-based modeling using a

simple system with three molecules of type A and one molecular

tetramer of type B. This system goes through three simulation

steps following a simple set of rules.

Some particle-based simulation packages use an ad hoc

formalism for specification of reactants, parameters, and rules.

Others can read files in a recognized rule-based specification

format such as BNGL [4].

Nonspatial particle-based methods
StochSim [11,52] is a particle-based stochastic simulator used

mainly to model chemical reactions and other molecular

transitions. The algorithm used in StochSim is different from the

more widely known Gillespie stochastic algorithm [40] in that it

operates on individual entities, not entity pools, making it particle-

based rather than population-based.

In StochSim, each molecular species can be equipped with a

number of binary state flags representing a particular modification.

Reactions can be made dependent on a set of state flags set to

particular values. In addition, the outcome of a reaction can include a

state flag being changed. Moreover, entities can be arranged in

geometric arrays (for instance, for holoenzymes consisting of several

subunits), and reactions can be ‘‘neighbor-sensitive’’, i.e., the

probability of a reaction for a given entity is affected by the value

of a state flag on a neighboring entity. These properties make

StochSim ideally suited to modeling multi-state molecules arranged

in holoenzymes or complexes of specified size. Indeed, StochSim has

been used to model clusters of bacterial chemotactic receptors [53]

and CaMKII holoenzymes [27].

An extension to StochSim has been presented by Colvin et al. [12].

Their particle-based simulator DYNSTOC uses a StochSim-like

algorithm to simulate models specified in BNGL [4], which improves

the handling of molecules within macromolecular complexes [12].

Another particle-based stochastic simulator that can read

BNGL input files is RuleMonkey [13]. Its simulation algorithm

[9] differs from the algorithms underlying both StochSim and

DYNSTOC in that the simulation time step is variable.

NFSim differs from those described above by allowing for the

definition of reaction rates as arbitrary mathematical or condi-

tional expressions and thereby facilitates selective coarse-graining

of models [14]. RuleMonkey and NFSim implement distinct but

related simulation algorithms. A detailed review and comparison

of both tools is given by Yang and Hlavacek [54].

It is easy to imagine a biological system in which some

components are complex multi-state molecules, whereas others

have few possible states (or even just one) and exist in large

numbers. A hybrid approach has been proposed to model such

systems: within the hybrid particle/population (HPP) framework,

the user can specify a rule-based model but can designate some

species to be treated as populations (rather than particles) in the

subsequent simulation [10]. This method combines the computa-

tional advantages of particle-based modeling for multi-state

systems with relatively low molecule numbers and of population-

based modeling for systems with high molecule numbers and a

small number of possible states. Specification of HPP models is

supported by BioNetGen [4], and simulations can be performed

with NFSim [14].

Spatial particle-based methods
Spatial particle-based methods differ from the methods

described above by their explicit representation of space.

One example of a particle-based simulator that allows for a

representation of cellular compartments is SRSim [16,17]. SRSim

is integrated in the Large-scale Atomic/Molecular Massively

Parallel Simulator (LAMMPS) [55,56] and allows the user to

specify the model in BNGL [4]. SRSim allows users to specify the

geometry of the particles in the simulation, as well as interaction

sites. It is therefore especially good at simulating the assembly and

structure of complex biomolecular complexes, as evidenced by a

recent model of the inner kinetochore [57].

MCell [18–20,58] allows individual molecules to be traced in

arbitrarily complex geometric environments that are defined by

the user. This allows for simulations of biomolecules in realistic

reconstructions of living cells, including cells with complex

geometries like those of neurons. As an illustration, Figure 3

shows a screenshot from a simulation of calcium proteins. The

reaction compartment is a reconstruction of a dendritic spine [59].

Visualizations are supported by a specialized plug-in (‘‘CellBlen-

der’’) for the open-source program Blender [60].

MCell uses an ad hoc formalism within MCell itself to specify a

multi-state model: in MCell, it is possible to assign ‘‘slots’’ to any

molecular species. Each slot stands for a particular modification,

and any number of slots can be assigned to a molecule. Each slot

Table 1. Examples of multi-state models of biological systems.

Biological system Specification Computation Reference

Bacterial chemotaxis signaling pathway StochSim StochSim [61]

CaMKII regulation StochSim StochSim [27]

ERBB receptor signaling BioNetGen NFSim [29]

Eukaryotic synthetic gene circuits BioNetGen, PROMOT [62] COPASI [63] [30]

RNA signaling Kappa KaSim [64]

Cooperativity of allosteric proteins ANC Matlab [6]

Chemosensingin Dictyostelium Simmune Simmune [44]

T cell receptor activation SSC SSC [65]

Human mitotic kinetochore BioNetGen SRSim [66]

Cell cycle of fission yeast ML-Rules JAMES II [42] [41]

A version of this table with hyperlinks is attached to this manuscript as Table S1. Abbreviations: COPASI, COmplex PAthway Simulator; PROMOT, Process Modeling Tool.
doi:10.1371/journal.pcbi.1003844.t001
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can be occupied by a particular state. The states are not

necessarily binary. For instance, a slot describing binding of a

particular ligand to a protein of interest could take the states

‘‘unbound,’’ ‘‘partially bound,’’ and ‘‘fully bound.’’

The slot-and-state syntax in MCell can also be used to model

multimeric proteins or macromolecular complexes. When used in

this way, a slot is a placeholder for a subunit or a molecular

component of a complex, and the state of the slot will indicate

whether a specific protein component is absent or present in the

complex. A way to think about this is that MCell macromolecules

can have several dimensions: a ‘‘state dimension’’ and one or more

‘‘spatial dimensions.’’ The ‘‘state dimension’’ is used to describe

the multiple possible states making up a multi-state protein, while

the spatial dimension(s) describes topological relationships between

neighboring subunits or members of a macromolecular complex.

One drawback of this method for representing protein complexes,

compared to other spatial modeling tools such as Meredys [15], is

that MCell does not allow for the diffusion of complexes and hence

of multi-state molecules. This can in some cases be circumvented

by adjusting the diffusion constants of ligands that interact with the

complex by using checkpointing functions or by combining

simulations at different levels.

Examples of Multi-state Models in Biology

A (by no means exhaustive) selection of models of biological

systems involving multi-state molecules and using some of the tools

discussed here is given in Table 1.
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