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Understanding the Role of Perception in the Evolution of Human Language
Isaac Davis (isaacd@andrew.cmu.edu)

Department of Philosophy, Carnegie Mellon University

Abstract

In this paper, we propose a flexible modeling framework for
studying the role of perception in language learning and lan-
guage evolution. This is achieved by augmenting some novel
and some existing evolutionary signaling game models with
existing techniques in machine learning and cognitive science.
The result is a “grounded” signaling game in which agents
must extract relevant information from their environment via
a cognitive processing mechanism, then learn to communi-
cate that information with each other. The choice of cogni-
tive processing mechanism is left as a free parameter, allow-
ing the model to be tailored to a wide variety of problems
and tasks. We present results from simulations using both a
Bayesian perception model and a neural network based per-
ception model, which demonstrate how perception can “pre-
process” environmental data in a way that is well suited for
communication. Lastly, we discuss how the model can be ex-
tended to study other roles that perception may play in lan-
guage learning. Keywords: Evolutionary Signaling Games,
Perception, Language Evolution, Reinforcement Learning

Introduction
In this paper, we are interested in studying three broadly de-
fined types of interaction between perception and language
learning. The first, and perhaps most obvious, is how our per-
ceptions of the world constrain and affect our ability to learn
language. The second type of interaction is the reverse of
the first- how does learning a language shape our perceptions
of the world? The third interaction, with a long history of
philosophical inquiry, is how differing cognitive representa-
tions between agents affects their ability to communicate with
each other. We propose a flexible modeling framework that
can be used to represent and study all three types of interac-
tions between perception and language learning.

This framework has two core components. The first are
evolutionary signaling games which have been used exten-
sively to explain a wide variety of communication phenom-
ena in animals, from mating calls and warning calls in mam-
mals and birds, to pheromone signaling in insect communi-
ties. More recent work has applied these models to the evo-
lution of human language and human linguistic phenomena,
such as compositionality (Franke 2015) and convex percep-
tual categories (Jager 2007, O’Connor 2014). These mod-
els typically represent a situation in which two agents must
coordinate their behavior in such a way as to achieve some
common goal, but without any pre-defined common language
with which to communicate.

We shall see, however, that the standard signaling game
model is not well suited for studying interactions between
cognition and language learning. In order to represent percep-
tion and language in the same model, we derive a “grounded”
signaling game, in which agents respond to raw sensory
inputs, rather than cleanly-defined information states. We

achieve this using unsupervised learning techniques from
Machine Learning and Cognitive Science.

In the following section, we present the relevant back-
ground in signaling games and reinforcement learning, and
briefly discuss why the standard model is not yet equipped for
studying interactions between perception and language learn-
ing. We then present our grounded signaling game model,
and draw on literature in Deep Reinforcement Learning to de-
rive an effective learning rule. In order to avoid introducing
too much complexity at once, we first present the model with
a “trivial” perception mechanism, consisting of the identity
map on sensory inputs. After deriving the learning rule for
this model, we then outline how to incorporate a non-trivial
perception mechanism, and briefly discuss the two percep-
tion mechanisms we will test. We then present results from
a battery of experiments in which the agents must learn to
communicate structured visual information from a synthetic
image environment. These results provide insights into the
role of perception as a “pre-processing” step for communi-
cation, and reveal some interesting interactions between the
type of environment and perception mechanism. Lastly, we
discuss how the current model can be extended to study all
three types of interaction addressed in the introduction.

Background and Related Material
Signaling Games
In a two-player signaling game, the sender observes an infor-
mation state d ∈D , drawn from some probability distribution
P(D). The sender then chooses a signal x ∈ X according to
some decision rule, and transmits the signal to the receiver.
The receiver then observes the signal, and chooses some act
a ∈ A according to the receiver’s decision rule. Both players
then receive a payout R(d,a), which is a function of the state,
and act, but not the signal. The game is fully cooperative, in
that both players receive the same payout every round.

The sender’s decision rule can be represented by a func-
tion assigning each state d to a probability distribution Ps(x|d)
over signals, and likewise for the receiver’s rule Pr(a|x). With
this notation, the expected reward for both players is given by

E[R|Ps,Pr] = ∑
d∈D,x∈X ,a∈A

P(d)Ps(x|d)Pr(a|x)R(d,a) (1)

An evolutionary signaling game is played for many rounds,
and after each round, players update their strategies accord-
ing to some learning rule. The most well-studied and of-
ten used form of reinforcement learning in signaling games
is Roth-Erev reinforcement learning. A Roth-Erev learning
agent (the sender, for this example) is represented by a set of
decision parameters W s, one parameter for each state-signal
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pair. Each weight ws
i, j represents the sender’s unnormalized

probability of choosing signal xi given state d j, and the Roth-
Erev update rule is very simple. If in one round of play the
sender observes state d j, chooses signal xi, and receives re-
ward R, then the sender updates weight ws

i, j by some fixed
proportion of the reward, ∆ws

i, j = αR, and leaves all other
weights unchanged.

In a signaling game with two equiprobable states, Roth-
Erev reinforcement learning will always converge to a sig-
naling system equilibrium, in which the correct act is always
chosen. In games with more than two states, or with non-
uniformly distributed states, Roth-Erev learning will some-
times converge to a partial pooling equilibrium, in which
some states are communicated accurately, and others are
“pooled” into a single signal. Such outcomes are Nash Equi-
libria, meaning that neither player can improve the outcome
by unilaterally changing their own strategy. The probability
of converging to such partial pooling equilibria increases with
the number of states (Huttegger, Skyrms, Smead, & Zollman
2010).

While our general framework is compatible with any sig-
naling game model, the experiments for this paper will be
based on the Sim-Max game (Jager 2007), a variation of the
standard signaling game. In a Sim-Max game, the receiver’s
goal is to guess which state the sender observed, and the re-
ward function is a distance metric representing “similarity”
between states. Such models are used when the state space is
much richer than the signal space, and one-to-one state-signal
mappings are no longer possible. An example of this is color-
even though colors vary continuously, we employ a relatively
small number of words for describing them.

Limitations of the Standard Model
The Roth-Erev reinforcement learning model is favored in
signaling games for its simplicity and minimality of cogni-
tive assumptions. However, there are two factors that prevent
us from using the standard model for our purposes. The first
factor is entirely practical. In particular, Roth-Erev reinforce-
ment learning, while simple and well studied, does not scale
well to larger problems, as it requires a single decision param-
eter for each state-signal pair. This makes Roth-Erev learn-
ing prohibitively slow to converge on large problems, and re-
stricts us to relatively small simulations.

The second problem with the standard model is more con-
ceptual. In the standard treatment of signaling games, states
are represented as uniform, discrete “labels,” or in the usual
Sim-Max game as a uniformly distributed compact subset of
Euclidean space. The key feature in these models is that
there is no internal structure to the states themselves. That
is, the players cannot discriminate between two states except
through the reward function- two different states are either
identical or not, but any further delineation between states can
only be inferred from their effect on the payout. This, how-
ever, is often regarded as an advantage of the standard rep-
resentation, rather than a limitation. The agents need not be

endowed with an inner mental language (Skyrms 2010), they
need not know what the game is “about,” or even that they are
playing a game at all. It is certainly important, if we wish to
study interactions between perception and language-learning,
that we not make any restrictive cognitive assumptions which
would “screen off” the cognitive details of interest. However,
outside of very simple or tightly controlled experimental set-
tings, the standard representation actually imposes some very
strict assumptions about the agents’ perceptions, albeit im-
plicitly.

To illustrate this, consider the following two very similar,
but not identical signaling games: in Game 1, the sender ob-
serves one of ten cards C1, . . . ,C10, each of which depicts a
digit 0− 9, and sends one of ten signals. The receiver must
pull on one of ten levers, each of which bears a digit 0−9. If
the card and chosen lever show the same number, both play-
ers receive a reward of 1, otherwise they receive no payout.
This game fits exactly into the signaling game framework de-
scribed above.

Now consider Game 2: in Game 2, the signals and the re-
ceiver’s actions are the same as Game 1. However, instead of
observing one of ten cards, the sender now observes a card
depicting a handwritten digit 0−9. How would we represent
the state space for Game 2? A first guess might be to repre-
sent it as having the same state space as Game 1, since each
observation depicts one of 10 digits. But unlike Game 1, we
cannot guarantee uniformity across separate instances of the
same digit. Not all instances of 0 will look the same, and
so they are distinct information states. To assume that they
are not distinct information states is to assume that the sender
perceives them as the same, or recognizes that they are of the
same category. But these are acts of cognition. Seeing a digit
handwritten on a card is not the same an recognizing which
digit it depicts, or even recognizing that it is a digit at all. In
this sense, the standard approach of representing states and
acts as finite sets of distinct labels implicitly imposes presup-
poses a fixed way in which agents perceive, recognize, and
process their environments.

This brings us to the two underlying principles of our
framework. First, in order to represent all of the informa-
tion available to agents, without explicitly assuming how
they perceive or represent that information, we must repre-
sent states as raw sensory inputs, rather than discrete infor-
mation states. Second, because sensory inputs tend to be
high-dimensional, it is no longer the case, as with the stan-
dard signaling game, that states cannot be distinguished ex-
cept through the reward function. In particular, Unsupervised
Learning algorithms can infer informational structure from
high-dimensional sensory inputs without any feedback or su-
pervision. Thus, by integrating an unsupervised perception
model into a “grounded” signaling game, we can represent
the evolution of both the external signaling language and the
agents’ internal representations in the same framework.
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The Model
In this section, we present the model used in the experiments
for this paper. We first present the model with a “trivial” per-
ception mechanism, which performs no significant cognitive
processing. Once we derive the learning rule for this model,
we then outline how a non-trivial perception mechanism can
be incorporated. The framework is designed to place no re-
strictions on what perception model we use, and so we will
test two mechanisms, representing two schools of thought on
modeling cognitive processing.

The Grounded Signaling Game
In the experiments we present here, the state space D will be
a synthetic image environment, presented to the sender as a
vector of raw pixel values, and the signal space X = {0,1}k

will consist of binary vectors of length k. As with the Sim-
Max game, the receiver’s action will be produce a guess dout

as to which state din, the sender initially observes, based on
the sender’s signal x. The reward function will be a distance
metric representing similarity between images.

Recall that a Roth-Erev learning agent requires one param-
eter for each state-signal pair. In these experiments, however,
we will use 36-pixel binary images, and signals between 4
and 36 bits in length. Even though only a small number of
possible images d ∈ {0,1}36 will ever appear with non-zero
probability, the players do not know ahead of time which im-
ages are present, or how many appear with positive proba-
bility. This is an important distinction, as the receiver must
reconstruct the original image pixel-by-pixel, rather than sim-
ply guessing from a list of potential images. Therefore, defin-
ing a Roth-Erev reinforcement learning agent for this game
would require up to 272 separate decision parameters for each
player. Clearly this is intractable even for small images, and
we must look elsewhere to derive a tractable learning rule. To
this end, we draw on the representational flexibility of Artifi-
cial Neural Networks (ANNs).

d1

dn

d1

dn

x1

xk

Ws Wr

Sender’s decision:  
Ps(x|d)

x1

xk

X

signal

Receiver’s decision:  
Pr(d|x)

din dout

Figure 1: Information flow for one round of the signaling
game

Figure 1 depicts a single round of the signaling game.
Rather than defining the sender with one decision parameter
per state-signal pair, we define a decision rule Ps(x|din,W s)
with one parameter per state-signal coordinate pair. Given a
state d, we define, for each signal-coordinate xi:

Ps(xi = 1|d) = σ

(
n

∑
j=1

W s
i, jd j

)
(2)

where σ is the standard sigmoid activation function σ(x) =
1/(1+ e−x). Those familiar with ANNs will note that this
is the standard expression for the activation value of a unit
with sigmoid activation function. In the stochastic network
corresponding to this game, the activation value is treated
as a probability, and the output of unit xi is sampled from
the Bernoulli distribution xi ∼ Bernoulli(Ps(xi = 1|d)). Each
weight W s

i j determines, in some sense, the “importance” of
coordinate j in determining the value of signal component
xi. The sender then generates the signal x by first comput-
ing the activation probability for each signal coordinate, then
independently sampling each coordinate from the computed
Bernoulli distribution. Thus, the sender’s probability of send-
ing signal x given object d factors as:

Ps(x|d) =
k

∏
i=1

(Ps(xi = 1|d))xi(1−Ps(xi = 1|d))1−xi (3)

The receiver’s distribution is defined similarly, with the roles
of d and x being reversed. With Ps and Pr defined as above,
the expected reward function in equation (1) can be inter-
preted as an objective function J(Ws,Wr) = E[R|Ps,Pr] to a
multi-agent optimization problem, where both players wish
to maximize J(Ws,Wr), but each player directly controls only
one set of parameters. For this experiment in particular, the
cooperative objective is to output an image that is most sim-
ilar to the input image, which is the same objective used in
training certain types of auto-encoders (a type of unsuper-
vised ANN, trained to accurately reconstruct its own inputs).
Thus, we can efficiently represent a single round of this sig-
naling game as a single forward pass through the three-layer
stochastic-sigmoid auto-encoder network shown in figure 1.

The Learning Rule
An auto-encoder, like most feed-forward neural networks, is
generally trained using some variation of gradient descent
via back-propagation of errors 1. In each step of the back-
propagation algorithm, an input vector is passed through the
network, generating a hidden representation (in this case sig-
nal) from which the latter half of the network attempts to
reconstruct the original input. The error signal (difference
between input and output) at each unit is “propagated” back-
wards, and each weight is adjusted according to its “effect” on
the resulting error. Back-propagation algorithms have been
extremely successful in training neural networks to perform
highly complex tasks, so it is tempting to co-opt the back-
propagation algorithm as a “learning rule” for our two agents.
However, even though we can represent our signaling game
with a three-layer feed-forward network, a key assumption of
the model prevents us from using back-propagation directly.
In particular, the back-propagation algorithm computes the
update to layer l as a function of the parameter and activation

1Technically, exact back-propagation cannot be applied to a
stochastic network, though there are several versions of “approxi-
mate” back-propagation for stochastic networks, e.g. (Gu, Levine,
Sutskever, & Mnih 2015)
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values of layer l + 1. In this scenario, however, each layer
represents a separate human agent, who cannot share param-
eter information with each other, thus preventing the requisite
gradient information from flowing across agents.

Because of this, we instead use a REINFORCE learn-
ing rule, first named in Williams (1992). Consider a sin-
gle round of the signaling game in which sender observes
state d = (d1, . . . ,dn), sends signal x = (x1, . . . ,xk), receiver
guesses state d′ = (d′1, . . . ,d

′
n), and both players receive re-

ward R(d,d′). We define ∆W s
i, j and ∆W r

i, j, the weight updates
for sender and receiver, as

∆W s
i, j = ε(R(d,d′)−bi j)(xi−Ps(xi = 1|d))d j (4)

∆W r
i, j = ε(R(d,d′)−bi j)(d′i −Pr(d′i = 1|x))x j (5)

where ε is a learning rate and bi j is a reinforcement base-
line. The main property of REINFORCE rules, as shown in
(Williams 1992), is that the weight updates shown in equa-
tions (4) and (5) are unbiased estimates of the true gradi-
ent of J(Ws,Wr), the expected reward function. That is,
(R(d,d′)− bi j)(xi−Ps(xi = 1|d))d j is an unbiased estimate
of ∂J/∂W s

i j, and (R(d,d′)−bi j)(d′i−Pr(d′i = 1|x))x j is an un-
biased estimate of ∂J/∂W r

i j. This allows the two players to
cooperatively implement an approximate gradient descent al-
gorithm, despite the fact that neither player is explicitly com-
puting any gradients. This rule is both computationally inex-
pensive and avoids the information-sharing problem of back-
propagation, so it is well suited to our task.

Even though equations (4) and (5) are unbiased estimates
of the true gradient, they can be very high variance estimates,
so outside of very simple tasks, the “pure vanilla” REIN-
FORCE rule (i.e. bi j = 0) can be hopelessly slow to converge.
We therefore use a minimum variance, unit-specific baseline
derived in Bengio (2013), given by the expression.

bi j =
E[(hi−σ(ai))

2R]
E[(hi−σ(ai))2]

(6)

where hi is the output value and σ(ai) the activation value of
unit i. This can be easily computed on the fly by maintaining
moving averages of weight updates and rewards over time.

Adding Perception to the Model
The signaling game model we just introduced is “grounded,”
in the sense that states are represented as sensory inputs, but
we have yet to incorporate a perception mechanism. While
perception is a broadly defined and widely studied subject, we
will adopt a very general stance on what constitutes “percep-
tion.” We will take perception to be any map F : D→Z from
states (represented as sensory inputs) to lower-dimensional
internal representations Z. These internal representations
can be interpreted as the features, categories, concepts, pat-
terns, rules, etc. from which our higher-level decisions are
made. For these particular experiments, we shall use percep-
tion models that learn both a recognition map and a gener-
ative map. The recognition map F : D → Z infers a latent

representation z from an object d, while the generative map
F−1 : Z → D generates an object d from an internal repre-
sentation z (this is a slight abuse of notation, as the generative
map will not in general be the inverse of the recognition map).

d
Zs

Zs
d

din

Sender’s Recognition Model

d

d

Sender’s Generative Model

Fs Fs-1

d
Zr

Zr
d

din

d

d

Fr Fr-1

Receiver’s Recognition Model Receiver’s Generative Model

1. Pre-training:

• Players interact with environment 
separately, perform unsupervised 
learning 

• Perception mechanism learns low-
dimensional representation of data 
(recognition model), and generative 
model from representations to 
objects 

d
Zs

Zs
d

din

Fs(din)

x1

xk

Ws

Sender’s decision:  
Ps(x|Zs)

X

signal

X

d
Zr

Zr
d

dout

Fr(Zr)-1

x1

xk

Wr

Receiver’s decision:  
Pr(Zr|x)

2. Playing the signaling game

• Signaling game proceeds as 
usual, but decisions are 
functions of internal 
representations

• REINFORCE learning applies 
using same reinforcement 
signal as original game

Figure 2: Perception as a pre-processing step prior to signal-
ing game

In the experiments we present here, perception will take
the form of a pre-processing step (figure 2). Prior to play-
ing the signaling game, each player will independently sam-
ple images from their environment, engaging in unsuper-
vised learning, training their recognition maps Fs,Fr as well
as generative maps F−1

s ,F−1
r . Once the perception mech-

anisms have been trained, the signaling game proceeds as
usual, except that the sender now makes their signaling de-
cision Ps(x|zin

s ,W
s) as a function of the sender’s internal rep-

resentation Fs(din) = zin
s of the state din. The receiver then

observes the signal, and first generates an internal represen-
tation zout

r , which is then mapped to output image dout
r . The

reward value is then computed as usual, and we apply the
same REINFORCE updates in (4)-(5) to the player’s decision
parameters.

Representing Perception
There has been surge of interest in computational models of
perception, from both Machine Learning and Cognitive Sci-
ence. We will test two different models, representing two
main approaches that have been taken in studying perception.
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The first are Bayesian models, which represent perception as
a rational inference problem. Given object d, we infer a la-
tent representation z by maximizing the posterior probability
P(z|d) ∝ P(d|z)P(z) using Bayes’ rule. This requires an ob-
ject model P(d|z), as well as a prior distribution P(z) over all
possible latent representations. We shall use an Infinite Latent
Feature Model, which learns a binary feature representation
of visual data, without having to pre-define a fixed number of
latent features. This is achieved using an Indian Buffet Pro-
cess (IBP) prior, which defines a probability distribution over
binary vectors with an unbounded number of features (Grif-
fiths & Ghahramani 2005). While exact inference over this
distribution is intractable, MCMC sampling methods can be
used to perform tractable inference.

The second perception mechanism we shall test a
Helmholtz Machine (Dayan et al 1995), representing a neuro-
computing model of perception. A Helmholtz Machine
is a type of variational auto-encoder, which learns a low-
dimensional representation of sensory inputs by iteratively
inferring latent representations from data, then reconstruct-
ing simulated data from internal representations. These two
steps are iterated in an alternating “wake-sleep” cycle, with
the objective of minimizing the Kullback-Liebler divergence
between the true distribution and the generative distribution.
The result is a low-dimensional binary representation of the
data, encoded on the hidden units of the network. While the
Helmholtz Machine in its original form has been rendered
largely obsolete by more powerful methods, we use this ar-
chitecture for its relative simplicity and pedagogical value in
the context of our goals.

Experiments and Results
In this section we describe the environments and experimen-
tal conditions we tested, present the results of these experi-
ments, and discuss their implications.

Experimental Conditions
We tested three different 36-pixel synthetic image environ-
ments, each intended to represent a different kind of informa-
tional structure. For the first environment (PICTURE), we de-
fined 8 specific 36-pixel images, each equally likely to appear,
and assign 0 probability to all other images. These 8 images
were chosen so as to avoid recurring components or features
across images. This serves as a baseline evaluation for the
perception mechanisms- we can think of the PICTURE envi-
ronment as representing a “traditional” signaling game setup,
in which the “true” state space consists of 8 discrete states
that share no common internal structure. In the context of our
project, “there are only 8 things here” represents prior knowl-
edge or recognition, and so the players must learn that their
environment contains only these 8 images directly through
their sensory inputs.

The second environment (FEATURE) consists of compo-
sitionally distributed images. We define four 3×3 pixel pat-
terns (features), and generate each 6× 6 pixel image by ran-
domly selecting any number of the four features and compos-

ing them into a single image. This construction is based on an
experiment in Griffiths & Ghahramani (2005). The third en-
vironment (HIERARCHY) is hierarchically distributed over
two categories: there are 12 images with non-zero probabil-
ity, depicting either horizontal or vertical bars. Images are di-
vided into category A (vertical) and category B (horizontal).
Within each category, each image is equally likely to appear,
but images from category A are twice as likely to appear as
images from category B. The FEATURE and HIERARCHY
environment test the agents’ abilities to learn non-trivial in-
formational structure from the environment.

For each environment, we test a noiseless version, in which
images are presented to the sender with binary pixel values,
as well as two levels of corrupting noise, in which each pixel
is independently perturbed before being shown to the sender.
For a reward function, we test three different distance metrics-
Hamming (L1), Euclidean (L2), and a patch-specific function
that depends only on certain regions of the image.

Results
Figure 3 shows a summary of results across our experiments,
using the Hamming metric reward function (we observed no
significant differences across reward functions). Convergence
rates indicate the number of iterations required to achieve a
threshold 90% of optimal performance, averaged over 5 runs
for each condition. The Bayesian and Helmholtz columns
correspond to the two perception models, while the Identify
column indicates the trivial perception mechanism that per-
forms no cognitive processing.

Conditions Bayesian Helmholtz Identity
Environment Noise Level1 Signal Size2 Convergence 

Rate
Signal Size2 Convergence 

Rate
Signal Size2 Convergence 

Rate
PICTURE 0 8 1.1x105 8 1.4x105 8 *4.5x105

0.25 8 1.2x105 8 1.4x105 8 *5.0x105

0.35 8 1.2x105 8 1.5x105 8 *4.8x105

FEATURE 0 4 0.3x105 6 0.8x105 6 0.8x105

0.25 4 0.4x105 6 0.9x105 6 0.8x105

0.35 4 0.4x105 6 0.9x105 6 1.1x105

HIERARCHY 0 4 1.0x105 4 0.6x105 4 1.0x105

0.25 4 1.2x105 4 0.8x105 4 1.5x105

0.35 4 1.3x105 4 0.8x105 4 1.3x105

1Value indicates SD of mean-zero Gaussian noise
2Smallest bit-size that converged to optimum (best pooling outcome if optimum not achieved) across all runs

*Indicates partial pooling outcome

Figure 3: Results

In the PICTURE environment, both perception mecha-
nisms drastically improved convergence speed, by effectively
reducing the scale of the problem from 236 to 8 states. This
pre-processing also smoothed over irregularities that would
occur under the trivial perception mechanism, where the re-
ceiver would fix the value of certain pixels across all images.
Introducing the perception mechanism allows the receiver to
reconstruct the image based on their own internal representa-
tions of the environment, rather than by individually choosing
the value of each output pixel.

In the FEATURE environment, convergence to the opti-
mum was fast and reliable through all levels of noise, even
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with the trivial model. The fact that communication is eas-
ier to learn in the FEATURE environment than the PICTURE
environment, even though the former contains twice as many
states as the latter, shows that it is not just the number of dis-
tinct states that affects learning, but the content of the states
themselves. However, the trivial model was only able to con-
verge to the optimum using a 6-bit signal, which is not mini-
mal. The Bayesian perception mechanism, however, allowed
the agents to correctly identify 4 latent features in their envi-
ronment, which enabled them to learn to communicate using
a minimal 4-bit signal. The Helmholtz model did not lead to
any reduction in signal size. This is because the Bayesian
model learns the number of latent features from the data,
while the Helmholtz Machine uses a fixed number of hidden
units. Thus the Bayesian model was able to learn a more effi-
cient 4-feature representation than the network-based model,
enabling more efficient communication.

In the HIERARCHY environment, convergence was fast
and reliable under all 3 models, using a minimal 4-bit sig-
nal. The Helmholtz model is able to learn the more efficient
representation in this environment, using one hidden unit to
code for the category, and 6 more for each image within a
category. This reduced convergence time by up to half. The
Bayesian model, however, learns a less efficient representa-
tion, identifying 1 binary feature for each of the 12 images in
the environment, and does not significantly improve conver-
gence speed.

Discussion and Future Work

The results from the previous section demonstrate how a per-
ception mechanism can be incorporated into a signaling game
model, and shed some light on the first interaction we raised
in the introduction. In particular, we saw that a perception
pre-processing step can enable faster and more robust coop-
erative learning from high-dimensional sensory inputs. We
also saw that certain perception models can learn more effi-
cient representations in certain environments. In this section,
we discuss how the existing model can be extended to address
the other types of interactions we wish to study.

Other Roles of Perception

In the experiments presented here, perception was used
strictly as a pre-processing step, but in order to better under-
stand how language-learning can affect perception, we must
allow the perception mechanisms to be trained in parallel with
the signaling game. While the REINFORCE rule we present
here does not scale well to very deep models with multiple
hidden layers, recent advances in Deep Reinforcement Learn-
ing and Deep Q-learning allow us to scale the basic architec-
ture up to very large tasks. Additionally, we may be inter-
ested in fixing the behavior of one agent, so that the non-fixed
player learns the language of the fixed player. This would
allow us to observe any influence that the fixed player’s lan-
guage has on the non-fixed player’s learned representations.

Perceptual Similarity in Communication
The model we present here already has most of what we need
to address the third type of interaction, relating to perceptual
similarity across agents. That is, we already represent the
evolution of both the external language and the internal repre-
sentations, so all we need is a means of quantifying “percep-
tual similarity” across multiple agents. To this end, we can
use cross-systems analysis techniques like Representational
Similarity Analysis (Kriegeskorte, N., Mur, M., & Bandet-
tini, P. A. 2008), a method for quantifying “representational
similarity” between two different representation systems, re-
gardless of the underlying topologies of the systems them-
selves. This would allow us to study inter-agent learning per-
formance as a function of the similarity between their inter-
nal representations, and perhaps identify a “communicability
threshold” of perceptual similarity below which no commu-
nication is possible.
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