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ABSTRACT OF THE DISSERTATION

Efficient and Robust Shape Correspondence Methods

By

Rui Xiang

Doctor of Philosophy in Mathematics

University of California, Irvine, 2020

Professor Hongkai Zhao, Chair

In this work, we introduce two methods to handle nearly isometric shape correspondence

problem. The first method,Sparsity-Enforced Quadratic Assignment (SEQA), introduces a

novel local pairwise descriptor and then develops a simple, effective iterative method to

solve the resulting quadratic assignment through sparsity control. The pairwise descriptor

is based on the stiffness and mass matrix of finite element approximation of the Laplace-

Beltrami differential operator. The key idea of our iterative algorithm is to select pairs with

good correspondence as anchor pairs based on a new criterion we introduced called local

mapping distortion, and then solve a regularized quadratic assignment problem the neigh-

borhoods of corresponding selected anchor pairs through sparsity control. Various pointwise

global features with reference to these anchor pairs can be used to improve the dense shape

correspondence further. Inspired by the powerful ability of local mapping distortion on

selecting accurate anchor pairs, we further introduce the second method, Dual Iterative Re-

finement (DIR). It is a simple and efficient algorithm which combines dual features, spatial

and spectral, or local and global, in a complementary and optimal way. DIR first uses local

spatial feature, local mapping distortion to obtain anchor pairs which are used to determine

an appropriate dimension of the spectral space and the corresponding functional map. Then

the functional map is used to update a new correspondence. Both methods allow us to deal

with open surfaces, partial matching, and topological perturbations robustly. We use various

xi



experiments to show the efficiency, quality, and versatility of our methods on large data sets,

patches, and point clouds (without global meshes).
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Chapter 1

Introduction

1.1 Shape Correspondence

Geometric modeling and shape analysis is ubiquitous in computer vision [53, 49], computer

graphics [79, 44], medical imaging [69], virtual reality [39, 23], 3D prototyping and print-

ing [57], data analysi [71], etc [35, 8, 48, 68]. Shape correspondence [75, 81, 9] is a basic

task in shape registration, comparison, recognition, and retrieval. Unlike images, shapes do

not have a canonical representation domain or basis and do not form a linear space. More-

over, their embedding can be highly ambiguous even for intrinsically identical ones. Further

complications in practice include noise, topological perturbations (holes), partial shapes,

and lack of a good triangulation. These difficulties pose both modeling and computational

challenges for shape modeling and analysis [15, 54].

Given two manifolds M1 and M2 sampled by two point clouds P1 = {xi}ni=1 and P2 =

{yi}ni=1 respectively, the typical task of dense shape correspondence is to find a point-to-point

map ϕ between P1 and P2 as illustrated in Figure 1.1. ϕ admits an injective and subjective

correspondence as a permutation matrix P ∈ Πn = {Π ∈ {0, 1}n×n| Π~1 = ~1,ΠT~1 = ~1}.
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Figure 1.1: Shape correspondence of the same person of two poses.

In many applications, M1 and M2 are nearly isometric. In order to obtain an accurate

correspondence, the first step of most literature is to design desirable descriptors which

usually can be categorized as pointwise, or pairwise.

1.1.1 Pointwise Descriptor

Pointwise descriptor gives each point a feature vector. Suppose P1 and P2 have pointwise

feature matrix F1,F2 ∈ Rn×k where k is the feature dimension, P is usually obtained by

solving the following linear assignment problem (LAP).

arg min
P∈Πn

‖PF1 −F2‖2 = arg min
P∈Πn

< P,F2FT1 > (1.1)

The induced linear assignment problem 1.1 is usually solved by auction algorithm [8] with

complexity O(n2log(n)) in the descriptor space to find the dense point correspondence.

Nearest neighbor searching [33] can also provide an approximated solution with complexity

O(nlog(n)).
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Most Pointwise descriptors can be categorized as extrinsic (invariant under rigid transfor-

mation) [71, 28, 20, 60], or intrinsic (invariant under isometric transformation). Extrinsic

pointwise descriptors usually have difficulties producing accurate dense correspondence, es-

pecially if there is non-rigid transformation involved. Many intrinsic pointwise descriptors in

the space domain, such as geodesics distance signatures [75], heat kernel signatures [67], wave

kernel signatures [5], and in spectral domain using eigen-functions of the Laplace-Beltrami

operator (LBO) have been proposed [59, 42, 74, 13, 38, 39]. For example, functional maps [50]

aims to find proper linear combinations of truncated basis functions, e.g., first four eigen-

functions of the Laplace-Beltrami operator as illustrated in Figure 1.2, based on some prior

knowledge, e.g., given landmarks and/or region correspondence, as the pointwise descrip-

tor. As a generalization of Fourier basis functions from Euclidean domains to manifolds,

the eigen-system of LB operator provides a system of intrinsic features of the underlying

manifold in the spectral domain. Moreover, from lower modes to higher modes, LB eigen-

functions also provide a multi-scale characterization of the underlying manifold from coarse

to fine resolution. Although using spectral geometry removed possible non-rigid embed-

ding ambiguities, new ambiguities emerge in the spectral domain due to non-uniqueness of

the LB eigen-system, e.g., sign ambiguity for eigen-functions, the ambiguity of choosing a

basis for the LB eigen-space corresponding to a non-simple LB eigen-value (due to sym-

metry), the ambiguity of ordering for close eigen-values (due to small perturbations). To

handle these ambiguities and use spectral features accurately and robustly, a proper linear

transformation (a rigid transformation for exact isometry) needs to be found to align the

spectral basis between two shapes first. This linear transformation is typically computed

through some matching/correlation based on given (prior) correspondence, e.g., landmarks

[50, 3, 39]. High spectral modes need to be used to resolve fine details and acquire accurate

correspondence between two shapes. However, the higher the spectral mode, the less robust

or computationally stable it is to small perturbations.

To tackle the instability issue of using higher spectral modes directly, one natural multi-
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scale approach is to start from a correspondence at a coarse scale using a few low modes

and iteratively refine the correspondence at a finer and finer scale by adding more and

more, higher and higher spectral modes gradually. The primary motivation is that the lin-

ear transformation (a small matrix) on a coarse scale between two spectral spaces spanned

by a few low spectral modes can be determined efficiently and stably from an initial ap-

proximate or limited correspondence. Once low mode spectral features are aligned well, an

improved correspondence, especially between smooth parts of the two shapes, is likely ob-

tained. The improved correspondence is then used to determine the linear transformation

for the next iteration, which involves more and higher spectral modes. Such a multi-scale

idea for shape correspondence has been proposed in [39] for multi-scale registration using

rotation-invariant sliced-Wasserstein distance and in [46] as a Zoom-out process. However,

for the above straightforward multi-scale approach solely in the spectral domain, there are

two key issues. First, in each iteration, the determination of the linear transformation be-

tween the spectra spaces of two shapes using current correspondence of all points, many

of which are incorrect, indiscriminately might be problematic. The linear transformation

between two spectral spaces determined using all points from an inaccurate correspondence

will most likely lead to errors. These errors could be very significant and can cause either

a failure for later refinement or slow convergence shown in the appendix. The other issue

is the lack of a systematic and data-adaptive way to determine how many spectral modes

can be supported, given the current correspondence. Thus, it is hard to decide what is

the appropriate jump in the number of spectral modes for refinement after each iteration

that can achieve fast convergence. Previously, an increment of one mode was typically used

to maintain convergence in Zoom-Out [46], while a prefixed sequence of eigen-modes was

proposed in [39] based on the rule of thumb.

These intrinsic pointwise descriptors are typically non-local and require to solve certain

partial differential equations, e.g., the Laplace-Beltrami equation, on a well-triangulated

mesh. Hence they can be sensitive to topological perturbations and boundary conditions.

4



Figure 1.2: First four eigen-functions of Laplace-Beltrami operator on a shape

Moreover, pointwise descriptors based on a truncated basis in the spectral domain lose fine

details in the geometry; besides, there does not exist a clear and general guidance on where

to set the dimensional truncation.

1.1.2 Pairwise Descriptor

Pairwise descriptor prescribes some relation/similarity between each pair of points in the

data set. Suppose P1 and P2 have pairwise feature matrix Q1,Q2 ∈ Rn×n, P is usually

obtained by solving the following quadratic assignment problem (QAP) or graph matching

(GM).

arg min
P∈Πn

‖PQ1 −Q2P‖2 = arg min
P∈Πn

< P,Q2PQ1 > (1.2)

The induced quadratic assignment problem 1.2 is NP-hard [40]. There does not exist efficient

and effective algorithm to solve the original NP-hard problem. Most existing methods are

based on certain relaxation.

Using good pairwise descriptors, such as pairwise geodesic distance matrix [77] or kernel

functions [76], to find shape correspondence is usually more robust and accurate since the

matching needs to satisfy more and stricter constraints to minimize some distortion. Dif-
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ferent kinds of methods have been proposed to solve the QAP approximately in a more

computational tractable way. A sub-sampling method is introduced in [70]. Similarly, a

coarse-to-fine scheme [78] divides the whole process into several steps to reduce the com-

putation complexity. [63] explores the ability of genetic optimization to find the per-

mutation matrix that matching two normalized geodesic distance matrix. [24] proposes

a geodesic distance sparsity enforcement and combines spectral information. Other various

approaches [2, 11, 34, 41, 17, 22] also aims to find an efficient and effective relaxation. One

popular approach is to relax the nonconvex permutation matrix (representing pointwise cor-

respondence) constraint in the QAP to a doubly stochastic matrix (convex) constraint [2, 17].

Based on this common relaxation, [2] studies the theoretical guarantee of relaxing permuta-

tion matrix to doubly stochastic matrix under certain conditions of the pairwise descriptors

and also discusses the phenomenon of dropping non-negativity constrain. More theoretical

studies are introduced in general graph matching problem [25, 18].

Other than the NP-hard nature of QAP, another challenging problem in 1.2 is that most

pairwise descriptors and the permutation matrix are all dense. It is very common that

a point cloud contains over 10,000 points; hence in a general setting, e.g., using geodesic

distance matrix as a pairwise descriptor, one will need to precompute and store two huge

hundred thousands by hundred thousands geodesic distance matrices, and a hundred thou-

sands by hundred thousands permutation matrix. It is a tremendous challenge not only on

the computation cost but also on the storage capacity.

1.2 Our Result

We briefly introduce our two methods in this section and highlight the main contributions

of them. The first method is named as Sparsity-Enforced Quadratic Assignment (SEQA),

and the second method is named as Dual Iterative Refinement (DIR).
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Figure 1.3: Example of partial matching with topological changes using SEQA. Topological
changes are highlighted by red circles. Each patch in the second column is mapped onto
the entire shape in the first column, and the non-blue area is the ground truth map. Extra
points in the entire shape are colored in blue. The third column is the mapping result using
SHOT, and the last column is the mapping result from our method.

1.2.1 Sparsity-Enforced Quadratic Assignment

In this work, we propose a novel approach for dense shape correspondence for two nearly

isometric surfaces based on a new local pairwise descriptor and an efficient iterative algorithm

with sparsity control for the doubly stochastic matrix to solve the corresponding relaxed

QAP. The main novelty and contribution of our proposed method include:

• A local pairwise descriptor using the combination of the stiffness (corresponding to the

finite element approximation of the LBO) and the mass matrix (corresponding to local

area scaling). It only involves interactions among local neighbors, which results in the

sparse nature of theses two matrices, and they are extremely simple to compute. Note

that all local interactions are coupled like heat diffusion through the whole shape. In

other words, global and full spectral information of LBO is embedded implicitly in

our pairwise descriptor. Due to the locality, the descriptor enjoys stability and good

performance for open surfaces and with respect to topological perturbations, as shown

in Figure 1.3. The sparsity of the pairwise descriptor also reduces the computation

and storage cost for the relaxed QAP.

7



• An efficient iterative algorithm with sparsity control for the resulting relaxed QAP. We

first use a local mapping distortion measurement defined as local mapping distortion

to select point pairs from both shapes with good correspondence as anchor pairs for

the next iteration. Using regularity of the map, we enforce that the neighborhoods

of an anchor pair can only map to each other which induces a sparsity structure in

the doubly stochastic matrix. It results in a significant reduction of variables and

hence, the computation and storage cost in each iteration. As we demonstrate in the

numerical experiments, the number of high-quality anchor pairs grow quickly with

iterations, which forms a virtuous cycle to improve the quality of the correspondence

map gradually.

• Local mapping distortion criterion provides a quantitative measurement of the quality

of each pair correspondence. Various methods, e.g., heat kernel signature, geodesic

distance signature, can easily take advantage of these anchor pairs to further improve

the whole mapping quality as a post-processing approach. These methods initially

require human annotated landmarks, while in our algorithm, no human annotated

landmark is needed.

• All of the novel ingredients in our algorithm, e.g., sparse pairwise descriptor, sparsity-

enforced QAP, and local mapping distortion criterion, can be easily coupled with other

algorithms to improve their performance and reduce computation cost. The combi-

nation of our local mapping distortion criterion and the well-known functional map

results in our second method Dual Iterative Refinement.

1.2.2 Dual Iterative Refinement

In this work, we propose a simple and efficient dual iterative refinement strategy. This

method combines dual information, such as spatial and spectral (or local and global), in

8



a complementary and optimal way for dense correspondence between two nearly isometric

shapes. The main novelties and contributions of our proposed method include:

• We propose to use dual information (spatial and spectral, or local and global) to select

anchor pairs and to guide the iterative refinement process. The key idea is to use a

zoom-in operation to measure the mapping quality at each point quantitatively based

on local mapping distortion. This local spatial information (global in the spectral

domain) enables us to choose anchor pairs from both shapes that are well-matched at

the current stage.

• We design a data-adaptive way to determine the multi-scale path for the refinement

process. Once anchor pairs are selected, they are used to 1) find the maximal dimen-

sion of spectral modes that can be robustly and accurately determined by these anchor

pairs based on their distribution in spectral space (e.g., using singular value analysis

on their correlation matrix), and 2) find the linear transformation that aligns spectral

features at finer scale based on these anchor pairs. This remarkable simple strategy

addresses the aforementioned two critical issues in previous multi-scale approaches. It

allows one to optimally utilize all and only well-matched pairs in the current step to

jump to the next finer scale in an accurate, efficient, stable, and data-adaptive way. We

use extensive numerical experiments to show that our simple strategy, DIR, outper-

forms start-of-the-art model-based methods in terms of both accuracy and efficiency

markedly.

• We explore extensions to different applications. By choosing appropriate and application-

specific dual features, DIR has the flexibility to deal with different scenarios, such as

raw point clouds, patch, and partial matching (as illustrated in Figure 1.4). We defer

a detailed explanation of this Figure in Section 3.5.

The rest of this paper is organized as follows. In Chapter 2, we discuss SEQA in detail and

9



illustrate corresponding experimental results; in Chapter 3, we discuss DIR in detail and

illustrate corresponding experimental results.
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Figure 1.4: Top: First row shows examples from SHREC’16 holes, and second row shows
examples from SHREC’16 cuts. We map the partial shapes in gray to full shapes in blue.
Bottom: Geodesic error on SHREC’16 cuts and holes data set with comparison to other
state-of-the-art methods.
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Chapter 2

Sparsity-Enforced Quadratic

Assignment

In this chapter, we explain our Sparsity-Enforced Quadratic Assignment (SEQA) method in

detail. We introduce our quadratic assignment model based on a local pairwise descriptor in

Section 2.1 and then present an efficient iterative algorithm to solve the quadratic assignment

problem with sparsity control in Section 2.3. In Section 2.6, we extend our method to point

cloud data and patch matching. Numerical experiments are demonstrated in Section 2.7 and

conclusion follows.

2.1 Quadratic Assignment Model Using Local Pairwise

Descriptors

Given two manifolds M1 and M2 sampled by two point clouds P1 = {xi}ni=1 and P2 =

{yi}ni=1 , and Q1 ∈ Rn×n and Q2 ∈ Rn×n as two given pairwise descriptors, e.g., pairwise

geodesic distance, between two points in P1 and P2 respectively. The shape correspondence

12



problem can be casted as the following QAP as discussed in Section 1.1.2:

arg min
P∈Πn

‖PQ1 −Q2P‖2 = arg min
P∈Πn

< P,Q2PQ1 > (2.1)

where P ∈ Rn×n is a permutation matrix with binary {0, 1} elements and each row and

column sum is 1. Usually, most literature [10, 11, 76] uses Frobenius norm in equation 2.1.

Since the QAP problem is NP-hard [64], it is common to relax the permutation matrix in (1.2)

to a doubly stochastic matrix, where D ∈ Dn = {D ∈ Rn×n| D~1 = ~1, DT~1 = ~1, Dij ≥ 0}, in

the shape registration context [2, 11, 34, 41]. The doubly stochastic matrix representation

not only convexifies the original QAP (1.2) but also provides a more general probabilistic

interpretation of the map. The correspondence map of a point is spread as a probability

distribution on the target shape. It is particularly useful in situations where two shapes do

not have the same number of points or are sampled differently; in other words, where one to

one correspondence map does not have a proper physical interpretation.

However, there remain at least two major computational challenges to solve the relaxed QAP

for correspondence problems between shapes of relatively large size. First, the usual choice

of pairwise descriptors, such as pairwise distance [77], heat kernel [14], and wave kernel [5]

are represented as dense matrices and so are the doubly stochastic matrix. It can pose a

storage and memory issue when two shapes are of large size even before conducting any

computation. E.g., to store a full 40,000 by 40,000 dense matrix with 16-bit accuracy, it will

take 12 GB RAM. When dealing with original relaxed QAP of size 40,000 by 40,000, there

are three such matrices to be stored, which will cost 36 GB RAM in total.

In this case, certain approximation has to be used, such as sub-sampling methods which

need remesh process and loses resolution [70], truncation of pairwise descriptors or spectrum

approximation [3] which loses fine details in the shape, usually hard to decide what is the

approximate spectral dimension, and may lead to accuracy problems due to the approxima-
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tion error. Computationally, single dense matrix multiplication of the pairwise descriptor

matrix and the doubly stochastic matrix requires O(n3) operations, where n is the number

of points. When the number of vertices exceeds 10,000, the cost of one single matrix mul-

tiplication computation is already huge. More seriously, the relaxed QAP is usually solved

by an iterative method. Due to the coupling of all elements of the doubly stochastic ma-

trix, i.e., every element is affected by all other elements, elements corresponding to good

matching can be influenced by those corresponding to the wrong matching initially, which

can cause a slow convergence of the optimization process, especially when the initial guess is

not good enough. Furthermore, for data with noise or distortion, the QAP may propagate

the distortion or noise in one region to other regions and cause the solution to the QAP

unsatisfactory. Lastly, the permutation matrix recovered from the doubly stochastic matrix

may be far from the true solution due to the relaxation alongside noise in real data.

To tackle the aforementioned challenges for the QAP, we propose the following relaxed

quadratic assignment using sparse pairwise descriptors, introduce a criterion to detect anchor

pairs with good correspondence, and develop an efficient iterative algorithm with sparsity

control for the doubly stochastic matrix using those high-quality, dense anchor pairs. These

anchor pairs are then used in the final post-processing step to construct the full correspon-

dence.

As a summary, the key ideas of SEQA are as follows:

• Sparse pairwise descriptor

• Relaxed QAP with Dynamically sparsity control

• Post Processing

14



2.2 Sparse pairwise descriptors

Let (M, g) be a closed 2-dimensional Riemannian manifold, the LBO is defined as:

∆(M,g)ψ =
1√
G

2∑
i=1

∂

∂xi
(
√
G

2∑
j=1

gij
∂ψ

∂xj
) (2.2)

where gij is the inverse of gij and G = det(g) [16]. LBO is an elliptic and self-adjoint operator

intrinsically defined on the manifold; thus, it is invariant under isometric transformation. The

LBO eigen-system satisfies:

∆(M,g)ψi = −λiψi,
∫
M
ψiψjds = δij (2.3)

and uniquely determines the underlying manifold up to isometry [7]. Spectral geometry is

widely used in shape analysis [59, 42, 74, 67, 13, 38, 50, 39, 65].

In practice, M is discretized by a triangular mesh T = {τ`} with vertices V = {xi}ni=1

connected by edges E = {eij}. For each edge eij connecting points pi and pj, we define the

angles opposite Eij as angles αij and βij. Denote the stiffness matrix as S, given by [56, 58]

Sij =


−1

2
[cotαij + cotβij] i ∼ j∑
k∼i S(i, k) i = j

(2.4)

where ∼ denotes the connectivity relation by an edge. The mass matrix M is given by

Mij =


|τ1|+|τ2|

12
i ∼ j∑

k∼iM(i, k) i = j

(2.5)

where |τ1| and |τ2| are the areas of the two triangles sharing the same edge ij. On the

one hand, the eigen-system of LBO can be computed as Sψ = λMψ, which suggests S and
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M implicitly contain the spectrum information of LBO which can be used to determine a

manifold uniquely up to isometry. On the other hand, it has been rigorously shown a global

rigidity theorem on the Stiffness matrix, i.e. two polyhedral surfaces share the same Stiffness

matrices if on only if their corresponding metrics are the same up to a scaling [27]. Note that

the mass matrix fixes the scaling factor. Furthermore, both of these two matrices are local

which are not sensitive to boundary conditions or topological perturbations. Additionally, to

compute a Stiffness matrix and Mass matrix for a given mesh is very fast without involving

solving any numerical PDE; most importantly, both of them are sparse which make them

practical to be stored and computed with when vertices number is large.

Therefore, we expect that S and M together can serve as good sparse pairwise descriptors

in a QAP formulation for shape correspondence.

2.3 Relaxed QAP with sparsity control

2.3.1 Relaxed QAP for shape correspondence

Given two surfaces M1 and M2 discretized by triangular meshes with vertices {xi}ni=1 and

{yi}ni=1 respectively. We denote the corresponding stiffness matrices by S1,S2 and the cor-

responding mass matrices by M1 and M2. Representing a point-to-point mapping between

M1 and M2 by a permutation matrix P ∈ Πn, we propose the following QAP problem to

construct the point-to-point mapping between these two surfaces:

min
P∈Πn

1

2
‖PS1 − S2P‖2

F +
µ

2
‖PM1 −M2P‖2

F , (2.6)

Where µ is a balancing parameter. The stiffness matrix captures local geometric information,

and the mass matrix captures local area information of the discretized surface. Both matrices
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have a sparsity structure with the number of nonzero entries linearly scaled with respect to

the number of points. This nice sparse property of both matrices already alleviates the

memory issue for large data sets significantly. Besides, since both descriptors only capture

local geometric information, it potentially allows the proposed model to handle the partial

matching problem, open surfaces, and topological changes.

Since the proposed QAP is NP-hard, we relax the permutation matrix to a doubly stochastic

matrix representation D ∈ Dn = {D ∈ Rn×n| D~1 = ~1, DT~1 = ~1, Dij ≥ 0} of the mapping:

min
D∈Dn

1

2
‖DS1 − S2D‖2

F +
µ

2
‖DM1 −M2D‖2

F (2.7)

As an advantage of this relaxation, each row of D can be interpreted as the probability

of a point on M1 mapping to points on M2. Now the relaxed QAP (2.7) is convex and

can be solved by well-known algorithms in convex programming. Here, we use projected

gradient descent algorithm with Barzilai-Borwein step size solve this optimization problem

(see details in Section 2.5).

2.3.2 Dynamically sparsity-enforced QAP

As we pointed out before, the relaxed QAP problem (2.7) is still difficult to solve if dense dou-

bly stochastic matrices are used in the optimization process. To overcome those difficulties,

we propose an iterative algorithm that:

• Selects candidates for well-matched pairs as anchor pairs.

• Enforces a dynamic sparsity structure of the doubly stochastic matrix by using the

regularity of the map, i.e., nearby points on the source surface should be mapped to

nearby points on the target surface, in the neighborhood of those paired anchor pairs

in each iteration.
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These two ingredients both reduce the computation cost in each iteration (only sparse matri-

ces are involved) and increase the number of well-matched pairs quickly since only candidates

for well-matched points are used to guide the iterations.

Local mapping distortion Test

To define a desired sparsity structure for the doubly stochastic matrix D in the relaxed

QAP (2.7), we first need to detect candidates for well-matched pairs, or equivalently to

remove those definitely ill-matched points, dynamically in each iteration. Motivated by the

Gromov-Wasserstein distance [47] and the unsupervised learning loss in [29], we introduce

the following criterion to quantify local mapping distortion of a mapping at a point on the

source manifold.

Definition 1 (Local mapping distortion criterion). Let φ : M1 → M2 be a map between

two isometric manifolds. For any point x ∈ M1, consider its γ-geodesic ball in M1 as

Bγ(x) = {y ∈M1 | dM1(x,y) ≤ γ}. local mapping distortion of φ at x is defined as:

Fγ(φ)(x) =
1

|Bγ(x)|

∫
y∈Bγ(x)

DEφ(x,y)dy (2.8)

where DEφ(x,y) =
1

γ
|dM1(x,y) − dM2(φ(x), φ(y))| is the difference between the geodesic

distance dM1 , dM2 on the two corresponding manifolds, and |Bγ| is the volume of Bγ.

We have the following straightforward properties:

1. If φ is an isometric map, Fγ(φ)(x) = 0,∀x ∈M1, γ > 0.

2. If Fγ(φ)(x) = 0,∀x ∈M1 for some γ > 0, φ is isometric.

In discrete setting, M1 is represented as {xi}ni=1, M2 is represented as {yi}ni=1and the map

φ is discretized as a one-to-one map between {xi}ni=1 and {yi}ni=1. We use the following
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discrete approximation:

Fγ(φ)(xi) ≈
∑

xj∈Bγ(xi),xj 6=xi
M1(j, j)DEφ(xi,xj)(∑

xj∈Bγ(xi),xj 6=xi
M1(j, j)

) (2.9)

to quantify how much φ is distorted locally and use it to prune out those points that have

large local mapping distortion in the next iteration for the QAP. Given the ground truth map,

local mapping distortion is very small at most regions except for area where non-isometric

distortion is large as shown in Figure 2.1. In practice, we specify a number ε and view xi

as a candidate of well-matched anchor pairs for φ if F(φ)(xi) < ε. Together with φ(xi), we

extract a collection of anchor pairs {(xi, φ(xi))}ki=1 which are used to define sparsity pattern

in the doubly stochastic matrix D dynamically in the relaxed QAP (2.7). It is important to

note that current anchor pairs will be re-evaluated and updated in later iterations.

Remark: The computation complexity of local mapping distortion is O(n) as we only need

to check a fixed radius neighborhood for each point. Moreover, by normalizing the distance

according to the local element area, the local mapping distortion is robust with respect to

global scaling as well as local sampling variation. Figure 2.1 shows that, for the ground truth

correspondence, local mapping distortion is very small almost everywhere except in regions

where non-isometric distortion is large. Hence the proposed local mapping distortion may

also serve as a good unsupervised error metric when ground truth is not available.

Dynamic Sparsity for Doubly Stochastic Matrices

Suppose a collection of anchor pairs {(xi, φ(xi))}ki=1 have been selected using the local map-

ping distortion test. In the next iteration, a sub-QAP only involving points in the neigh-

borhood of selected anchor pairs are solved. We further enforce a sparsity structure on the

doubly stochastic matrix for the sub-QAP based on the following two rules.
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Figure 2.1: Ground Truth local mapping distortion: According to the color map, it is obvious
that the value of local mapping distortion is large at the places where non-isometric distortion
is large.

1. Each anchor pairs is mapped to its corresponding anchor pairs;

2. Points in the neighborhood of an anchor pair on the source surface are mapped to the

neighborhood of the corresponding anchor pairs on the target surface.

Let N (x) denote the neighborhood of a given point on a manifold, e.g., a geodesic ball

Br centered at x on the manifold, or simply points in the l-th ring of x on a triangular

mesh. Define N ({xi}ki=1) =
⋃k
i=1N (xi) and N ({φ(xi)}ki=1) =

⋃k
i=1N (φ(xi)). For the

doubly stochastic matrix D in the relaxed QAP (2.7), we only update variables with indices

corresponding to the set N ({xi}ki=1) × N ({φ(xi)}ki=1) together with the following sparsity
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constraints

Dt,s =


δφ(xs),yt , if xs ∈ {xi}ki=1

0, if xs ∈ N (xi) and yt /∈ N (φ(xi))

0, if yt ∈ N (φ(xi)) and xs /∈ N (xi)

. (2.10)

By limiting the optimization region and enforcing the previous two sparsity constraints,

the number of variables in the QAP problem after the sparsity enforcement is significantly

reduced from O(n2) to O(n). This can dramatically reduce computation cost. Moreover,

since the anchor pairs are fixed in one iteration, it will no longer be influenced by other points

in the current optimization process; on the contrary, it will enforce a positive influence on

the neighboring points and rest points in a propagation sense.

In practice, we always choose the size of Bγ(x) in the distortion test smaller than the size of

sparsity control neighborhood N (x) to allow the growth of anchor pairs in the next iteration.

In our experiments, we choose Bγ(xi) as points included in the second ring of xi and N (xi)

as points included in the fourth ring of xi. The larger Bγ is, the more precise anchor pairs

will be; the larger sparsity neighborhood N (x) is, the faster the number of anchor pairs

grows. However, computation cost also increases for each QAP iteration when Bγ(x) and

N (x) become larger since the doubly stochastic matrix is less sparse.

Once the sparsity regularized D is obtained, we update the point-to-point mapping φ by

choosing the largest element in each row. Then, we find a new collection of anchor pairs

by the distortion test based on the updated φ. Figure 2.2 illustrates an example of this

procedure in the first 5 iterations.

Ideally, one should grow anchor pairs until all points are covered. However, because of noise

and/or non-isometry, the growth of high-quality anchor pairs usually slows down after a
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Figure 2.2: Example of the growth of anchor pairs. Red points in each column from left to
right represent the location of anchor pairs selected by local mapping distortion test from
iteration 1 to 5.

few iterations. Two point clouds describing two isometric manifold may not have exactly

the same stiffness matrix and mass matrix up to a permutation. Moreover, even the exact

solution of QAP (1.2) may not produce a desirable result. For some shape with a relatively

large noise, the growth of anchor pairs may stop before covering all points. To balance

between efficiency and accuracy, we find that five iterations of relaxed QAP (2.7) is good

enough to find enough high-quality anchor pairs. Then a post-processing step is used to

construct the correspondence for the remaining points with the help of matched anchor

pairs. In some sense, we exhaust the usage of local feature (our sparse pairwise descriptor)

first and then turn to global feature (post-processing). The main belief is that only relying on

features under the same scale, either local or global, is not good enough for nearly isometric

shape correspondence. A robust and accurate scheme should combine the benefits from both

local and global features.
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2.4 Post Processing

The aforementioned sparsity enforced quadratic assignment model based on local features

is effective in growing anchor pairs from initial seed points in the regions where there is no

significant non-isometric distortion. However, for regions where there is significant distortion,

such as near fingertips or elbow regions of humans in different poses, local features may not

be enough to produce satisfactory results.

To construct a full correspondence and improve mappings in those regions, one can use global

pointwise descriptors with reference to those already well-matched anchor pairs. There are

various options for the final post processing step. For example, we use Heat Kernel Signature

(HKS) [67] for closed surfaces in our experiments.

To use HKS as a point-wise descriptor, we first need to compute the heat kernel. Given a

compact manifold M1, the heat kernel are fundamental solutions to the heat diffusion,

∂u(t, x)

∂t
= ∆M1u(t, x), with u(0, x) = u0(x) (2.11)

where u : [0,+ inf)×M1 → R. The solution of heat diffusion is given by

u(t, x) =

∫
M1

k(t, x, y)u0(y)dy, k(t, x, y) =
∑
i

eλitφi(x)φi(y) (2.12)

where φ and λ are eigen-functions and eigen-values of Laplacian operator. If we apply the

heat kernel on delta functions at point pi with time t, it is equivalent to measuring heat

distribution after time t with a single heat source at point pi. Hence HKS can provide

pointwise heat feature obtained from each landmark, as shown in Figure 2.3. The choice

of time parameter t will influence the quality of the mapping. Smaller t emphasizes the

relationship between nearby heat source while larger t involves more information generated

by far-away heat sources. Since the landmarks we pick are likely to be exact, so here we
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Figure 2.3: Example of the diffusion of heat from a source point. Red point denotes the heat
source and color indicates the temperature at each point after some time.

always choose a relatively large t, such that all the heat sources can have a certain influence

on the leftover points.

LetH1(x,x′, t) andH2(y,y′, t) denote HKS onM1 andM2 respectively. Given {xi, φ(xi)}`i=1

as the (sub)set of high quality anchor pairs obtained from solving the QAP (2.7), we con-

struct pointwise descriptors of length ` for those x ∈ M1,y ∈ M2 not in the anchor pair

set as {H1(x,xi, t)}`i=1, {H2(y, φ(xi), t)}`i=1. Then we simply perform a nearest neighborhood

search in this descriptor space to find the correspondence for non-anchor pairs.

Alternatively, other global pointwise features can also be used depending on different appli-

cation scenarios. For example, for patches, we use geodesic distance to the chosen anchor

pairs on the corresponding surfaces as the pointwise descriptor since it is more stable to the

artificial boundary and topological changes.
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2.5 Numerical Algorithms

We use projected gradient descent with Barzilai-Borwein step size [6], summarized in Al-

gorithm 2.1, with the dynamic sparsity constraints (2.10) in each iteration to solve (2.7).

The initial doubly stochastic matrix D0 can be a random matrix or using the initial guess

provided by SHOT feature [71] satisfying the sparsity constraint by projection (2.19).

The SHOT feature only needs to be computed once at the beginning to provide the initial

doubly stochastic matrix D0 and select anchor pairs for the first iteration. In later iterations,

initial guess can be provided by projecting D from the previous iteration according to the

new sparsity constraint.

Algorithm 2.1 Projected gradient decent for (2.7)

repeat
1.Yk+1 = Dk − αk∇D(‖DkS1 − S2Dk‖2

F + µ‖DkM1 −M2Dk‖2
F )

2.Dk+1 = arg minD∈Dn ‖D − Yk+1‖2
F

until

Remark. The uniqueness of the projection step in Algorithm 2.1 can be proved as follows:

Proof. We want to show that there exists a unique minimizer for the problem

minP‖P − T‖2
F , s.t P~1 = ~1, P T~1 = ~1, P ∈ Rn×n (2.13)

The Lagrangian of this problem is

L = ‖P − T ‖2
F + λ < P~1−~1,~1 > +µ < P T~1−~1,~1 > (2.14)

25



Then the KKT condition will be
P − T + λ ·~1T + 1 · µT

P~1 = ~1

P T~1 = ~1

(2.15)

This system is underdertermined, there exist infinite solutions as long as they satisfies n −

|T |+ n|λ|+ n|µ| = 0. However we may assume that |λ| = a
n
(|T | − n) and |µ| = b

n
(|T | − n),

where a+ b = 1. Hence P is uniquely defined by

P = T − 1

n
(T ·~1−~1) ·~1T − 1

n
~1 · (T T ·~1−~1)T +

1

n2
(|T | − n) ·~1 ·~1T (2.16)

Note that we only update entries of D corresponding to those points in the neighborhood of

selected anchor pairs N ({xi}ki=1)×N ({φ(xi)}ki=1) and perform the projection on the set of

doubly stochastic matrix D satisfying the sparsity constraint (2.10). Let C be the indicator

matrix for the sparsity constraint

Ct,s =


δφ(xs),yt , if xs ∈ {xi}ki=1

1, if xs ∈ N (xi) and yt ∈ N (φ(xi))

0, otherwise

. (2.17)

The solution to the projection step in Algorithm 2.1

Dk+1 = arg min
D∈Dn

‖D − Y ‖2
F , s.t. (2.10) (2.18)
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is given by

Dk+1 =
(
Y +

|YC| − |C|
|C|2

~1~1T − (Y T

C
~1−~1)� ~c~1T −~1((YC~1−~1)� ~r)T

)
C

(2.19)

where (·)C = (·)�C, |·| = ~1T (·)~1, C~1 = ~r, CT~1 = ~c and �, � are Hadamard product (element-

wise product) and Hadamard division (element-wise division). We further relax our problem

by neglecting the nonegative constraint as suggested in [1]. This strategy further reduces

the computation cost without causing any problem in all of our experiments.

Our iterative method for the relaxed QAP (2.7) is summarized in Algorithm 2.2. Starting

from an initial point-to-point map φ0 (or converted from an initial doubly stochastic matrix),

the three steps in each iteration are:

• Update the set of anchor pairs using (2.9);

• Update the doubly stochastic matrix by Algorithm 2.1 with sparsity constraint based

on updated anchor pairs;

• Convert the doubly stochastic matrix to an updated point-to-point map by choosing

the index of the largest element in each row.

Note that all anchor pairs are updated and improved (by decreasing local mapping distortion

tolerance ε) during the iterations. Geometrically, our iterative method is like matching

by region growing from anchor pairs. The local mapping distortion criterion allows us to

efficiently and robustly select a few reasonably good anchor pairs from a fast process (but

not necessarily accurate dense correspondence), such as SHOT. Then anchor pairs will grow

as well as improve due to gradually diminishing local mapping distortion tolerance during

iterations. In our experiments, we find enough high-quality anchor pairs after five iterations

by decreasing ε from 5 to 1. Then we use these anchor pairs to construct the correspondence

of remaining points in the final post-processing step as described in Section 2.4.
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Algorithm 2.2 Iterative method for relaxed QAP with dynamic sparsity control

Input a point-to-point map φ0, iteration steps n, {εi}n1 and parameter µ.
repeat

1. Find anchor pairs {(xi, φk(xi)) | F(φk)(xi) < εk}. Define N k
1 = N ({xi}ki=1) and

N k
2 = N ({φk(xi)}ki=1).

2. Compute Dk+1 by Algorithm 2.1 with sparsity constraint (2.10) on N k
1 ×N k

2 .
3. Update φk+1(xs) = yt, where t = arg maxDk+1(s, :).

until n steps are reached

Since we start with a relatively large local distortion tolerance for initial anchor pairs, our

method is quite stable with respect to the initialization. Moreover, as we decrease the

tolerance with iterations, anchor pairs selected earlier can be updated in later iterations. We

remark that the above algorithm can be straightforwardly extended to shape correspondence

between two point clouds with different sizes by using a rectangular doubly stochastic matrix

with the right dimension.

2.6 Discussion

2.6.1 Point cloud matching

We can easily extend our method to point clouds, raw data in many applications, without a

global triangulation by constructing the stiffness and mass matrices at each point using the

local mesh method [37] with an adaptive-KNN algorithm.

In [37], the local connectivity of a point p on the manifold M is established by constructing a

standard Delaunay triangulation in the tangent plane at p of the projections of its K nearest

neighbors. However, the classical KNN with fixed K is not adaptive to local geometric

feature size or sampling resolution, which may lead to a loss of accuracy, as shown in Figure

2.4. So we introduce an adaptive-KNN.
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Figure 2.4: Incorrect connectivity caused by traditional KNN. Red points should not be
connected. But traditional KNN will connect them because points are close in the embedding
space, which will cause error in later diffusion process.
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For neighborhood N (i) of pi formed by traditional KNN, the local normalized covariance

matrix P of this patch is defined as:

P =
∑

pj∈N (i)

(pj − c)T (pi − c) (2.20)

Where c = 1
|N (i)|

∑
pj∈N (i) pj is the local barycenter. The eigen-vector (ei1, e

i
2, e

i
3) of P forms an

orthogonal local frame of the patch, and corresponding eigen-value (λi1, λ
i
2, λ

i
3), λi1 ≥ λi2 ≥ λi3,

reflects the sum of the projections of all centralized points in each eigen-vector direction

normalized by number of points. Since we want our local patch to be as flat as possible,

the local patch should be constrained mostly in a two-dimensional manifold which means

the last eigen-value should not be too large. In order to get rid of the influence the area of

different patches, we further normalize λi3 by λi1. Specifically, we set a threshold on R =
λi3
λi1

which is invariant of local density and patch area to identify flat and smooth local patches.

The algorithm starts with a large K and gradually shrinks the size of K until the ratio R

is smaller than a certain threshold of r, as shown in Algorithm 2.3. Our Adaptive KNN

performs better than traditional KNN in the diffusion process, as shown in Figure 2.5.

Algorithm 2.3 Adaptive KNN

Given maximum neighborhood size K, eigen-value ratio threshold r and shrink size m, for
point pi ∈ P with initial neighborhood points set N0(i) of size K
Initialization:
1.Compute local covariance matrix P0

2.Comute R = λmin(P0)
λmax(P0)

while R ≥ r do
1.Update Nk+1(i) by excluding furthest m points from Nk(i)
2.Update local covariance matrix Pk+1

3.Update R = λmin(Pk+1)

λmax(Pk+1)

end while
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(a) Heat Diffusion using traditional KNN

(b) Heat Diffusion using adaptive KNN

Figure 2.5: Heat diffusion at tail part (indicated in red circle) is improved a lot by using our
adaptive KNN to construct the mesh. Red dot represents the heat source and warmer color
with higher temperature.
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2.6.2 Patch/partial matching

In real applications, well-sampled data for 3D shapes are not easy to obtain. Instead, holes,

patches, or partial shapes are more common in real data. Correspondence between shapes

with topological perturbations, artificial boundaries, and different sizes are difficult for meth-

ods based on global intrinsic descriptors in general. For example, the spectrum of LBO is

sensitive to boundary conditions and topological changes.

However, since our method is based on local features, the effect of boundary conditions and

topological perturbations is localized. Hence our method can be directly applied to those

scenarios with excellent performance. For example, our iterative method for the relaxed

QAP using anchor pairs and sparsity control fits the smaller patch into the larger one nicely

for partial matching (see Figure 1.3). For post processing in patch matching, we switch from

HKS to geodesic distance signature since HKS is sensitive to boundary conditions.

2.7 Experiment Results

We evaluate the performance of our method through various tests on data sets from TOSCA

[12] and SCAPE [4] and on patches extracted from TOSCA. All inputs for our tests are

raw data without any preprocessing, i.e., no low-resolution model or pre-computed geodesic

distance. Experiments are conducted in Matlab on a PC with 16GB RAM and Intel i7-6800k

CPU. The result of our method using mesh input is denoted as the mesh method, and the

result of our method without using mesh is denoted as point cloud method.

Error Metric Suppose our constructed correspondence maps x ∈ M1 to y ∈ M2 while

the true correspondence is x is to y∗, we measure the quality of our result by computing the

geodesic error defined by e(x) =
dM2

(y,y∗)

diam(M2)
, where diam(M2) is the geodesic diameter ofM2.
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Figure 2.6: Geodesic error and cumulative density function of local mapping distortion for
4 sample pairs from the SCAPE data set (1st row); Original shape and corresponding local
mapping distortion heat map for sample 1 to 4 (2nd row).

local mapping distortion defined in (2.8) can also serve as an unsupervised error metric to

measure the quality of a map. As shown in Figure 2.6, it’s clear that local mapping distortion

decreases as the geodesic error decreases, which indicates that local mapping distortion can

serve as a good unsupervised metric to quantify the approximate isometry.

TOSCA The TOSCA data set contains 76 shapes of 8 different classes, from humans to

animals. The number of vertices varies from 4k to 50k. We use 5 iterations to grow the

set of anchor pairs. The neighborhood used for local mapping distortion test for selecting

anchor pairs is the second ring, and for sparsity control is the fourth ring. The distortion

threshold decreases equally during the iterations from 5 to 1; the gradient descent step size

in Algorithm 2.1 is 75; we approximate the heat kernel by 300 eigen-functions of the LBO

with a diffusion time t = 50 in the post-processing step. For point clouds without mesh,

we use an initial K = 200, ratio r = 0.05, and shrink size m = 6 for our adaptive-KNN;

HKS post processing is not used since the spectrum computed directly from the point cloud
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Figure 2.7: Correspondence accuracy on the TOSCA and SCAPE data sets.
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Figure 2.8: An example of matching two patches. The first two images show the location
of the patches; the third image is the color map on the first patch; the fourth image is the
induced color map based on SHOT feature; the last image is the induced color map from
our mesh method.

is not accurate enough. Results of our mesh method with or without post processing, and

point cloud method without post processing are presented. We compare our method with

the following methods: Blended [36], SGMDS [3], GMDS [11], Kernel Marching [76], RSWD

[39], and HKM 2 corrs [51].

Figure 2.7 shows the quantitative result in terms of the geodesic error metric. Our mesh

method outperforms most of the state-of-art methods. Our mesh method without post-

processing and point cloud method also achieve reasonably good results.

SCAPE The SCAPE data set contains 72 shapes of humans in different poses. Each shape

has 12,500 vertices. We use the same parameters as those on TOSCA data set except for

diffusion time t = 0.001 in the post-processing step. Results of our mesh method with or

without post processing, and point cloud method are presented.

Figure 2.7 shows the quantitative result. Our method achieves state-of-art accuracy. Again,

our mesh method without post-processing and point cloud method also achieve reasonably

good results.

Patch Matching We present a few test results for patches that have holes, boundaries,

and partial matching. We paint the first patch with colors and map the color to the second

patch with the correspondence computed using SHOT [71] as the pointwise descriptor, which
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Figure 2.9: Examples of matching patches with topological perturbation and shapes with
randomly missing elements. The first and third columns illustrate the patches and shapes
to match. The top color map of the first patch/shape is mapped to the second patch/shape
using SHOT (middle) and our method (bottom).

also serves as the initial guess for our method, and the correspondence computed from

our algorithm to visualize the result. Since HKS is sensitive to boundary conditions and

topological changes, we use geodesic distance to those selected anchor pairs as pointwise

descriptors in the post processing step.

The first test is matching two patches of a dog with different poses from TOSCA, as shown

in Figure 2.8. The two patches have very irregular boundaries. Using extrinsic pointwise

descriptors, such as SHOT, fail to give a good dense correspondence. However, our method

performs well since it uses local pairwise descriptors to find high-quality anchor pairs and in-

tegrates global pointwise descriptors, the geodesic distance to those anchor pairs, to complete

the dense correspondence.

The second test is matching two patches with topological perturbations from TOSCA data,

as shown in Figure 2.9. The first case is two different poses of a wolf with mesh elements
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Model Wolf Centaur Horse Cat David
Number of Vertices 4344 15768 19248 27894 52565
Mesh Method(s) 59 531 801 929 1681
Point Cloud Method(s) 57 524 811 937 1610

Table 2.1: Average run time for shapes from TOSCA

randomly deleted from each surface independently. The second case is body parts of a cat

in different poses with topological perturbation; the second patch is not connected at the

bottom while the first one is as highlighted in the figure. Since neither local connectivity

distortion nor missing elements will significantly influence the stiffness matrix or mass matrix

at most points, our method can still produce good results.

We further test our method on a pair of patches with both different sizes (partial matching)

and topological changes, as shown in Figure 1.3. The example is mapping an arm patch to

an entire shape. Extra points are colored as blue. The arm patch has fewer points than

the entire shape, and the figure tips are cut off, which results in both different sizes and

topological changes. Even for this challenging example, our method performs well.

Time efficiency We list the average run time of several examples in TOSCA data set in

Table 2.1. Most state-of-the-art methods using (dense) pairwise descriptors and quadratic

assignment (QA) require dense matrix multiplication in each step, which already has super-

quadratic complexity. Although Laplace-Beltrami (LB) eigen-functions can be used to com-

press the dense matrix by low-rank approximation, it is still less sparse or localized and more

time-consuming to compute than our simple, sparse and localized pairwise descriptor. Com-

bined with our sparsity-enforced method for QA, our method has at most O(n2) complexity,

which outperforms methods with super-quadratic complexity when handling data with large

size. Experimentally, our method shows complexity even better than O(n2).
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2.8 Conclusion

We develop a simple, effective iterative method to solve a relaxed quadratic assignment

model through sparsity control for shape correspondence between two approximate isometric

surfaces based on a novel local pairwise descriptor. Two key ideas of our iterative algorithm

are:

1. select pairs with good correspondence as anchor pairs using a local unsupervised dis-

tortion test;

2. solve a regularized quadratic assignment problem only in the neighborhood of selected

anchor pairs through sparsity control;

3. With enough high-quality anchor pairs, various pointwise global features with reference

to these anchor pairs can further improve the dense shape correspondence.

Extensive experiments are conducted to show the efficiency, quality, and versatility of our

method on large data sets, patches, and purely point cloud data. Similar to many existing

methods, our method will have difficulty in dealing with significant non-isometric distortion

and highly non-uniform sampling.
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Chapter 3

Dual Iterative Refinement

In this chapter, we explain our Dual Iterative Refinement (DIR) method in detail. We present

the idea and numerical algorithm of our proposed method DIR in Section 3.3 followed by

a discussion about a few possible extensions of our method in Section 3.4. After that, We

conduct extensive experiments on various benchmark data sets and compare DIR to other

state-of-the-art methods in terms of both accuracy and efficiency in Section 3.5.

3.1 Functional map

Spectral geometry is widely used in shape analysis [59, 42, 74, 13, 38, 50, 39, 65, 30]. As

an important member in spectral geometry, functional map is introduced in [50] to solve

non-rigid shape correspondence problem. It improves earlier point-based spectral methods

[31, 32, 45, 52] which directly matches the spectral embeddings of shapes. We first provide

a brief introduction to the concept of functional map which is used in our multi-scale dual

iterative refinement process.

Given (M1, g) as a closed 2-dimensional Riemannian manifold, the LB operator uniquely
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determines the underlying manifold up to isometry [7]. Eigen-functions of LB operator form

an orthonormal basis on the underlying manifold and can be used as intrinsic and multi-

scale descriptors for shapes. In discrete setting, the manifold M1 is usually represented as

a triangulated mesh with vertices {xi}ni=1. The LB matrix is given by LM1 = A−1
1 W1 [55],

where A1 is the diagonal element area matrix ofM1 andW1 is the standard cotangent weight

matrix. The discrete truncated k-dimensional spectral embedding of M1 can be expressed

as a matrix Φk
M1
∈ Rn×k whose rows are the first k LB eigen-functions evaluated at each

point, Φk
M1

(x) = (φM1
1 (x), ..., φM1

k (x)). Similarly, we can define the embedding for M2 as

Φk
M2

= {(φM2
1 (x), ..., φM2

k (x)) | x ∈M2}.

The key idea of functional map is to have a linear representation of a shape correspondence

T :M1 →M2 in the functional spaces C(M1) and C(M2). In discretization, the functional

map for a given correspondence T is a linear map (a matrix in discrete setting) C which

aligns given bases of C(M1) and C(M2). In practice, LB embedding ΦM is commonly chosen

as the basis for the functional space C(M). More precisely, given a permutation matrix Π

representing a point-to-point map T from M1 to M2, the functional map C is defined as:

C = arg min
C
‖ΦM1C − ΠΦM2‖2

F = Φ†M1
ΠΦM2 (3.1)

where † denotes the Moore-Penrose pseudo-inverse. Theoretically, it is well-known that LB

eigen-functions are isometrically invariant. In other words, if M1 and M2 are isometric,

then the corresponding LB eigen-functions are the same up to possible ambiguities, which

form an orthonormal group. This motivates a constrained version of the following functional

map [39]

C = arg min
C∈R
‖ΦM1C − ΠΦM2‖2

F = ProjR(Φ>M1
ΠΦM2) (3.2)

where we write the set of orthonormal matrices as R = {C | C>C = Id} and the projection to
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R is provided as ProjR(A) = UV > with a singular value decomposition (SVD) of A = UΣV >.

Since this paper aims at tackling isometric or nearly isometric shape matching problem, we

intend to use (3.2) which is the equivalent to (3.1) for the isometric case.

In the typical pipeline of an iterative functional map based shape correspondence algorithm,

the functional map is obtained via a least square optimization with various constraints and

regularizations, such as preservation of given landmarks, communitivity with LB operator,

and sparsity. Once the optimized functional map C is computed, the new correspondence

map T can be obtained by solving the following problem:

T (p) = arg min
q∈M2

‖ΦM(p)− ΦN(q)C>‖2
F , ∀p ∈M1 (3.3)

However, the determination of an accurate functional map C can be challenging when limited

prior knowledge or a poor initial correspondence is available. Moreover, LB eigenembeddings

becomes less stable when high eigen-modes of LB operator is used. On the other hand, con-

fining to lower LB eigenmodes limits the resolution of the mapping, which leads to inaccurate

shape correspondence. A natural multi-scale idea is to start the functional map from a coarse

resolution in spectral embedding involving a few low eigen modes and construct the corre-

spondence T , then iteratively add more and more higher eigen-modes to refine the map. The

main motivation is that the functional map on a coarse scale (a small matrix) can be deter-

mined efficiently and stably from an initial approximate or limited correspondence, which

then provides an improved correspondence at the next iteration. This strategy leads to iter-

atively computing (3.2) and (3.3), or (3.1) and (3.3), which is the key idea proposed in [39]

using rotation-invariant sliced Wasserstein distance and in the Zoom-out process [46]. As a

crucial component of these iterative refinement methods, the functional map C is obtained

from the correspondence information of all points in the previous iteration. This intermedi-

ate correspondence, especially at the beginning, can be quite inaccurate. Consequently, this
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may lead to errors when computing the functional map at the next level.

We provide both theoretical and experimental evidence on the effect of correspondence error

on spectral alignment, i.e., the functional map C in (3.2), which can be problematic for any

iterative refinement procedure based on spectral geometry.

Assume we have two perfectly isometric manifoldM1 andM2 and their corresponding dis-

crete spectral embedding ΦM1 , ΦM2 ∈ Rn×k, where n is the number of points and k is

spectral dimension. Without loss of generality, we assume Id is the ground truth correspon-

dence between M1 and M2 (otherwise, we can shuffle row vectors of ΦM2 according to the

ground truth correspondence). The ground truth functional map between ΦM1 and ΦM2 is

an orthonormal matrix CT ∈ R, i.e. ΦM2 = ΦM1CT and CT = ProjR(Φ>M1
ΦM2).

Theorem 1. Given ΦM2 = ΦM1CT with CT ∈ R. Let’s assume a one-to-one correspondence

Π is an inaccurate correspondence which maps a portion of ΦM1 accurately to the correspond-

ing part of ΦM2, while the rest part of Π inaccurately maps ΦM1. Without loss of generality,

we write ΦM1 =

X1

X2

 and ΦM2 =

Y1

Y2

 where X1, Y1 ∈ Rn1×k, X2, Y2 ∈ Rn2×k and

n1 + n2 = n. We let ΠΦM2 =

 Y1

σY2

 for a permutation matrix σ ∈ Rn2×n2. Let

Ca = arg min
C∈R
‖ΦM1C − ΠΦM2‖2

F = ProjR(Φ>M1
ΠΦM2)

Then it is most likely that the spectral norm ‖Ca − C‖2 > 0 with probability at least 1 − η

where η =

bn2/2c∑
j=0

1

2jj!(n2 − 2j)!

Notice that η decreases rapidly as n2 grows. For example, when n2 = 25, η ≈ 10−12.

Proof. We first show that a necessary condition for ‖Ca − CT‖2 = 0 is that permutation σ

is an involution, i.e. symmetric matrix.
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Since ΦM2 = ΦM1CT , we have Yi = XiC, i = 1, 2. It is clear that Φ>M1
ΠΦM2 = (X>1 X1 +

X>2 σX2)CT . Assume that there is a SVD decomposition X>1 X1 + X>2 σX2 = UΣV >. Then

we have a SVD decomposition Φ>M1
ΠΦM2 = UΣV >CT because CT is an orthonormal matrix.

Therefore, Ca = ProjR(Φ>M1
ΠΦM2) = UV >CT . This yields

‖Ca − CT‖2 = ‖UV >CT − CT‖2 = ‖UV > − Id‖2

Thus, ‖Ca−CT‖2 = 0 implies U = V . This leads to σ is symmetric. From the fact that there

are n2! permutation matrix of size n2 × n2 and there are n2!

bn2/2c∑
j=0

1

2jj!(n2 − 2j)!
symmetric

permutation matrix of size n2 × n2 [66], it concludes the proof.

One obvious observation is that η =

bn2/2c∑
j=0

1

2jj!(n2 − 2j)!
decreases rapidly as n2 grows. For

example, when n2 = 25, η ≈ 10−12. However, to give a more quantitative characterization

of the perturbation for an arbitrary shuffling is difficult since it depends not only on σ but

also on X1 and X2. Instead, we conduct a few numerical experiments to demonstrate how

an inaccurate correspondence Π will affect the correlation matrix Φ>M1
ΠΦM2 , which is the

essential information to align spectral basis, e.g., functional map, between two shapes.

In our experiments, ΦM1 ,ΦM2 ∈ Rn×k, where n is the total number of points and k is

the spectral dimension. We map a human shape with 12,500 vertices to itself, which is a

perfect isometric shape correspondence problem with the identity map as the ground truth.

Theoretically, 0 ≤ ‖Ca − CT‖2 ≤ 2, since both Ca and CT are orthonormal. The first

experiment tests the behavior of ||CT − Ca||2 with respect to the ratio of k
n2

for two fixed

spectral dimension, k = 50 and k = 100; second experiments tests the behavior of ||CT −Ca||2

with respect to n2 for two fixed k
n2

ratio. A random permutation is imposed on Y2 to compute

Ca, and we independently run 50 trails for each parameter combination. Box-plots are used

to illustrate the statistics of our computation in Figure 3.1. The experiments indicate that

using inaccurate correspondences from the current level will most likely introduce error to
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the functional map for the next level, and the error can be quite significant (as big as the

worst case, ‖Ca −CT‖2 = 2). This could cause a failure or slow convergence for an iterative

refinement strategy.

We further test a real example on one pair of shapes from TOSCA data set using ZoomOut [46],

which is a simple iterative refinement method based on the functional map in the spectral

domain. A fixed increment of spectral dimension is pre-specified for each iteration. Due to

the use of current correspondence at all points to construct the functional map, the following

iterative refinements may not lead to a satisfactory result in the end. In this test, we use

1000 LB eigen-functions for ZoomOut (and our method) with two different initial setups:

(1) correspondence provided by SHOT, or (2) 4 given landmarks. For ZoomOut, we first

compute a functional map for the first 4 spectral modes from the initial correspondence and

then use the code provided by the authors on GitHub to run the experiment. Test results

are plotted in Figure 3.2. These experiments further verify our analysis on possible issues

using simple iterative spectral refinement without filtering out wrong correspondences.

Another critical problem for multi-scale approach in spectral domain is how to increase the

resolution, i.e., spectral mode increment during the iterations, in an optimal, stable, and

data-adaptive way. Most approaches [76, 39, 46] just adopt an empirical, prefixed, and

inefficient increasing sequence.

Motivated from the above limitations of existing refinements solely in the spectral domain,

we propose a dual iterative refinement method. The first key idea is to choose well-matched

pairs from current correspondence, called anchor pairs, and only use them to determine

the functional map accurately by which will, in turn, help to construct a much-improved

correspondence to use in the next iteration. In order to choose high-quality anchor pairs

from a given correspondence, we zoom in at each corresponding pair and measure local

mapping distortion, which integrates local spatial information in the spectral refinement

process. The second key idea is to find the maximal dimension of spectral modes that can
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Figure 3.1: Top: Error statistics for the relation between functional map error and k
n2

.
Bottom: Error statistics for the relation between functional map error and number of points
in X2.
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Figure 3.2: Left: The blue centaur is mapped to the gray centaur from TOSCA data set.
Right: Geodesic error of our method and ZoomOut using different initial guess.

be robustly and accurately determined by these anchor pairs according to their distribution

in spectral embedding using singular value analysis on their correlation matrix.

3.2 Local mapping distortion

In order to choose well-matched anchor pairs to compute the functional map C without any

information of ground truth, we use the local mapping distortion introduced in Section 2.3.2

to measure the quality of correspondence for each pair and choose those pairs with small

local mapping distortion.
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3.3 Dual Iterative Refinement

We first precompute K eigen-functions for the discrete LB operator for each shape. K is

determined by possible computation cost limitation, the noise level in the data, and the

desired accuracy of the correspondence. In any case, it should not exceed what the mesh

resolution can support for each discretized shape, i.e., a few mesh points are needed in each

nodal domain.

Our method can start with an initial correspondence provided by SHOT [71] based on

extrinsic point-wise features, or a few given landmarks used as initial anchor pairs, which

can be fixed or updated in later refinement, or by any other (fast but not very accurate)

methods. Then we start DIR which includes the following three simple steps, explained in

detail later, in each iteration.

• Choose anchor pairs from current correspondence using local mapping distortion cri-

terion;

• Determine the spectral dimension and the corresponding functional map based on the

selected anchor pairs;

• Update the correspondence using the updated functional map.

We enforce two stopping criteria, whichever is satisfied first. The first is the total number

of iterations, which limit the computation cost. The second is when the spectral dimension

supported by anchor pairs reaches K. Here are more detailed descriptions of each step.

Step 1 Selecting anchor pairs.

By setting a proper local mapping distortion threshold ε, the set of pairs {(x`, T (x`)|Dγ(T )(x`) <

ε} are selected as anchor pairs from the current correspondence which will be used to guide
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next refinement. It is important to note that both the threshold ε and anchor pairs are

updated in later refinement. By decreasing ε with iterations, the quality of anchor pairs is

also improved.

Step 2 There are two components described as follows.

(1) Determining the proper spectral dimension based on anchor pairs.

Given a set of anchor pairs and {T (x`)}m`=1 ⊂ M2, an important question is to find a

proper spectral dimension that can be determined accurately and stably according to the

distribution of the anchor pairs in spectral embedding, which can be quite smaller than the

number of anchor pairs. We use singular value decomposition (SVD)[72], a well-known tool

for dimension reduction, to find the dimension well expanded by a set of anchor pairs in

the spectral domain. Consider the spectral embedding of a set of anchor pairs {x`}m`=1 and

{T (x`)}m`=1 as ΦK
M1

({x`}m`=1), and ΦK
M2

({T (x`)}m`=1), respectively. We compute SVD of the

correlation matrix of all anchor pairs

UΣV > = ΦK
M1

({x`}m`=1)>ΦK
M2

({T (x`)}m`=1). (3.4)

We threshold the singular values to determine the proper dimension. A normalization strat-

egy is used to make the threshold adaptive to the data and noise level. After normalizing all

singular values by the mean of 10 larges singular values, the dimension cut is set at where

the sum of ten consecutive normalized singular values is smaller than 0.1. We point out that

since the spectral embedding is defined by each eigen-function of the LB operator, instead

of the collectively spanned space, the accuracy and stability of each singular vectors is more

relevant in our case. Perturbation analysis for singular values and vectors in [43] can be used

to justify our strategy as well.

(2) Computing functional map based on anchor pairs.
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Once the proper spectral dimension, k, well spanned by the selected anchor pairs {(x`, T (x`) | ` =

1, · · · ,m} is determined, we compute the functional map for k dimensional spectral embed-

ding only based on the anchor pairs. In other words, we consider the following problem

C = arg min
C∈R

m∑
`=1

‖ Φk
M1

(x`)− Φk
M2

(T (x`))C‖2
F

= ProjR

((
Φk
M1

({x`}m`=1)
)>

Φk
M2

({T (x`)}m`=1)
) (3.5)

This restricted version of computing a functional map has twofold advantages. On the one

hand, as we discussed in Section 3.1 and appendix, it excludes potential corruption from

inaccurate correspondence and leads to better estimation of a functional map. On the other

hand, it reduces the computation cost.

Step 3 Construct the new correspondence.

Using the functional map computed from selected anchor pairs in the properly enlarged

spectral embedding space, a refined correspondence is constructed by solving the assignment

problem (3.3), where a KNN search method is applied.

In summary, the full procedure is described in Algorithm 3.1.

Algorithm 3.1 Dual Iterative Refinement (DIR)

input Initial correspondence, K LB eigen-functions ΦM1 and ΦM2 for both shapes, local
mapping distortion error threshold {εi}N1 , singular value threshold, maximum iteration
number N ,
repeat

1. Find anchor pairs {(x`, T (x`) | Dγ(T )(x`) < εi}, l = 1, . . . ,mi in spatial domain from
current correspondence T .
2. Find the proper spectral dimension ki from the SVD decomposition of the correlation
matrix ΦK

M1
({x`}mi`=1)>ΦK

M2
(T ({x`}mi`=1)) of anchor pairs in the spectral domain.

3. Update functional map C = ProjR

((
Φki
M1

({x`}mi`=1)
)>

Φki
M2

({T (x`)}mi`=1)
)

4. Update T (p) = arg min
q
‖Φki
M1

(p, :)− Φki
M2

(q, :)C>‖2 for all p ∈M1.

until N is reached, or ki reaches K
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Computation complexity The complexity for checking local mapping distortion is O(n)

since the geodesic distance is only computed in a fixed neighborhood, e.g., first ring or second

ring, at each point. To compute functional map, the complexity of matrix multiplication is

at most O(nK2) and SVD decomposition is at most O(K3) since the number of anchor pairs

is at most n and the spectral dimension k is at most K which is prefixed and far less than

n. KNN search is used to solve Equation (3.3) which has a complexity of O(n log(n)) [73].

Hence altogether, our method is of complexity O(n log(n)). If we use other global features

instead of spectral features, such as geodesic distance to anchor points, it is still O(n log(n))

since we limit the maximal number of anchor points (as the number of LB eigen-functions).

The complexity of computing the geodesic distance and solving the resulting assignment

problem is still O(n log(n)).

3.4 Discussion

In this section, we discuss possible extension of our approach and a few specific applications.

3.4.1 Combination of local feature and global feature

For shape correspondence problem, an efficient and robust approach should rely on both local

and global features. So far we have mainly talked about using spatial and spectral features,

which are perfectly complementary in the sense of local and global information. Anchor pair

selection by the local mapping distortion criterion is based on local spatial features while

the spectral features are global. We would like to point out that the proposed strategy of

iterative dual refinement process can be applied to other features as long as they include

local and global information complementarily. Other appropriate local and global features

can be used in different applications. For examples, one may alternatively use Heat Kernel
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Signature [14], Wave Kernel Signature [5] or Geodesic Distance Signature [75] as global

features. For shapes with holes and boundaries, we choose Geodesic Distance Signature,

which is less sensitive to local mesh distortions and boundaries for most interior points.

3.4.2 DIR with limited initial landmarks

In our previous discussion, the first collection of anchor pairs is selected from a given initial

correspondence, such as the one obtained from comparing SHOT features. Our method does

enjoy the flexibility to incorporate given landmarks. This is applauded in applications like

shape matching in the morphological study in medical imaging where landmarks could be

annotated based on specific tasks [26]. Once a few human-annotated and required landmarks

are given, which are taken as the initial anchor pairs and fixed in later iterations, DIR will

converge to a stable solution. The fewer landmarks are provided, the more iterations are

usually needed for the algorithm to converge. The final convergence performance of our nu-

merical tests, as shown in Figure 3.7, indicates that DIR can provide accurate correspondence

based on only four landmarks, and it is stable with respect to different initialization.

3.4.3 Point cloud matching

In real applications, point clouds with well-constructed global triangulation are usually hard

to obtain. For point clouds without global mesh, we use the local mesh method [37] with

adaptive KNN introduced in Algorithm 2.3, to compute the LB eigenvalues and local map-

ping distortion. DIR works well on matching raw point clouds, as shown in our numerical

experiments.

51



3.4.4 Patch/partial matching

Patch/partial matching often comes with difficulties in artificial boundaries, different sizes,

and topological perturbation. Most methods based on LB eigen-functions, such as functional

map, kernel matching, heat kernel signature, can not handle these difficulties well. However,

our local feature, local mapping distortion at interior points, is not affected by the above

difficulties. By replacing spectral features based on LB eigen-functions with geodesic distance

to anchor points, which is a global feature less sensitive to the above difficulties for most

interior points, DIR can handle patch or partial matching well as shown in our numerical

experiments.

3.5 Experiments

In this section, we conduct comprehensive experiments to evaluate the performance of

our method on various data sets including TOSCA [12], SCAPE [4], SHREC’16 [19] and

SHREC’20 [21] as well as patches extracted from TOSCA. TOSCA and SCAPE are data

sets of nearly isometric shapes; SHREC’16 is also a data set of nearly isometric shapes but

includes cuts and holes. SHREC’20 is a data set from real-world 3D scans that include

various deformation and noise.

In all experiments, no pre-processing, such as a low-resolution model or precomputing the

geodesic distance matrix, is required in our algorithm. Raw point clouds (with or without

meshes) are directly used. In our comparisons, all geodesic errors from existing methods are

obtained from the associated error curve data that appeared in the papers. Computation

using ZoomOut is produced from the code on GitHub shared by the authors [46]. All

experiments using our methods are conducted in Matlab with 16GB RAM and Intel i7-

6800k CPU.
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Error Metric We use the geodesic error as our error metric in most experiments. Suppose

the constructed correspondence maps x ∈ M1 to y ∈ M2 while the true correspondence is

x is to y∗, we measure the quality of our result by computing the geodesic error defined as

e(x) =
dM2

(y,y∗)

diam(M2)
, where diam(M2) is the geodesic diameter of M2.

Hyperparameters We set neighborhood size for local mapping distortion criterion as the

second ring; maximum iteration number is 10; and the local mapping distortion threshold

is set to [0.26, 0.22, 0.18, 0.14, 0.1, 0.1, 0.1, 0.1, 0.1, 0.1] at each iteration. The initial

guess is given by the KNN search based on SHOT features [71]. These hyperparameters,

especially the local mapping distortion, are not sensitive to different data sets. We use the

same hyperparameters on TOSCA and SCAPE data sets. For SHREC’16, SHREC’20 and

patch matching, we set the maximum number of anchor pairs served as the reference points

for geodesic distance feature to 800.

TOSCA and SCAPE TOSCA data set consists of 76 shapes in 8 different categories. The

vertex number is from 4k to 50k. It contains both human and animal shapes. We present the

results of three experiments on TOSCA data. The first one uses point clouds with its original

mesh as input, and computes 1000 spectral basis as the maximal spectral dimension; the

second one also uses point clouds with its original mesh as input but computes 500 spectral

basis as the maximal spectral dimension; the last one uses only point clouds (no mesh) as

input, and computes 1000 spectral basis (using local mesh method) as the maximal spectral

dimension. SCAPE data set has 72 shapes of the same person with different poses, and each

contains 12,500 vertices. We perform the same experiments as on TOSCA data.

The results on TOSCA and SCAPE data sets are illustrated in Figure 3.3. We compare our

method with the following methods: Blended [36], Best Conformal [36], GMDS [11], Kernel

Marching [76], SEQA [80] and RSWD [39]. Our method with 1000 spectral basis outperforms

all methods, our method with 500 spectral basis outperforms almost all methods, and our

method on purely point cloud inputs still achieves high accuracy.
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Figure 3.3: Geodesic error on the TOSCA and SCAPE data sets with comparison to other
methods.
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SHREC’16 SHREC’16 Partial Correspondence benchmark data set consists of 8 types of

isometric human or animal shapes in different poses with regular ‘cuts’ and irregular ‘holes’.

We test our method by matching each partial shape to the corresponding full shape. Since

spectral basis is sensitive to mesh ’cuts’ and ’holes’, we use geodesic distance to anchor points

as global features. We still use SHOT for the initialization.

The results are illustrated in Figure 1.4. We compare our method with ZoomOut [46], Partial

Functional Maps [61] and Random Forests [62]. Since SHREC’16 only provides ground

truth map with barycentric coordinates, we compute the geodesic error at each point as

the weighted average of geodesic errors to the three vertices in the target triangle element.

The results show that our method is quite flexible and robust to handle shape matching

for different scenarios. It again outperforms other state-of-the-art methods markedly and

achieves high accuracy on this challenging data set.

SHREC’20 SHREC’20 is a data set from 3D scans of a real-world stuffed toy rabbit

that contains deformations caused by stretching, indent, twisting and inflation. To make

it even more challenging, the rabbit is inflated by different internal materials, and there

are partial scans and missing parts caused by occlusion. Since SHREC’20 does not provide

ground truth, hence we only show the visual result as illustrated in Figure 3.4. We also

present final local mapping distortion heat maps to indicate local deformation at each point.

These heat maps indicate that our method can still produce accurate results, although the

target shape may have nontrivial metric deformation from the source shape. Moreover, the

local mapping distortion provides an excellent measurement to quantify the mapping quality

without knowing the ground truth correspondence. As we can observe from the second row in

Figure 3.4, the mapping quality of shapes in the second and fourth columns is satisfactory,

while the third one has relatively large distortion in some regions. This is because the

target shape is deformed from the source shape by a very distorted metric deformation. In

our future work, we would extend our investigation to find high-quality mappings between

55



Figure 3.4: Qualitative result of our method on SHREC’20. In the first row, the rabbit in
the first column is mapped to the rest rabbits in the first row. In the second row, final local
mapping distortion is computed on the target shapes as a heat map. It is clear that the area
where local mapping distortion is lower shows a better visual mapping result.

shapes with large intrinsic deformations.

Patch Matching Since there is no standard data set for patch matching, so instead, we

report several experiments using patches cut from TOSCA data set. The first case contains

two examples with artificial boundaries, different sizes (partial patching), and topological

changes simultaneously. In the first example, we take a portion of an arm (fingertips also

removed) from one of two isometric centaur shapes and then map the partial arm onto the

other entire centaur. In the second example, we map a body patch onto the whole shape.

The original centaur is a closed mesh surface with no holes, while the arm and the body

patch are not closed and have holes and boundaries. Our simple method again performs well

for this challenging example, as shown in Figure 3.5.
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Figure 3.5: Examples of patch matching. Removed fingertips are highlighted by red circles.
The first column is the entire centaur, and its non-blue area is the ground truth color map.
Extra points are colored in blue. The arm or body part in the second column is mapped
onto the entire shape. The third column is the color mapping result using SHOT, and the
last column is the color mapping result using our method.

The second case is matching two patches that contain both overlap and non-overlap parts.

We match an arm without the hand to a portion of an arm with the hand, where the forearm

is the common part. Since there is no correspondence between the non-overlap parts, a post

local mapping distortion test is added to prune out those points. The result is shown in

Figure 3.6. Our method still performs quite well. These experiments on patch matching

indicate that our method is robust to size differences, artificial boundaries, and topological

changes.

Experiments Using Limited Landmarks We select 4 pairs of centaur shapes from

TOSCA, initialize our method with a different number of randomly chosen landmarks (with-

out using SHOT for initialization) and then plot the average geodesic error curve. After

a different number of iterations, the final performance is illustrated in Figure 3.7. Even

with four initial random landmarks, the performance is super, although more iterations are
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Figure 3.6: Examples of patch matching. Patch in the second column is mapped to the patch
in the first column. Extra points in the first patch are colored in blue, and its non-blue area
is the ground truth color map. The third column shows the mapping result using SHOT,
and the last column is the mapping result using our method. The blue color in column three
and four indicates points which do not pass the post local mapping distortion test.

needed. It shows the stability of our method.

Figure 3.7: Average convergence performance of our method testing on several pairs of
centaur shapes from TOSCA (blue centaur is mapped to gray centaurs), given different
number of initial random annotated landmarks.

Run Time In Table 3.1, we show the average run time of our method on several exam-

ples from TOSCA data set, which includes shapes with vertices ranging from 4,000 to more

than 50,000 and indicates the computation efficiency of our methods. As mentioned in Sec-

tion 3.3, the complexity of our method is O(n log(n)). However, in practice, when computing

point clouds with more than 20,000 vertices, our computer suffers a computation speed slow

down from the vast RAM usage because of our limited RAM capacity. Hence, for Cat and
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Model Wolf Centaur Horse Cat David
Number of Vertices 4344 15768 19248 27894 52565

SEQA 59 531 801 929 1681
Kernel Matching 60 NA NA NA NA
Our Method with

1000 spectral basis (s)
36 144 191 474 1774

Our Method with
500 spectral basis (s)

19 106 131 330 1301

Table 3.1: Average run time for shapes from TOSCA

David example from TOSCA, the run time is higher than expected. Most state-of-the-art

approaches have a computation complexity of O(n2) and do not report run time for shapes

over 10,000 vertices. Our method is very efficient compared with state-of-the-art methods

that report the time.

3.6 Conclusion

We propose a simple and efficient iterative refinement strategy utilizing dual features, spatial

and spectral, or local and global. By only relying on selected well-matched pairs (selected

from local mapping distortion using local features) to guide the next refinement (using spec-

tral or other global features), our proposed method combines complementary information

in an optimal and data-adaptive way. Our method shows superior performance on exten-

sive tests compared to other state-of-the-art methods in terms of accuracy, efficiency, and

stability.
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