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ABSTRACT OF THE DISSERTATION

Raising an Abstraction Level of Compilation and Optimization

for Customized Computing

by

Hao Yu

Doctor of Philosophy in Computer Science

University of California, Los Angeles, 2019

Professor Jingsheng Jason Cong, Chair

The demand for scalable, high-performance computing has increased as the size of

datasets has grown in recent years. However, the breakdown of Dennard’s scal-

ing [DGR74] has led to energy efficiency becoming an important concern in data-

centers, and spawned exploration into using power-efficient processors such as GPUs

(Graphic Processing Units) and FPGAs (Field-Programmable Gate Arrays) as ac-

celerators in datacenters. In particular, the FPGA’s low power consumption and

the re-programmability allow datacenters to use FPGAs as highly energy-efficient

accelerators for a variety of application. On the other hand, FPGA has poor pro-

grammability compared to instructions-based architectures like CPU and GPU. To

facilitate the process of implementing and deploying FPGA accelerators, High-Level

Synthesis (HLS) [CLN11] that generates functional-equivalent RTL from C-based

programming languages attracts more and more attention since past decades. Nowa-

days, both FPGA vendors have their commercial HLS products – Xilinx SDx [SDX]

and Intel FPGA SDK for OpenCL [INT]. However, modern HLS is still not friendly
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for software designers who have limited FPGA domain knowledge. Since the hard-

ware architecture inferred from a syntactic C implementation could be ambiguous,

current commercial HLS tools usually generate architecture structures according to

specific HLS C code patterns. As a result, even though the authors in [CLN11] have

illustrated that the HLS tool is capable of generating FPGA designs with competitive

performance as the one in RTL, designers must manually reconstruct the HLS C ker-

nel with specific code patterns to achieve high performance. This problem becomes

one of the main impediments to consolidating the FPGA community on cooperation

and developments.

In this dissertation, we first present an automated framework that frees human

efforts from code reconstruction and design space exploration (DSE). The framework

creates a more comprehensive micro-architecture design space from user-written C-

based kernel with the Merlin compiler [CHP16a], so the design point should cover

the design point with better performance when compared to the HLS-pragma-based

design space. To efficiently identify the best design configuration in the tremendous

design space, we first propose efficient design space pruning processes that reduce the

design space by 24.65×. Accordingly, we develop and evaluate several approaches,

including multi-armed bandit hyper heuristic approach, gradient-based approach,

and design bottleneck optimization approach. The evaluation result shows that our

DSE framework is able to identify the design point that achieves on average (using

geometric mean) 93.78% QoR compared to the corresponding manual design.

Based on the proposed DSE framework, we further support automated design

optimization for high level domain specific languages (DSLs). Since DSLs might

not explicitly provide interfaces for users to specify design configurations, automatic

DSE becomes even more important when supporting DSLs for FPGAs. Specifi-
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cally, we adopt Merlin C [CHP16a], an OpenMP-like [OMP] C-based programming

model, as the intermediate representation (IR) and implement DSL-to-Merlin front-

end compilers while preserving the semantic and domain-specific information such

as parallel patterns, systolic patterns, and scheduling functions. We first imple-

ment Spark-to-Merlin front-end compiler that translates Spark applications in Scala

to Merlin C for FPGA acceleration. By leveraging parallel patterns as scheduling

hints, the generated accelerators are able to achieve 50× speedup on geometric mean

for a set of machine learning kernels. In addition, we also demonstrate that our

DSE framework can be even more practical for the DSLs with plenty scheduling

functions. Specifically, we implement HeteroCL-to-Merlin front-end that takes Het-

eroCL [LCH19] programming model embedded in Python. Our DSE framework is

capable of exploring a subset of HeteroCL scheduling primitives and let users focus

on the platform independent loop transformations. With the help from the DSE

framework, we achieve 27.62× speedup on geometric mean over a CPU core for a

variety of compute-intensive kernels (chapter 3).

On the other hand, a main challenge of performing design space exploration for

a design with arbitrary functionality is the lack of the assumption to underlying

micro-architectures. As we will illustrate in the dissertation, the cost of evaluating

the quality of a design point is extremely expensive (15-60 minutes) so only a limited

number of design points can be explored. In addition, due to the uncertainty of

vendor tool behaviors, the development of performance and resource modeling is

also unrealistic. As a result, we propose composable, parallel and pipeline (CPP)

architecture template to limit the design space to a certain region that is more

practical and has less exceptions (chapter 4). With the CPP architecture, we are

able to derive an incremental analytical model, which only requires a few HLS run to
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be initialized, to facilitate the DSE process. In the last part of this dissertation, we

use convolutional neural network (CNN) to demonstrate that the HLS runtime cost

can be totally saved with the use of a more domain specific architecture (chapter 5).

Specifically, we leverage a systolic array architecture template for CNN accelerator

generation. By mapping a CNN model to the pre-defined systolic array template,

we can guarantee the model accuracy and DSE efficiency. The experimental result

shows that our analytical model for the architecture template achieves 96% accuracy,

and the mapped CNN model achieves up to 1.2 Tops throughput on an Intel Arria

10 FPGA.
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CHAPTER 1

Introduction

The demand for scalable, high-performance computing has increased as the size

of datasets has grown in recent years. In 2004, Google introduced the MapRe-

duce [DG08] programming framework, a framework for efficiently managing tens of

thousands to millions of servers in datacenters with a simple programming model. In-

spired by Google MapReduce, open source big data analytic systems such as Apache

Hadoop [HAD] and Spark [ZCF10] have developed and evolved rapidly. However,

the breakdown of Dennard’s scaling [DGR74] has led to energy efficiency becoming

an important concern in datacenters, and spawned exploration into using power-

efficient processors such as GPUs (Graphic Processing Units) and FPGAs (Field-

Programmable Gate Arrays) as accelerators in datacenters.

In particular, the FPGA’s low power consumption and the re-programmability

allow datacenters to use FPGAs as highly energy-efficient accelerators for a vari-

ety of application. Applications with a large fraction of computationally-intensive

kernels containing small amounts of control flow, such as string matching [CCL15],

searching [PCC14] and sorting [CSP15, HLC14], are suitable to be accelerated using

FPGAs. In addition, adopting FPGAs in private datacenters has recently garnered

attention from the community. For example, IBM deploys FPGAs for its larger

NoSQL data stores [BRH15]. Microsoft has adopted CPU-FPGA systems in its dat-
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acenter to help accelerate the Bing search engine [PCC14]. Moreover, the acquisition

of Altera by Intel in 2015 promises continued development of closely-integrated CPU-

FPGA platforms; the compute instance with FPGAs in Amazon EC2 introduced in

2016 enables the FPGA platform in the public datacenter. As a result, datacenters

with FPGAs are expected to be widely used in the near future.

On the other hand, FPGA has poor programmability compared to instructions-

based architectures like CPU and GPU. Traditionally, Register-Transfer Level (RTL)

description languages, such as VHDL and Verilog HDL, are the most widely used

languages for FPGA design implementation. The use of these hardware descrip-

tion languages leads to the fact that the development concept of FPGA is circuit

design instead of software implementation. According to the desired functionality,

the designer comes up with a high-performance architecture, including finite state

machine, data flow, and modules, and then implement the circuit in RTL. However,

the design usually needs to be refined and improved iteratively, and each iteration

takes a great deal of time and effort. To facilitate the process of implementing and

deploying FPGA accelerators, High-Level Synthesis (HLS) [CLN11] that generates

functional-equivalent RTL from C-based programming languages attracts more and

more attention since past decades. Nowadays, both FPGA vendors have their com-

mercial HLS products – Xilinx SDx [SDX] and Intel FPGA SDK for OpenCL [INT].

For example, Code 1.1 shows an intuitive HLS C implementation of Needleman-

Wunsch (N-W) algorithm [NW70], a 2-D dynamic programming algorithm for string

matching, for Xilinx FPGAs. Xilinx SDx is able to generate 9,694 lines of RTL kernel

from Code 1.1 with the same functionality. As a result, it is much more efficient for

designers to evaluate and improve their architectures in HLS C than RTL.
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Code 1.1: N-W HLS C Code Snippet

1 void kernel(int batch, char seqAs[] 1 , char seqBs[] 1 ,

2 char alignedAs[] 1 , char alignedBs[] 1 ) {

3 #pragma HLS INTERFACE m_axi port=seqAs offset=slave

4 #pragma HLS INTERFACE m_axi port=seqBs offset=slave

5 #pragma HLS INTERFACE m_axi port=alignedAs offset=slave

6 #pragma HLS INTERFACE m_axi port=alignedBs offset=slave

7 #pragma HLS INTERFACE s_axilite port=seqAs offset=control

8 #pragma HLS INTERFACE s_axilite port=seqBs offset=control

9 #pragma HLS INTERFACE s_axilite port=alignedAs offset=control

10 #pragma HLS INTERFACE s_axilite port=alignedBs offset=control

11 for (int i=0; i<batch; i++) { 4

12 int M[129][129];

13 ...

14 for(i=0; i<129; i++) 5 { M[0][i]=seqAs[...] 2 3 }

15 for(j=0; j<129; j++) 5 {M[j][0]=...}

16 for(i=1; i<129; i++) 5 {

17 for(j=1; j<129; j++) 5 { M[i][j]=... }

18 }

19 // Skip ~170 lines of N-W algorithm implementation.

20 }

21 }

The primary programming model of commercial HLS tools is based on pragmas.

Specifically, users are required to insert tool-dependent pragmas to the kernel code

properly in order to trigger certain optimization such as parallel and pipeline. Along

with the pragma-based programming model, a number of research work [SW12a,

PG02, HKR07, SW12a, MPZ12, XPZ15, SFP11, LC13, FAP18b, FAP18a] attempt

to automate the process of identifying the best pragma combination, in terms of

pragma positions and values, for user applications. However, all of them target to

the design space formed by HLS pragmas, which may fail to cover high-performance

design points in many cases (see Chapter 2 for details). The main reason that simply

inserting HLS pragmas to user kernel code cannot achieve high-performance is that
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modern commercial HLS tools generate architecture structures, such as dataflow,

processing element replication, memory burst, and so forth, according to not only

pragmas but also specific, clear HLS C code patterns, because the hardware archi-

tecture inferred from a syntactic C implementation could be ambiguous. As a result,

even though the authors in [CLN11] have illustrated that the HLS tool is capable

of generating FPGA designs with competitive performance as the one in RTL, de-

signers must manually reconstruct the HLS C kernel with specific code patterns to

achieve high performance, as demonstrated in [CFH18]. In fact, the generated FPGA

accelerator from Code 1.1 is 5× slower than a single-thread CPU.

Code 1.2: N-W HLS C Code Snippet with Manual Optimization

1 void NW(...) {

2 int M[129][129];

3 #pragma HLS array_partition variable=M cyclic factor=4 dim=1

4 ...

5 for(i=0; i<129; i++) { 5

6 #pragma HLS pipeline

7 #pragma HLS unroll factor=8

8 M[0][i] = ..,;

9 }

10 for(j=0; j<129; j++) { 5

11 #pragma HLS pipeline

12 #pragma HLS unroll factor=8

13 M[j][0] = ...;

14 }

15 for(i=1; i<129; i++) {

16 for(j=1; j<129; j++) { 5

17 #pragma HLS pipeline

18 #pragma HLS unroll factor=8

19 M[i][j] = ...

20 }}

21 ...

22 }

23 void compute(char seqAs[32][16][8], char seqBs[32][16][8],

24 char alignedAs[32][8][32] char alignedBs[32][8][32]) {
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25 #pragma HLS inline off

26 for (int i=0; i<32; i++) { 4

27 #pragma HLS unroll

28 NW(seqAs[i], seqBs[i], alignedAs[i], alignedBs[i]);

29 }}

30 void load(...) { ... } // off-chip data load

31 void store(...) { ... } // off-chip data store

32 void kernel(int batch, ap_uint<512> 1 seqAs[], ap_uint<512> 1 seqBs[],

33 ap_uint<512> 1 alignedAs[], ap_uint<512> 1 alignedBs[]) {

34 #pragma HLS INTERFACE m_axi port=seqAs offset=slave

35 #pragma HLS INTERFACE m_axi port=seqBs offset=slave

36 #pragma HLS INTERFACE m_axi port=alignedAs offset=slave

37 #pragma HLS INTERFACE m_axi port=alignedBs offset=slave

38 #pragma HLS INTERFACE s_axilite port=seqAs offset=control

39 #pragma HLS INTERFACE s_axilite port=seqBs offset=control

40 #pragma HLS INTERFACE s_axilite port=alignedAs offset=control

41 #pragma HLS INTERFACE s_axilite port=alignedBs offset=control

42
43 char seqAs_buf_0[32][16][8]; 3

44 #pragma HLS array_partition var=seqAs_buf_0 complete dim=1

45 #pragma HLS array_partition var=seqAs_buf_0 complete dim=3

46 // the declarations for the other buffers are omitted

47 for (int i=0; i<batch/32+2; i++) {

48 if (i \% 2 == 0) {

49 load(/* seqAs_buf_0 <= seqAs, seqBs_buf_0 <= seqBs */); 2

50 compute(seqAs_buf_1, seqBs_buf_1, alignedAs_buf_1, alignedBs_buf_1)

51 store(/* alignedAs_buf_0 <= alignedAs, alignedBs_buf_0 <= alignedBs

*/); 2 3

52 }

53 else {

54 load(/* seqAs_buf_1 <= seqAs, seqBs_buf_1 <= seqBs */); 2

55 compute(seqAs_buf_0, seqBs_buf_0, alignedAs_buf_0, alignedBs_buf_0)

56 store(/* alignedAs_buf_1 <= alignedAs, alignedBs_buf_1 <= alignedBs

*/); 2 3

57 }}}

We analyze the performance bottleneck in Code 1.1 and propose a proper ar-

chitecture structure in Table 1.1. The optimized code is demonstrated in Code 1.2,

which has about 2× lines of code compared to Code 1.1 we modified from. As can

5



be seen in Code 1.2, in order to let the HLS tool generate the desired architecture,

we need to manually rewrite the C code with very specific structures. Although the

N-W accelerator of Code 1.2 is able to achieve around 1,236× speedup on FPGA over

a single-thread CPU, the effort of code reconstruction makes the iterative refinement

process time-consuming.

In order to reduce the performance gap that caused by HLS-based code recon-

struction, a number of automated frameworks have been developed to perform user

code analysis and transformation [CZZ12, WLZ13, SYZ16, PZS13, CHZ14, LBC15,

LWC16, TLZ15]. Those frameworks contain one or many optimization techniques to

make HLS C programming more intuitively for software programmers. In addition,

introducing new domain-specific languages (DSLs) is another widely considerable di-

rection [ABC10, ARV03, BVR12, KPZ16, MPA16, SBC15, SPA16, LCH19], because

a DSL is designed for only a domain of applications so it implies more semantic infor-

mation than HLS C and can apply more specific optimization to further improve the

QoR. However, current HLS C optimization frameworks and FPGA DSLs are too

distinct to benefit each other in terms of architecture-based optimization and design

space exploration strategies. This problem becomes one of the main impediment to

consolidating the FPGA community on cooperation and developments.

In this dissertation, we present a unified compilation framework for raising an ab-

straction level of FPGA acceleration. Figure 1.1 illustrates the proposed framework.

In Chapter 3, we first present an automated design space exploration framework for

Merlin C [CHP16a, CHP16b] on FPGAs. We choose Merlin C because it is syntac-

tic C with a concise set of useful pragmas for automatic code transformations. As

we will introduce in Chapter 2, this concise set of pragmas serves a much higher

design space coverage and results in higher possibility of achieving the optimal per-
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Table 1.1: Analysis of Poor Performance in Code 1.1

Mark Reason of Poor Performance Required Architecture Structure

Corresponding HLS Pragma with Required Code Changes

1 Low bus bit-width utilization Memory coalescing

Manually use HLS built-in type \texttt{ap int} with proper bit-width.

2 Low DRAM bandwidth utilization Memory burst

Manually allocate local buffer and use memcpy function to copy data.

3 Sequential communication and computation Coarse-grained pipeline

Use \texttt{#pragma HLS pipeline} at a non-innermost loop and manually

create load/compute/store functions and double buffering.

4 Lack of parallelism Coarse-grained parallelism

Manually create a function to wrap the loop and set the correct

memory partition factor.

5 Sequential execution Fine-grained pipeline

Use \texttt{#pragma HLS pipeline} at an innermost loop.

5 Sequential execution Fine-grained parallelism

Use \texttt{#pragma HLS unroll} with proper array partition factor.

formance. Accordingly, our design space is composed of combinations of valid options

for Merlin C pragmas in a user program. In order to efficiently search for the best

configuration in tremendous design points, we first adapt an open-source framework,

OpenTuner [AKV14], to perform design space exploration using multi-armed ban-
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dit approach with a set of meta-heuristic algorithms. However, since we leverage

commercial HLS tools to evaluate the QoR of design points, our evaluation cost is

extremely expensive (15 to 60 minutes for one design point). It results in low search

efficiency with meta-heuristics. To further improve the search efficiency, we develop

a gradient-based approach as well as a design bottleneck optimization algorithm by

considering the characteristics of HLS programming model. Our experimental result

shows that the proposed DSE framework is able to find the design point that achieves

on geometric mean 93.78% to the corresponding manual design.

Matched patterns (Chapter 5, 6)
• CPP architecture
• Systolic array architecture
• Model-based DSEModulization and 

Optimization

FPGA Accelerator

IR (Merlin C)

Frontend 
Compiler

Spark
(Chapter 4.1)

Neural Networks
(Chapter 6)

Frontend 
Compiler

Matched 
Patterns

Others 
Patterns

Unmatched patterns (Chapter 3)
• Arbitrary architecture
• Model-free DSE

Frontend: DSLs to Merlin C

C Kernel

Design Space 
Analysis Searching…

Backend: Optimization

HeteroCL
(Chapter 4.2)

Frontend 
Compiler

Figure 1.1: The Proposed Framework

Based on the DSE framework, we further design and implement two front-end

compilers in Chapter 4 to illustrate how could the proposed framework benefit high-

level DSLs. We first target to Apache Spark [ZCD12] in Scala, a widely adopted

big-data analytic runtime system in recent years. Specifically, we build a Scala-to-

Merlin compiler that guarantees functional correctness. Although the user-defined
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functions (UDFs) in Sparks do not have any scheduling information specified by users

so our DSE framework has to create a large design space for every possible pragma

combinations, we can leverage Spark parallel patterns (e.g. map, reduce) to prune

the design space.

Our second target DSL is HeteroCL [LCH19], a programming infrastructure for

FPGAs. Since HeteroCL front-end compiles its DSL to Halide IR [RBA13] which is

an in-memory dataflow representation, we implement a HalideIR-to-Merlin compiler

to support HeteroCL. Due to the fact that HeteroCL programming model provides

prolific scheduling functions to users, our DSE framework automates a part of them

and let users focus only on the platform independent loop transformations. Conse-

quently, the development process could be much more efficient.

Instead of supporting arbitrary HLS designs and leveraging commercial HLS tool

as an evaluation methodology, sacrificing a degree of generalization could actually

make the design space exploration more systematic and stable. In Chapter 5, we

propose composable, parallel and pipeline (CPP) micro-architecture template by

considering general optimization methodologies as we analyzed in Table 1.1. Al-

though CPP micro-architecture cannot fit arbitrary applications, it is sufficient to

support a board class of applications that are suitable to be accelerated on FPGAs.

With a fixed micro-architecture template, we are capable of deriving an analytical

model for performance and resource utilization. By running only few times of HLS

to obtain the design and platform dependent constant values for model initialization,

the CPP analytical model can estimate the design quality without HLS tool during

the DSE process. The experimental result shows that the DSE process finds the best

design configuration under CPP micro-architecture within an hour.
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On the other hand, while adopting a generic micro-architecture for a broad class

of general designs, we can actually leverage the strengthen of domain specific micro-

architectures such as systolic arrays [KUN88] to achieve higher performance for spe-

cific applications such as convolutional neural networks (CNNs) without running

HLS tool. In Chapter 6, we implement a systolic array architecture template as

the accelerator design for CNNs, and we then extend our DSE framework to map

a CNN to the architecture template. According to the architecture, we develop a

high accurate analytical model for performance and resource estimation. We will

demonstrate in Chapter 6 that the DSE can be even more efficient and systematic

with an analytical model of a more domain specific architecture.

The remainder of the dissertation is organized as follows. Chapter 2 intro-

duces the background of high-level synthesis (HLS) as well as the Merlin com-

piler [CHP16a, MER, CHP16b], followed by the motivation of developing an au-

tomated DSE framework accordingly and the summary of related work. We then

propose the framework in Chapter 3. We first propose a working but inefficient frame-

work based on OpenTuner [AKV14], and gradually improve its design space represen-

tation and search algorithms. With the optimized DSE framework, we demonstrate

its usability in Chapter 4 by supporting two infrastructures with domain specific

languages in Scala and Python, respectively. On the other hand, we demonstrate

in Chapter 5 that we can trade generalization with DSE efficiency by proposing a

micro-architecture to cover board but not all classes of applications. Finally, we use

a CNN case study to illustrate a different but efficient design space exploration ap-

proach with limited application domains in Chapter 6. Consequently, the conclusion

of this dissertation is given in Chapter 7.
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CHAPTER 2

Background

In this chapter, we first introduce the FPGA architecture and the commercial HLS

tool for FPGAs, with key focus on required code reconstruction to achieve high

performance. Then, we introduce the Merlin compiler [MER, CHP16a, CHP16b]

that eases code reconstruction efforts and yet leaves a tremendous design space to

users. Finally, we summarize state-of-the-art technologies related to this problem.

2.1 FPGA and High-Level Synthesis C/C++

A field-programmable gate array (FPGA) is a reconfigurable integrated circuit. A

typical FPGA architecture [KTR08] is shown in Figure 2.1. Logic blocks, digital pro-

cessing units (DSPs), and interconnects are reprogrammable to an arbitrary function.

Short latency, programmable on-chip block RAMs (BRAMs) also allow developers

to implement customized caches and FIFOs with different sizes and bit-widths. This

hardware-level customizability allows FPGAs to achieve a significant energy effi-

ciency improvement relative to CPUs and GPUs, as fewer FPGA transistors must

be dedicated to control logic.

Researchers have foreseen the opportunity of applying FPGAs into modern dat-

acenters for performance and energy improvement, but the programmability issue
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Figure 2.1: A Common FPGA Architecture

emerges as a serious impediment against the adoption of FPGAs to datacenter ap-

plication developers. In order to design an efficient FPGA kernel, the developer

must have a comprehensive understanding of the underlying FPGA architecture.

The FPGA kernel is usually implemented in hardware description languages (HDL)

such as Verilog and VHDL, which are cycle-sensitive. The learning-curve for FPGAs

is usually steep for new programmers.

Fortunately, high-level synthesis languages (HLS) [CLN11] have been developed

in recent years to allow programmers to use C-based languages to implement FPGA

kernels. Commercial HLS tools such as Xilinx SDAccel [SDX] and Intel FPGA

SDK for OpenCL [INT] have been released and widely used to fast prototype user-

defined functionalities expressed in high-level languages (e.g., C/C++ and OpenCL)
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on FPGAs without involving register-transfer level (RTL) descriptions. The design

flows used in these tools are similar, as shown in Figure 2.2. First, a user input

program is compiled to the LLVM Intermediate Representation (IR) [LLV07], along

with the construction of its control data flow graph (CDFG). Then, the IR-to-HDL

(hardware description language) code transformation is performed to map the IR to

an RTL design with scheduling optimization. This completes the HLS process that

maps the behavioral description of a design to its RTL description. Subsequently, the

conventional FPGA design automation flow is launched to generate the design’s bit-

stream file that contains the configuration data for FPGA’s logic and RAM blocks.

Host Code (C/C++ & OpenCL)
Kernel Code (C/C++/OpenCL)

Host Compiler
Frontend Compiler High-Level Synthesis(Scheduling Optimization)

Placement & RoutingLLVM IR RTL FPGA bitstream

Host binary

Figure 2.2: Commercial HLS Tool Design Flow

The core HLS code transformation and optimization happens after the LLVM IR

is obtained, indicating that the quality of an HLS design highly depends on its IR

structure. In other words, two programs with the same functionality but different

coding styles (leading to different IR structures) may result in a significant perfor-

mance difference. In fact, this difference can be up to several orders of magnitude

based on our experiences. As a consequence, programmers have to pay attention to

every detail that may affect the generated IR structure, which often requires profound

understanding of the FPGA architecture and circuit design.

In summary, HLS technologies improve the FPGA programmability by leveling

it up from register-transfer level to behavioral level, but do not relieve the burden of

manual code transformation that requires hardware design expertise.
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2.2 Merlin Compiler

To alleviate the manual effort of heavy code reconstruction when improving a HLS

C program, Merlin compiler [MER, CHP16a, CHP16b], a source-to-source transfor-

mation tool for FPGA acceleration based on the CMOST [ZHX15] compilation flow,

was developed at Falcon Computing Solutions [FCS]. The Merlin compiler provides

a set of pragmas with prefix “#pragma ACCEL” to represent optimization from the

perspective of architecture design. According to user-specified Merlin pragmas, the

compiler applies the corresponding architecture structure to the program by invoking

abstract syntax tree (AST) analysis, vendor pragma insertion, and source-to-source

code transformation. Table 2.1 illustrates the most commonly used Merlin pragmas

with corresponding architecture structures. Note that the flatten option in the

coarse-grained loop pipeline mode refers to the code transformation that tries to

apply fine-grained pipelining to a nested loop by fully unrolling all its sub-loops.

Based on the transformation library, Figure 2.3 presents the Merlin compiler

execution flow. It leverages the ROSE compiler infrastructure [ROS] and polyhedral

framework [ZLC13] for abstract syntax tree (AST) analysis and transformation. The

frontend stage analyzes the user program and separates host and computation kernel.

The kernel code transformation stage then applies multiple code transformations

according to user-specified pragmas. Note that the Merlin compiler will perform

all necessary code reconstructions to make a transformation effective. For example,

when performing loop unrolling, the Merlin compiler not only unrolls a loop but

also conducts memory partitioning for the sake of avoiding bank conflict [CJL11].

Finally, the backend stage takes the transformed kernel and uses the HLS tool to

generate the FPGA bit-stream.
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Table 2.1: Merlin Pragmas with Architecture Structures

Keyword Target Available Options Architecture Structure

memory burst Interface length=<int> Large DRAM bandwidth

coalescing Interface bitwidth=<2n> Memory coalescing

parallel CG loop factor=<int> CG parallelism

parallel FG loop factor=<int> FG parallelism

pipeline CG loop off,on,flatten CG/FG pipeline

pipeline FG loop N/A FG pipeline

CG: Coarse-grained; FG: Fine-grained

Merlin compiler componentsInput/Output files

User C/C++ program

Program Modeling Kernel Code Transformation Commercial Design Flow

FPGA bitstreamHost binary

Host Code in C/C++/OpenCL

Program Analysis Interface Generation

Existing components

Kernel Code in C/C++/OpenCL

Transformation library

Frontend Backend

Figure 2.3: The Merlin Compiler Execution Flow

We demonstrate the usability of Merlin compiler pragmas in Code 2.1. As can

be seen, by adding a few line of pragmas, the Merlin compiler is able to transform

Code 2.1 to Code 1.2 automatically. It means that we can achieve the same perfor-

mance as the manual optimized HLS C program with less human efforts, and it is

much easier for human to explore the best design configuration by simply changing

the pragma factors.
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Code 2.1: N-W Code Snippet in Merlin C

1 void kernel(int batch, char seqAs[], char seqBs[],

2 char alignedAs[], char alignedBs[]) {

3 #pragma ACCEL coalescing var=seqAs bitwidth=512

4 #pragma ACCEL coalescing var=seqBs bitwidth=512

5 #pragma ACCEL coalescing var=alignedAs bitwidth=512

6 #pragma ACCEL coalescing var=alignedAs bitwidth=512

7
8 #pragma ACCEL pipeline

9 #pragma ACCEL parallel factor=32

10 for (int i=0; i<batch; i++) {

11 int M[129][129];

12 ...

13 #pragma ACCEL pipeline

14 #pragma ACCEL parallel factor=8

15 for(i=0; i<129; i++) { M[0][i]=seqAs[...] }

16 #pragma ACCEL pipeline

17 #pragma ACCEL parallel factor=8

18 for(j=0; j<129; j++) { M[j][0]=...}

19 #pragma ACCEL pipeline

20 #pragma ACCEL parallel factor=8

21 for(i=1; i<129; i++) {

22 for(j=1; j<129; j++) { M[i][j]=... }

23 }

24 ...

25 }}

Although Merlin pragmas eliminates the manual code reconstruction, a designer

still has to manually search for the best option for each pragma, including position,

type, and factors. In fact, the N-W design in Code 2.1 has ∼ 1010 design configu-

rations in terms of Merlin pragma combinations. It motivates this thesis to develop

an automation framework to find the best configuration efficiently.
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2.3 Related Work

2.3.1 Automated DSE Framework for Hardware Designs

Previous studies have attempted to propose various solutions to address individ-

ual design optimization problems. For example, [PSK15] focus on the problem of

on-chip memory partitioning; [CHZ14] deal with processing element duplication;

[CWY17] handles the improvement of off-chip bandwidth utilization. While these

studies model the trade-offs between different design choices and realize the opti-

mal choice via automatic design space exploration, they do not take inter-strategy

trade-offs into consideration. In contrast, a number of recent studies have started

paying attention to the interaction of different optimization strategies. [WHZ16]

and [ZMS16] provide valuable guidance for hardware designers to make good use

of various optimization strategies. However, since they do not come up with an au-

tomation solution, accelerator developers still have to manually conduct design space

exploration.

On the other hand, there are a number of previous work that proposes an au-

tomated framework to explore the HLS design space by considering multiple opti-

mization in a design space. We summarize them to two categories according to their

search approaches and evaluation methodologies.

Model-based DSE: The first category builds a model using sampled data to realize

the performance and resource utilization for each explored design point without ac-

tual running the HLS, and use the model to guide the DSE. The authors in [OMC08]

use artificial neural networks and linear regression to build performance models for

fast design quality estimation. Similarity, authors in [ZKM12] build a regression
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model based on Gaussian processes to model area and throughput. Authors in

[STW09] and [SW12b] adapt simulated annealing and pattern matching algorithms

as search approaches. To the same end, authors in [LC16] leverage transfer-learning

to predict design qualities based on the knowledge transferred from the sampled

data. Although this approach eliminates the human efforts of porting the framework

to another platform since the model training process could be automated, it does not

guarantee if the selected learning model fits the target HLS tool or not. For exam-

ple, the suitable layer numbers and sizes of a neural network for a specific platform

may not suitable for another. Even worst, the coverage of training features may not

be held for different platforms. Migrating the framework to another HLS tool may

violate the assumption and result in a low accuracy of the model.

In addition, another group of work build an analytical model by carefully studying

the target HLS tools. [ZPL16, ZFS17] provides a more comprehensive model with

the consideration of DSPs and BRAMs, but the author in [ZPL16, ZFS17] does

not model the consumption of LUTs which can also be the resource bottleneck in

FPGA designs in many cases. In addition, [ZPL16, ZFS17] aim to improve the

performance by realizing the optimal HLS directives without code transformation.

As a result, its qualify of results highly depends on the structure and coding style

of the user input kernel code. [KPZ16, ZPW17] leverage machine learning to model

the LUT consumption. However, the model has to be trained for each specific tool

implementation, which means the model has to be retrained once the tool is changed

or updated. In summary, although those frameworks are able to realize the best

design point by searching thousands of design points in a short time, it is hard to

port them to another HLS tool in different version or vendor, as the model assumes

the underlying architecture and HLS tool implementation are fixed.
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Model-free DSE: On the other hand, the other category treats HLS tool as a block

box and develops iterative refinement searching algorithms by referring HLS reported

result qualities. Most of them first randomly samples a set of design points and find a

Pareto set as their starting points, and then apply different algorithms to improve the

Pareto set on the fly. The authors in [SW12a], [PG02] and [HKR07] build a predictive

model using a sampled data set and use genetic algorithm to refine it. In addition,

the design space coverage for those work is relatively low. For example, the design

space in [SW12a] only includes loop unroll factor, function scheduling and array

resource types, which is insufficient to cover the optimal solution for a board class of

applications. [MPZ12, XPZ15, SFP11] adopts response surface models (RSM) and

spectral analysis to predict the quality of design points without actual running HLS,

but it is hard to guarantee the implementation changes of vendor HLS tools can

always be captured by the model.

In addition, the authors in [LC13] proposes a framework that utilizes random

forest and randomized transductive experimental design (RTED) to select represen-

tative points for training a predictive model that can be used to approximate a Pareto

set. However, RTED is failing to random sampling when the design space is too large,

so the overall mechanism is not scalable. [FAP18a] resolves this problem by proposing

a clustering approach that selects only few clusters of configurations. On the other

hand, the author in [FAP18a] also proposes another approach [FAP18b] that groups

the design space only based on the variance of design points. They first analyze the

design space using principle component analysis (PCA) and claim that the Pareto

efficient design points can be clustered with small variances of their configurations.

Accordingly, their exploration algorithm randomly selects a neighbor design point of

the current Pareto efficient point as the next target. Based on their claim, once the
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algorithm finds a global Pareto efficient point, other global Pareto efficient points

can be easily explored. This approach, however, might not be efficient with a more

complicate and large design space like we have adopted in this dissertation. For

example, the design space formed by Merlin pragmas include coarse-grained pipeline

and parallelism. Coarse-grained pipeline and parallelism have more uncertainty to

the performance and area and it is hard to prove that the global Pareto efficient

points are always clustered. Moreover, when the design space is tremendous large

(e.g., the scale of 1010 to 1030), the cost of initial sampling is not negligible. Even it

only samples 1% in the design space, it means 108 to 1028 design points. Without

enough samples, however, the exploration process may not cover the entire design

space. For example, in order to explore the design point that has two different pa-

rameter values, the proposed algorithm has to reach another design point with only

one different parameter value and that point has to be a dominate point to the cur-

rent point. If the dominate point cannot be reached by changing one parameter, the

exploration terminates immediately.

2.3.2 Domain Specific Frameworks for FPGAs

There has been a fair amount of previous work that generates FPGA code from high-

level programming languages. Vivado HLS [VIV, CLN11] is a commercial tool that

performs high-level synthesis to generate FPGA kernel code from C-based languages.

CHiMPS [PBD08] takes ANSI C code as an input and generates VHDL blocks for

FPGAs. However, using C-based programming languages to describe parallelism is

not trivial because their execution model and design logic are fundamentally sequen-

tial. In contrast, the domain-specific language [BVR12, ARV03, ABC10] leverages
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specialized programming models to guide the compiler for more optimizations.

In addition, some FPGA-based frameworks are developed for a specific applica-

tion domain such as machine learning [MPA16] and SQL queries [CDL13]. Since

these frameworks map user programs to pre-defined hardware templates with spe-

cific functionality, they only support limited kernels. On the other hand, [PKB16]

develops a parallel pattern language for FPGAs and compiles the source code to

DHDL [KPZ16], an intermediate representation language for FPGAs. The DHDL

kernel is able to be transformed to an FPGA design with hardware template and

design space exploration. However, [PKB16] is designed for single node applications

and does not consider programmability as well as system integration.

Furthermore, some other work performs FPGA code generation in the context

of datacenter runtime systems. [SMC14] integrates AMD APARAPI [APA] into

Apache Hadoop [HAD] and targets FPGAs. However, this work only supports

primitive types, and requires manual design optimization. Their followed work,

SparkCL [SCN15], extended the framework to Spark but a detail evaluation is miss-

ing. Melia [WZH16] is a MapReduce framework that automatically generates FPGA

kernels in OpenCL from user-written functions, and optimizes the generated kernels

by leveraging an analytical performance model [WHZ16]. The generated FPGA ker-

nel is invoked by the Melia runtime system. However, the source language in Melia

is still a syntactically C language, so programmability is limited. In addition, Melia

is not compatible with any widely used big data analytics frameworks, so users must

rewrite their applications using the Melia programming model in order to adopt this

framework.
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CHAPTER 3

An Automated Design Optimization Framework

3.1 Overview

As we have elaborated in Chapter 1 and Chapter 2, the HLS programming models

for modern commercial tools require manual code reconstructions to help the tool

realize certain architecture patterns such as dataflow, processing element replication,

memory burst, and so on. There have some existing work [ZVL14, ZFS17] that have

proposed automation frameworks to free humans from the tedious code reconstruc-

tion process in development cycles by more or less fixing the architecture patterns

and building analytical models. [ZVL14] uses a simple analytical mode to estimate

performance and area of loops in the kernel, and decides whether the dataflow ar-

chitecture should be enabled or not accordingly. [ZFS17] also proposes an analytical

model for performance estimation and applies dataflow architecture to user designs

when applicable. Unfortunately, their models are based on the assumption that

an individual design parameter will affect the performance/area in a smooth and/or

monotonic way, which is not true in general with latest HLS tools as well as the larger

design space used in this thesis. For instance, Figure 3.1 depicts the execution cycle

of the N-W algorithm with different parallel factors for its 5 loops synthesized by

Xilinx SDAccel [SDX]. Although the performance trend of CG-loop-1, FG-loop-2,
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and FG-loop-31 are ideal (so we use the same dash line in the figure), the rest 2

loops (CG-loop-2 and FG-loop-1) are not. Note that these behaviors may differ

from version to version; therefore it is impractical to maintain an analytical model

for DSE.
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Figure 3.1: HLS Cycles of N-W with Different Factors on Loops

On the other hand, the main challenge of using vendor HLS tools for DSE to

capture all vendor tool behaviors is the evaluation cost, since vendor HLS tools

usually take 15-60 minutes to generate RTL and estimate the performance, and it

usually takes a longer time if the design has a high performance. As a result, general

iterative learning approaches are unstable to find the high quality of result (QoR)

design configuration in a reasonable amount of time. To improve the DSE efficiency,

in this chapter, we propose a comprehensive design space representation that only

includes meaningful design point while preserving a regular design space shape. By

explicitly representing the design space with application-specific knowledge, we are

able to avoid the meaningless design points and improve the DSE efficiency. In

1CG and FG mean coarse-grained and fine-grained, respectively.
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addition, based on the design space we study the effectiveness of multi-armed bandit

approach [FDS10] with meta-heuristic optimization algorithms and further propose

new algorithms to facilitate the search process. In summary, this chapter makes the

following contributions:

• We propose an efficient but comprehensive design space representation to sup-

port dependent design space parameters.

• We use multi-armed bandit approach with evolutionary algorithms [BNK98]

and particle swarm optimization [GSZ18] for DSE and analyze their challenges.

• Based on the insights from multi-armed bandit approach, we develop a gra-

dient search algorithm that leverages finite difference method to approximate

gradient values for systematically approaching to high-QoR design points.

• By reasoning the gradient search process, we further improve the gradient

approach with performance bottleneck analysis to improve the search efficiency.

Our experimental result shows that the proposed DSE framework is able to find

the design point that achieves on geometric mean 92.56% to the corresponding man-

ual design.

The rest of this chapter is organized as follows. Section3.2 presents the initial

version of our framework that contains working flow with the use of multi-armed

bandit approach for several meta-heuristic optimization methods. Then, Section 3.3

shows an improved framework with HLS DSE specific optimization to its execution

flow. In order to reason the DSE process for resolving the low QoR issue for certain

designs, Section 3.4 proposes an algorithm to statically prune the design space, as well
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as a gradient-based search algorithm to systematically identify better design points.

Finally, Section 3.5 further presents a comprehensive design space representation

and an improved gradient-based search algorithm. Finally, the summary is given in

Section 3.6.

3.2 Version 1: An Initial Framework

3.2.1 Framework Overview

Traditionally, numerical approaches such as linear programming are widely used

for performing DSE. Unfortunately, it is inapplicable to our case because such ap-

proaches require at least an analytical form to evaluate the design quality. Since

our goal is to cover the difference of commercial HLS tools, we treat the evaluation

function as a black-box and only accepts its outputs (QoR report) by feeding design

points. As a result, our initial idea is to use a set of meta-heuristic algorithms, such

as evolution genetic algorithms [BNK98], and particle swarm optimization [GSZ18],

to perform DSE.

However, a well-tuned meta-heuristic algorithm is usually too specific to cover a

board class of applications. In order to assemble multiple meta-heuristic algorithms

to improve the generalization, hyper-heuristic, which searches for an optimal solution

by selecting one of the meta-heuristic algorithms in a pool iteratively, is proposed.

Hyper-heuristic usually uses an exploitation versus exploration (EvE) approach as

follows to rank a meta-heuristic algorithm a for specific applications:

Score(a) = Exploitation(a) + c× Exploration(a) (3.1)
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where the former term guarantees the meta-heuristic with better performance will

be selected more frequently; while the latter term leaves opportunities to other meta-

heuristics. c is a constant for exploitation-exploration dilemma.

We use OpenTuner [AKV14], an open-source auto-tuning framework for software

programs as the hyper-heuristic engine to explore the design space. OpenTuner

leverages multi-armed bandit (MAB) approach [FDS10] with sliding window area

under curve (AUC) credit assignment [PAA12]. Every meta-heuristic in the MAB

approach is an arm with a dynamic EvE credit as its score. The credit of a meta-

heuristic m is defined as:

Cm = AUCm + c×

√
2log|H|
Hm

(3.2)

where AUCm is the quantified performance (exploitation) of meta-heuristics while√
2log|H|
Hm

is the quantified uncertainty (exploration). In addition, Hm is the num-

ber of times that m has been selected during a history sliding window with length

|H|. At each iteration, the MAB selects the meta-heuristic with the highest credit

and updates creates based on the result. Consequently, the meta-heuristic that can

efficiently finds high-quality design points will be rewarded and activated more fre-

quently by the MAB, and vice versa.

Figure 3.2 shows an initial framework based on OpenTuner. The framework

accepts a user-written C kernel as input and first performs static code analysis to

identify the design space (Section 3.2.2), which is composed of Merlin pragmas and

their valid options. The design space is then explored using MAB approach with

several meta-heuristic algorithms (Section 3.2.3). Every design point generated by

search algorithms will apply corresponding Merlin source-to-source code transforma-
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Figure 3.2: The Framework based on OpenTuner [AKV14]

tions and be evaluated using commercial HLS tools. The evaluation result is stored

in a shared result database that can be accessed by all algorithms so that population-

based meta-heuristic algorithms could go through a shortcut by taking others better

results anytime. Finally, when the exploration is terminated due to the time limit,

the framework outputs the so far best design point to continue the rest accelerator

generation process. In the rest of this section, we detail introduce the design space

as well as the meta-heuristic we adopted in the framework.

3.2.2 Design Space Identification

We formulate the problem of identifying a design space in a C program as follows:

Given a C program P as the FPGA accelerator kernel, find a set SP that contains
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possible combinations of Merlin pragmas for P as design configurations.

Table 3.1: Merlin Pragma Formed Design Space

Factor Design Space (Values)

Memory coalescing {b | b = bw(B) ∈ B, 8 < b = 2n < 512}

Memory burst {t | t = T (L) ∈ L, 1 < t < TC(L)}

CG-loop parallel {u | u = UF (L) ∈ L, 1 < u < TC(L)}

FG-loop parallel

u | u = UF (L) ∈ L,


1 < u < TC(L), TC(L) > 16

u = TC(L), otherwise


CG-loop pipeline {p | p = P (L) ∈ L, p ∈ {off, on, flatten}}

FG-loop pipeline {p | p = P (L) ∈ L, p = fg}

CG: Coarse-grained; FG: Fine-grained; TC: Loop trip-count

We list available design spaces based on Merlin pragmas in Table 3.1. We iden-

tify the design space for each kernel by analyzing the kernel AST using the ROSE

compiler infrastructure [ROS] and polyhedral framework [ZLC13] to realize loop trip-

counts, available bit-widths, and so on. In addition, since vendor HLS tools usually

schedule fine-grained loops well, we only explore the parallel factor of fine-grained

loops when its trip-count is larger than 16; otherwise, we simply apply fully unroll

and pipeline to small fine-grained loops to reduce the design space. As can be seen,

it is impractical to explore this tremendous design space exhaustively. For example,

the design space of the N-W example contains more than a 1013 design points. This

illustrates the importance of search algorithm efficiency for reaching a near-optimal

solution in a few iteration.
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3.2.3 Meta-Heuristic Optimization Methods

Given a C program P as the FPGA accelerator kernel along with its design space

set RK
P which is identified in the previous section, and a commercial HLS tool H

that estimates the execution cycle Cycle(H,P) and resource utilization Util(H,P)

of the given P as a black-box evaluation function, find a configuration θ ∈ RK
P in a

given time limit so that the generated design P(θ) with θ can fit in the FPGA, and

execution cycle is minimized. Formally, we define the problem as:

min
θ

Cycle(H,P(θ)) (3.3)

subject to

θ ∈ RK
P (3.4)

u < Tu ∀u ∈ Util(H,P(θ)) (3.5)

where u is the utilization of one of the FPGA on-chip resources and Tu is a user-

available resource threshold on FPGAs. We set all Tu to be 0.8 in our experiments

to reserve the resource used by FPGA firmware. With multi-armed bandit (MAB)

approach as a hyper-heuristic search algorithm, we choose and implement the fol-

lowing discrete value friendly meta-heuristic optimization algorithms to achieve high

generalization.

Uniform Greedy Mutation: Mutation is one of widely used genetic algorithms

that analogizes biological mutation in order to iteratively optimize the solution, since

it is easy to use and apply to almost all optimization problems. Specifically in our
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problem, the algorithm generates a set of next generation design points (∼10) by

mutating the design points in the current generation based on the given mutation

probability (0.1 in our framework). Since our design space options are discrete val-

ues and the cost function (commercial HLS tool) does not have specific trend or

distribution, we simply leverage uniform distribution when mutating design points.

In addition, to facilitate the evolution efficiency, we greedily select the best design

point as the parent for the next generation instead of maintaining an active set. Al-

though it is obvious that uniform greedy mutation may not perform well due to less

diversity, we complement this problem by leveraging differential evolution algorithm.

Differential Evolution: Differential evolution [SP97] is an optimization algorithm

and has been widely applied to many problems in different fields, because it makes

very few assumption about the problem. The core idea behind differential evolution

algorithm is that it maintains a set of active design points (∼30) and crossovers them

to create new candidates, as shown in Algorithm 1. As can be seen, unlike traditional

gradient descent, differential evolution only requires the quality of results of generated

design points instead of differentiating the cost function, so it is suitable to be used

for the problems that does not have differentiable formulation. Note that although

differential evolution does not guarantee to find the global optimal, the maintenance

of the active set preserves its ability of jumping out of local optimal. In addition,

thanks to the shared result database, the differential evolution in OpenTuner is able

to include the global best design point to the active set at every iteration (line 6-8),

so it can complement the mutation algorithm to improve the search efficiency.

Algorithm 1 Differential Evolution Implementation in OpenTuner [AKV14]

Require: A design space S; time limit T ; crossover rate C

Ensure: A design configuration θ with the best QoR.
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1: CurrPoints← RandomPoints(S, N)

2: t← 0

3: while t < T do

4: for all curr ∈ CurrPoints do

5: child← copy(curr)

6: if EvalQoR(GetBest(CurrPoints)) < EvalQoR(GlobalBest()) then

7: CurrPoints.add(GlobalBest())

8: end if

9: p1, p2, p3 ← RandomPoints(CurrPoints, 3)

10: for all param ∈ curr.parameters do

11: c← UniformRandom(0, 1)

12: if c < C then

13: param← p1.param+ UniformRandom(0,2)+0.5
2

× (p2.param− p3.param)

14: end if

15: end for

16: if EvalQoR(child) > EvalQoR(curr) then

17: curr ← child

18: end if

19: end for

20: t← t+ ElapsedT ime()

21: end while

22: return GetBest(CurrPoints)

Particle Swarm Optimization Algorithm: Particle swarm optimization [KE95],

or PSO, is a population-based stochastic optimization algorithm originally developed

for social behavior simulation. Although PSO also maintains a set of active design
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points like differential evolution, it does not generate the next design point candi-

date by combining the parent points. Instead, PSO moves a set of active points

according to their positions and velocities to generate new candidates, as shown in

Algorithm 2. In line 7 of Algorithm 2, the moving velocity and direction are stochas-

tically determined by the local best point found by the PSO (particle.best) and the

global best point found by other algorithms (GlobalBest()). Note that c1 and c2

are the weights of local and global best points, respectively. By including PSO in

our meta-heuristic algorithm set for MAB, we are able to have a high probability to

explore better design points around the current set.

Algorithm 2 Particle Swarm Optimization in OpenTuner [AKV14]

Require: A design space S; time limit T ; crossover rate C

Ensure: A design configuration θ with the best QoR.

1: Particles← NewParticles(RandomPoints(S, N))

2: t← 0

3: while t < T do

4: for all particle ∈ Particles do

5: for all p ∈ particle.parameters do

6: r1, r2← UniformRandom(0, 1)

7: particle.velocityp ← c × particle.velocityp + c1 × r1 × (particle.bestp −

particle.currp) + c2 × r × (GlobalBest()p − particle.currp)

8: particle.currp ← move(particle.currp, particle.velocityp)

9: end for

10: if EvalQoR(particle.curr) > EvalQoR(particle.best) then

11: particle.best← particle.curr

12: end if
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13: end for

14: t← t+ ElapsedT ime()

15: end while

16: return GetBest(CurrPoints)

3.2.4 Experimental Results

3.2.4.1 Experimental Setup

Our evaluation is performed on Amazon EC2 [AWS]. We use a memory-optimized

CPU instance, r5.4xlarge, with 16 cores and 122 GiB memory to perform the DSE

and generate FPGA accelerator bit-streams. Note that the HLS tool we used for

evaluating design points is Xilinx SDAccel 2018.2 [SDX] which requires 2 GB host

memory but recommends 64 GB, so we allocate at most one case with 8 threads

running in parallel to reduce an out-of-memory issue when performing the DSE. The

maximum DSE time is set to 4 hours. The generated FPGA accelerators are eval-

uated on AWS F1 instance [AWS] (f1.2xlarge) that includes an 8-core CPU with

122 GiB of main memory and one Xilinx Virtex UltraScale+TM VU9P FPGA with

three separated dies and 300 MHz working frequency. In addition, our benchmark

is selected from the MachSuite [RAS14] benchmark suite and the FPGA-friendly

Rodinia benchmark [CFL18]. We describe the benchmark as well as the input data

information in Table 3.2.
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Table 3.2: Benchmark Description and Lines-of-Code (LOC)

Kernel Description and Input Information

AES
Advanced encryption standard. (LOC: 198)

Input: 256-bit key; 64MB data.

GEMM
General matrix multiplication. (LOC: 34)

Input: two 10241024 double-precision matrices

KMP
Knuth-Morris-Pratt string matching. (LOC: 84)

Input: 128MB string; 16B substring.

NW
Needleman-Wunsch sequence alignment. (LOC: 213)

Input: 64K pairs of 128-nucleotide sequence.

SPMV
Sparse matrix-vector multiplication. (LOC: 59)

Input: 4096512 ELLPACK data and index.

STENCIL-2D 2-D stencil computation. (LOC: 54) Input: a 40962 image.

STENCIL-3D 3-D stencil computation. (LOC: 77) Input: a 40963 image.

BACKPROP
The weight updating step in back propagation. (LOC: 35)

Input: 65536 neuron outputs and 17 weight values.

KMEANS
K-Means clustering algorithm. (LOC: 66)

Input: 819,200 data points with 32 features for 5 clusters.

KNN
Distance calculation of K-nearest neighbors. (LOC: 38)

Input: 1,048,576 2-D data points.

PATHFINDER Shortest path finder on a 1024×1024 grid. (LOC: 83)

CONV One convolutional layer in AlexNet [KSH12]. (LOC: 54)
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For each benchmark case, we manually implement an optimal version using Merlin

compiler pragmas to evaluate the result quality of the proposed DSE framework, and

the results are shown in Figure 3.3 with geometric mean 14.8× speedup over the

CPU. Since whether the Merlin pragma formed design space is capable of covering

the optimal solution is out of scope of this thesis, the discussion in the rest of this

chapter will focus on the optimality achievement over the manual design instead of

the speedup over CPU.
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Figure 3.3: Benchmark Speedup with Manual Merlin Pragma Optimization. Note

that the Out-of-Box performance of some cases may be too poor to be visualized.

3.2.4.2 Result and Analysis

We first analyze the overall result quality achieved by the DSE framework in Table 3.3

and Table 3.4. In Table 3.3, the second column presents the design space size of each

case with ∼ 1010 as their geometric mean. With such tremendous design space, our

customized OpenTuner-based framework realizes the design point that achieves more
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than 80% of the optimal latency for about an half cases in 4 hours. This is definitely

inefficient, however, for the DSE problem to HLS on FPGAs.

Table 3.3: Overall Comparison to CPU and Manual Designs and the Dominated

Heuristic (GM: Greedy Mutation, EV: Differential Evolution, PSO: Particle Swarm

Optimization.)

Benchmark Design Space
Best Point

Found by
DSE Latency

Ratio to

Manual

Speedup

over CPU

AES 2.81E+11 PSO 21171289 39.64 1496.37

NW 2.70E+10 GM 620102 95.8 3222.4

KMP 5.76E+03 GM 44165122 100 9.65

GEMM 2.52E+09 GM 50634229 54.62 8.88

SPMV 1.73E+04 EV 3143273 13.23 0.27

STENCIL-2D 4.37E+11 GM 3370012 80.64 0.34

STENCIL-3D 1.78E+08 GM 337927263 5.29 0.14

BACKPROP 5.18E+04 EV 278747 96.1 7.71

KMEANS 1.67E+06 EV 1722572 99.18 34.82

KNN 1.03E+05 PSO 1019906 38.73 3.68

PATHFINDER 1.66E+04 EV 41915562 51.40 0.01

CONV 7.35E+28 GM 1.29E+09 16.82 9.86

Geometric Mean 6.80E+10 44.60 6.59

We dive into the DSE process of some designs with poor performance compared

to the manual and summarize two highly possible reasons. For AES and CONV, since

both of them have relatively large design space and our evaluation methodology is

time-consuming, the meta-heuristic algorithms do not perform sufficient iterations to
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identify the direction toward to a better design point. For STENCIL-3D and KNN, al-

though their design spaces are relatively small, their design parameters have impacts

on each other so it is also hard to capture the direction of improving the result qual-

ity. For example, STENCIL-3D implementation includes an if-statement to deal with

the stencil boundary. The if-block and else-block of the statement contains similar

loop structures that access the same 3-D array. As a result, an improper combina-

tion of parallel factors of those loops may result in bad array partition factor and

degrade the performance. Note that other designs that achieve better results may

also have the same issue but just do not expose in our DSE process. This illustrates

the unstability of adopting non-deterministic approach for DSE which only allows a

small number of search iterations.

In addition, we can see from Table 3.4 that most of the best design points found by

our framework use low on-board resources. It means that the search process has not

yet found a right direction to toward to in the time limit. We note that most previous

work as we have illustrated in Chapter 2 would also encounter the same issue because

their experiments take hundreds of iterations to explore the design space with the

scale of 104, which is several orders of magnitude smaller than ours. As a result,

most approaches proposed by previous work is inapplicable to our problem, since

4-hour DSE time can only explore ∼100 points.

We then evaluate the DSE process in Figure 3.4. The x-axis depicts the DSE time

while the y-axis is the speedup over the manual design using Merlin compiler (i.e.,

1.0 means DSE is able to find the optimal design point in the time limit). As can be

seen, the trend of most cases does not start from the the first minute. This is because

the framework starts from a random design point which may not be synthesizable

due to design complexity or resource issue. As a result, the framework needs to spend
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Table 3.4: FPGA Resource Utilization

Benchmark BRAM (%) LUT (%) FF (%) DSP (%)

AES 33 13 4 0

NW 39 18 14 0

KMP 24 13 1 0

GEMM 51 35 6 31

SPMV 19 10 1 6

STENCIL-2D 2 1 1 1

STENCIL-3D 3 3 2 1

BACKPROP 71 37 8 10

KMEANS 50 26 1 18

KNN 8 3 2 1

PATHFINDER 7 7 1 2

CONV 56 9 6 6

some iterations on exploring the first available design point. In addition, we can find

an obvious steep curve in most cases. Since meta-heuristic algorithms generate new

design points by combining current points, the steep curve implies that the direction

to a better is obscure and hard to be reasoned.

38



0 50 100 150 200
Time (min)

0.0

0.2

0.4

0.6

0.8

1.0
P
e
rf

. 
to

 O
p
ti

m
a
l

V1-Init (.40x/207m)

(a) AES

0 50 100 150 200
Time (min)

0.0

0.2

0.4

0.6

0.8

1.0

P
e
rf

. 
to

 O
p
ti

m
a
l

V1-Init (.96x/234m)

(b) N-W

0 50 100 150 200
Time (min)

0.0

0.2

0.4

0.6

0.8

1.0

P
e
rf

. 
to

 O
p
ti

m
a
l

V1-Init (1x/220m)

(c) KMP

0 50 100 150 200
Time (min)

0.0

0.2

0.4

0.6

0.8

1.0

P
e
rf

. 
to

 O
p
ti

m
a
l

V1-Init (.55x/158m)

(d) GEMM

0 50 100 150 200
Time (min)

0.0

0.2

0.4

0.6

0.8

1.0

P
e
rf

. 
to

 O
p
ti

m
a
l

V1-Init (.16x/222m)

(e) SPMV

0 50 100 150 200
Time (min)

0.0

0.2

0.4

0.6

0.8

1.0

P
e
rf

. 
to

 O
p
ti

m
a
l

V1-Init (.81x/218m)

(f) STENCIL-2D

0 50 100 150 200
Time (min)

0.0

0.2

0.4

0.6

0.8

1.0

P
e
rf

. 
to

 O
p
ti

m
a
l

V1-Init (.53x/145m)

(g) STENCIL-3D

0 50 100 150 200
Time (min)

0.0

0.2

0.4

0.6

0.8

1.0

P
e
rf

. 
to

 O
p
ti

m
a
l

V1-Init (1x/112m)

(h) BACKPROP

0 50 100 150 200
Time (min)

0.0

0.2

0.4

0.6

0.8

1.0

P
e
rf

. 
to

 O
p
ti

m
a
l

V1-Init (1x/158m)

(i) KMEANS

0 50 100 150 200
Time (min)

0.0

0.2

0.4

0.6

0.8

1.0

P
e
rf

. 
to

 O
p
ti

m
a
l

V1-Init (.39x/209m)

(j) KNN

0 50 100 150 200
Time (min)

0.0

0.2

0.4

0.6

0.8

1.0

P
e
rf

. 
to

 O
p
ti

m
a
l

V1-Init (.70x/227m)

(k) PATHFINDER

0 50 100 150 200
Time (min)

0.0

0.2

0.4

0.6

0.8

1.0

P
e
rf

. 
to

 O
p
ti

m
a
l

V1-Init (.17x/190m)

(l) CONV

Figure 3.4: Design Space Exploration with OpenTuner [AKV14]. The legend notes

the best speedup over the manual design and the time to achieve it.
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3.2.5 Insights and Summary

In this section, we build a working DSE framework based on OpenTuner, an ex-

tensible auto-tuning framework, for HLS on FPGAs. Although the adopted meta-

heuristic algorithms in the framework are guaranteed to reach the entire design space,

it is inefficient to find the best design point in 4 hour time limit. We summarize the

main impediments as follows:

Impediment 1: Expensive evaluation approach: In order to cover all possible

user-written kernels in our framework, we use the Xilinx SDAccel [SDX] to perform

HLS for resource and cycle estimation instead of building an analytical model. How-

ever, HLS takes several minutes to evaluate one design point so only tens of design

points can be evaluated in one hour.

Impediment 2: Complex factor dependencies: Many design space factors a

have high dependency on each other. For example, enabling fine-grained pipelining

to a nested loop (flatten in Table 3.1) causes all sub-loops to be fully unrolled and

results in the invalidation of corresponding design space factors. This phenomenon

might mislead the iterative optimization algorithm and result in more iterations on

realizing the best design point.

The above two impediments motivate us to improve the framework in the next

section.

3.3 Version 2: Framework Optimization

In this section, we introduce methodologies for addressing the two impediments to

improve the DSE efficiency. Section 3.3.1 introduces the overall improved framework,
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followed by three sections to detail describe the framework implementation. Sec-

tion 3.3.5 presents experimental results and the summary is placed in Section 3.3.6.

3.3.1 Framework Overview

A straightforward but effective approach to address Impediment 1 is searching the

design space in parallel. Since our meta-heuristic algorithms may not have enough

active design points to fully utilize CPU threads and may fall into sequential search,

one of the main improvements in the version 1 framework is to guarantee our frame-

work could make use of all CPU threads all the time.

We present the improved framework in Figure 3.5. The red part of the framework

highlights the changes from version 1. The idea of our parallel DSE process is

partially inspired by DATuner [XLZ17], a parallel auto-tuner for Verilog-to-Routing

(VTR) FPGA compilation. DATuner finds the best parameter values of the VTR

tool to achieve better resource utilization and frequency in a given, fixed time period

by dynamically partitioning the design space and allocating more CPU cores to the

partition with better QoR. In contrast, our flow in Figure 3.5 parallelizes the DSE

process based on static partition rules (Section 3.3.2) to avoid set-up time. Also,

unlike DATuner that uses random seeds and a time limit to start and terminate the

DSE of a partition, our flow generates effective seeds for each partition to reduce the

probability of being trapped in the infeasible design space region (Section 3.3.3), and

sets up a stopping criteria to avoid long tails (Section 3.3.4).
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Figure 3.5: The Improved Parallel Exploration Framework

3.3.2 Design Space Partition

Since the meta-heuristic algorithms we adopted are iterative algorithms that have a

strong dependency between iterations, we cannot simply increase the DSE efficiency

using more CPU cores to address Impediment 1. As a result, we statically separate

the design space into independent partitions and assign different cores to different

partitions to perform the DSE in parallel. As shown in Figure 3.5, our flow has a

mechanism that adopts the first-come-first-serve approach to schedule partitions to

threads, so it perfectly solves Impediment 1 as long as the partition number is larger

than or equal to the number of CPU cores.

Although the authors in [XLZ17] claim that the dynamic partition is more case-

specific and results in a better convergence rate than the “one-for-all” static partition,
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it needs several iterations for sampling at the beginning of the DSE process for every

partition. Consequently, to take advantage of both, we adopt the “some-for-all”

static partition approach. We statically create some sets of rules and choose the set

that is most suitable to the design for partitioning only at the beginning of a DSE

process.

Our partition rule is created based on the program loop hierarchy in order to

reflect the design factor dependency (Impediment 2 ). According to our observa-

tion, the same loop level could have similar impact on performance even in different

applications, so we attempt to partition the design space based on the loop level.

However, it is impractical to build application-specific loop-level based rules with-

out any training data. As a result, we use a heuristic approach by grouping the

applications with similar loop hierarchy geometrically and generate training data to

establish the rules.

To rank the importance of loop levels, we build a binary decision tree that clusters

the design points which potentially have similar resource utilization or latency so that

the exploration process could be more efficient. Decision tree is a popular method

for classification and regression. Each tree node represents a rule that is composed

of a parameter and a condition (e.g., parallel factor < 16). A path from the tree

root to a leaf with all rules on the path are conjugated to form a partition. These

nodes are determined by greedily selecting the best rule to maximize the information

gain. Formally, we choose nodes from the set argmaxnIG(n,D) where IG(n,D) is

the information gain if we apply node n to the dataset D, as it has been defined as

follows [RM05]:
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IG(n,D) = Imp(D)− Nl

N
× Imp(Dl)−

Nr

N
× Imp(Dr) (3.6)

where Nl, Nr, N are the size of the left partition subset Dl, right partition subset Dr

and overall dataset D respectively. Imp(D) is an impurity measurement of dataset

D. Impurity function is usually selected based on the type of decision tree task (clas-

sification or regression). Since the value of each partition in our case is a regressed

number (latency), we choose variance as our impurity function.

For example, in our design space formed by Merlin pragmas, as shown in Ta-

ble 3.1, the most two common partition factors identified by decision trees in almost

all cases are 1) the pipeline pragmas on coarse-grained loops with flatten options,

and 2) the parallel pragmas on fine-grained loops. Those two pragmas are exactly

the pragmas with the highest impact on performance change we have observed in the

previous section. By separating those pragmas to different partitions using a decision

tree, we can efficiently alleviate Impediment 2 because the meta-heuristic algorithm

is able to approach to better design points without being disturbed by outliers. We

note that since all partitions are disjoint and the union of all partitions is the origi-

nal design space, our design space partition approach preserves the optimality while

improving the DSE efficiency.

3.3.3 Seed Generation

Although we have partitioned the design space systematically in the previous section,

a partition may still contain millions of design points. However, it is too aggressive

to prune the design space using heuristics such as limiting parallel factor or local

buffer size, because the boundary of those factors varies from arbitrary user-written
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kernels and results in a different infeasible region in the design space. For instance,

performing coarse-grained parallelism with factor 256 to the outermost loop might

be infeasible for most designs due to high routing complexity, but it could be an

optimal choice for certain designs that have a very simple computational pattern. As

a result, instead of heuristic pruning, we preserve an entire design space but increase

the probability of finding the best design point in fewer iterations by providing seeds,

the starting point for learning algorithms.

We generate two seeds for each partition with different strategies. The first

seed is performance-driven. For this seed, we enable fine-grained pipelining for all

loops, set the parallel factor of every loop to 16, and set the buffer bit-width to 512.

Although this configuration might fail to be synthesized for some designs, we can

significantly reduce the iteration number of the DSE process for others. On the other

hand, the second seed is area-driven. For this seed, we disable all optimizations so

all loops are performed sequentially and all off-chip buffers are set to the minimum

bit-width. As a result, this seed has the most conservative configuration in terms of

resource utilization and design complexity, so it is less likely to be infeasible from

the perspective of the high-level synthesis tool. With both performance-driven seed

and area-driven seed as the starting points in parallel, the learning algorithm may

achieve high performance in the first iteration and is guaranteed to start searching

in the feasible region and avoid being trapped in the infeasible region all the time.

3.3.4 Early Stopping Criteria

Since the vanilla OpenTuner does not have a systematic stopping criteria but only

adopts the limitation of either execution time or searched point count, the long tail
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is almost inevitable. In fact, the long tail becomes a serious problem for exploring

FPGA accelerator designs because we need minutes to an hour to evaluate a single

design point using HLS.

To solve the long tail problem without the knowledge of optimal performance, we

add one more criteria in addition to the time limit to stop the DSE process earlier

based on the following concept. According to the dataset of explored results Di after

i iterations, and its subset of the uphill performance results between any two con-

secutive iterations Du
i , let PDi(D

u
i | tj) be the experimental conditional probability

by mutating design factor tj, and let P (tj) be the theoretical probability with equal

likelihood to other factors. Our early stopping criteria function should converge when

PDi(D
u
i | tj) is close enough to P (tj). We use H(Di)—the Shannon entropy [SHA01],

a widely used approach in information theory for quantifying uncertainty—to formu-

late this concept. That means we will terminate the DSE process for a partition at

iteration i if we have a low enough uncertainty of finding a better result in that par-

tition at the next iteration. Formally, our early stopping criteria with the Shannon

entropy is defined as follows.

|H(Di)−H(Di−1)| ≤ θ

H(Di) = −
∑
j

PDi(D
u
i | tj) logPDi(D

b
i | tj)

(3.7)

where θ is the threshold for termination. Note that this metric has also been used

in other fields such as image processing [RTS12]. In practice, we terminate the DSE

process after the entropy difference is lower than θ for consecutive N iterations to

avoid pulses. As we will illustrate in the next section, this systematic criteria works

better than the trivial one that simply stops the process if a better result cannot be
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found for a number of iterations.

3.3.5 Experimental Results

The experimental setup used for this framework is same as the previous one and

the overall experimental results are shown in Table 3.5 as well as Table 3.6. When

compared with v1, the improved framework is able to find the decent design point

for almost all cases in 4 hours, except for SPMV and CONV. Since SPMV (sparse matrix-

vector multiplication) is a memory-bounded design with very limit data reuse, the

impact of the data tiling size on performance is much higher than any other design

parameters. However, it is hard for meta-heuristic algorithms to identify a single

important parameter in a few iteration, so it fails to achieve a decent performance.

On the other hand, CONV has 40 design parameters and the largest design space

among all cases, so it is hard for general hyper-heuristic approach to achieve decent

performance with just hundreds of iterations.

Next, we evaluate the DSE process of the improved framework in Figure 3.6.

The solid lines in sub-figures represents the DSE process of the improved framework.

In summary, the DSE process saves 32.8% execution time on geometric mean while

achieving 1.8× performance improvement over the previous version. We analyze the

effectiveness of our optimization strategies as follows. First, we can find that almost

all solid lines start earlier than the previous version, and some of them even have

much better starting performance, such as GEMM and KMP. This illustrates the effec-

tiveness of seed generation, since the area-driven seed is always synthesizable, and

the performance-driven seed may reach high-performance in one iteration. Second,

the DSE process of v2 grows faster than v2 in most case due to an effective design
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Table 3.5: Overall Comparison to CPU and Manual Designs

Benchmark Design Space
Speedup

over v1

Ratio to

Manual (%)

Speedup

over CPU

AES 2.81E+11 2.02 79.88 3015.35

NW 2.70E+10 1.00 95.80 3322.41

KMP 5.76E+03 1.00 100 9.65

GEMM 2.52E+09 1.83 100 16.25

SPMV 1.73E+04 1.64 25.57 0.44

STENCIL-2D 4.37E+11 1.24 100 0.42

STENCIL-3D 1.78E+08 18.43 97.47 2.58

BACKPROP 5.18E+04 1.00 100 7.71

KMEANS 1.67E+06 1.01 100 35.10

KNN 1.03E+05 1.90 73.64 6.99

PATHFINDER 1.66E+04 1.42 98.70 0.02

CONV 1.50E+28 2.89 48.62 28.49

Geometric Mean 6.80E+10 1.79 79.87 11.81

space partition.

Third, the v2 framework terminates the DSE process faster (∼2.68 hours on

average) than the v1 (4 hours) due to the early stopping criteria. As a result, even

the v1 framework is able to realize the same design point as v2 such as KMP, it still

terminates the process after 4 hours due to the lack of an effective early stopping

criteria. In addition, we also analyze the effectiveness of one straightforward stopping

criteria that stops the DSE process if no better result were found for consecutive 10
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Table 3.6: FPGA Resource Utilization

Benchmark BRAM (%) LUT (%) FF (%) DSP (%)

AES 72 28 4 0

NW 78 52 30 0

KMP 48 17 2 0

GEMM 51 33 6 30

SPMV 11 9 1 4

STENCIL-2D 13 7 2 8

STENCIL-3D 20 5 2 3

BACKPROP 47 22 5 5

KMEANS 49 30 10 26

KNN 43 45 1 41

PATHFINDER 4 7 2 1

CONV 70 34 22 30

iterations. It turns out that compared to the Shannon entropy criteria, the trivial

stopping criteria terminates the process one hour later (∼3.72 hours) with the similar

performance.

3.3.6 Insights and Summary

Although the experimental results have demonstrated that the improved framework

with several optimization strategies can find a much better design configuration

compared to v1, the vanilla OpenTuner, it sill has a main challenge: sometimes the

hyper-heuristic approach cannot find a design point with an acceptable performance
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Figure 3.6: Design Space Exploration of the Improved Framework. The legend notes

the best speedup over the manual design and the time to achieve it.

in the given time, as the search process is non-deterministic. Once the search al-

gorithm fails to realize the best design point, it is hard for designers to reason the
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performance bottleneck such as SPMV and CONV we discussed in the previous section,

because 1) the explored design points are based on meta-heuristic algorithms that

do not leverage any domain knowledge, and 2) the behavior of vendor HLS tools is

unpredictable (e.g., Figure 3.1).

To seek for other opportunities of improving the search algorithm, we further

analyze the exploration process as well as the manual optimal designs. We find

that most designs have an obvious performance bottleneck (e.g., effective external

memory bandwidth, insufficient parallel factors, etc.) which usually dominates more

than a half of the overall execution cycle and is controlled by only one or two design

parameters. It implies that the performance gain of tuning other parameters is often

very limited. The meta-heuristic algorithm needs many iterations to identify the

killer parameter and tune it to resolve the performance bottleneck. After that, it has

to spend another large number of iterations again to find the next killer parameter.

This phenomenon motivates us to develop a new search algorithm in the next section

that is guaranteed to optimize the killer parameter prior to others.

3.4 Version 3: Stability Optimization

In order to make a systematic search algorithm for better stability and reasoning,

we attempt to leverage the concept of gradient descent, because it always towards to

the direction with the best gradient value so that we can easily track the process and

make sure the performance could be improved from time to time. In this section, we

first introduce the gradient descent with finite difference method in Section 3.4.1 that

systematically finds a better design point in the design space. On the other hand, as

we will illustrate in Section 3.4.1, simply adopting gradient approach causes a serious
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local optimal problem and does not generate high-performance accelerator designs.

As a result, we present several strategies from Section 3.4.2 to Section 3.4.5. Finally,

we integrate all strategies in Section 3.4.6 and build the v3 framework.

3.4.1 Gradient Descent with Finite Difference Method

Gradient descent is a well-known iterative optimization algorithm for finding a local

minimum point in a differentiable objective function, and it has also been success-

fully applied to solve large scale non-linear physical design problems with a smooth

analytical approximation such as multi-level circuit placement [CCS05]. Formally,

gradient descent is used to find a configuration θ with the minimal objective value

J(θ) in a solution space RK
P :

argmin
θi∈RKP

J(θi) (3.8)

To achieve the goal, we start from an initial configuration θ0, and iteratively update

the configuration by following the steepest descent, the negative gradient −∇J:

θi+1 = θi − α∇J(θi) (3.9)

where α is the step size.

One of the most important limitations in gradient descent approach is that it

requires the objective function to be differentiable in order to find the next steepest

descent. This limitation, however, makes it impractical in many real-world applica-

tions, as the system may be too complicate to be modeled as partially observable
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Markov decision problems. To avoid the potential problems (e.g., accuracy and porta-

bility) of modeling HLS tools, we leverage finite difference method in derivative-free

optimization [CSV09] to approximate the gradient value by treating the HLS tool

as a black-box. That is, given a candidate configuration θj perturbed from the cur-

rent configuration θi, we use finite difference method to approximate the gradient as

follows:

g(θj, θi) ∼
Cycle(H,P(θj))− Cycle(H,P(θi))

Util(H,P(θj))− Util(H,P(θi))
(3.10)

Note that Equation 3.10 considers not only performance gain but resource efficiency

so it could reduce the possibility of being trapped in a local optimal. For example,

we may reduce 10% execution cycle by spending 30% more area if we increase the

parallel factor of a loop (configuration θ1); we can also reduce the 5% execution

cycle by spending 10% more area if we enlarge the bit-width of a certain buffer

(configuration θ2). Although θ1 seems better in terms of the execution cycle, it may

be trapped by a local optimal point easier because it has a relatively limited resource

to be further improved. On the other hand, the finite difference values for the two

configurations are g(θ1, θ0) = −10%
30%

= −0.3 and g(θ2, θ0) = −5%
10%

= −0.5, so the

system prioritizes the second configuration for a better long-term performance.

Since finite difference method selects the best candidates as the next configura-

tion, we need to generate a set of candidates, Θcand, at each iteration. Specifically,

we generate candidates by advancing the value of each parameter in the current

configuration by one step. Formally, the c-th candidate generated from θi is:
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θc = [p0, p1, ..., pc + 1, ..., pk] (3.11)

where pc is the value of c-th parameter in θi. Accordingly, we will generate K

candidates at each iteration, which means we use K HLS runs to determine the next

configuration:

θi+1 = argmin
θj∈Θcand

g(θj, θi) (3.12)

By leveraging the gradient descent with a finite difference method, we expect to

find a better design point every K HLS runs. Unfortunately, as we have illustrated

in Figure 3.1, the performance trend is not always smooth, so the gradient process is

easily trapped by a low-quality local optimal design point. Taking Figure 3.1 again as

an example, the gradient approach will stop at factor 2 for FG-loop-1 because factor

3 has worse performance but costs more resources. Actually, the gradient approach

proposed in this section only achieves 0.86× speedup on the geometric mean of our

benchmark, which is even worse than results from v1. Consequently, we propose

several strategies in the remainder of this section to improve the efficiency.

3.4.2 Graph-based Design Space Pruning

One solution to facilitating the gradient process is to reduce ineffective parameters.

A straightforward way to build a design space from Merlin pragmas is treating each

Merlin pragma as a design parameter, but it is inefficient. For example, if we have

determined the outermost loop in a loop nest that needs to be performed the memory
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burst, then the Merlin compiler will tile that loop, create local buffers with the tile

size and insert memcpy to enable memory burst before the loop body. In this case, the

physical meaning of the tiled outermost loop is to transfer a batch set of data from

DRAM to BRAM, which cannot be executed in parallel. As a result, memory burst

and parallel pragmas are mutually exclusive in a loop nest. To avoid this inefficient

design points, we propose a graph-based algorithm to create a design space that is

capable of reflecting such characteristics.

#pragma ACCEL pipeline [off,cg,fg]

#pragma ACCEL memory_burst var=a length=1-B

#pragma ACCEL parallel factor=1-B

for (int i = 0; i < B; ++i) {

#pragma ACCEL pipeline [off,cg,fg]

#pragma ACCEL memory_burst var=a length=1-M

#pragma ACCEL parallel factor=1-M

for (int j = 0; j < M; ++j) {

#pragma ACCEL pipeline [off,fg]

#pragma ACCEL memory_burst var=a length=1-N

#pragma ACCEL parallel factor=1-N

for (int k = 0; k < N; ++k) {

a[getIdx(i,j,k)] = ...

}

}

}
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Figure 3.7: Graph-based Design Space Building Approach

Our proposed approach is illustrated in Figure 3.7. Figure 3.7a is a loop nest

example with all possible Merlin pragmas (each pragma exists an option to remove

itself). In Figure 3.7b, we specify the rules mentioned above. By accepting both

Figure 3.7ab as inputs, our approach first builds a conflict graph of which the vertices
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are pragmas and the edges mean the two pragmas cannot be existed at the same

scope (either a single level loop or a loop nest). Since we only need to explore

one instead of N parameters if N pragmas in a scope are mutually exclusive, we

find the minimum number of maximum disjoint cliques in the graph to realize what

pragmas can be explored using one uniform parameter. For example in Figure 3.7c,

the factor of pragma Pi and Mi can always be the same because of the conflict target

II defined in Figure 3.7b. After this step, we create three factor parameters as shown

in Figure 3.7e for this loop nest.

Subsequently, we find the minimum number of options of selecting exclusive prag-

mas. To do so, we build a conflict-free graph by complementing the conflict graph, as

shown in Figure 3.7d by complementing Figure 3.7c. As a result, we create a selector

parameter for DSE in Figure 3.7e by finding all maximum cliques, which means we

select as many pragmas as we can. As can be seen in this example, with the graph-

based approach, we greatly reduce the design space from 3×B2×3×M2×2×N2 =

O(B2M2N2) in Figure 3.7a to 3×B×3×M×2×N×3 = O(BMN) in Figure 3.7e.

According to our evaluation result, this approach reduces on average ∼24.65× design

space.

3.4.3 Design Space Partition

Another solution to address the local optimal issue caused by the non-smooth per-

formance gain is partitioning the design space based on likely distribution of local

optimal points and exploring each partition independently. Since we already have

design space partition mechanism in v2, we integrate the observations found in this

chapter and improve the partition rule that partitions the design space based on the
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pipeline mode, as pipeline mode fg unrolls all sub-loops to achieve fine-grained while

the mode cg uses double buffers to implement coarse-grained pipeline. These two

modes apparently have the most significant different influence on the generated archi-

tecture and are expected to have non-related performance and resource utilization.

According to the pipeline modes in each loop, we use tree partition and generate 2N

partitions from a design space with N non-innermost loops.

Supposing we use use t working threads to perform at most h hours DSE for 2N

design space partitions, we need 2N

t
× h hours to finish the entire process. On the

other hand, some partitions that are based on an insignificant pipeline pragma may

have the similar performance, so it is more efficient to only explore one of them.

As a result, we profile each partition by running HLS with minimized parameter

values to obtain the minimum area and performance, and use K-means clustering

with performance and area as features to identify t representative partitions among

all 2N partitions.

3.4.4 Adaptive Line Search

After partitioning the design space, we are able to avoid the gradient process to

be terminated at the early stage due to dramatic performance difference between

pipeline modes. On the other hand, the performance trap of consecutive parameter

values caused by vendor HLS tools, as shown in Figure 3.1, is still an impediment of

finding a better result.

By observing Figure 3.1, we realize that the relationship between factors and

execution cycle is a negative correlation when we only consider the power-of-two

numbers. This is reasonable because the vendor HLS tools usually apply many
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heuristics to synthesize and schedule loops when the parallel factor is not power-of-

two. As a result, we prefer to let the gradient process explore power-of-two values

prior to others so that the objective function could be smooth in the beginning.

This idea is inspired by the concept of line search strategy [BER99] which uses an

adaptive step size during the search process and has also been adopted for VLSI

circuit placement (e.g. [KW05]), so the Equation 3.11 can be refined as follows:

θc = [p0, p1, ..., pc + s, ..., pk] (3.13)

where s is an adaptive step-size. In detail, we first set s as a large number to make

a large step to the power-of-two factors of parallel, memory burst and memory

coalescing. When there is no valid candidate to be selected by the finite difference

method, we reduce the step size by 2 and re-generate candidates.

3.4.5 Multiscale V-Cycles

Since our gradient approach tries one adaptive step on every parameter and changes

one parameter at a time, it assumes every parameter can be tuned individually. On

the other hand, some parameters in our design space may have a strong dependency

to others, so changing one of them would not be effective. For instance in Code 3.1,

since both loop-i and loop-j access array A, the performance of both loops are

affected by array A’s partition factor, which is inferred automatically by the Merlin

compiler according to their parallel factors. It is obvious that array A should be

partitioned cyclically by 4 in Code 3.1, because both loops are partially unrolled

by 4 times. When we increase the parallel factor of loop-i to 5, on the other

hand, this problem becomes nontrivial. Theoretically, cyclically partitioning array A
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Code 3.1: Example of Dependent Loop Parallel Factors

1 #pragma ACCEL parallel factor=4

2 for (i = 0; i < N; ++i)

3 A[i] = ...;

4 #pragma ACCEL parallel factor=4

5 for (j = 0; j < N; ++j)

6 ... = A[j];

by 5 to match loop-i’s parallel factor will not encounter bank conflict at loop-j,

since the bank access order is 0,1,2,3 when j = 0 and 4,0,1,2 when j = 1.

However, it is possible that the vendor HLS tool fails to recognize this pattern and

considers that there has a bank conflict at loop-j. In this case, the HLS tool

sacrifices the performance to guarantee the functionality by increasing the loop II.

Since this phenomena is case by case, the most promising solution is making sure

the parallel factors of loop-i and loop-j are always the same, but it may ignore

some corner cases and loses the optimality.

The optimization strategy we applied for solving this problem is multiscale V-

cycles [CS13], which was widely used in VLSI physical design problems such as

partitioning (e.g., [HME]) and placement (e.g., [CCK03]). The idea is that we first

coarsen the loop parallel parameters that access the same arrays as a parameter

cluster, which reduces the number of tuning parameters from 2 (parallel factors of

loop-i and loop-j) to 1 in the above example. Then we process the gradient with

parameter clusters. When the gradient approach is trapped due to local optimal, we

relax the clusters and continue the process. The process of coarsening and relaxing

forms a V-cycle. Note that although relaxing parameter clusters increases the pa-

rameter number and slows the gradient process in later iterations, we already stand
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on a decent solution.

3.4.6 Putting It All Together

We summarize the above strategies and present an optimized gradient descent with

finite difference method in Algorithm 3. The algorithm takes a program as well as its

design space partitions as inputs. For each partition, it first sets a large initial step

(line 4) and coarsens design space parameters by analyzing data access patterns (line

5). In each gradient iteration, the algorithm moves all parameters in the same cluster

to generate candidate points (line 8-19), and evaluate the points using a vendor HLS

tool in parallel (line 20). After that, it checks the results and commits the move with

the best finite difference value (line 21-29). When there is no valid finite difference

value, we relax the cluster (line 23) and reduce the step size (line 24) to further refine

the solution. The algorithm finally outputs the overall best design point among all

partitions.

Algorithm 3 Optimized Gradient Descent with Finite Difference

Require: A C program P and a set of design space partitions S.

Ensure: A design configuration θ with the best QoR.

1: bestPoints← ∅

2: for all S ∈ S do

3: currPoint← Evaluate(GetDefaultPoint(S))

4: stepSize← GetInitStep()

5: paramClusters← CoarsenParams(BuildAST (P), S)

6: while do

7: pendingQueue← ∅

8: for cluster ∈ paramClusters do
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9: cfg ← CopyConfig(currPoint.cfg)

10: move← false

11: for param ∈ cluster do

12: if MoveSteps(cfg, param, stepSize) = true then

13: move← true

14: end if

15: end for

16: if move = true then

17: pendingQueue.append(cfg)

18: end if

19: end for

20: pointSet← ParallelEvaluate(pendingQueue)

21: bestPoint← GetBestMove(pointSet)

22: if bestPoint = ∅ then

23: paramClusters← RelaxClusters(paramClusters)

24: if ReduceStepSize(stepSize) = false then

25: break

26: end if

27: else

28: currPoint← bestPoint

29: end if

30: end while

31: bestPoints.append(currPoint)

32: end for

33: return GetBest(bestPoints).cfg
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Finally, we integrate the proposed method to the DSE framework in Figure 3.8.

The framework first builds a design space according to Table 3.1. Then, it profiles

and selects representative partitions using K-Means. For each partition, the explorer

performs DSE using the proposed gradient approach. Note that we could configure

the framework to leverage only the gradient approach or other meta-heuristic algo-

rithms. When the explorer finishes exploring a partition, it stores the best configura-

tion found by that partition and reallocates the working threads to other partitions

to keep the high resource utilization. Finally, when all partitions are finished, the

framework outputs the design configuration with the best performance among all

partitions.

Profiler and Seed Generation

MAB-based Arbitrator

Meta-Heuristic Algorithm
Design Config. Generation
Design Config. Committing

Result Querying
State Updating

Explorer

Evaluator

Result Database
Design Config.Waiting Queue

C Kernel
Design Space Builder/Partitionerw. Graph-based pruning

Representative Design Space
Design Space Partition

C Kernel w. Optimized Design Config.

Execution Flow Result Query

Gradient-based Algorithm

HLS w. Vendor ToolsCode Transformation Result Committing

Uniform Greedy Mutation
Differential Evolution

Particle Swarm Optimization

Figure 3.8: The Framework with Gradient-based Approach
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3.4.7 Experimental Results

We again use the same experimental setup in Section 3.2.4.1. In this experiment, we

first evaluate the effectiveness of the proposed optimization strategies for the gradient

descent algorithm, followed by the overall evaluation of the performance and DSE

process comparing to previous versions.

3.4.7.1 Evaluation of Gradient Approach Optimization

Figure 3.9 presents the accumulated performance improvement by applying the op-

timization strategies step by step. The leftmost bar is the vanilla gradient descent

with finite difference method. After applying the graph-based design space pruning,

the DSE only explores the effective memory burst candidates (single memory burst

per loop nest) so the number of memory burst candidates are greatly reduced. In

fact, the overall design space is reduced by 24.65× on average among all cases after

applying the proposed algorithm, which results in 1.3× performance improvement

on geometric mean, as shown in the second from the left bar.

We then evaluate the gradient descent with a finite difference method and pro-

posed optimization strategies in 3rd to 5th bars of Figure 3.9. We can see that each

of the proposed strategies benefits at least one case in our benchmark. After ap-

plying design space partition, the geometric mean speedup is improved by 2.1×. In

particular, design space partition benefits the designs with many nest loops in which

the gradient process is easily trapped by the local optimal when changing pipeline

modes—such as AES, GEMM, N-W, STENCIL-2D, and STENCIL-3D.

In addition, after applying adaptive line search (ALS), the performance is further

improved by 1.9×, especially for AES, N-W, SPMV, STENCIL-2D, STENCIL-3D, KMEANS,
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Figure 3.9: Step-by-Step Performance Improvement with Gradient Approach

and KNN. As we have illustrated in the beginning of this chapter, adaptive line search

helps the gradient process avoid irregular finite difference values and results in a

better performance. Finally, we can see from Figure 3.9 that the multiscale V-

cycle significantly improves the performance of PATHFINDER, because this design use

multiple loops to process the same array buffer and result in a high impact of array

partition factor on performance. In other words, changing one factor at a single step

will not affect the overall performance.

3.4.7.2 Overall Evaluation and Analysis

The overall performance and resource utilization are shown in Table 3.7 and Ta-

ble 3.8, respectively. We can see that most the gradient approach results match the

manual design performance. For KMP, the optimal is achieved by 32 process units

(PEs) as well as 512-bit memory coalescing. Although the gradient approach does

coalesce the off-chip buffers to improve the bandwidth, it fails to achieve 32 PEs due
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to the local optimal, because we find that the efficiency of 16 PEs is worse than 8 PEs

which results in a low gradient value. Therefore, the gradient approach is trapped

by 8 PEs and cannot achieve the optimal performance.

Table 3.7: Overall Comparison to CPU and Manual Designs

Benchmark Design Space
Speedup

over v2

Ratio to

Manual (%)

Speedup

over CPU

AES 3.11E+09 1.25 100 3774.69

NW 1.51E+09 1.04 100 3468.11

KMP 5.76E+03 0.52 52.24 5.04

GEMM 1.26E+09 1.00 100 16.25

SPMV 5.76E+03 2.98 76.29 1.32

STENCIL-2D 9.70E+09 0.81 80.64 0.34

STENCIL-3D 1.94E+06 1.03 100 2.65

BACKPROP 1.15E+04 1.00 100 7.71

KMEANS 2.49E+05 0.11 11.72 4.12

KNN 1.90E+04 1.35 99.61 9.46

PATHFINDER 5.18E+03 1.01 100 0.18

CONV 1.50E+28 0.01 0.32 0.19

Geometric Mean 1.26E+08 0.59 47.16 6.97

For SPMV, although the gradient approach dose not achieve the optimal perfor-

mance, it has already achieved 77% that is much better than v3 (26%). This is

because the gradient approach is able to identify the killer parameter, the data tiling

size, and optimize this parameter prior to others. On the other hand, the reason of
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Table 3.8: FPGA Resource Utilization

Benchmark BRAM (%) LUT (%) FF (%) DSP (%)

AES 31 11 2 0

NW 40 18 12 0

KMP 72 24 5 0

GEMM 52 33 6 30

SPMV 72 35 4 19

STENCIL-2D 4 2 1 2

STENCIL-3D 9 5 4 7

BACKPROP 47 24 5 6

KMEANS 50 31 3 27

KNN 72 64 17 22

PATHFINDER 7 7 2 1

CONV 50 2 1 2

the rest 23% gap comes from the resource allocation. Since the optimal design uses

only 8 PEs but improves the PE throughput by having 16 as the unroll factor of

the innermost loop with reduction enabled. However, duplicating 16 PEs has higher

finite difference value than unrolling the inner loop by 16 times when reduction is

disabled. As a result, the gradient towards to duplicating more PEs and is trapped

by the local optimal, because our V-cycle analysis does not group the unroll factor

and the reduction flag when coarsening the design space. For KMEANS, although it

is not a memory-bounded design like SPMV, it also requires the data tiling size to be

optimized before improving the design throughput. However, the gradient approach
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has to run one design point for every parameter but update only one parameter at

each iteration. Consequently, it only performs 8 iterations in the 4 hour time limit

and fails to achieve the large enough data tiling size. This problem is more critical

for CONV, since it has 40 design parameters. Since the gradient approach needs to

evaluate 40 design points to make a move, it only performs 4 iterations in 4 hours

and results in an even worse performance than v2.

We finally evaluate the DSE process in Figure 3.10. The gradient approach

outperforms the previous two version in almost all cases in turns of the achieved

performance and DSE time. This proves the conclusion we made in the previous

chapter about the search algorithm would be effective if we focus on identifying the

killer parameter.
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Figure 3.10: Design Space Exploration with Gradient-based Algorithm. The legend

notes the best speedup over the manual design and the time to achieve it.
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3.4.8 Insights and Summary

In this section, we demonstrate that we could leverage gradient descent with several

HLS-specific optimization strategies to perform a more systematic DSE than the

hyper-heuristic algorithm, multi-armed bandit approach. For the designs with a

tremendous design space, MAB may fall into random search since the path to a better

performance is unclear. It is challenging especially when the DSE fails to achieve

high performance, because designers will have no clue about where can be further

improved. On the other hand, as we have illustrated in the experimental result, we

can easily reason the root cause of failing to achieve the optimal performance for

each design by tracing the gradient process. This helps us not only manually bridge

the performance gap for our designs, but also identify the opportunities to further

improve the search algorithm. On the other hand, we summarize the remaining

challenges of the gradient approach as follows, and the refined DSE framework is

presented in the next section by addressing those challenges.

Challenge 1: Non-smooth design space: Although we apply graph-based prun-

ing algorithm to reduce the design space, the reduced design space is not smooth

enough. In particular, the generated selector parameters may result in dramatically

changing of the design, since they invalid exclusive parameters.

Challenge 2: High evaluation cost for each iteration: Since we move one

step of every parameter to approximate the gradient value with finite difference

method, we have to evaluate N design points in each iteration, where N is the total

number of design parameters. As a result, the evaluation cost for each iteration is

proportional to the parameter number and it is not scalable (e.g., CONV).

Challenge 3: Potential local optimal: Although adaptive line search resolves
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significantly improves the local optimal problem, it may still happen (e.g., SPMV)

especially between different factors of a design parameter.

3.5 Version 4: Scalability Optimization

We address the challenges summarized in the previous section by improving the

design space representation as well as the search algorithm. For Challenge 1, we

improve design space representation in Section 3.5.1 by preserving all design space

dimensions but invaliding infeasible design points so that the exploration process can

be smooth. For Challenge 2, we improve the design point evaluator to support cycle

breakdown analysis and performance bottleneck analysis in Section 3.5.2. Finally,

we refine the search algorithm in Section 3.5.3 to focus on high impact parameters

while avoiding potential local optimal issues.

3.5.1 Comprehensive Design Space Representation

One major problem of the graph-based algorithm proposed in Section 3.4.2 is that it

prunes the design space according to a predefined constraint by creating a selector to

eliminate infeasible parameter combinations. We use Figure 3.11 to further illustrate

this problem. Figure 3.11a is an example code snippet. In this example loop nest, we

attempt to explore the best position of a memory burst pragma and its value, so the

pragma Mi and Mj are exclusive, and only one of them should be inserted at a time.

With the graph-based algorithm, we create a design space in Figure 3.11b. As can be

seen, we merge the factor of Mi and Mj and create a selector to indicate the targeting

memory burst pragma. Assume that we are at the configure (Selector, Factor) =

(Mi, 256) and have three candidates to be explored by the gradient-based approach.
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Among all candidates, candidate 2 and 3 are expected to have continuous result

qualities that are suitable for gradient, but this is not the case for candidate 1, since

it changes the memory burst position and usually has a high impact on performance

and resource utilization.

#pragma ACCEL memory_burst var=a length=Mi // Options: 1,256,512,1024

for (int i = 0; i < 1024; ++i) {

#pragma ACCEL memory_burst var=a length=Mj // Options: 1,256,512,1024

for (int j = 0; j < 1024; ++j) {

a[getIdx(i,j)] = ...

}

}

(a) An Example Code Snippet

1 256 1024512

Selector

Factor

Mi

Mj
1

2 3

(b) Graph-based Approach

1 256 1024512

256

512

1024

Mj

Mi

1 2

(c) Proposed Approach

Figure 3.11: Different Design Space Representations and Their Impact on DSE

A better design space representation, on the other hand, preserves the original

design space dimensions but invalids infeasible points. An example is presented

in Figure 3.11c. Again, we are at the configure (Mi,Mj) = (256, 1), but we only

have two candidates this time because configure (Mi,Mj) = (256, 256) is invalid. In

summary, although the feasible design space in Figure 3.11b and Figure 3.11c are

equivalent, the representation in Figure 3.11c is more exploration friendly and easier

to reason.
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We borrow the syntax of Python list comprehensions to represent the design space

and achieve the above goal. Python list comprehensions are a concise approach for

creating lists. They have the following syntax:

list_name = [expression for item in list if condition]

and this representation is equivalent to:

for item in list:

if condition is True:

list_name.append(expression)

Formally, we define the design space representation for Merlin pragmas with list

comprehensions as follows:

#pragma ACCEL <pragma-type> <attribute-key>=auto{

options: parameter_name=list-comprehension-expression;

default: default-value

}

Taking Figure 3.11a as an example, the design space can be represented using

list comprehensions as follows:

1 #pragma ACCEL memory_burst var=a length=auto{

2 options: Mi = [x for x in [1,256,512,1024] if Mj==1];

3 default: 1

4 }

5 for (int i = 0; i < 1024; ++i) {

6 #pragma ACCEL memory_burst var=a length=auto{

7 options: Mj = [x for x in [1,256,512,1024] if Mi==1];

8 default: 1

9 }

10 for (int j = 0; j < 1024; ++j) {

11 a[getIdx(i,j)] = ...

12 }

13 }

where lines 2 and 7 indicate that the two memory burst pragmas are exclusive. In
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other words, when we set Mi = 256, the available option for Mj is only the default

value, which is 1 in this case.

There are two main advantages to adopting list comprehension-based design space

representations. First, the Python list comprehension is general and can represent

any list. It provides a friendly and comprehensive interface with higher levels such as

polyhedral analysis [ZLC13] and domain-specific languages to generate an effective

design space. Second, the syntax of this representation is Python compatible. It

means we can directly leverage the Python interpreter to evaluate the design space

and improve overall stability of the DSE framework.

3.5.2 Performance Bottleneck Analysis

Transform History: Burst

HLS report
(corresponding to Merlin transformed code)

void kernel(…) {
#pragma ACCEL pipeline
#pragma ACCEL tile factor=BATCH_SIZE

for (int task ...) {
for (int i ...) {

...
}

}
}

void kernel(…) {
for (int task ...) {
for (int task_batch ...) {

load(...);
compute(...); // i-loop inside
store(...);

}
}

}

Merlin transformation:
• Data tiling
• Coarse-grained pipeline

High-level synthesis

Latency (clock cycles):
Instances:

load: 4096
compute: 512
store: 1024

Loops:
task: 1048576
|-task_batch: 4096

Report back propagation

Latency (clock cycles):
Instances:

N/A

Loops:
task: 1048576
|-i: 512

Merlin report
(corresponding to user code)

Transform History: Pipeline
task → task

|-task_batch
|-load
|-compute

i → |-i
|-store

Figure 3.12: Merlin Compiler Report Generation

As we pointed out in Challenge 2, the efficiency of using the gradient-based
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approach for DSE is limited by the process of approximating gradient value. Specifi-

cally, at each iteration, the gradient approach has to evaluate N design points, where

N is the total number of tuning parameters, to determine the next step, because we

treat the HLS tool as a black-box and only fetch the overall design latency. In fact,

the Merlin compiler [CHP16a] includes a feature that performs back propagation to

propagate the performance breakdown reported by the HLS tool to the user input

code. Figure 3.12 illustrates its process. When performing code transformation, the

Merlin compiler records the code change step by step so that it is able to propagate

the latency estimated by the HLS tool back to the user input code. This feature is

helpful for the DSE framework to analyze the performance bottleneck and identify

the killer design parameter by running HLS for only one design point.

Specifically, we identify the performance bottleneck by traversing the Merlin re-

port using depth-first search (DFS). Details of the algorithm are shown in Algo-

rithm 4. The algorithm starts with the kernel top function statement. We first check

to see if the current statement has child loop statements (line 1). For the function

call statements, we dive into the function implementation to further check its child

statements (line 3). Then we traverse each of them and create hierarchy paths (lines

10-12). Note that since we sort all loop statements according to their latency by

checking the Merlin report (lines 8-9), the hierarchy paths we created will also be

sorted by their latency. Subsequently, we check the Merlin report again to realize

whether the performance bottleneck of the current statement is memory transfer or

computation (lines 14-18). The Merlin compiler obtains this information by analyz-

ing the transformed kernel code along with the HLS report. A cycle is considered to

be a memory transfer cycle if it is consumed by communicating to off-chip memory.

Finally, we append the current statement to the end of each path (lines 22-24) and
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return a list of paths in order. With Algorithm 4, we can not only figure out the

performance bottleneck for each design point, but we can also identify a small set

of effective design parameters to focus on. As a result, we are able to significantly

improve the efficiency of our searching algorithm in the next section.

Algorithm 4 Depth-First Search of Design Bottleneck Analysis

Require: A Merlin performance report Rpt, loop hierarchy Hier,

and current statement currStmt.

Ensure: An ordered list of critical paths CP and bottleneck (memory or compute).

1: if !Hier(currStmt).hasChild() then

2: if currStmt.isFuncCall() then

3: CP ← DFS(Rpt,Hier,Hier(currStmt).getFuncDecl())

4: else

5: CP ← ∅

6: end if

7: else

8: child← Hier(currStmt).getChild()

9: child← sortByLatency(child, RptRp)

10: for all c ∈ child do

11: CP.append(DFS(Rpt,Hier, c))

12: end for

13: end if

14: if Rpt(currStmt).memoryCycle() > Rpt(currStmt).computeCycle() then

15: bottleneck ←MEMORY

16: else

17: bottleneck ← COMPUTE
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18: end if

19: if CP = ∅ then

20: CP ← List((currStmt, bottleneck))

21: else

22: for all path ∈ CP do

23: path.append((currStmt, bottleneck))

24: end for

25: end if

26: return CP

3.5.3 Bottleneck Optimization Approach

We summarize again the inefficiencies of the gradient-based DSE approach proposed

in the previous section (Algorithm 3) by comparing its behavior with human design

experts:

1. The gradient-based approach has to evaluate many design points to identify

the performance bottleneck. An expert could directly acquire this information

by analyzing the cycle break.

2. The gradient-based approach has no knowledge about parameters, so it has no

way to prioritize important parameters. An expert may know which parameter

has a high potential of being the killer parameter.

3. The gradient-based approach may stop exploring the options of a parameter

due to local optimal, An expert may know whether other options are worthwhile

to explore or not.
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The first two inefficiencies can resolved by leveraging the bottleneck analysis. We

first build a map from loop or function statements in the user input code to design

parameters so that we know which parameters should be focused for a particular

statement. When we obtain an ordered list of critical hierarchy paths from the

bottleneck analysis, we start from the most critical innermost loop statement and

identify its corresponding parameters. Note that since the bottleneck analysis also

provides the bottleneck type information (i.e., memory transfer or computation), we

may identify a subset of the parameters mapped to that statement. For example,

we may have design parameters of PARALLEL, PIPELINE, and MEMORY BURST at the

same loop level. When the bottleneck type of the loop is memory transfer, we focus

on the MEMORY BURST parameter for the loop; otherwise we focus on PARALLEL and

PIPELINE parameters. In other words, we reduce the number of candidate design

parameters not only by the bottleneck statement but the bottleneck type.

For the third inefficiency, we cannot identify whether the current option of a

parameter is local or global optimal, so the most promising solution is breaking

the dependency between options and searching a set of them in parallel. In this

way, although we still need to evaluate multiple design points at every iteration, we

guarantee that each design point can provide the maximum information for improving

the performance because we always evaluate the options of the parameter that has

the largest impact on the performance bottleneck. The refined algorithm is presented

in Algorithm 5 with the following descriptions of the data structures used, and the

complete v4 DSE framework is presented in Figure 3.13.

Algorithm 5 Refined Search Approach for Bottleneck Optimization

Require: A C program P and a set of design space partitions S.

Ensure: A design configuration θ with the best QoR.
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1: topFunc← GetTopFunction(P)

2: for all S ∈ S do

3: cfg, report, hier ← Evaluate(GetDefaultPoint(S))

4: FocusParamsWOptions← BottleneckAnalysis(report, hier, topFunc)

5: LevelHeap← ∅

6: LevelHeap.append(∅)

7: LevelHeap[0].push(DesignPoint(0, cfg, FocusParams,∅))

8: while LevelHeap /∈ ∅ do

9: CurrLevel = GetLastLevel(LevelHeap)

10: CurrPoint← LevelHeap[currlevel].peek()

11: CurrParamWOptions← CurrPoint.popParam()

12: candidates← ∅

13: for all option ∈ CurrParamWOptions do

14: NewCfg ←Manipulate(CurrPoint, CurrParamWOptions, option)

15: candidates.append(NewCfg)

16: end for

17: ParallelEvaluate(candidates)

18: for all cfg, report, hier ∈ candidates do

19: FocusParamsWOptions← BottleneckAnalysis(report, hier, topFunc)

20: FD ← CalF initeDifference(report)

21: NewPoint← DesignPoint(FD, cfg, FocusParamsWOptions)

22: LevelHeap[currlevel + 1].push(NewPoint)

23: end for

24: if LevelHeap[currLevel].FocusParamNum() = 0 then

25: LevelHeap[currLevel].pop()
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26: end if

27: end while

28: end for

29: return GetBestCfg()

Profiler and Seed Generation

MAB-based Arbitrator

Meta-Heuristic Algorithm
Design Config. Generationw. Irregular Design Space
Design Config. Committing

Result Querying
State Updating

Explorer

Evaluator
HLS w. Vendor ToolsCode Transformation Bottleneck Analysis Result CommittingCache Hit Checking

Result Database
Design Config.Waiting Queue

C Kernel Design Space Builder/Partitioner
Representative Design Space

Design Space Partition

C Kernel w. Optimized Design Config.

Execution Flow Result Query

Bottleneck OptimizationAlgorithm
Uniform Greedy Mutation

Differential Evolution
Particle Swarm Optimization

Figure 3.13: The Framework with Hotspot Optimization Approach

• LevelHeap: A heap for each level of pending design points that can be further

explored. Note that level n means we have fixed the value of n parameters, so

the maximum level in this algorithm is equal to the total number of parameters.

Since new design points are sorted by their finite difference values when they

were pushed into the heap, the design point with a better finite difference value

will be explored prior to other points.
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• DesignPoint : The data structure of a design point includes its 1) finite dif-

ference value, 2) configuration, 3) focused parameters, and 4) fixed parameters.

• ParamWOptions : The data structure of a set of design points that are

generated from a reference design point by mutating a certain design parameter.

Note that the available options of a parameter is determined based on the

reference point as we have illustrated in Figure 3.11c.

3.5.4 Experimental Results

With the same experimental setup as previous versions, the overall performance and

resource utilization are presented in Table 3.9 and Table 3.10, respectively. With

the same design space and exploration time, we can seen that the refined bottleneck

optimization algorithm is able to realize the design points that match the optimal

performance. In particular, CONV achieves 94% performance compared to the man-

ual design. This is the best performance among all versions of the DSE frameworks

that we have proposed in this chapter. Since CONV has the largest design space,

this result proves the practicability of bottleneck analysis and the scalability of the

improved algorithm. In fact, we used CONV as the class project of CS133 in winter

2019 for undergraduate and graduate students of UCLA’s Computer Science Depart-

ment. The students were asked to improve the performance of CONV with the Merlin

compiler [CHP16a] within the period of one week. Our DSE result ran second place

among 84 student submissions.

On the other hand, KMP can only achieve 52% compared to the manual design.

We find that the reason lies in the accuracy of Merlin report analysis. When the

kernels contain many unbounded loops or while-loops, the HLS report may not reflect

80



Table 3.9: Overall Comparison to CPU and Manual Designs

Benchmark Design Space
Speedup

over v3

Ratio to

Manual (%)

Speedup

over CPU

AES 3.11E+09 1.00 100 3774.69

NW 1.51E+09 0.98 97.67 3387.46

KMP 5.76E+03 1.00 52.24 5.04

GEMM 1.26E+09 1.00 100 16.25

SPMV 5.76E+03 1.31 100 1.73

STENCIL-2D 9.70E+09 1.17 94.00 0.39

STENCIL-3D 1.94E+06 1.00 100 2.65

BACKPROP 1.15E+04 1.00 100 7.71

KMEANS 2.49E+05 8.46 99.18 34.82

KNN 1.90E+04 1.00 99.84 9.48

PATHFINDER 5.18E+03 0.89 88.62 0.16

CONV 1.50E+28 291.49 93.96 55.06

Geometric Mean 1.26E+08 1.96 93.78 13.69

the accurate computation cycles. This affects the bottleneck type analysis of the

Merlin report. In the case of KMP, the Merlin report shows that the bottleneck

type of design point is computation, but it is actually memory transfer. Once the

Merlin report provides the wrong information, our search algorithm will identify

unimportant design parameters to focus on; therefore the performance bottleneck

cannot be resolved. Future work will study the Merlin report analysis and identify

the situations that may cause inaccurate analysis so that we can try to avoid them.
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Table 3.10: FPGA Resource Utilization

Benchmark BRAM (%) LUT (%) FF (%) DSP (%)

AES 31 11 2 0

NW 52 42 12 0

KMP 37 21 5 0

GEMM 52 33 6 30

SPMV 74 30 4 20

STENCIL-2D 5 5 3 8

STENCIL-3D 9 7 5 7

BACKPROP 72 37 8 10

KMEANS 50 30 10 26

KNN 23 23 1 18

PATHFINDER 7 2 1 1

CONV 69 59 42 60

We then analyze the DSE process of all four versions in Figure 3.14. The most

important message behind Figure 3.14 is that v4 has the overall fastest performance

growth due to the identification of bottleneck parameters and bottleneck type. We

note that this is important to DSE for HLS. The reason is that although it is common

for hardware designers to spend months exploring the best architecture configuration,

they will spend most of their time analyzing the workload and narrowing it down to a

suitable architecture before performing design space exploration. On the other hand,

the HLS designers usually have an intuitive C-based implementation to start with,

so they often perform HLS without any optimization to analyze the performance
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bottleneck. Based on the performance bottleneck, which may be caused by data

dependency, program structure, memory bandwidth, or underutilized resource, the

designer may need to reconstruct the program to complement uncovered design space,

such as loop splitting or interchange. During this process, it is better for designers

to obtain the best performance of the current implementation in a short time so that

they could further improve it accordingly. As a result, a reasonable exploration time

should be within hours. According to Figure 3.14, our v4 framework can rapidly

achieve high performance, and we believe this is helpful for HLS designers to refine

their designs.
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Figure 3.14: DSE with Bottleneck Optimization Algorithm. The legend notes the

best speedup over the manual design and the time to achieve it.
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3.5.5 Experimental Results on a Different Platform

We finally explore the design space on the Intel FPGA using the optimized ver-

sion of the DSE framework to demonstrate its adaptability in another dimension.

The platform as well as the device we use in this experiment are the Intel AOCL

19.1 [INT] and an Intel Arria 10 FPGA [ARR]. The experimental results of per-

formance comparison to manual design and CPU baseline are shown in Table 3.11,

while the resource utilization is reported in Table 3.12. For each benchmark case,

we manually implement an optimal version on the Intel FPGA using Merlin com-

piler pragmas to evaluate the result quality achieved by the DSE framework. Note

that the Merlin manual designs of some cases, such as KMP and SPMV, fail to achieve

speedup over the CPU baseline because the performance bottleneck of those kernels

are highly bounded by the external memory bandwidth and would require a special-

ized architecture. Again, our analysis will focus on the optimality achievement by

the framework. We can see from Table 3.11 that our DSE framework successfully

identifies the best design point which matches the manual design performance for all

cases with the same design space as on the Xilinx platform and achieves a geometric

mean 15.46× speedup over the CPU baseline. This result on the Intel platform illus-

trates that the proposed framework is capable of finding the best point on a different

device and design flow within the same design space.

In addition, Table 3.14 and Table 3.13 list the number of used pragmas in the best

design point for the benchmark case on two platforms. Note that “CG” in the table

stands for coarse-grained while “FG” stands for fine-grained. It is obvious that the

best design points are quite different on each platform. In particular, a coarse-grained

pipeline is one of the most important optimizations for most cases on Xilinx, so almost
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Table 3.11: Overall Comparison to CPU and Manual Designs on Intel FPGA

Benchmark Design Space Explored Points
Ratio to

Manual (%)

Speedup

over CPU

AES 3.11E+09 81 100 1875.45

NW 1.51E+09 149 100 3213.97

KMP 5.76E+03 129 100 0.29

GEMM 1.26E+09 95 100 9.97

SPMV 5.76E+03 242 100 0.66

STENCIL-2D 9.70E+09 405 100 1.38

STENCIL-3D 1.94E+06 193 100 22.44

BACKPROP 1.15E+04 185 100 8.07

KMEANS 2.49E+05 251 100 35.50

KNN 1.90E+04 263 100 9.54

PATHFINDER 5.18E+03 73 100 12.37

Geometric Mean 1.26E+08 165 100.0 15.46

all cases are applied, since Vivado HLS optimizes external memory access mostly

relying on user code structure. Intel AOCL, however, attempts to generate dataflow-

like architecture, which naturally pipelines all module executions using FIFOs, for

user applications. As a result, Merlin coarse-grained pipeline transformation with

double buffering is less effective on the Intel platform and should be avoided in some

cases to save resources.

Similarity, coarse-grained parallelism is also widely applied on the Xilinx platform

but not on Intel. This is also mainly because of the dataflow architecture Intel tool
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Table 3.12: FPGA Resource Utilization

Benchmark BRAM (%) LUT (%) FF (%) DSP (%)

AES 14 2 4 0

NW 75 48 34 0

KMP 21 12 11 0

GEMM 21 79 28 34

SPMV 50 22 11 4

STENCIL-2D 10 3 2 1

STENCIL-3D 18 3 2 3

BACKPROP 54 44 16 27

KMEANS 7 5 4 21

KNN 31 21 11 72

PATHFINDER 34 9 5 0

adopted. The Merlin coarse-grained parallelism transformation not only generates

multiple processing elements (PEs) but a number of buffers to deal with data transfer

from external memory to each PE. The Xilinx Vivado HLS is able to use the generated

buffers to infer memory burst that transfers a whole chunk of data to on-chip BRAM

at once and optimizes the bandwidth. On the other hand, although the Intel AOCL

already uses FIFO channels to transfer data between modules in the pipeline manner,

additional buffers are still required to achieve full pipelining if the PEs access external

memory out of order. In this case, the Merlin transformation reorders the data and

puts it to the generated buffers, but the extra overhead introduced by data reordering

moderates the benefit of massive parallel execution and may not be adopted in the
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Table 3.13: Best Design Point on Xilinx FPGA

Memory

coalesce

FG

parallel

CG

parallel

CG

pipeline

Data

tiling

AES 1 6 1 1 0

NW 0 5 1 1 0

KMP 3 2 1 1 0

GEMM 3 2 1 2 0

SPMV 4 1 1 1 1

STENCIL-2D 2 4 0 1 0

STENCIL-3D 2 2 1 1 0

BACKPROP 3 1 1 0 1

KMEANS 1 1 0 0 1

KNN 3 1 1 1 0

PATHFINDER 2 3 0 1 0

best design point.

In summary, the best design points identified by the DSE framework are capable

of reflecting the philosophy of different underlying vendor tool implementations, es-

pecially from the same Merlin compiler formed design space. The Intel AOCL puts

more efforts on computation optimization and channel-based module communica-

tion. This means users do not have to worry too much about high-level architecture

but can focus on computation optimization inside modules; but it also implies that

the developers or optimization tools such as the Merlin compiler will find it hard

to remedy poor performance if the AOCL fails to optimize certain designs. In con-
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Table 3.14: Best Design Point on Intel FPGA

Memory

coalesce

FG

parallel

CG

parallel

CG

pipeline

Data

tiling

AES 1 6 1 1 0

NW 4 2 1 0 0

KMP 2 0 0 0 0

GEMM 0 2 1 0 0

SPMV 0 1 0 0 0

STENCIL-2D 0 0 0 0 0

STENCIL-3D 0 2 0 0 0

BACKPROP 4 1 0 1 1

KMEANS 1 1 0 0 0

KNN 2 1 0 0 1

PATHFINDER 1 3 0 0 0

trast, optimization of the Xilinx Vivado HLS is mostly triggered by user pragmas

and specific code patterns. In other words, users have to spend more efforts on care-

fully implementing an entire architecture to achieve high performance on the Xilinx

platform, but it also provides a relatively clear direction to iteratively improve the

performance.
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3.6 Conclusion

In this chapter, we design and implement an efficient design space exploration frame-

work with the Merlin compiler for HLS on FPGAs. We start from OpenTuner

[AKV14], an open source auto-tuning framework with multi-armed bandit approach

to explore Merlin pragma formed design space (v1). Although the execution flow is

working well, it only finds the high quality design point for a half of our benchmark

designs and only achieves on geometric mean 44.6% performance to the manual de-

signs. To improve the efficiency of the DSE process, we propose several optimization

strategies. We partition the design space to enable parallel searching; we generate

effective seeds as promising start points; we leverage the concept of Shannon en-

tropy to terminate the DSE process earlier. With all those strategies applied, the

DSE framework v2 reduces the execution time to only 2.68 hours on average while

achieving on geometric mean 79.87% performance to the manual designs.

In addition, to easily reason the DSE process, we attempt to use a deterministic

approach as a search algorithm. Specifically, we use gradient descent with finite dif-

ference met hoed to explore the design space. Unfortunately, the gradient approach

encounters a serious local optimal issue, so we dive into the reasons behind the lo-

cal optimal and propose multiple optimizations. We first propose a graph-based

algorithm to prune the design space by 24.65×. Then we leverage design space par-

tition and adaptive line search to alleviate the local optimal issue. Finally, we use

multiscale V-cycle, which is inspired from VLSI physical design [CS13], to tempo-

rary group some design parameters and explore them together. Although the DSE

framework v3 only achieves 47.16% performance on geometric mean even we have

integrated all proposed optimizations, the gradient process provides a clear direction
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for improvement. Accordingly, in the DSE framework v4, we propose a comprehen-

sive design space representation to preserve the dimension and shape so that the

exploration process could be smooth. We also leverage Merlin report analysis to

identify the design bottleneck, and let the search algorithm focus on a small set of

design parameters to improve the efficiency. Consequently, the DSE framework v4

achieves 93.78% performance to manual designs with an even shorter exploration

time. Moreover, we also perform DSE on Intel platform to further demonstrate the

generalization. The results show that with the same design space, the DSE frame-

work v4 can identify the best design points, which are different from the best one on

Xilinx platform, that achieve manual design performance on Intel platform.

Since the DSE framework we developed in this chapter adopts general Python

compatible list comprehensions to specify design space, it is suitable to be a perfor-

mance optimizer of higher level domain specific languages (DSLs) to FPGAs. The

frontend compiler of a high-level DSL is able to reflect the application characteristics

to the design space and further facilitate the DSE process. In the next chapter, we

use two high level DSLs, Spark in Scala and HeteroCL in Python, to illustrate this

idea.
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CHAPTER 4

Raising Design Abstraction for Domain Specific

Frameworks

In this chapter, we provide supports to high-level domain specific languages to ex-

pend the usability of the automated design space exploration framework proposed

in Chapter 3. We first introduce S2FA, a Spark-to-FPGA compilation framework in

Section 4.1. As Apache Spark [ZCD12], S2FA leverages MapReduce programming

model to manipulate resilient distributed datasets (RDDs). Users are allowed to use

almost arbitrary functional programming and object-orient constructs to describe

their applications. In this work, we focus on reducing the semantic gap between

Scala and Merlin C, and leverage the parallel patterns of MapReduce programming

model to help the DSE framework reduce the design space.

In addition to MapReduce parallel patterns, we also provide the support to Het-

eroCL [LCH19], a programming infrastructure with a Python-based domain-specific

language (DSL) for FPGAs. Like Halide [RBA13] and Tensor Virtual Machine

(TVM) [CMJ18], HeteroCL programming model fully decouples functional descrip-

tion and scheduling so that the application and platform-dependent scheduling func-

tion can be developed separately. As a result, we build a framework that compiles

HeteroCL DSL to Merlin C and leverage the DSE framework to demonstrate that the
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DSE for HLS could be more effective and promising with a clean scheduling interface

and user interactions.

4.1 S2FA: A Spark-to-FPGA Accelerator Framework

4.1.1 Overview

Cloud computing has recently become a popular solution to the growth of dataset

sizes for data analytics. Many widely-used open-source big data analytics frame-

works, such as Apache Hadoop [HAD] and Spark [ZCF10], have been made to scale

to large numbers of datacenter machines. However, as energy efficiency becomes

a larger problem for datacenter operators, the adoption of energy-efficient devices

such as GPUs and FPGAs becomes attractive. In particular, to use FPGAs in dat-

acenter, we need to provide support for mapping applications written for big data

analytics frameworks down to FPGAs easily and efficiently. While several existing

works have built a path for GPUs [SSE15, HCC10, GBS13, GS16], the research into

FPGAs is limited. The primary challenge that must be addressed to adopt FPGAs

in datacenters is the programmability. The most broadly used open-source frame-

works for datacenters, Hadoop and Spark, are implemented in either Java or Scala.

Unfortunately, these high-level programming languages are not supported by FPGA

design flows directly. When offloading a kernel written in Java or Scala, a significant

amount of developer effort is required to manually design and implement an FPGA

accelerator with the same functionality. Moreover, the developer also must deal with

system integration to access the designed accelerators from the bit data application.

To facilitate the ease of use of FPGA for big-data computations, Blaze [HWY16]
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made efforts to integrate FPGAs into Spark and allow programmers to offload com-

putational kernels to FPGAs easily. However, Blaze leaves to the programmers the

responsibility for developing FPGA accelerators for the offloaded kernels. Therefore,

a significant amount of human efforts is still required for users to manually produce

accelerator designs. Worse still, Blaze only supports primitive types as accelerator

interfaces, indicating that additional programming effort may be needed to serial-

ize/deserialize composite data types such as structures and classes in Java/Scala.

Table 4.1: Development Time of FPGA Accelerators from Scala and Speedup Com-

parison with One Spark Executor

Kernel Time-to-FPGA Time-to-Speedup

PageRank <0.01× (3 hrs) 0.2× (2 days)

KMeans 0.18× (5 hrs) 51.6× (4 days)

Logistic Regression <0.01× (6 hrs) 40.8× (8 days)

K-Nearest Neighbor <0.01× (4 hrs) 26.0× (4 days)

Support Vector Machine <0.01× (5 hrs) 9.1× (7 days)

Least Linear Square <0.01× (5 hrs) 10.8× (7 days)

Smith-Waterman <0.01× (12 hrs) 204.7× (6 days)

AES encryption <0.01× (8 hrs) 1278.3× (3 days)

As further motivation, Table 4.1 illustrates the effort required to manually rewrite

Scala functions as FPGA kernels. The effort is quantified as human hours by a HLS

expert. Since we need to not only translate the syntax from Scala to an FPGA ker-

nel friendly language, but also bridge the semantic gap between an object-oriented
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language and a C-based language used by HLS tools, it usually requires a few hours1

to generate a working accelerator kernel. However, additional days are required

to achieve an acceptable amount of performance improvement because we need to

analyze the nature of the design and apply suitable FPGA-specific optimizations

such as pipelining, parallelism, memory bursting, double buffering, etc. As a result,

automated code generation with FPGA-aware optimization from JVM-based pro-

gramming languages play an important role in supporting big data applications on

FPGAs.

In this chapter, we present S2FA, a Spark-to-FPGA accelerator framework. S2FA

is an automated compilation framework which automatically offloads user-written

Spark applications to FPGAs by generating optimized accelerator kernels and data

(de)serialization methods. The user is able to use Scala to implement Spark trans-

formations without considering the underlying hardware architecture. S2FA’s pro-

grammability is improved over past work by supporting several commonly used

object-oriented programming constructs. It also leverages the design space explo-

ration framework presented in Chapter 3 to optimize the accelerator performance.

Since the user-written computational kernels in Scala for Spark and Blaze contain the

semantic information of RDD transformation operators such as map. This informa-

tion is capable of being used to prune the design space and facilitate the design space

exploration process. To summarize, this work makes the following contributions:

• An automated framework which performs offline compilation of the user-given

transforms in a Spark application to an FPGA accelerator, while generating

1The time reported here includes human hours as well as the execution time of FPGA design
flow tools for kernel generation.
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corresponding functions for software-hardware system integration. Only ker-

nels that use a subset of Scala/JVM functionality (e.g. no dynamic class load-

ing) are eligible for offline compilation.

• Support of several high-level Scala programming and data constructs through

Scala-to-C code transformations and class object serialization.

• An integration to the design space exploration framework with Spark-specific

pruning strategies to effectively organize a given set of optimization strategies

to produce high-performance designs.

• Detailed evaluation of S2FA on a variety of computational kernels on the Ama-

zon EC2 F1 instance, and insights to the impact of DSE optimization strategies

on the quality of results.

The evaluation results demonstrate that S2FA is able to generate FPGA accelerator

designs from Spark applications applications with correct functionality. Table 4.2 and

Table 4.3 summarizes the characteristics of our framework when compared with other

automated accelerator-offload big data frameworks. To our best knowledge, S2FA is

the first big data framework for FPGAs that supports object-oriented constructs.

4.1.2 Preliminary: Blaze Runtime System

Blaze [HWY16] is a Spark-based runtime system which provides programming and

runtime support for easy and efficient deployments of FPGA accelerators in data-

centers. Blaze abstracts FPGA accelerators as a service (FaaS) by decoupling the

FPGA accelerator and Spark application developments. FPGA accelerators can be
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Table 4.3: Programmability Summary of the Heterogeneous Frameworks

Framework Objects
Type

Parameter

Class

Inheritance

Method

Overriding

SparkCL [SCN15] No No No No

Melia [WZH16] No No No No

HeteroDoop [SSE15] No No No No

MapCG [HCC10] No No No No

HadoopCL [GBS13] Yes No No No

SWAT [GS16] Yes Lmited No No

S2FA Yes Limited Yes Yes

Code 4.1: Blaze Application Code Snippet

1 val vecs: RDD[Vector] = // read input

2 val blaze_vecs = blaze.wrap(vecs)

3 val maxIndices = blaze_vecs.map(new FindMaxAcc)

customized and registered to the Blaze accelerator manager. Spark application de-

velopers can access FPGA accelerators using provided APIs that hide the details of

JVM-to-FPGA data communication.

The Blaze programming model requires only a few code changes from Spark appli-

cations to support FPGA accelerators. Code 4.1 illustrates the Blaze programming

model using the previous maximum-index example. To accelerate an RDD trans-

formation, we use the Blaze API to wrap that RDD so that Blaze can extract that

RDDs metadata. To specify the accelerator design to be used for this RDD trans-

formation, we write another Scala class with the corresponding accelerator design

98



Code 4.2: Blaze Accelerable Class

1 class FindMaxAcc()

2 extends Accelerator[Vector, Int] {

3 val id: String = "FindMax"

4 def call(in: Vector) = in.argmax

5 }

ID in Code 4.2, and put the original map function into it. While Blaze streamlines

accessing FPGAs from Spark applications, Blaze still requires that users manually

implement their own FPGA kernels and data (de)serialization methods for special-

ized input/output data processing.

In this work, we develop a framework for automatically generating 1) an FPGA

accelerator design, and 2) data (de)serialization methods for the Blaze runtime sys-

tem in datacenters. We choose Blaze because it is the only Spark-based runtime sys-

tem that efficiently integrates with FPGAs. However, we note that the framework we

present is able to compile any Java/Scala method that satisfies the constraints listed

in the next section to an FPGA kernel, so we can easily integrate this framework

with other JVM-based runtime systems in the future (e.g. Java parallel streams,

Hadoop MapReduce).

4.1.3 S2FA Framework

In this section, we start with an example to motivate our work. Then, we introduce

each component of the S2FA framework and explain how they address challenges

demonstrated by the example. Finally, we summarize the Java/Scala constructs

currently supported by the S2FA framework.
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4.1.3.1 Motivating Example

We continue to use the maximum-index example from the previous section here.

To accelerate the process of finding the maximum index in a vector using Blaze,

we must first implement an FPGA kernel in HLS C with the same functionality as

the RDD transformation (def call(in: Vector) = in.argmax). However, the

following challenges make the implementation challenging.

Challenge 1: Static compilation flow. Implementing FPGA designs offline im-

plies that we lack dynamic, runtime information, such as the length of vector for each

input item. Thus, it is difficult to generate a dataset-optimized and semantically-

equivalent accelerator design.

Challenge 2: The semantic gap. Since OpenCL is a C-based programming

language, it does not support any object-oriented language constructs. In this ex-

ample, the class Vector and virtual method call argmax are not directly supportable

in FPGA kernels. Instead, we must use an FPGA-compatible data representation.

In this example, we use a double array to store values in a vector and an integer to

store the length of the array.

Challenge 3: Poor performance of generated FPGA designs. A high-

performance FPGA accelerator design requires the designer to understand the under-

lying FPGA architecture, which can be impractical for domain experts or application

developers. For this example, a naive implementation using HLS C results in a more

than 10× slow down relative to single-threaded JVM execution. Only with hours of

developer time spent on architecture-aware optimizations can we finally achieve an

acceptable speedup.

Challenge 4: System integration. After implementing an efficient FPGA kernel,
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we also need bridge code to tie that kernel into the host JVM application. In our

case, that requires the implementation of a Scala method for processing a Vector

object into a double array. Requiring the user to do this manually would also impose

heavy programmer burdens.

As can be seen, these challenges are common and inevitable for a programmer

who wants to accelerate a Spark program using FPGAs. As a result, it is worthwhile

to develop an automated framework to address them.

4.1.3.2 Programming Model

The S2FA framework leverages an annotation-based programming model to preserve

the programmability of Spark and hide all details of the hardware. Annotations in

the Scala source code start with @ followed by the constructor of an annotation class.

Code 4.3: S2FA Programming Model

1 @S2FA Kernel(Vector.values:1024)

2 def call(in: Vector) = in.argmax

Annotations can be applied to any Scala declaration. Code 4.3 presents a code

snippet of the previous maximum-index example written in Scala with S2FA anno-

tations. In order to accelerate the call method using FPGAs, we simply put the

annotation @S2FA Kernel on the top of the method declaration so that the framework

can identify and compile this method to an FPGA kernel. Because current FPGA

programming models do not support dynamic memory allocation and all arrays in

Scala are dynamically allocated, the user must also specify the maximal lengths for

any arrays with non-constant lengths at compilation time. The S2FA framework

will compile a dynamic array allocation with user-provided length to a static array
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declaration.

4.1.3.3 S2FA Framework Overview

To prevent multi-hour FPGA synthesis times from interfering with runtime applica-

tion performance, the Blaze runtime system [HWY16] decouples FPGA accelerator

design and software development. To eliminate additional FPGA design burdens, the

proposed S2FA framework compiles FPGA kernels offline, and cleanly integrates with

the Blaze runtime system. Figure 4.1 presents the design of the S2FA framework.

We introduce each component as follows along with the maximum-index example

in Code 4.4 to illustrate the execution flow. In Code 4.4 and Code 4.5, we show

the application with an S2FA annotation and the corresponding declaration of ML-

lib’s [MLL] Vector classes. The annotation indicates that the user would like to

offload the method call to the FPGA.

Blaze application (Scala) APARAPI-S2FA

Kernel info./Type parameters
Application source code (Scala)

Blaze application (Bytecode)
Methods for (de)serialization (Scala)

S2FA Framework

Java Compiler
Kernel(Bytecode)

Application Preprocessor

S2FA system components Other existing components

Java Compiler

FPGA accelerator (Bit-stream)

Input / Output files

Kernel (IR)

Backend Compiler

Figure 4.1: Framework Overview

Our flow is designed to address the challenges we presented above.

Stage 1: Preprocessor. Unlike most existing work in the area of accelerated data

analytics using GPUs [SCN15, GBS13, GS16] which can leverage runtime informa-
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Code 4.4: A Running Example: User-written Scala Method Code

1 @S2FA Kernel(Vector.values:1024)

2 def call(in: Vector) = in.argmax

tion, S2FA preprocessor takes only Scala source code and user annotations as input.

By analyzing the abstract syntax tree (AST) of the Scala source code, the S2FA

preprocessor is able to infer type parameters that cannot be inferred from bytecode

alone due to type erasure. Moreover, user-provided annotations provide other useful

hints, such as the maximum length of dynamically allocated arrays. As a result, the

S2FA preprocessor can recover the necessary information that would normally only

be available at runtime. As shown in Code 4.6, the preprocessor combines the user-

written call method and MLlib bytecode to generate a C kernel, which includes all

necessary class and function declarations. Note that we ignore SparseVector in the

C kernel in this example for concise.

Stage 2: APARAPI-S2FA. After parsing the Scala source code, S2FA compiles

the target method to Java bytecode and feeds it to APARAPI-S2FA. APARAPI-

S2FA is a tool developed based on the open-source AMD APARAPI [APA] framework

which performs bytecode-to-OpenCL translation. In this work, we heavily modify

the APARAPI code generator to generate efficient FPGA kernels from Scala.

Note that FPGA kernel languages today do not support object-oriented con-

structs. we therefore must convert the Java bytecode into an FPGA-compatible,

syntactically-C language. To avoid computationally heavy code analysis at runtime,

the original APARAPI code generator limits users to primitive types, and does not

support any automatic code optimization. As a result, we use a transformation ap-

proach inspired by [KP10] to convert Scala classes and objects to FPGA-compatible
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Code 4.5: A Running Example: MLlib Vector Class Code Snippet

1 trait Vector {

2 def size: Int

3 def argmax: Int

4 }

5 class DenseVector(val values:

6 Array[Double]) extends Vector {

7 def size: Int = values.length

8 def argmax: Int = {

9 if (size == 0) -1

10 var maxIdx = 0

11 var maxValue = values(0)

12 var i = 1

13 while (i < size) {

14 if (values(i) > maxValue) {

15 maxIdx = i

16 maxValue = values(i)

17 }

18 i += 1

19 }

20 maxIdx

21 }

22 }

23 class SparseVector(

24 // Skip due to page limit

25 }
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Code 4.6: A Running Example: Generated C Code Snippet

1 int Vector_size(long *this) { ... }

2 int Vector_argmax(long *this) { ... }

3 int DenseVector_size(long *this) {

4 return (int) this[1];

5 }

6 int DenseVector_argmax(long *this) {

7 if (DenseVector_size(this) == 0)

8 return -1;

9 int maxIdx = 0;

10 double maxVal = (double) this[2+0];

11 int i = 1;

12 while (i < DenseVector_size(this)) {

13 if ((double) this[2+i] > maxVal) {

14 maxIdx = i;

15 maxVal = (double) this[2+i];

16 }

17 i += 1;

18 }

19 return maxIdx;

20 }

21
22 int call(long *in) {

23 return Vector_argmax(in);

24 }

25 void kernel(int N, long *in, int *out) {

26 for (int i = 0; i < N; i++)

27 out[i] = call(&in[i * VECTOR_SIZE]);

28 }
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C code by converting objects into an array of fields. Similarly, field accesses are

transformed to array access expressions. As can be seen in Code 4.6, the expression

values.length in the function DenseVector size has been transformed to this[1].

The mapping of object fields to array indices is determined by the S2FA class trans-

former. Additionally, class member functions are transformed to explicitly accept

this as their first argument. To deal with function overriding, virtual functions such

as Vector.argmax are transformed to dispatch functions. The details of dispatch

functions are described in the next section.

Stage 3: Design space exploration. To guarantee high performance of generated

designs, we leverage the DSE framework presented in Chapter 3. On the other hand,

instead of exploring the full design space created by the DSE framework, we apply

a parallel pattern specific pruning strategy to facilitate the searching efficiency. For

example, the parallel pattern map indicates that we must have a single outermost

loop in a kernel and it can be fully executed in parallel. As a result, we are able to

limit scheduling options of the outermost loop and reduce the design space size by

orders of magnitude.

Stage 4: Data processing method generator. To bridge the gap between the

Spark-based Blaze runtime and the automatically generated and synthesized FPGA

kernel, the S2FA class transformer can auto-generate Scala methods based on static

analysis which the Blaze runtime system uses to serialize and deserialize input and

output data. These methods use Java reflection to access object fields and convert

them to a format that matches the accelerator interface.

With each of these challenges solved, the final step is the broadcast of a synthe-

sized bit-stream and accelerator information to each worker node in a datacenter.
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4.1.3.4 Supported Object-Oriented Constructs

The S2FA framework generates FPGA kernel code in C from a user-written Scala

lambda passed to the Spark RDD map transformation. Similar RDD transformations

such as flatMap and mapPartition are also possible through slight modifications of

the map implementation. Other transformations such as sample and filter are not

suitable for FPGA acceleration as their kernels are not computationally intensive and

cannot achieve sufficient computational speedups to hide CPU-FPGA data transfer

overhead.

The S2FA compatible user-written lambda for RDD map transformation should

only use the following supported object-oriented features:

Classes: Simple classes, interface classes, and single inheritance classes that are

provided by either a user or a library are supported. For objects created with type

parameters such as Tuple2[Int, Float], the Scala source code must be accessible

for S2FA to extract the type information. In other words, we currently do not support

objects with type parameters declared in third-party libraries.

Methods: S2FA supports Scala methods either provided by a user or a third-party

library. However, S2FA again needs to extract type information from Scala source

code, which is usually unavailable at compile-time for libraries compiled to bytecode.

Thus, the library methods used in the kernel may not be parameterized by types.

In addition, methods that accept lambda-typed arguments (e.g. foreach) are not

supported.

Dynamic memory allocation: S2FA supports the JVM’s new operation with

either a constant memory size, or a dynamic memory size when a method annota-

tion provides a maximal number of elements that will be allocated by any dynamic
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memory allocation in that method. All new operations will be compiled to static

variable declarations in C, and no dynamic memory allocation will be performed on

the FPGA.

Exceptions: Neither throwing nor catching exceptions are supported currently.

Past work has explored supporting exceptions on GPUs [HGZ13]. Future work would

integrate similar techniques into the S2FA framework.

We mention that above restrictions do not affect design scopes, e.g. users are still

able to leverage S2FA to accelerate a kernel with any functionality. On the other

hand, the restriction only affects the way of implementation.

4.1.4 Class/Object Transformation

Objects are instances of classes and are widely used in object-oriented programming.

It is worthwhile to support objects for the improvements in programmability they

offer. Typically, a Java or Scala object contains member variables (fields) and func-

tions (methods). In addition, an object may also contain fields and methods that it

inherits from base classes.

The traditional approach compiles each class into a C struct which is composed

of 1) a pointer to a virtual method table, 2) the variables of the base classes, and

3) the variables declared in the class itself. Figure 4.2a illustrates this traditional

approach. Polymorphism in Java/Scala is supported in C by calling the proper

function pointer in the virtual method table during execution. As a result, code must

be generated to place function pointers in this lookup table based on the actual data

types at runtime.

Unfortunately, this approach is not applicable to FPGA kernels, since 1) C structs
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DenseVector
values

SparseVector
indices values

values_length

values_length

DenseVector.size()
DenseVector.argmax()

SparseVector.size()
SparseVector.argmax()

(a) Traditional Data Layout

DenseVector
ID (1) values

SparseVector
ID (2) indices values

values_length

values_length
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Figure 4.2: Data Layouts for Class Serialization

are not permitted as arguments to FPGA kernels, and 2) function pointers are not

supported. To address these issues, we use unified arrays instead of structs to store

the data of each class object. An example of this is shown in Figure 4.2b. The

first element of each unified array stores the class ID in order to support dynamic

casting. It is followed by the values stored in each class field. All class field accesses

109



are compiled to element accesses in the unified array with type casting. In addition,

we generate dispatch functions to deal with polymorphism. Our complete approach

is illustrated in Algorithm 6.

Code 4.7: Dispatch Function of Vector.argmax

1 int Vector_argmax(long *this) {

2 switch ((int) this[0]) {

3 case 1: // DenseVector class ID

4 return DenseVector_argmax(this);

5 case 2: // SparseVector class ID

6 return SparseVector_argmax(this);

7 }

8 }

In Algorithm 6, we first parse the class declaration to build a class model. A class

model contains information on the class hierarchy and fields. Subsequently, class

methods are compiled to standalone functions with appropriately mangled function

names. The first argument is always the unified array representation of the this

object. To dispatch a virtual method call based on the type of the target, we generate

a dispatch function. A dispatch function is composed of a switch statement which

calls the appropriate function based on the class ID of the target object (stored in

this[0]). For instance, the dispatch function of Vector.argmax is presented in

Code 4.7. Finally, we generate customized object (de)serialization methods in Scala

for Blaze system integration based on the constructed class model.

Algorithm 6 Class Serialization

Require: A class declaration C .

Ensure: 1) Semantic equivalent C code with transformed member functions, and 2)

Class (de)serialization code in Scala.

1: M ← CreateClassModel(C )
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2: for all F ∈M.GetMemberFunctions() do

3: F
′ ← Clone(F )

4: F
′
.SetName(M.GetName() + ” ” + F.GetName())

5: F
′
.InsertArgument(0,M.GetTypeName(), ”this”)

6: for all Arg ∈ F ′
.GetArgs do

7: if Arg ∈ Object then

8: Arg.SetType(UnifiedType)

9: end if

10: end for

11: for all A ∈ F ′
.GetF ieldAccesses() do

12: FieldIdx←M.GetF ieldIdx(A.GetF ield())

13: NewAccessExp← new ArrayAccessExp(”this”, F ieldIdx)

14: NewAccessExpWithCast← newCastExp(A.GetType,NewAccessExp)

15: F
′
.Replace(A,NewAccessExpWithCast)

16: end for

17: Write F
′
to output code

18: if F.hasDerivedClassImplementation() then

19: Write dispather function to output code

20: end if

21: end for

22: Write (de)serialization Scala code from M

4.1.5 Experimental Evaluation

While the application-level speedup and system-level overhead are transparent to

Blaze runtime system [HWY16], this evaluation focuses on the performance eval-
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uation of S2-FA generated accelerators. Our evaluation of S2FA is performed on

Amazon EC2 F1 instance [AWS]. The instance type is f1.2xlarge, which includes

an 8-core CPU with 122GB of main memory and one Xilinx Virtex UltraScale+TM

VU9P FPGA with three separated dies. In addition, we select a set of common

Spark applications to evaluate S2FA. We also select two string processing applica-

tions in our evaluation since they are classic applications for FPGA acceleration. All

applications are built with the software environment that consists of JDK 1.7.0 79,

Scala 2.11.4 and Spark 1.5.1.

Table 4.4: Scala Application I/O Types for the Experiments

Application Input Type Output Type

PageRank (PR) (Int, Int) (Int, Float)

KMeans (KMeans) (Vector, Double) (Vector, Array[Int])

Logistic Regression (LR) Vector Vector

K-Nearest Neighbor (KNN) Vector Vector

Support Vector Machine (SVM) Vector Vector

Least Linear Square (LLS) Vector Vector

Smith-Waterman (S-W) (String, String) (String, String)

AES (AES) String String

We use eight applications to evaluate S2FA. The input and output Scala data

types of each application are shown in Table 4.4. In addition, we adopt real-world

data sets in this evaluation for each application. For PageRank, we use the Hyper-

Link Graph dataset from Web Data Commons [WDC] with ∼120M nodes for this

application. For KMeans, we use the Record Linkage Comparison dataset from the
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UCI Machine Learning Repository [MLR07] with ∼20K data points and 12 features

to evaluate this application. We classify the data set to 3 clusters in our experiments.

For KNN, LR, SVM and LLC, we use a variant of the MNIST data set of handwritten

digits [MNI] that contains 8 million 28×28 serialized gray images. As a result, each

image has 784 features (pixels) and 10 labels, so the problem we target is a multi-

class classification problem. For S-W, we use the S-W algorithm to align 256K reads

from a real individual human genome sample, HCC1954. Finally, for AES, we use a

256-bit key size and 128-bit block size. The dataset we use for evaluating the AES

cipher is a random 250MB text file.

Based on the best configurations from the DSE framework in Chapter 3, Table 4.5

lists the resource utilization and working frequency of each generated design. Since

the performance of AES and PR are bounded by external memory bandwidth, they

do not fully utilize hardware resources. On the other hand, other cases fully utilize

at least one kind of resource, meaning that those three designs are computationally

bounded and their performance can be potentially improved if a larger FPGA is

provided. Note that we set the maximum resource utilization to 75% since the rest

of them were used by the vendor-provided control logic. In addition, since we perform

place and route using the default setting of Xilinx SDx [SDX], the frequency fails to

achieve the target (250MHz) for satisfying timing constraints for some cases. The

impact of design parameters on frequency during the DSE process is also a worth

topic to be investigated.

Figure 4.3 shows the speedup of manual and S2FA-generated FPGA designs with

and without the help from the proposed DSE framework over the original Spark

transformation methods running on a JVM. The x-axis lists all designs while the

y-axis illustrates the speedup in logarithm scale. We use a single-threaded Spark
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Table 4.5: Resource Utilization (%) and Clock Frequency (MHz)

Kernel Type BRAM DSP FF LUT Freq.

PageRank graph proc. 25 2 16 18 250

K-Means classification 73 6 10 14 230

K-Nearest Neighbor classification 75 6 50 50 240

Logistic Regression regression 74 3 49 74 220

Support Vector Machine regression 74 4 48 72 250

Least Linear Square regression 74 3 45 21 230

AES string proc. 36 0 3 6 250

Smith-Waterman string proc. 33 30 54 75 100
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Figure 4.3: Speedup of S2FA Designs over JVMs

executor on the JVM as a baseline because only one thread is necessary for launching

FPGA and other threads are able to perform other tasks simultaneously. The manual

design for each application is also implemented in HLS C. Both manual and S2FA-

generated designs use Xilinx SDx 2018.2 [SDX] as the design flow. However, S2FA
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only requires a few hours including the design flow execution time to generate a

FPGA design when compared with manual designs, greatly reduced the development

time listed in Table 4.1.

As can be seen in Figure 4.3, most S2FA-generated designs with the proposed

DSE framework V4 achieve competitive speedups to the manual designs (∼ 85% on

average) and outperform the corresponding Scala implementations on the JVM by

181.5× on average. On the other hand, the core computation of LR is the regression

model that involves floating point multiplication and exponential calculation so the

minimal initial interval is still 13. The LR manual design splits the computation

statement to multiple stages to form a highly efficient pipeline. Future work would

try to solve this problem by analyzing such a performance bottleneck and perform

automatic partitioning. In addition, since the computational pattern of PR is too

simple to hide the communication latency, even the manual HLS implementation

cannot achieve a high performance on the FPGA.

4.2 A Semi-Automatic DSE Support to HeteroCL

4.2.1 Overview

As we have illustrated in Chapter 1, although HLS facilitates the development of

FPGA accelerators, it still requires designers to have hardware knowledge. One

important reason is that current commercial HLS tools are based on C program-

ming languages. C/C++/OpenCL programming languages, however, are hard to

be analyzed for application semantic and suitable scheduling due to their ambigu-

ity. As a result, the users have to reconstruct the program to guide the tool to
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realize specific architectures. To address this challenge, a promising trend is to fur-

ther abstract the accelerator design with domain specific languages (DSLs) to obtain

more application specific user hints while hiding underlying architecture details. For

example, Halide [RBA13] and TVM [CMJ18] are widely known programming infras-

tructures for image processing and deep learning applications, respectively. Both of

them propose a DSL that decouples temporal scheduling functions from algorithm

descriptions. It means that only the scheduling part of the application is hardware

dependent and has to be adjusted when porting the design to difference platforms.

Similar to Halide and TVM, HeteroCL [LCH19] is a multi-paradigm program-

ming infrastructure for FPGAs with a Python-based DSL that separates algorithm

and scheduling functions. The algorithm part of the HeteroCL DSL supports both

declarative and imperative programming models to achieve high programmability,

and its scheduling part includes compute/data customization for designers to detail

specify the underlying micro-architecture. In this section, we attempt to partially

automate the HeteroCL scheduling function generation by the proposed DSE frame-

work. Specifically, we automate the architecture related scheduling primitives for

HeteroCL DSL so that programmers only have to focus on the program structure

scheduling such as loop transformations and data dependencies.

In the rest of this section, we first introduce HeteroCL and its scheduling prim-

itives in Section 4.2.2, followed by the DSE support in Section 4.2.3. Finally, the

evaluation result is presented in Section 4.2.4.
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4.2.2 Preliminary: HeteroCL

We illustrate the HeteroCL DSL with an example in Code 4.8. A HeteroCL program

is composed of two parts. The algorithm parts (line 1-10) describes the function

of the program. In this example, we implement a digit recognition using K-nearest

neighbor algorithm with three major steps. First, since all input 7×7 images are

serialized to a 49-bit unsigned integer, we use XOR to obtain the difference between

training image (labeled) and test image. Then we pop count the number of 1s in the

difference to get their distance. With the distance, we update the 10×3 matrix that

outputs the shortest three distances of each digit. The voting part to determine the

final recognition result will be performed on the host.

In addition, line 12-20 of Code 4.8 presents one possible scheduling function for

this application. In order to improve the granularity of parallelism, we merge all three

steps’ innermost loop, which iterates over 1,800 training images, and reorder them

to be the outer loop (line 13-16). Accordingly, we can achieve decent performance

by generating 10 processing elements (PEs) and dataflow pipeline (line 19-20). The

corresponding Merlin C code is shown in Code 4.9.

A HeteroCL program will first be compiled to an extended Halide intermedi-

ate representation (IR) [RBA13]. The Halide IR is an in-memory IR for dataflow

representation. Each IR node represents a primitive operator for two or more ten-

sor arrays. HeteroCL extends Halide IR to better support FPGA related schedul-

ing, such as pipeline and data bit-width customization. From the extended Halide

IR, HeteroCL backend generates low level kernel implementations for different de-

sign frameworks. It currently supports SODA [CCW18] for stencil computation,

PolySA [CW18] for systolic array architecture, and Merlin C [CHP16a] for others.
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Code 4.8: KNN in HeteroCL DSL

1 def knn(test_img, train_img):

2 # Algorithm implementation

3 diff = hcl.compute((10, 1800),

4 lambda x, y: train_img[x][y] ^ test_img, "diff")

5 dist = hcl.compute(diff.shape,

6 lambda x, y: popcount(diff[x][y]), "dist")

7 knn_mat = hcl.compute((10, 3), lambda x, y: 50, "init")

8 hcl.mutate(dist.shape,

9 lambda x, y: update_knn(dist, knn_mat, x, y), "update")

10 return knn_mat

11
12 s = hcl.create_schedule([test_img, train_img], knn)

13 # Loop transformation (e.g., merge and interchange)

14 s[knn.diff].compute_at(s[knn.update], knn.update.axis[0])

15 s[knn.dist].compute_at(s[knn.update], knn.update.axis[0])

16 s[knn.update].reorder(knn.update.axis[1], knn.update.axis[0])

17
18 # Loop scheduling

19 s[knn.update].parallel(knn.update.axis[1])

20 s[knn.update].pipeline(knn.update.axis[0])

Code 4.9: Corresponding Merlin C Code from Code 4.8

1 for (int i = 0; i < 10; ++i)

2 for (int j = 0; j < 3; ++j)

3 knn_mat[i][j] = 50;

4 #pragma ACCEL pipeline

5 for (int j = 0; j < 1800; ++j) {

6 #pragma ACCEL parallel

7 for (int i = 0; i < 10; ++i) {

8 diff[i][j] = train_img[i][j] ^ test_img;

9 dist[i][j] = popcount(diff[i][j]);

10 update_knn(dist, knn_mat, i, j);

11 }

12 }

13 return knn_mat
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Table 4.6: HeteroCL Scheduling Primitives

Loop Transformations

C.split(i ,v)
Split loop i of operations C into a two-level nest loop

with v as the factor of the inner loop.

C.fuse(i, j)
Fuse two loop i and j of operation C in

the same nest loop into one.

C.reorder(i, j)
Reorder the order of sub-loop i and j of

operation C (sub-loop i becomes an outer loop).

P.compute at(C, i)
Merge loop i of the operation P to

the corresponding loop level in operation C.

Loop Scheduling

C.unroll(i, v) Unroll loop i of operation C by factor v.

C.parallel(i) Schedule loop i of operation C in parallel.

C.pipeline(i, v)
Schedule loop i of operation C in pipeline

with v as the target II.

In addition, Table 4.6 lists all available HeteroCL scheduling primitives. We

summarize them to two categories. The loop transformation primitives affect the

loop structures. These primitives will be processed when compiling a HeteroCL

program to the IR. In other words, the IR accepted by backend code generators are

already transformed accordingly and the backend code generators will not see the

original IR. On the other hand, the loop scheduling primitives become annotations

of IR nodes. For example, C.parallel(i) creates an annotation on the IR node

of loop-i to indicate its scheduling. As a result, this category is platform-dependent
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Code 4.10: KNN Code Snippet in HeteroCL DSL with a Partial Scheduling Function

1 s = hcl.create_schedule([test_img, train_img], knn)

2 # Loop transformation (e.g., merge and interchange)

3 s[knn.diff].compute_at(s[knn.update], knn.update.axis[0])

4 s[knn.dist].compute_at(s[knn.update], knn.update.axis[0])

5 s[knn.update].reorder(knn.update.axis[1], knn.update.axis[0])

6
7 # Loop scheduling

8 s[knn.update].pipeline(knn.update.axis[1],

9 auto={’options’: [’off’, ’on’]})

10 s[knn.update].parallel(knn.update.axis[0],

11 auto={’options’: [’factor’,’power-of-two’]})

and should be the main focus when porting a HeteroCL program to a new device.

4.2.3 Semi-Automated Design Space Exploration

Our objective of support to HeteroCL is to ease human efforts when optimizing the

HeteroCL scheduling functions. In particular, we attempt to automate the loop

scheduling related primitives so that a HeteroCL program can be easily ported to a

new platform. To this end, we improve the HeteroCL primitives to support fuzzy loop

scheduling. We use the same KNN example from the previous section in Code 4.10

for demonstration.

We can see from line 8 and line 10 that users could specify a set of possible options

for loop scheduling primitives in their HeteroCL program. For numerical options such

as parallel factors, we predefined commonly used sets (e.g., power-of-two numbers

and divisors of the loop trip-count) for users to specify. The corresponding Merlin

C code with design space is shown in Code 4.11 and it can directly be an input of

our DSE framework presented in Chapter 3. On the other hand, we automatically
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Code 4.11: Corresponding Merlin C Code with Design Space from Code 4.10

1 for (int i = 0; i < 10; ++i)

2 for (int j = 0; j < 3; ++j)

3 knn_mat[i][j] = 50;

4 #pragma ACCEL pipeline auto{options: PIP1=["off", "on"]; default: "off"}

5 for (int j = 0; j < 1800; ++j) {

6 #pragma ACCEL parallel auto{options: PAR1=[1,2,4,5,8,10]; default: 1}

7 for (int i = 0; i < 10; ++i) {

8 diff[i][j] = train_img[i][j] ^ test_img;

9 dist[i][j] = popcount(diff[i][j]);

10 update_knn(dist, knn_mat, i, j);

11 }

12 }

13 return knn_mat

create a design space as we did in Chapter 3 when user does not specify any loop

scheduling primitives in the HeteroCL program. Consequently, our DSE support

helps users rapidly explore a small design space with certain loop transformations to

realize the best transformation for the design. Once the loop transformation has been

determined, the user could enlarge the design space to perform a more sophisticate

search in order to achieve the global best performance.

4.2.4 Experimental Evaluation

We use Amazon EC2 F1 instance [AWS], f1.2xlarge that includes an 8-core CPU

with 122GB of main memory and one Xilinx Virtex UltraScale+TM VU9P FPGA,

in this evaluation. We select four applications to evaluate how the DSE framework

can help improve the HeteroCL usability.

• DIGITREC: Digit recognition using K-nearest neighbor algorithm. The input is
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18,000 7×7 training images grouped by their digits, as well as one test image to

be recognized. All image pixels are binary and have been serialized to a 49-bit

unsigned integer. The output is a 10×3 matrix to indicate the three shortest

distances between the test image to each digit group.

• KMEANS: K-Means clustering algorithm that takes 320 data points with 32 di-

mensions each and clusters them to 16 groups. Our K-Means kernel performs

200 iterations and outputs the final coordinates of cluster centers.

• S-W: Smith-Waterman algorithm is a 2-D dynamic programming algorithm for

inexact string matching. The kernel accepts a set of 128 character string pairs,

and outputs the same number of 256 character aligned string pairs.

• CONV: A layer including convolution, ReLU and pooling operations, in AlexNet,

a well-known convolutional neural networks [KSH12]. The input of the layer is

256 228×228 channels and the output is 256 114×114 features. The convolu-

tional kernel size is 5×5.

Table 4.7: Step-by-Step Loop Transformation Application

V1 V2

DIGITREC +Loop Merging +Loop interchange

KMEANS +Loop interchange N/A

S-W N/A N/A

CONV +Loop Splitting +Loop interchange

Figure 4.4 depicts the evaluation results while the applied loop transformations

for each version are listed in Table 4.7 (note that the version here is different from
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Figure 4.4: Overall Performance Comparison with CPU Baseline

the versions used in the DSE framework). As can be seen, most cases are benefit

from loop transformations in addition to loop scheduling primitives. This again

illustrates the importance of the design space optimality. For DIGITREC, since the

performance of V0 is limited by fine-grained parallelism granularity, we apply loop

merging to fuse three inner loops (diff, dist and upate in Code 4.8) at V1 and

improve the performance by 14.7×. Subsequently, we find at the best design point

of V1 creates 10 PEs at the outer loop to calculate the distance for each digit group

simultaneously, but it fails to further improve the parallelism inside the PE because

of the loop carried dependency. As a result, we further apply loop interchange at V2

so that the smaller loop with trip-count 10 can be fully unrolled and the larger loop

with trip-count 18,000 can be tiled and processed in pipeline manner.

In addition, for KMEANS, although we have applied loop interchange at V1 to re-

move the main performance bottleneck of computing distances between points, the

process of updating the center coordinates cannot be scheduled well due to random
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access and true data dependency. Therefore, it only achieves 8.3× speedup. For

S-W, on the other hand, dose not benefit from any supported loop transformations,

because the dataflow of 2-D dynamic programming depends on the input data. As a

result, the original version with proper parallelism and pipeline explored has already

achieved decent performance. Finally, the intuitive convolutional layer implemen-

tation puts the loop of iterating output features to the outermost while the loop

of performing kernel convolution to the innermost. This loop order cannot create

sufficient fine-grained parallelism to maximize the throughput due to the lack of data

reuse as well as the on-chip memory size limitation. Thus, we apply loop splitting

to the outermost loop and reorder the split (tiled) loop to the innermost, so that the

DSE is able to maximize the PE throughput and achieve 55× speedup over CPUs.

It is worthwhile to mention that other ways of loop interchanges in this case can-

not remove the carry dependency and largely limit the optimal performance (only

∼5-10× over the CPU) in the design space.

4.3 Conclusion

In this chapter, we present high-level domain specific language (DSL) supports

(i.e., Spark [ZCF10] and HeteroCL [LCH19]) to expend the usability of the DSE

framework. DSE can benefit from DSLs by their plenty semantic information. We

use Spark-to-FPGA-Accelerator (S2FA) framework to demonstrate the design space

pruning with parallel patterns. We also leverage HeteroCL to show that users di-

rectly perform platform-independent code change for optimizing the design space can

be the key of the ultimate performance, and our DSE framework is able to reduce

the effort of realizing the best design point.
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On the other hand, even we could apply many strategies to prune the design space,

the bottleneck of performing design space exploration for a design with arbitrary

functionality is still the evaluation methodology that deals with a trade-off between

accuracy and evaluation time. In the next chapter, we demonstrate that this trade-off

could be alleviated by proposing a general-purpose micro-architecture template.
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CHAPTER 5

Design Space Exploration with Architecture

Templates

5.1 Overview

Since the DSE framework proposed in Chapter 3 supports arbitrary HLS designs, it

has to use commercial HLS tool to evaluate the design quality and results in long

exploration time. On the other hand, we observe that many computation kernels

that are suitable for FPGA acceleration suffer similar performance bottlenecks, as

we concluded in Table 1.1. In this chapter, we propose the composable, parallel and

pipeline (CPP) micro-architecture, an accelerator design template with high flexi-

bility to bound the design space by considering those reasons of poor performance.

With the use of micro-architecture template, we can not only reduce the size of de-

sign space, but also derive an analytical model to analyze and evaluate the design

space as well as the performance and resource consumption. Accordingly, we further

propose a series of pruning strategies to prune the design space so that it can be

exhaustively searched within an hour. In summary, this chapter makes the following

contributions:

• The CPP micro-architecture and the analytical model. By introduc-
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ing an accelerator design template like CPP, we are able to perform design

space exploration efficiently using the corresponding performance and resource

model.

• The pruning strategies. We propose a series of pruning strategies to re-

duce the design space, so that the optimal design configuration can be found

exhaustively in one hour.

• An automation framework. We automate the accelerator generation and

optimization process by implementing a framework and thus substantially im-

proves the FPGA programmability.

Our experiments show that the generated accelerators outperform their corre-

sponding software implementations by an average of 72× for the MachSuite [RAS14]

computation kernels.

The rest of this chapter is organized as follows. Section 5.2 formulates the scope

of the problem we target followed by the CPP micro-architecture. Section 5.3 derives

the corresponding analytical model for performance and resource utilization. Sec-

tion 5.4 illustrates the design space exploration to the proposed model with pruning

strategies, followed by the experimental result in Section 5.5.

5.2 CPP Accelerator Design Template

In this section we present our approach to automatically transform a user C program

to a high-quality accelerator behavioral description. We first formulate the problem,

and then introduce the composable, parallel and pipeline (CPP) micro-architecture

that serves as an accelerator design template to address the problem.
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5.2.1 Problem Formulation

Formally, this chapter aims to solve the following problem: given an input C/C++

computational kernel that satisfies the following constraints, perform automatic code

transformation to the kernel under the hardware resource constraints so that the

performance of generated accelerator design is maximized.

• Synthesizable . The input kernel must be synthesizable via commercial HLS

tools. That is, it should not include recursive function calls or dynamic memory

allocation. However, this constraint does not affect the scope of supported

kernels since it is always possible for programmers to manually transform such

code structures to equivalent, synthesizable structures.

• Cacheable . The memory footprint of any single instance of the top-level loop

must be smaller than the FPGA on-chip memory capacity to ensure that the

kernel computation and external memory transaction can be fully decoupled.

We develop an algorithm based on the polyhedral analysis from [PZS13] to deter-

mine if an input program meets the constraints. Based on our problem formulation,

computational kernels featuring extensive random accesses on a large memory foot-

print, e.g., PageRank [PBM99] and the breadth-first search (BFS) algorithm, will

probably not meet the Cacheable constraint. On the contrary, computational kernels

that process input data block by block generally meet these constraints. In fact, al-

most all streaming and batch processing kernels with regular data-level parallelism

fall into this category. These kernels are also well-known to potentially benefit from

FPGA acceleration. For the kernel that satisfies the above constraints, we imple-

ment it using our proposed micro-architecture, which we will discuss in the following
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section, to bound the design space.

5.2.2 CPP Micro-architecture

The composable, parallel and pipeline (CPP) micro-architecture is proposed as a

template of accelerator designs. For an input kernel that meets the above constraints,

our approach first fits the kernel into the CPP micro-architecture, then performs

design space exploration to identify the optimal parameter configuration, and finally

transforms the input kernel code to the CPP micro-architecture description code.

The CPP micro-architecture guarantees the quality of the output accelerator design

by providing a series of features to realize the transformations we summarized in

Table 1.1. In the remainder of this section, we introduce the key features of the CPP

micro-architecture, along with the N-W motivating example in Code 1.2.

Feature #1: Coarse-grained pipeline with data caching. Figure 5.1 illustrates

the N-W accelerator design under the CPP micro-architecture. The overall CPP

micro-architecture consists of three stages: load, compute and store. The kernel

function in the NW source code only corresponds to the compute module instead

of defining the entire accelerator. The input sequence pairs are processed block

by block, i.e., iteratively loading a certain number of sequence pairs into on-chip

buffers (Stage load), aligning these pairs (Stage compute), and storing the post-

aligned pairs back to DRAM (Stage store). This feature guarantees off-chip data

movement only happens in the load and store stages, leaving data accesses of

computation completely on chip. In general, as far as the input kernel meets the

Cacheable constraint, it is able to fit into this load-compute-store execution process.

The load and store modules connect to two input and output DRAM buffers,
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Figure 5.1: N-W Accelerator under CPP Micro-architecture

respectively, through AXI channels. The bit-widths of these buffers, i.e., the data

widths of the AXI channels, are decoupled from the type sizes of the top-level function

arguments. This allows the off-chip data transfer to be performed with the maximum

achievable throughput of the underlying CPU-FPGA platform. Furthermore, if no

dependency or only forward dependency exists between different blocks of input, the

load, compute and store stages of different blocks can be processed in pipeline, and

these three stages then form a coarse-grained pipeline that overlaps computation

with off-chip data communication. This feature of the CPP micro-architecture could

further improve the effective bandwidth of the accelerator.

Feature #2: Loop scheduling. The CPP micro-architecture tries to map every

loop statement presented in the computational kernel function to either 1) a circuit
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that processes different loop iterations in parallel, 2) a pipeline where the loop body

corresponds to the pipeline stages, or 3) a combination of both. As for the N-

W example, the loop statement in the kernel function is mapped to a set of NW

modules to process the sequence pairs in parallel. The loop statements in the NW

function are mapped to parallel and pipeline circuits as well.

Feature #3: On-chip buffer reorganization. In the CPP micro-architecture,

all the on-chip BRAM buffers are partitioned to meet the port requirement of par-

allel circuits, where the number of partitions of each buffer is determined by the

duplication factor of the parallel circuit that connects to the buffer. In the N-W

example, the on-chip buffers that cache the input and output sequence pairs are

partitioned into multiple segments, each segment feeding one NW module. The local

buffer M that stores the score matrix is also partitioned to allow parallel read and

write transactions.

In summary, the CPP micro-architecture provides these features to realize the

aforementioned transformations so as to ensure the quality of output accelerator

designs. Moreover, the use of an accelerator design template implies a clear design

space: all valid configurations of the CPP micro-architecture. We analyze the design

space in the following section.

5.2.3 Design Space Analysis

The CPP micro-architecture design space is determined by all its loops and external

memory buffers, which is formulated as follows:

A = {L,B} (5.1)
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whereA denotes the overall design space, and L and B mean the loop set and external

memory buffer set, respectively.

We then formulate the possible scheduling of loops as follows:

∀L ∈ L, L = {(α, β) | 1 < α < Ltc, β = {0, 1}} (5.2)

where α is the integer unroll factor of loop L with trip count Ltc as its maximum,

and β is a binary variable to indicate if the pipeline scheduling is enabled or not. As

a result, the design space complexity of L is O(2m×
∏

L∈L Ltc) where m denotes the

total number of loops.

Finally, the possible design choices for external memory buffers can be represented

as follows:

∀B ∈ B, B = {(µ, ν) | 8 ≤ µ ≤ 512, 0 ≤ ν ≤ CBRAM}∑
B∈B

Bν ≤ CBRAM
(5.3)

where µ and ν are the integer bit-width and the capacity of the on-chip memory

buffer that caches a certain external memory buffer B, respectively. CBRAM denotes

the total capacity of all BRAM blocks. Thus, the design space complexity of B is

O((512× CBRAM)n), where n denotes the total number of buffers.

Consequently, the overall design space complexity is O((512× CBRAM)n × 2m ×∏
L∈L Ltc), which is too large to be explored exhaustively. In fact, even the NW

motivating example contains roughly 1.4 × 1017 design points. To rapidly find the

optimal design choice among such a tremendous design space, we analytically model

performance and resource utilization in the next section.
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5.3 Analytical Models

While a number of previous studies have attempted to model FPGA designs [KPZ16,

WHZ16, ZMS16, ZPL16, ZPW17, ZFS17], our model1 targets at a well-defined ac-

celerator micro-architecture and thus features a highly accurate modeling of the

utilization of the FPGA on-chip resources.

On the other hand, some of the existing models for general FPGA accelerator

designs focus on only the performance estimation [ZMS16, WHZ16]. Although others

also have the model for different kind of resources [KPZ16, ZPL16, ZPW17, ZFS17],

their LUT models are either based on machine learning [KPZ16, ZPW17] or even

missing [ZPL16, ZFS17].

5.3.1 Performance Modeling

The performance model estimates an accelerator’s overall execution cycle (C):

C = max(Cl + Cs, Cc) (5.4)

where Cl, Cc and Cs denote the cycles of the load, compute, and store modules,

respectively. Since the load and store modules share the off-chip bandwidth in our

experimental platform, we make a maximum operation between the cycles of the

load/store modules and that of the compute module.

The execution cycles of the load, compute and store modules, as well as all of their

submodules, can be quantified as the total cycles of all the loops (Cloop), submodules

(Cmod) and standalone logic (Cr):

1The development of analytical models in this section was done jointly with Peng Wei [WEI18].
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Cmod(M) =
∑

i∈M.loops

Cloop(i) +
∑

m∈M.mods

Cmod(m) + Cr(M) (5.5)

where M denotes an arbitrary hardware module.

Then we model the loop execution. Although a loop statement can be scheduled

in pipeline, parallel, or the combination of both, the first two can be treated as

special cases of the last one, and can together be modeled as:

Cloop(L) = Citer(L) + II(L)× TC(L)

UF (L)
(5.6)

where L denotes an arbitrary loop; Citer, II, TC and UF denote the iteration latency,

initiation interval, trip count and unroll factor, respectively.

Subsequently, we break down and model the loop iteration, where the loop iter-

ation latency is composed of the total cycles of all the sub-loops, submodules and

standalone logic.

Citer(L) =
∑

i∈L.loops

Cloop(i) +
∑

m∈L.mods

Cmod(m) + Cr(L) (5.7)

Equation 5.6 and Equation 5.7 reflect the architecture hierarchy with nested

modules and loops. The proposed model recursively traverses all the loops and

modules until a loop or module does not contain any sub-structures. In addition, we

can find that Equation 5.6 and Equation 5.7 are almost identical. This is because

the loop iteration can be treated as a special “module” and modeled in the same way

for both performance and resource. Hence, we omit the loop iteration breakdowns

in the following resource models.
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5.3.2 Resource Modeling

The resource model estimates the consumption of the four FPGA on-chip resources:

BRAMs, LUTs, DSPs and FFs. As the DSP model is fairly straightforward and the

FF model is similar to the LUT model, we only demonstrate the BRAM and LUT

models for concise.

BRAM modeling : The BRAM consumption of a hardware module consists of

the BRAM blocks used by all its local buffers (Rmem
buf ) and those used by all its

submodules (Rmem
mod ):

Rmem
mod (M) =

∑
b∈M

Rmem
buf (b) +

∑
m∈M.mods

Rmem
mod (m)×DF (m) (5.8)

where DF (m) is the duplication factor of submodule m which is equivalent to the

unroll factor of the loop that includes this submodule. We use “duplication factor”

instead of “unroll factor” since the former is a better fit for depicting hardware

modules, and the latter is more suitable for describing loop statements.

Then we model the BRAM consumption of on-chip buffers. A buffer’s BRAM

consumption is determined by three factors: 1) partition factors on all dimensions,∏
d∈dim(B) PF (d); 2) the size of unit partition, d S(B)∏

d PF (d)
e; and 3) the bit-width of the

buffer, bw(B):

Rmem
buf (B) =

∏
d∈dim(B)

PF (d)× V
(
d S(B)∏

d PF (d)
e, bw(B)

)
(5.9)

The function V (s, bw) calculates the BRAM consumption of a single partition:
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V (s, bw) = d s

Nblk(bw)× Sunit
e ×Nblk(bw) (5.10)

where Sunit denotes the size of a BRAM block that is a platform-dependent constant,

and Nblk(b) is another function to calculate the minimum number of BRAM blocks

needed to compose a buffer with bit-width b:

Nblk(bw) = d bw

bwphy
e (5.11)

where bphy is a platform-dependent constant that represents the largest supported

bit-width of a BRAM building block.

LUT modeling : The LUT consumption of a hardware module (Rlut
mod) is composed

of the number of LUTs used by all loops, submodules, BRAM buffers (for control

logic) and the standalone logic:

Rlut
mod(M) =

∑
l∈M.loops

Rlut
iter(l)× UF (l) +

∑
b∈M.bufs

Rlut
buf (b)

+
∑

m∈M.mods

Rlut
mod(m)×DF (m) +Rlut

r (M)

(5.12)

where Rlut
iter depicts the LUT consumption of the loop iteration that is, again, treated

and modeled as a special “module.” Rlut
r denotes the LUT consumption of the

standalone logic.

Besides, the LUT usage of a loop iteration can be further decoupled and quantified

as follows:
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Rlut
loop(L) =

∑
l∈L.loops

Rlut
iter(l)× UF (l) +

∑
m∈L.mods

Rlut
mod(m)×DF (m) +Rlut

r (L)

(5.13)

Note that since we always perform loop-invariant code motion in advance, we guar-

antee that there has no BRAM used in the loop body.

We then model the LUT consumption of on-chip buffers (Rlut
buf ). It can be decou-

pled into two parts: 1) the control (Rlut
ctrl) and data (Rlut

data) signals of each BRAM

partition, and 2) the k-to-1 multiplexer (Rlut
mux(k)) that selects the desired data from

all the partitions, as shown as follows:

Rlut
buf (B) = Rmem

buf (B)× (Rlut
ctrl +Rlut

data) +Rlut
mux

 ∏
d∈dim(B)

PF (d)

× bw(B) (5.14)

where Rlut
mux(k) can be calculated using Eq. 7 in [CWY17].

These equations quantify the relationship between a buffer’s LUT consumption

and its BRAM usage.

Because of the existence of non-linear equations in the proposed model, the prob-

lem of identifying the optimal CPP configuration is formulated as an integer non-

linear programming (INLP) problem which is not able to be solved in polynomial

time. Fortunately, like [CWY17], we can initialize the model by running HLS once

(for cycle and BRAM) or twice (for DSP, LUT and FF) to obtain the values of a

subset of parameters, since such parameters remain constant once the CPP micro-

architecture is constructed: Cr(M), II, TC, Cr(L), Sunit, bphy, R
lut
r (M), Rlut

ctrl and

Rlut
data. Based on this initialized model, the following section describes our design

space exploration approach.
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5.4 Design Space Exploration

Figure 5.2 illustrates our design space exploration (DSE) flow. The DSE flow first

initializes the analytical model by performing HLS synthesis instances and parsing

the generated reports, and then fetch the set of design parameters from the C kernel

code. As we pointed out in the previous section, exhaustively searching in such

a tremendous design space is impractical. As a result, we propose the following

strategies to prune the design space:

Merlin Code Transformation High-level Synthesis Analytical Model Initialization
Baseline in HLS C HLS Report

Microarchitecture Analysis

Full Design Space

Model Initialization
C kernel code w. parameters

Optimized Kernel Code

Design Space Pruning Pruned Design Space

Design SpaceExploration

Figure 5.2: Design Space Exploration Flow

Small loop flatten: Empirically, it is better to flatten the innermost loops with

fixed, small trip counts. For one thing, it provides more opportunities for HLS to

generate a more efficient scheduling. For another, it exerts moderate pressure on the

overall resource utilization. As a result, we make an ad hoc strategy to fully unroll

innermost loops with trip count less than 16.

Loop unroll factor pruning: Loop unroll factors determine the number of on-chip

BRAM partitions. This number is bounded by the total number of BRAM blocks

available for user-defined accelerators, which is approximately a few thousand. This

138



pruning strategy is particularly beneficial for programs with deep, complicated loop

hierarchy.

Saddleback search for loop unroll factors: The search problem of all loop

unroll factors can be formulated as finding a particular value in a N -dimension

matrix where the values are sorted in each individual dimension. N denotes the

total number of loops. The formulation is based on the following theorem (the proof

is omitted due to page limit).

Theorem 1. For unroll factor Lα of loop L in the design parameter set, the overall

execution cycle C is negatively correlated to Lα; the consumption of any type of

resource R is positively correlated to Lα.

By applying the Saddleback search algorithm [BIR06] to the formulated prob-

lem, we can reduce the time complexity of searching all loop unroll factors from

O(
∏

L∈L Ltc) to O(
∏

L∈L∧L/∈{Lp,Lq} Ltc × Lp × log Lq
Lp

), where Lq and Lp denote the

unroll factors of the two loops with the largest trip counts. This strategy works very

well for programs with shallow loop hierarchies.

Fine-grained pipeline pruning: In general, loop pipelining achieves higher re-

source utilization and better performance than parallelism in most cases. Formally,

we derive the following theorem to realize the loop that is always benefit pipeline

(the proof is omitted due to page limit.)

Theorem 2. Given a loop L with trip count Ltc, iteration latency CL and resource

consumption Rnp
L before enabling pipelining, and initiation interval IIL and resource

consumption Rp
L after enabling pipelining. Enabling pipelining is always better if

Lα
Ltc
≤ (e− 1) for unroll factor Lα of L, where e = CL/IIL

RpL/R
np
L

.
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The e in Theorem 2 means the efficiency of enabling pipelining for loop L. Theo-

rem 2 illustrates that when e ≤ 1, the pipeline implementation is inherently inefficient

and should always be disabled. On the other hand, the pipeline implementation is

much more efficient than the sequential design and should always be enabled when

e ≥ 2. Finally, when 1 < e < 2, the unroll factor should not be too large so that

the pipeline PE is able to process a sufficient number of loop iterations to ensure the

pipeline efficiency.

Power-of-two buffer bit-widths and capacities: We prune the design space

by only searching the power-of-two bit-width and capacity values for each buffer. We

note that this pruning strategy covers the optimal design point because 1) the BRAM

utilization would be the same for all bit-width values that round up to the same

power-of-two value, and 2) setting the capacity to be a power-of-two value achieves

the highest efficiency for the buffer control logic and is enabled in commercial HLS

tools by default.

Taking the N-W example as an instance, the design space is reduced from 1.5×109

to only 3.2×106 by applying the above strategies. The scale of reduced design space

is sufficient to be searched within an hour even using a single modern CPU core.

5.5 Evaluation Results

In this section we first present the framework that automates the entire accelerator

generation process. Then we describe our experimental setup, followed by the evalu-

ation of the model accuracy as well as the performance of the generated accelerators.
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5.5.1 The Framework

As shown in Figure 5.3, we implement a push-button framework that takes a nested

loop in C as input and performs a series of transformations to produce a high-quality

FPGA accelerator under the CPP micro-architecture. Like the DSE framework in

Chapter 3, this framework is implemented on top of the Merlin compiler [MER,

CHP16a]. We leverage the code transformation primitives provided by the Mer-

lin compiler to agilely construct the CPP micro-architecture. On the other hand,

without the need for users to manually insert directives in the input code, the CPP

micro-architecture provides an automated way to organize these primitives to come

up with high-quality designs. Subsequently, we use static analysis to extract the

necessary information (e.g., loop trip count) to form the design space. Then the

design space exploration flow we introduced in the previous section is adopted to

realize the best design specification in minutes. This design can be directly fed into

Xilinx SDAccel to produce a high-quality accelerator bit-stream.

C kernel code CPP Construction Design Space Exploration
Optimized Kernel Code

Commercial FPGA Design Flow
Accelerator Bitstream

Figure 5.3: Framework Overview

5.5.2 Experimental Setup

The evaluation is performed on the mainstream PCIe-based CPU-FPGA platform

with the Xilinx SDAccel design flow. We use the MachSuite [RAS14] benchmark suite

that contains a broad class of computational kernels programmed as C functions for

accelerator study. For each kernel, MachSuite provides at least one implementation
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that is programmed without the consideration of FPGA acceleration, which makes

it a natural fit for this evaluation.

Table 5.1: Configuration of Hardware and Software

Host CPU Model Intel Xeon E5-2420 @ 1.9GHz

Host Memory 64GB DDR3-1600

FPGA Fabric Xilinx Virtex-7

Device Memory 8GB DDR3-1600 (Max Band.: 12.8GB/s)

CPU-FPGA Interface PCIe Gen3 x8 (Max Band.: 8GB/s)

Synthesis Flow SDAccel (SDx) 2017.2

5.5.3 Evaluation Results

We first evaluate the error rate between the model-generated result and the HLS

report. The average error rate for cycle count, BRAMs, DSPs, LUTs and FFs are

only ¡1%, ¡1%, ¡1%, 6.5% and 4.3%, indicating that the proposed model aligns to

the HLS report accurately. We then compare this result with the actual on-board

result, and list the error rate for each benchmark in Table 5.2. We can see that the

average error rate among all the benchmarks is only 6.2%. We further analyze the

benchmarks with over 10% error rate, i.e., AES and KMP. We find that such a relatively

large error rate is mainly because the accelerator designs for these benchmarks have

a very small execution time (∼10 ms). For these time frames, the start-up and end

overhead bias the time significantly. On the contrary, we also observe that the error

rate of the model to on-board execution is always less than 5% when a design has an

over 100-millisecond execution time. Hence, the proposed model is able to accurately
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predict the on-board execution time of a design given that its execution time is tens

of milliseconds or larger.

Table 5.2: Error Rates Between Model and On-board Results

Case AES SPMV KMP FFT VITERBI NW STENCIL GEMM

Error 13.5% 9.5% 12.2% 0.1% 2.1% 1.1% 7.7% 3.3%

We then evaluate the performance improvement of the generated FPGA accelera-

tor designs. Figure 5.4 compares the performances between the naive implementation

of MachSuite, generated accelerator designs and manual HLS designs, all of which

are normalized to the performances of the corresponding software implementations.

We can clearly see that generated accelerators outperform the naive implementa-

tions by 27,000×, indicating that the framework dramatically improves the quality

of accelerator designs without manual programming effort. Meanwhile, the gener-

ated accelerators also outperform the software implementations by 72×, indicating

that our approach does lead to competitive accelerator designs.

We can also see that the manual designs only outperform the generated designs by

an average 2.5×, even after we spent several days to weeks performing more sophisti-

cated code reconstruction to each kernel. In fact, the generated designs for the AES,

SPMV, KMP and STENCIL kernels have already achieved the optimal performance since

they have fully utilized the off-chip bandwidth, unless manual code transformations

are applied to enable more advance optimization such as data reuse.

Although we are able to further improve the performance of other kernels by

manually applying very specialized circuit designs not covered by the CPP micro-

architecture, e.g., Race Logic [MSS14] for the N-W kernel, we still preserve a high
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Figure 5.4: Speedup over an Intel Xeon CPU Core

quality of results while substantially reducing the programming effort.

5.6 Conclusion

We propose composable, parallel and pipeline (CPP) micro-architecture template

in this chapter to facilitate the DSE process for HLS on FPGAs. Featuring the

CPP micro-architecture, analytical-based design space exploration and automatic

code transformation, we are able to achieve 72× speedup for a broad class of com-

putation kernels within an hour of exploration time. Furthermore, we believe that

the design principles CPP can be further generalized to stimulate more research

on the adoption of FPGAs in datacenters. The CPP micro-architecture serves as

a proof-of-concept that using accelerator design templates as specifications of the

program-to-behavioral-description transformation fundamentally reduces the design

space while preserving the accelerator quality. Future work would support more

micro-architectural templates and more sophisticated code transformation techniques
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to improve the coverage of computation kernels.

While the DSE with CPP micro-architecture still requires a few number of HLS

runs for analytical model initialization in order to capture the unpredictable heuristic

optimization in the commercial HLS tools; this issue could be identified and reflected

to the analytical model in advance when we limit the user applications to a specific

domain. It means we do not require HLS run during the DSE process anymore but

can still achieve the best performance. In the next chapter, we use convolutional

neural network (CNN) as the target domain to demonstrate this idea.
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CHAPTER 6

Design Optimization for Systolic Array Template

6.1 Overview

Convolutional neural network (CNN) is one of the key algorithms for the deep learn-

ing applications, ranging from image/video classification, recognition, and analysis to

natural language understanding, advances in medicine, and more. The core compu-

tation in the algorithm can be summarized as a convolution operation on the multiple

dimensional arrays. Although the algorithm requires computation power and com-

munication bandwidth, it also offers significant potential for massive parallelization

and extensive data reuse. Hence, FPGA implementations of CNN have seen an in-

creased amount of interest from academia [CMB10, SJC09, CSJ10, FPH09, PSM13,

ZLS15, SCD16, VB16, QWY16, ZFZ16] due to the customizability of FPGAs.

Some existing CNN designs on FPGAs mainly focus on on-chip computation en-

gine optimization by exploiting different parallel strategies [SJC09, CSJ10, CMB10,

FPH09]. The studies explore parallelism opportunities in input feature maps [SJC09]

and convolution kernels [CMB10, FPH09]; while the work in [CSJ10] chooses to par-

allelize output feature maps. These implementations customize massively parallel

processing elements (PEs) on FPGAs according to specific computation types; they

achieve a high performance that exceeds modern CPUs, thanks to FPGA’s abundant
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logic resources and reconfigurability.

On the other hand, some designs take external memory communication into con-

sideration to achieve high throughput at system-level [PSM13, ZLS15, SCD16, VB16,

MCV17]. The study in [PSM13] develops a memory-centric design method to max-

imize data reuse for memory bandwidth optimization. Meanwhile, to balance com-

putation to communication ratio, the study in [ZLS15] leverages a roofline model

to identify the optimal design option from a large design space, while the authors

in [SCD16, VB16] propose analytical models to realize this goal. In addition, The

authors in [MCV17] quantitatively analyze different optimization objects, and then

propose a specific dataflow architecture to minimize data movements and memory

accesses.

Although those implementations utilize FPGA resources well to achieve high

throughput, the capacity of hardware resources in the FPGA increases continuously,

which provides more than a thousand floating compute units in one FPGA chip—such

as the Intel Arria 10 [ARR] and Xilinx Virtex UltraScale+ [XUL]. Once the existing

customized designs of CNNs are applied to the latest device, the existing optimization

approaches need to deal with the trade-off between high resource utilization and clock

frequency, which leads to dramatic performance degradation.

To address such challenges, a suitable architecture for FPGAs plays an impor-

tant role in developing a scalable CNN implementation. In particular, a systolic

array architecture [KUN88] is a specialized form of parallel computing with a deep

pipeline network of PEs. With regular layout and local communication, the systolic

array features with low global data transfer and high clock frequency, which is suit-

able for large scale parallel design on FPGAs. Systolic array architecture has been
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widely used in difference kinds of applications on the FPGAs, such as matrix mul-

tiplication [WC15] and bioinformatics [JBC10]. As a result, researchers attempt to

map CNN inference to systolic array architecture [ZFZ16, AOC17] in recent years.

Specifically, Caffeine [ZFZ16] implements the massive parallelism for CNN inference

on Xilinx Kintex Untrascale device. The design in [ZFZ16] adopts a systolic-like

architecture to mitigate the timing issue for the large design, but it still directly con-

nects all PEs to the on-chip memory and results in not fully local interconnects. This

is the reason that the design in [ZFZ16] is outperformed by a later work [AOC17]

that adopts a complete systolic array architecture. The authors in [AOC17] propose

a 1-D systolic array design in OpenCL for AlexNet [KSH12] CNN model with the

help of an analytical model to realize the best design point and result in a high

throughput design that outperforms all previous designs. However, this design only

supports small models such as AlexNet as it assumes that all input feature maps

reside in on-chip memory for computation. Moreover, applying the methodology in

[AOC17] to other CNN models is not straightforward due to the lack of an automated

design space exploration approach.

We note that most previous designs on systolic arrays are implemented in RTL,

which is not only time-consuming but requires hardware design expertise. Moreover,

the fine-grained systolic architecture requires careful attention to resource usage and

timing. Hence, an automated design flow from a pure algorithmic software program

to an efficient systolic array is essential for the software designers and data scientists

to benefit from FPGA acceleration. In this chapter, we investigate the challenges

in systolic array implementations from a nested loop construct, and propose an

automated methodology to optimize the design on systolic arrays.
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6.2 Systolic Array Architecture

We adopt a 3-D systolic array architecture on FPGA in Figure 6.1. The architecture

can only input two data buffers (IN and W ) and output one buffer (OUT ). As shown

in this figure, each PE shifts the data of W and IN horizontally and vertically to

the neighboring PEs at each cycle. This 2-D topology matches the 2-D structure

in the FPGA layout so that it can achieve timing constraint easily because of low

routing complexity. In addition, the third dimension represents the SIMD vector

accumulation inside each PE. The parallelization factor of the SIMD factor is usually

power of two due to the dedicated inter-DSP accumulation interconnect in modern

FPGAs.

IB

PE

IB

PE

IB

PE

IB

PE

PE PE PE PE

PE PE PE PE

PE PE PE PE

WB

WB

WB

WB

OB OB OB OB

IN

OUT

W

Figure 6.1: Systolic Array Architecture

This architecture is able to tackle the timing issue for massive parallelization

within a design. Its key features can be summarized as 1) local interconnect and 2)

shifting data transfer. As shown in Figure 6.1, the global and large fan-out inter-
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connect is split into local interconnects between neighboring PEs. In addition, the

input/output data are shifted into/from the PE array and between the neighboring

PEs so that the multiplexes are eliminated. With the local, short, peer-to-peer in-

terconnects, systolic array architecture can achieve high frequency even in the case

of massive parallelization with over a thousand PEs.

...+x
Buffer 0 Buffer 1

filter
neighbor

IB

PE

(a) PE (b) IB

Figure 6.2: Structure of PE and Input Buffer (IB)

The architecture of PE and buffer structure to store input feature maps (IB) are

presented in Figure 6.2. A PE passes input data to its neighboring PE in vertical

direction and passes W to neighboring PE in horizontal direction every cycle, and

it also accumulates the multiplier of the IN and W. The output data are shifted out

across the PE array as well when they are ready after multiple rounds of accumula-

tion. Each input buffer contains a double buffer – one buffer is used to store the data

fetched from external memory, and the other is used to feed the data into the PE.

All the input data IN are shifted across the buffers in the horizontal direction; while

the input buffer will selectively store the data belonging to the corresponding column
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of PEs by a filter. The similar double buffer structure is applied to the buffers for

weight (WB) and output feature map (OB) as well.

The local interconnect introduces several outstanding features of a systolic array

execution. First, the data required for the computation of the PEs have to be

transferred from the PE boundary and across multiple PEs. Since only the boundary

PE has the access to input data, data reuse between each row and column of PEs is

required. More importantly, a systolic array runs in a regular and synchronized way

such that fine-grained pipelining is performed between every neighboring PE. With

these features, a suitable scheduling of the PE executions is essential for systolic

array design, especially the synchronization of the data on each PE from different

directions.

PE00 PE01 PE02

PE10 PE11 PE12

PE20 PE21 PE22

IN0[0]

IN1[0]

IN2[0]

IN0[1]

IN1[1]

IN2[1]

IN0[2]

IN1[2]

IN2[2]

. .

.

.

.. W0[0]*IN0[0] W0[1]*IN0[1] W0[2]*IN0[2]

W0[0]*IN1[0]

W1[0]*IN0[0]

W0[1]*IN1[1]

W1[1]*IN0[1]

W2[0]*IN0[0]

PE00

PE01

PE10

PE20

PExy

...

...

0 1 2 ... t

PExy@t: OUTxy[t] += Wx[t-(x+y)] * INy[t-(x+y)]    (1)

t:    i*o*p*q*r*c/row/col/vector                            (2)

W0[0]W0[1]W0[2]

W1[0]W1[1]W1[2]

W2[0]W2[1]W2[2]

Figure 6.3: Cycle-Level Schedule of Systolic Array

Figure 6.3 shows one possible scheduling of PE execution after performing map-

ping feasibility check and address mapping, which will be discussed in the next

section. PExy@t illustrates the mapping of cycle number, PE indexes onto data

access indexes, where (x, y) is PE index, and t is cycle number. It means at cycle t,
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the multiplication of W and IN accumulates on OUT . Cycle number t is computed

by number of total loop number being divided by row × col × vector, where row

and col are the number of PEs in row and column, and vector is the length of SIMD

computation for the third dimension of the 3-D systolic array architecture. At cycle

t, all PEs implement a multiplication and accumulation in parallel. In Figure 6.3,

PE00 gets weight data W from vertical buffer WB and input feature map data IN

from horizontal buffer IB at the first cycle. PE00 performs the multiplication of the

two inputs and accumulates the result OUT in the register within PE where previous

partial accumulation result is stored.

Meanwhile, the other PEs are stalled because no data is being received from at

least one of its inputs. At cycle 1, the vertical data from PE00 (W ) is passed to

PE01, and horizontal data (IN ) to PE10; both PE01 and PE10 have the required

data to perform an execution. Meanwhile, PE00 performs execution with new data

coming from the input buffers simultaneously. Taking 3× 3 PE array in Figure 6.3

for example, after 5 cycles, all PEs will be active and synchronously read data from

previous neighbor PEs, perform computation, and pass data to next PEs in each

cycle. After accumulation within a PE ends, OUT in the shift register is shifted

across vertical PEs until it is stored in OB.

6.3 Challenges

Although the systolic array architecture is able to significantly benefit designs on

the FPGA, mapping a nest loop computation onto a systolic array structure is not

straightforward. We summarize the mapping process in three steps and describe

their challenges along with examples with a six-level nested loop from the CNN
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configuration of AlexNet [KSH12] layer 5, (I, O,R,C, P,Q) = (192, 128, 13, 13, 3, 3),

as follows.

Code 6.1: A Motivating Example

1 L1: for(o = 0; o < O; o++)

2 L2: for(i = 0; i < I; i++)

3 L3: for(c = 0; c < C; c++)

4 L4: for(r = 0; r < R; r++)

5 L5: for(p = 0; p < K; p++)

6 L6: for(q = 0; q < K; q++)

7 OUT[o][r][c] += W[o][i][p][q] * IN[i][r+p][c+q];

1. Find a feasible mapping. We need to first find a feasible mapping in the

systolic array to guarantee that the proper data is available at specific locations in

the PE array at every cycle. Specifically, we attempt to select three of six loops to

represent the 3-D systolic array: PE row, PE column and the SIMD vector inside a

PE. As mentioned in the previous section, systolic array requires data reuse in both

directions, so the corresponding loops need to carry the data reuse of two different

arrays (W and IN ), while the third loop needs to carry the accumulation of the

output (OUT ). Failing to satisfy this rule will cause a non-feasible mapping. For

example, mapping loop L3 and L4 into a PE row and column is not feasible, because

data reuse does not happen on array W which does not relate to neither loop L3

nor L4.

2. Select a PE array shape. Next, we select the PE array shape by determin-

ing the size of each dimension, which impacts the performance in terms of 1) the

required DSP number, 2) the clock frequency, and 3) the DSP efficiency. The DSP

efficiency is defined as the effective computation ratio performed by DSPs, as shown

in Equation 6.1.
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Eff =
effective operation

total operation
(6.1)

We use an example in Table 6.1 to illustrate the impact of systolic array shape.

Both configurations map loop (L1, L3, L2) to systolic arrays (row, column, vector)

but with different shapes. As can be seen, assuming the clock frequency for both

configures are the same (280 MHz), sys2 has a higher DSP utilization but a relatively

lower DSP efficiency compared with sys1. This is because sys2 ’s shape (16, 10, 8)

does not match the mapped trip counts of the mapped loops (128, 13, 192).

Table 6.1: Impact of Systolic Array Shape to Performance

ROW COL. VEC. DSP Util. DSP Eff. Peak Thrpt.

sys1 11 (L1) 13 (L3) 8 (L2) 71.5% 96.97% 621 GFlops

sys2 16 (L1) 10 (L3) 8 (L2) 80.0% 60.00% 466 GFlops

3. Determine the data reuse strategy. After we identify the systolic array

mapping and shape, we determine the data reuse strategy. As mentioned previously,

the data reuse for the PE array is not sufficient for achieving high throughput, so we

need to determine proper tiling sizes to add several orders of magnitude of data reuse.

In other words, it requires exploiting the data reuse carried on multiple for-loops with

long reuse distance, which in turn leads to the large reuse buffers. However, there are

more than ten thousand design options in the trade-off between the on-chip memory

utilization and off-chip bandwidth saving, including selection of the arrays to be

reused, the loops that carry the data reuse, and tiling sizes for the selected loops

carrying data reuse.

Taking sys1 in Table 6.1 again as an example. Since the systolic array de-

154



sign we used is fully pipelined, the theoretical peak throughput is 96.97% × 2 ×

11 × 13 × 8 × 280 ' 621 GFlops. This can be achieved by choosing proper tiling

sizes for each loop (e.g., Tile(I, O,R,C, P,Q) = (4, 4, 13, 1, 3, 3)) to balance data

reuse and memory bandwidth. However, if we use inappropriate tiling sizes such

as Tile(I, O,R,C, P,Q) = (2, 2, 2, 2, 2, 2), then we require around 67 GB/s memory

bandwidth to achieve the peak throughput (the analytical model is described in the

next section. In fact, we only get 162 GFlops on Intel’s Arria 10 with 19 GB/s

bandwidth for this low QoR configuration.

6.4 Analytical Models

All these design challenges and their interplay need to be considered in a unified

way with high-level modeling. In this section, we formulate the overall optimization

problem as maximizing the system throughput under the systolic mapping feasibility

condition and resource constraints.

6.4.1 Architecture Abstraction

Before we can perform the detailed modeling, an abstraction of the architecture is

necessary. A loop tiling representation is proposed in Code 6.2 for this purpose, which

establishes the link between the architecture and high level program code. The tiled

loops in the intermediate representation contains all the architecture considerations

in the systolic array, such as PE array mapping, PE array shape, data reuse strategy,

etc. The corresponding systolic array architecture is shown in Figure 6.4. Since this

representation itself is a sequential program, it enables us to perform the modeling in

a general way using program analysis techniques and tools such as polyhedral model.
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Code 6.2: Loop Tiling Representation for Systolic Array Mapping

1 // outer loops

2 L0: for (Lo = 0; Lo < l0; Lo++)

3 ...

4 Ln: for (Ln = 0; Ln < ln; Ln++)

5 // middle loops

6 S0: for (So = 0; So < s0; So++)

7 ...

8 Sn: for (Sn = 0; Sn < sn; Sn++)

9 // inner loops

10 T0: for (T0 = 0; T0 < t0; T0++)

11 T1: for (T1 = 0; T1 < t1; T1++)

12 T2: for (T2 = 0; T2 < t2; T2++)

13 // Orignal loop body

PE PE PE

PE PE

PE PE PE

W(s0, ,sn)

t1

W(s0, ,sn)

IN(s0, ,sn)

PE

IN(s0, ,sn)

...

...

...

...

...

... ... ...

t0

IB

WB

Figure 6.4: The Mapped Systolic Array Architecture

The program in Code 6.2 is transformed from the original code in Code 6.1 by

loop tiling. The semantic of the program is preserved by the transformation if we

ignore the precision error of reordering the floating point accumulation. Then the
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tiled loops are associated with the architecture consideration as the following. The

overall computation is performed block by block sequentially, where each block is

corresponding to an iteration of the outer loops (L0-Ln). Since the blocks are

calculated independently, the outer loops do not impact the throughput.

Once a data block is fetched from off-chip memory, it is stored in the input buffers

(IB and WB) for date reuse. The middle loops (S0-Sn) represent the sequential

processing of feeding data from input buffers to the PE array. The bounds of the

middle loops ~s = (s0, ..., sn) determine the sizes of the reuse buffer. The data accessed

in the reuse data by the PEs are represented by the array access addresses which are

indexed by iterators of the middle loops.

Parallel execution is performed in the PE array in the fine-grained pipeline. The

inner loops (T0-T2) represent the parallelism in the PE array where each iteration

of the inner loops is corresponding to a parallel DSP unit in the array. The shape of

the systolic array is determined by the bounds of inner loops (~t = (t0, t1, t2)); while

the systolic array mapping feasibility is determined by the relation between the inner

loop iterators and the array access addresses in the loop body.

In addition, when we perform the loop tiling, the original loop bounds may not

be divisible by the tiling sizes (~s, ~t) we select. This leads to a waste of computation

that determines the DSP efficiency.

6.4.2 Feasible Mapping to Systolic Array

As demonstrated in the previous section, the architecture of the systolic array is de-

termined by the three inner loops that are selected to map to PE row, PE column and

SIMD vector inside the PE. There are many alternatives for this loop-to-architecture
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mapping, but not every one of them can finally have a feasible mapping in the sys-

tolic fashion. The condition of the feasible systolic mapping can be summarized as:

each of the three array variables (W , IN , and OUT ) has to have fine-grained data

reuse carried on at least one of the three inner loops.

By introducing the binary variables kl to indicate loop-to-architecture mapping

(kl = 1 if the loop l is selected as one of the inner loops, otherwise kl = 0), the

feasibility condition for the mapping is formulated as

∑
kl = 3,∀r,

∑
kl × crl > 0 (6.2)

where crl indicates data reuse of array r on loop l: crl = 1 if loop l carries the

fine-grained data reuse of array r, otherwise crl = 0

All the possible fine-grained data reuse in the program can be analyzed in ad-

vance. We use polyhedral model to represent the program [KUC78]. The program

can be summarized as three aspects: an iterator vector ~i which lists loop iterators

from the outermost loop to the inner loop in the loop nest; an iteration domain D

which defines the range of the loop iterators; and an access function Fr which maps

the loop iterators into the access indexes of array r.

The fine-grained data reuse for array r on loop l requires the data accessed on

array r in different loop l iterations have to be the same, which can be formulated

as the following condition:

∀~i ∈ D, Fr(...il−1, il, il+1, ...) = Fr(i0, ..., il−1, il + 1, il+1, ...) (6.3)
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6.4.3 Resource Utilization Modeling

Since the computation is mainly floating-point multiplication and accumulation, the

DSP and on-chip block RAM (BRAM) are the two critical resource types. The DSP

utilization is simply determined by the product of the inner loop bounds ~t:

D(~t) =
∏

tl (6.4)

The modeling of BRAM utilization needs to consider the data reuse in the input

and output buffers. Due to the double buffering mechanism for hiding data transfer

overhead, the buffer size is equal to two times the data block size of the array. The

block size can be modeled as the total amount of data that is accessed in the middle

and inner loops in Code 6.2.

DAr(~s,~t) =
∣∣∣{~a|~a = Fr(~i) ∧~i ∈ D~s,~t

}∣∣∣ (6.5)

where ~a is the access index vector of multi-dimensional array and D~s,~t is the iter-

ation domain of the middle and inner loops. Counting an integer set with linear

constraints can be solved by the polyhedral library [VER10], but it has high com-

putational complexity. As a result, we simplify the model by counting the range of

each dimension of the array access index, so that the total size is the product of

range size of each dimension. It implies that we only support two kinds of index

patterns in the program: the one consists of only one iterator, such as out[o][r][c]

and w[i][o][p][q] ; and the other is the sum of two iterators, such as r+p in the access

in[i][r+p][c+q]. For the first case, the range for the dimension is the bound of the

corresponding middle and inner loops. For second case, the range can be calculated
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as the sum of the bound of the iterators, e.g. if the bound of r is t0 and bound of p

is 3, the range size of r + p is (t0 + 3)− 1.

To simplify the address generation complexity of multiple dimensional arrays, the

OpenCL design flow tool will allocate the actual memory size as the rounding up

power of two value. Finally, the total BRAM utilization is formulated as follows:

B(~s,~t) =
∑
r

(cb + 2dlog2DAr(~s,~t)e) + (cp ×
∏

(~t)) (6.6)

where cb is a constant BRAM cost for the IBs and OBs, cp is the BRAM cost for

each PE, and ~t is the bound vector of inner loops.

6.4.4 Performance Modeling

In a systolic design, both computation and data transfer may be the performance

bottleneck for different design options. The adoption of double buffering in the input

and output enables us to model the throughput in a decoupled way, so the overall

throughput T is dominated by the lower one of computation throughput (PT ) and

external memory transfer throughput (MT ).

T (~s,~t) = min(PT (~s,~t),MT (~s,~t)) (6.7)

Since the systolic array is executed in the fully pipelined way, each PE will com-

plete two floating point operations (multiplication and accumulation) in each cycle.

However, the quantization effect may lead to wasted computation on the incomplete

data blocks on the boundaries of the original loops. By defining the clock frequency

as F , the computational throughput is modeled as the number of effective floating
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operations in the original code performed every second:

PT (~s,~t) = Eff(~s,~t)×
∏

~t× 2× F (6.8)

where Eff(~s,~t) is the DSP efficiency defined in Equation 6.1.

In addition, external memory transfer throughput (MT ) is defined as the number

of effective floating point operations performed in each block divided by the time it

takes to transfer the data required by the these operations. Due to the hardware

feature, the memory bandwidth limitation is not only for overall memory access

BWtotal, but for each memory access port BWport (array in, w, and out). The

transferred data amount and bandwidth determines the data transfer time, so MT

can be modeled as follows:

MT (~s,~t) = min(MTt(~s,~t),MTr(~s,~t)), r ∈ R (6.9)

MTt(~s,~t) =
Eff(~s,~t)× 2×

∏
(~s× ~t)∑

DAr(~s,~t)/BWtotal

MTr(~s,~t) =
Eff(~s,~t)× 2×

∏
(~s× ~t)

DAr(~s,~t)/BWport

(6.10)

6.4.5 Putting It All Together

Finally, the overall optimization problem can be formulated as the combination of

the following two subproblems.

Problem 1: Given a nested loop L that has 1) two inputs and one output and 2)

supported indexing patterns, finding a set S that contains all feasible systolic array

configurations:
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SL =
{

(~k,~t) |
∑

~k = 3,
∏

~t ≤ Dtotal,∀r,
∑

kl × crl = 1
}

(6.11)

where ~k is the mapping vector, and ~t is the bounds of the inner loops.

Problem 2: Given a systolic array configuration (~k,~t), finding the optimal bounds

of the middle loops ~s so that the overall design throughput is maximized:

maximizing T (~s,~t), s.t. B(~s,~t) < Btotal, D(~t) < Dtotal

where T , B, and D have been defined in Equation 6.7, Equation 6.6, and Equa-

tion 6.4, respectively.

The complex calculation of B(~s,~t) and H(~s,~t) makes the problem neither linear

nor convex, which in turn leads to the difficulty in analytical solving. On the other

hand, the entire design space of the two problems is tremendously large, which makes

brute-force search impractical. For example, our implementation spends roughly 311

hours on traversing every design option for one of the convolutional layers from the

AlexNet [KSH12] CNN model on Intel’s Xeon E5-2667 CPU with 3.2 GHz frequency.

In the next section, we will show that the size of design space can be reduced signif-

icantly when taking practical hardware architecture into consideration.

6.5 Design Space Exploration

Under the performance and resource modeling, our design space exploration can

identify a valid design option with the highest throughput. However, the working

frequency for a design is hard to model. As a result, we develop a two-phase process

in Figure 6.5 which first filters the design space into a small set of candidates using
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the proposed analytical model in the previous section with a given clock frequency,

and then goes through the hardware generation flow for the selected designs to obtain

the one that has the best on-board performance.

Figure 6.5: Two-Phase Design Space Exploration

In the architectural-based phase, we reduce the design space by considering re-

source utilization and on-chip BRAM features. Due to the scalability of the systolic

PE array architecture we adopted, the clock frequency will not drop significantly with

low DSP utilization, so we can prune the design options with low DSP utilization by

adding the following constraint into Problem 1.

∏
~t ≥ cs ×Dtotal (6.12)

where cs is a constant to set a lower bound of DSP utilization defined by a user.

The value of cs determines the design space of the rest of the process. For example,

by applying Eq. 6.12 with cs = 80%, the number of available systolic PE array
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mappings is reduced from 160K to 64K for one of the convolutional layers from

AlexNet [KSH12].

In addition, we also reduce the design space of data reuse strategies in terms of

value of ~s by leveraging the fact that BRAM sizes in the implementation are always

rounded up to a power of two. In details, we prune the design space by only exploring

the candidates of ~s whose values are power of two. The pruned design space of data

reuse strategies can cover the optimal solution in the original design space because

1) our throughput object function is a monotonic non-decreasing function of ~s, and

2) BRAM utilization is the same for the options of ~s whose values have the same

rounding up power of two. By applying the pruning on the data reuse strategies, the

design space reduces logarithmically so that we are able to perform an exhaustive

search to find the best strategy and result in an additional 17.5× saving on the

average search time for AlexNet convolutional layers.

Consequently, the first phase of our design space exploration process takes less

than 30 seconds to identify a set of high throughput design options instead of hun-

dreds of hours. In the second phase, designs in the set are then synthesized using an

Intel SDK for OpenCL Application [INT] to realize the clock frequency. We use the

actual frequency to refine the performance estimation for deciding the best systolic

array design.

6.6 Implementation and Experiments

6.6.1 An Automation Flow

Code 6.3: Programming Model
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1 #pragma ACCEL systolic auto

2 for(o = 0; o < O; o++)

3 for(i = 0; i < I; i++)

4 for(c = 0; c < C; c++)

5 for(r = 0; r < R; r++)

6 for(p = 0; p < K; p++)

7 for(q = 0; q < K; q++)

8 out[o][r][c] += w[o][i][p][q] * in[i][r+p][c+q];

Figure 6.6: The Execution flow

We implement a push-button design flow framework to generate an executable

system on FPGAs from a user-written intuitive nested loop in Code 6.3. A user

only needs to specify the nested loop with a pragma (we adopt CNN models in this

experiment as a case study). Our automation flow shown in Figure 6.6 first analyzes

the user program using the ROSE compiler infrastructure [ROS] to obtain necessary

information such as iteration domains and data access patterns. Subsequently, we

perform design space exploration to identify multiple valid design options with the
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highest estimated throughput. The design options are parameterized to instantiate

template files, including OpenCL systolic array implementation (kernel), as well as

the C/C++ software program (host). Finally, the instantiated OpenCL kernel is

synthesized by the Intel FPGA SDK for OpenCL [INT] for the physical implemen-

tation.

6.6.2 Experimental Setup

We evaluate our model and systolic array architecture design in Intel’s Arria 10 GT

1150 board which contains 1518 hard floating point DSPs. The underlying OpenCL

implementation of the systolic array design is synthesized using the Intel SDK 16.0 for

OpenCL application [INT]. We only evaluate the single precision floating point data

type since the half-precision floating point is not yet supported by current version of

the tool set.

We use all convolutional layers from two widely used real-life CNN models,

AlexNet [KSH12] and VGG [SZ14], as benchmarks in this experiment. For each

model, we generate the design with the optimal performance for all layers according

to our two-phase DSE process.

6.6.3 Results and Analysis

In this experiment we use a unified systolic array design configuration for all the layers

in each CNN model instead of making an optimal design for each layer, because it has

big performance overhead to reprogram the FPGA for different layers. To realize the

design with the highest throughput for all layers, we perform the proposed two-phase

DSE process to every layer and select the best one to generate the programming file

166



for on-board evaluation. For example, Figure 6.7 depicts all valid design options of

AlexNet layer 5 with a given clock frequency (280 MHz) reported by our framework.

The density for each design point represents the throughput where darker means

higher. As can be seen in Figure 6.7, high throughput design options may cost

moderate BRAM blocks and DSPs due to lower design overhead. This motivates

the first phase of our design space exploration. In addition, since the frequency is

a given constant value, Figure 6.7 is not able to reflect the impact of different clock

frequency.

Figure 6.7: Pruned Design Space for AlexNet Layer 5

To deal with the impact of frequency variant, we use the top 14 design options

from Figure 6.7 and perform P&R at the same time to realize the actual clock

frequency. Figure 6.8 shows a comparison of on-board results against the analytical

model of all 14 designs sorted by estimated throughput. As can be seen, our design

space exploration identifies 6 designs with the highest estimated throughput. It

means that those designs have the same, minimum computation overhead but adopt
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Table 6.2: Frequency and Resource Utilization

Model PE shape Freq. (MHz) LUT DSP BRAM FF

AlexNet (11,14,8) 270.8 57% 81% 45% 40%

VGG (8,19,8) 252.6 59% 81% 47% 40%

different data reuse strategies. This difference results in different clock frequencies

at the P&R stage of the design flow, and it is hard to be predicted in advance.

Although the assumed frequency cannot be achieved finally by the design flow, our

model perfectly matches the on-board results (< 2% error on average) by using the

real working frequency. This illustrates the accuracy of our analytical model.

Figure 6.8: Comparison of On-board Data against Analytical Model

Table 6.2 shows the working frequency, resource utilization, and the systolic array

design configuration we used for each CNN model as an order of PE row, column and

vector. We can see that the designs generated by our framework have high resource

utilization and suitable shapes that match most of layers in CNN models.

The performance of the two designs are shown in Table 6.3 and Table 6.4, respec-
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Table 6.3: Results of AlexNet

Layer 1 2 3 4 5 Avg.

Thrpt. 123.5 225.0 541.7 541.6 600.0 406.1

DSP Eff. 18.51 33.70 81.03 81.03 90.00 40.32

Table 6.4: Results of VGG

Layer 1 2 3 4 5 6 7

Thrpt. 223.86 450.11 600.27 601.69 601.57 602.44 602.44

DSP Eff. 36.36 72.73 96.97 96.97 96.97 96.97 96.97

Layer 8 9 10 11 12 13 Avg.

Thrpt. 602.42 602.83 602.83 602.49 602.49 602.49 561.38

DSP Eff. 96.97 96.97 96.97 96.97 96.97 96.97 89.11

tively. We can see that the overall performance for AlexNet [KSH12] and VGG [SZ14]

could achieve 406 GFlops and 561 GFlops. Most of the layers of the two CNN mod-

els could achieve near-peak performance. For layer 5 of AlexNet and layer 3˜13 of

VGG, we achieve more than 600 GFlops throughput as well as high DSP efficiency.

However, the throughput and DSP efficiency of AlexNet’s layer 1 is much lower than

other layers. We conclude two main reasons. First, layer 1 has only 3 large input

feature maps which makes the shape of layer 1 quite different from other layers so

that a common design for all layers including layer 1 is hard to find. As a result,

we folded layer 1 to have more small feature maps to make its configuration more

consistent with others.

The second reason is that the kernel size (11) of layer 1 is much larger than other
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layers (5 and 3). In order to obtain one design for all layers, our framework chose the

data reuse strategy that benefit other layers more. Although the selected data reuse

strategy is able to let other layers achieve high throughput, it causes the throughput

of layer 1 to be bounded by memory bandwidth.

Table 6.5: Comparison to State-of-the-art Implementations

[ZFZ16] [ZFZ16] [SCD16] Ours

Prec. 16-bit fixed 32-bit float 8-bit fixed 32-bit float

FPGA
Xilinx

VC709

Xilinx

KU060

Altera

Stratix-V

Intel

Arria 10

Freq. 150 MHz 200 MHz 120 MHz 270 MHz 253 MHz

CNN VGG VGG AlexNet AlexNet VGG

Thrpt. 488 Gops 96 GFlops 137 Gops 406 GFlops 561 GFlops

In addition, the layer 1 of VGG has a lower performance than other layers as

well. This is because the layer 1 image row number (16) is inconsistent with other

layers, and lead to low DSP utilization of PEs’ parallelism and pipelining. However,

VGG still has a better overall performance than AlexNet since it has a more regular

network shape that shows better scalability for its uniform hardware design.

We finally compare our optimal designs with state-of-the-art studies in Table 6.5.

As show in the table, our high throughput designs outperforms all these previous

results in convolutional layers. This is not only due to more available DSP resource

on the adoption FPGA chip, but also the high frequency that is achieved by our

scalable systolic array architecture. We note that the later work, PolySA [CW18],

adopts the similar approach that maps a user application to a systolic array archi-
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tecture and achieves the similar throughput on VGG [SZ14] (548 GFlops on Xilinx

Virtex UltraScale+TM VU9P FPGA). However, since PolySA leverages polyhedral

analysis [ZLC13] to represent computation patterns, it covers a more comprehensive

application domain than ours.

6.7 Conclusion

In this chapter, we demonstrate that the challenges of design space exploration au-

tomation could be easily resolved by sacrificing the generalization. Specifically, by

limiting the application domain to convolutional neural networks (CNNs), we are

able to design and implement a high-throughput systolic array architecture template

on FPGAs. Accordingly, we propose a compiler that maps a user-given CNN in

a nested loop to the architecture template to guarantee the throughput. Since we

could analytically model the throughput and resource utilization of the architecture

with high accuracy (∼95%), the design space exploration strategies are effective and

efficient. In addition, we leverage source-to-source code transformation to automate

the nested loop to the systolic array mapping process so we do not require human

efforts during the DSE. Evaluation results show that our designs for AlexNet and

VGG CNN models could on average 406 and 561 GFlops on Intel Arria 10 device.
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CHAPTER 7

Conclusion

This dissertation is dedicated to simplify the design optimization process of using

HLS for FPGAs. Based on the current challenges and limitations of commercial

HLS tools, we design and implement an efficient design space exploration framework

with the Merlin compiler [CHP16a]. The framework uses an effective, comprehen-

sive design space representation to create a design space based on Merlin pragma

combinations. It then searches for the best design point within the created design

space using a proposed algorithm. The algorithm is inspired by gradient descent with

several HLS-specific optimization. In addition, to facilitate the search efficiency, we

design an algorithm to identify the design bottleneck with the help from Merlin HLS

report. As a result, we can identify a subset of design parameters to focus on by

running only one design point. The evaluation result shows that the complete DSE

framework achieves 93.78% performance to the manual design on geometric mean.

Based on the complete DSE framework, we further support other domain-specific

frameworks with domain specific languages. We integrate the DSE framework to

S2FA, a Spark-to-FPGA Accelerator framework, to optimize the accelerator design

generated from user-written Scale code for Spark [ZCD12]. By considering the par-

allel patterns from the Spark programming model, the design space is able to be

reduced by orders of magnitude. In addition, we also use the DSE framework to
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automate a part of HeteroCL [LCH19] scheduling primitives so that users can fo-

cus on platform independent loop transformations to eliminate data dependency.

We believe that the two showcases demonstrate the usability of the proposed DSE

framework for its flexibility and extensiblility, as it can be easily integrated to other

compilation frameworks.

Subsequently, we study the trade-off between the generalization and DSE ef-

ficiency by proposing composable, parallel and pipeline (CPP) micro-architecture.

CPP considers common optimization used by board classes of designs on FPGAs to

be a general architecture template. We show in the experiment that we are able to

find the best design point under the CPP micro-architecture within an hour using

the derived analytical models.

Finally, we present a CNN compilation framework to demonstrate DSE in another

architecture template. When the underlying micro-architecture is determined for a

specific domain, the development of analytical models for performance and resource

utilization is promising and efficient. The design space can also be pruned according

to the characteristics of the domain. Combining the above two points, the exhaustive

search may be possible and the optimal design point is guaranteed to be found.
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