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Parietal and Frontal Cortex Encode Stimulus-Specific Mnemonic 
Representations during Visual Working Memory

Edward F. Ester1,*, Thomas C. Sprague2, and John T. Serences1,2,*

1Department of Psychology, University of California, San Diego, La Jolla, CA, 92093, USA

2Neurosciences Graduate Program, University of California, San Diego, La Jolla, CA, 92093, 
USA

Summary

Working memory (WM) enables the storage and manipulation of information in an active state. 

WM storage has long been associated with sustained increases in activation across a network of 

frontal and parietal cortical regions. However, recent evidence suggests that these regions 

primarily encode information related to general task goals rather than feature-selective 

representations of specific memoranda. These goal-related representations are thought to provide 

top-down feedback that coordinates the representation of fine-grained details in early sensory 

areas. Here, we test this model using fMRI-based reconstructions of remembered visual details 

from region-level activation patterns. We could reconstruct high-fidelity representations of a 

remembered orientation based on activation patterns in occipital visual cortex and in several sub-

regions of frontal and parietal cortex, independent of sustained increases in mean activation. These 

results challenge models of WM that postulate disjoint frontoparietal “top-down control” and 

posterior sensory “feature storage” networks.

Introduction

Visual working memory (WM) enables the representation and manipulation of information 

over short temporal intervals. This system is critical for bridging temporal gaps in visual 

processing that arise due to eye movements, occlusion, or the physical removal of stimuli 

from the visual field (Irwin, 1991; Hollingworth et al., 2008), and individual variability in 

WM ability is strongly correlated with general cognitive aptitudes such as IQ (Engle et al., 

1999). Single-unit recordings in non-human primates suggest that WM is mediated by a 

broad network of frontal and parietal cortical regions. For example, many neurons in 

subregions of frontal and parietal cortex show elevated responses during tasks requiring the 

active storage of feature- or stimulus-specific visual information (e.g., Miller et al., 1996; 

Bisley and Pasternak, 2000; Mendoza-Halliday et al., 2014) or spatial information (Fuster 

and Alexander, 1971; Funahashi et al., 1989). Qualitatively similar results have been 
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obtained in humans using non-invasive neuroimaging techniques such as fMRI (e.g., 

Courtney et al., 1997; Pessoa et al., 2002; Srimal and Curtis, 2008). These sustained 

increases in activity (or activation) are regarded as a defining characteristic of cortical 

regions that support WM.

More recent human neuroimaging studies have used multivariate analyses to successfully 

decode simple visual features or spatial positions held in WM from delay-period multivoxel 

activation patterns in regions of posterior occipital and parietal cortex (see Serences et al., 

2009; Harrison and Tong, 2009; Ester et al., 2009; Riggall and Postle, 2012; Emrich et al., 

2013; Christophel et al., 2012, 2015; Jerde et al., 2012; Saber et al., 2015). Importantly, 

sustained activity changes can be dissociated from information storage during WM, as 

decoding is often successful even though the amplitude of the blood-oxygenation-level-

dependent (BOLD) response typically returns to baseline levels during the memory delay 

period (Serences et al., 2009; Harrison and Tong, 2009; Riggall and Postle, 2012; Emrich et 

al., 2013). Additional studies have extended this work by using inverted encoding models 

(IEMs; Brouwer and Heeger 2009, 2011; see Sprague et al., 2015) to recover representations 

of remembered features based on delay period activation patterns within retinotopically 

organized occipital and posterior parietal cortex (Ester et al., 2013; Sprague et al., 2014).

Although there is a broad consensus that WM storage is mediated by a broad network of 

frontoparietal and sensory cortical areas, there is active debate about the general functional 

role(s) of these regions. According to one account, sustained increases in neural activity 

within frontoparietal cortical regions such as dorsolateral prefrontal cortex (dlPFC), superior 

precentral sulcus (sPCS; the putative human homolog of the macaque frontal eye fields), and 

portions of intra- and lateral parietal cortex encode representations of task-general 

information (e.g., which class of stimulus needs to be remembered, stimulus-response 

mappings, decision criteria, etc.). These task-general representations, in turn, are thought to 

coordinate highly detailed feature-specific representations in posterior sensory regions via 

top-down feedback (e.g., Sreenivasan et al., 2014a; D'Esposito and Postle, 2015). This 

model is supported by studies suggesting that single-unit and population-level responses in 

subregions of frontal and parietal cortex encode task-level variables such as rules (Warden 

and Miller, 2010; Riggall and Postle, 2012; Lee et al., 2013), category membership 

(Freedman et al., 2001), and stimulus-response mappings (Rowe et al., 2008). However, 

other studies have also demonstrated stimulus-specific responses in prefrontal and parietal 

regions during WM (e.g., Miller et al., 1996; Mendoza-Halliday et al., 2014), and recent 

evidence indicates that population-level responses in subregions of frontal and parietal 

cortex can encode both task-general and feature-specific representations in a high-

dimensional and dynamic state space (Mante et al., 2013; Rigotti et al., 2013; Raposo et al., 

2014; Stokes et al., 2013). Thus, sustained activity changes that are typically seen in 

frontoparietal cortex during WM might reflect the representation of task-related and feature-

specific information.

Here, we tested this hypothesis by examining the information content of delay-period 

multivoxel fMRI activation patterns across all of human cortex. Participants were asked to 

remember the orientation of a peripheral grating across a 10 s delay period. We used an 

inverted encoding model to quantify representations of the remembered grating based on 
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delay period activation patterns in multiple retinotopically organized subregions of visual 

(V1-hV4v/V3a) and posterior parietal cortex (IPS0-3). Next, we used a traditional univariate 

analysis to identify subregions of frontoparietal cortex that showed a sustained increase in 

activation during the delay period, long considered a defining characteristic of regions that 

support WM. Inverted encoding models revealed robust representations of remembered 

orientation in a subset of these regions. Finally, we combined an IEM with a roving 

“searchlight” analysis (Kriegeskorte et al., 2006) to examine the information content of local 

activation patterns across the entire cortical sheet. This analysis revealed robust 

representations of the remembered orientation across a broad network of posterior visual and 

parietal regions, as well as portions of dlPFC, and ventral lateral prefrontal cortex (vlPFC). 

Collectively, these results show that representations of remembered visual features are 

encoded in both posterior and frontal cortex and challenge models of WM that postulate 

completely disjoint frontoparietal “top-down control” and posterior sensory “feature 

storage” networks.

Results

We collected BOLD fMRI data (see Supplemental Experimental Procedures) while six 

volunteers performed a delayed orientation recall task (Figure 1A and Experimental 

Procedures; each subject participated in 2–3 scanning sessions). Each trial began with the 

presentation of two “sample” gratings. Participants were subsequently cued to remember 

one of the two gratings over a 10 s blank delay (indicated by the green half of fixation 

diamond). Hereafter we will refer to the cued and non-cued gratings as the remembered and 

non-remembered orientations, respectively. Participants then adjusted the orientation of a 

probe grating to match the orientation of the remembered orientation as precisely as 

possible. The initial orientation of the probe grating was randomized with respect to the 

remembered orientation on every trial to ensure that participants could not anticipate the 

direction or the magnitude of the required rotation. Memory performance was quantified as 

the mean absolute value of the angular difference between the reported and actual stimulus 

orientations. Average recall error across participants (±1 SEM) was 14.63° (±2.86°). Each 

participant's recall error distribution was clustered around 0°, confirming that participants 

were storing accurate representations of the remembered grating (Figure 1B).

To assess feature-selective responses during WM, we used an inverted orientation-encoding 

model (IEM) to reconstruct representations of the remembered and non-remembered 

gratings based on activation patterns in several cortical regions of interest (ROIs; 

Experimental Procedures). For each ROI, we first divided the data into two sets—one used 

to train the model (the training set), and one used to compute a reconstruction of the 

remembered orientation (the test set). In the first phase of the analysis, delay period 

responses in each voxel measured during training blocks (Figure 2A) were modeled as a 

weighted sum of nine orientation-selective channels (Figure 2B), resulting in a matrix of 

weights that characterize the contribution of each orientation channel to the response of each 

voxel (Figure 2C). In the second phase of the analysis, we estimated the response of each 

orientation channel by combining these weights with the delay-period multivoxel activation 

patterns from each trial in the test set. This procedure yields a reconstructed representation 

of the remembered orientation on each trial (Figure 2D). We circularly shifted these trial-by-
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trial reconstructions to a common orientation (0°) and averaged them to generate a single 

reconstructed representation. If delay period activation patterns within a ROI carry 

information about the remembered orientation, then the IEM should reveal a graded 

response function with a clear peak. Conversely, if these activation patterns do not represent 

the remembered orientation, then the IEM should reveal a flat response function. Note that 

this method converts BOLD activation patterns measured in voxel space back into stimulus 

space and can be conceptualized as a form of targeted dimensionality reduction that isolates 

orientation-specific representations from representations of other task-relevant and task-

irrelevant factors.

Reconstructions of Orientation in Retinotopically Organized Visual and Posterior Parietal 
Cortex

Previous studies have successfully decoded and/or reconstructed representations of 

remembered features based on activation patterns in occipital cortex (V1-hV4v/V3a; 

Serences et al., 2009; Harrison and Tong, 2009; Riggall and Postle, 2012; Ester et al., 2013; 

Emrich et al., 2013) and posterior parietal cortex (Christophel et al., 2012, 2015). 

Consequently, we first attempted to reconstruct representations of the remembered and non-

remembered orientations within these regions. Reconstructions were computed separately 

for each visual area (e.g., V1, V2, etc.) and posterior parietal subregion (e.g., IPS0, IPS1, 

etc.). We also accounted for the retinotopic location of each ROI with respect to the 

remembered orientation (i.e., contralateral versus ipsilateral) as prior work has revealed 

spatially global representations of simple features within subregions of visual cortex during 

WM (Ester et al., 2009; Pratte and Tong, 2014). To generate the plots shown in Figures S1 

and S2, we averaged reconstructions within each subregion across all scan sessions (n = 2 or 

3 for each participant) and then averaged across participants. Prospective differences 

between reconstructions of the remembered and non-remembered orientations were then 

evaluated using a bootstrapping procedure across participants and sessions (see 

Quantification and Comparison of Reconstructed Representations in Experimental 

Procedures for details).

Reconstructions of the remembered and non-remembered orientation from visual areas V1-

hV4v/V3a are plotted as a function of retinotopic location (i.e., contralateral or ipsilateral 

relative to the location of the remembered or non-remembered orientation) in Figure S1. 

Analogous data from IPS subregions 0–3 are plotted in Figure S2. In contralateral V1, we 

observed robust representations of the remembered orientation (permutation test; p < 0.001) 

but not of the non-remembered orientation (p = 0.663). Moreover, reconstruction amplitudes 

were reliably higher for the remembered relative to the non-remembered orientation (p = 

0.002). There was also a significant delay-period representation of the remembered item in 

ipsilateral V1 (p < 0.01), but it was not significantly different from the representation of the 

non-remembered item (p = 0.191).

We also evaluated reconstructions averaged across visual areas V1-hV4v/V3a (averaging 

was performed separately for each participant, scan session, and location, i.e., contralateral 

or ipsilateral). In line with the general pattern observed in V1, there was a robust 

representation in contralateral visual areas (p = 0.029) and a trend toward a robust delay-
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period representation of the remembered orientation in ipsilateral visual areas (p = 0.095). 

We could not recover a significant representation of the non-remembered orientation in 

either contralateral or ipsilateral visual cortex (both p values > 0.22), and overall 

representations of the remembered orientation were more robust than representations of the 

non-remembered orientation in contralateral visual areas (p = 0.037), but not in ipsilateral 

areas (p = 0.285). Contralateral and ipsilateral representations of the remembered orientation 

were statistically indistinguishable (p = 0.311). Statistics for all the individual areas are 

reported in Table S1. Collectively, these findings replicate earlier work (Ester et al., 2009; 

Pratte and Tong, 2014) and suggest that voxel activation patterns in visual cortex encode a 

spatially global representation of the remembered orientation during WM.

Next, we examined representations of the remembered and non-remembered orientations 

averaged across IPS subregions 0–3 (see Figure S2). We observed a robust representation of 

the remembered orientation in ipsilateral IPS (permutation test; p = 0.005), but not 

contralateral IPS (p = 0.187). We were unable to recover representations of the non-

remembered orientation in any IPS subregion (all p values > 0.10). In addition, 

representations of the non-remembered orientation were statistically indistinguishable from 

representations of the remembered orientation in contralateral IPS (p = 0.601), while 

representations of the remembered orientation were marginally stronger than representations 

of the non-remembered orientation in ipsilateral IPS (p = 0.112). Finally, there was a modest 

trend toward stronger representations of the remembered orientation in ipsilateral relative to 

contralateral IPS (permutation test; p = 0.062). Statistics for each IPS subregion can be 

found in Table S1. Collectively, these results are consistent with earlier studies documenting 

stimulus-specific representations in posterior IPS (e.g., Christophel et al., 2012, 2015).

Feature-Selective Activation Patterns in Regions with Elevated Delay Period Activation

Recent studies have documented an apparent dissociation between the univariate response 

amplitude and the feature-selective information content of BOLD activation patterns during 

WM storage. For example, several studies indicate that while specific features of a 

remembered stimulus (e.g., motion direction, orientation, color) can be successfully decoded 

using activation in posterior visual areas that do not show an elevated mean response during 

WM, feature information cannot not be decoded in subregions of frontoparietal cortex that 

do show an elevated mean response during WM (Riggall and Postle, 2012; Emrich et al., 

2013; Lee et al., 2013; Sreenivasan et al., 2014b). To examine whether feature-selective 

representations might also be present in these frontoparietal areas, we next examined 

multivoxel activation patterns related to remembered and non-remembered orientations in 

cortical areas with elevated delay period activation. Following earlier work (e.g., Zarahn et 

al., 1997; Riggall and Postle, 2012), we identified regions with elevated delay period 

activation with a random-effects general linear model (GLM) that included separate 

regressors marking the sample, delay, and probe epochs (see Experimental Procedures). A 

statistical parametric map (SPM) showing cortical areas with elevated delay period activity 

is shown in Figure 3. From this analysis, we identified a set of 14 ROIs with elevated delay 

period activity, including bilateral portions of lateral and medial frontal cortex, superior 

parietal lobule, and lateral occipioparietal cortex (Figure 3; Table 1).
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Figure 4A shows event-related averaged BOLD responses from a subset of four 

representative ROIs with elevated delay period activation (Figure S3A shows responses 

from the remaining ROIs). Next, we attempted to classify the remembered and non-

remembered orientations by applying a support vector machine (SVM) to delay-period 

activation patterns measured in each ROI (see Supplemental Experimental Procedures). We 

made no assumptions regarding the retinotopic organization of voxels within each ROI; 

consequently data were sorted based only on the remembered or non-remembered 

orientations, irrespective of their locations (i.e., left or right visual field). As shown in 

Figures 4B and S3B, decoding accuracy rarely exceeded chance levels at either the group or 

single participant levels. These results are consistent with previously reported dissociations 

between the amplitude and feature-selective information content of the BOLD response in 

many frontoparietal ROIs (Riggall and Postle, 2012; Emrich et al., 2013; Lee et al., 2013; 

Sreenivasan et al., 2014b).

To provide a more direct test of the hypothesis that frontoparietal regions encode 

representations of the remembered orientation during WM, we applied an IEM to delay-

period activation patterns in ROIs with elevated delay period responses. Unlike multivariate 

decoding analyses, this method maps BOLD activation patterns in voxel space into a pre-

defined information space that specifies how one or more stimulus variables (in this case, 

orientation) might be encoded across a population of voxels. This step can be conceptualized 

as a form of targeted dimensionality reduction that may help to disentangle weak or sparsely 

distributed feature-specific representations from representations of other task-relevant 

factors.

Figures 4C and S3C plot reconstructions of the remembered and non-remembered 

orientations in each ROI that showed elevated BOLD activation during the WM delay. 

Robust representations of the remembered orientation were observed in a subset of these 

ROIs, including left superior precentral sulcus (sPCS), bilateral superior parietal lobule 

(SPL), and right parieto-occipital cortex (Figures 4 and S3; Table 1). However, other regions 

did not contain robust representations of the remembered or non-remembered orientations. 

We also computed reconstructed representations of the remembered and non-remembered 

orientations for each fMRI image obtained during the WM delay (Figures 4D and S3D). In 

regions containing a robust representation of the remembered orientation (e.g., left sPCS and 

bilateral SPL), representations of the remembered orientation appeared shortly after the 

offset of the sample display and persisted until the presentation of the probe display. 

Conversely, representations of the non-remembered orientation were observed early during 

the delay period (e.g., samples acquired 2 or 4 s after the start of the trial), but were absent at 

later samples. This result suggests that participants completed the behavioral task by initially 

encoding representations of both the remembered- and non-remembered orientations, then 

purging the representation of the non-remembered orientation following the onset of the 

postcue.

Collectively, the results shown in Figures 4C and 4D suggest that at least some 

frontoparietal cortical regions with elevated delay period activity represent elementary 

feature properties during WM. Next, we asked whether representations encoded by these 

regions are categorical or continuous in nature. Although the graded shape of the 
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reconstructions shown in Figures 4C and S3C are nominally consistent with a continuous 

representation, they were generated using a basis set of nine overlapping sinusoids (Figure 

2B). This overlap ensures the responses of neighboring points along each curve will be 

correlated and will confer smoothness to the reconstructions even if the underlying feature 

representation is categorical. We therefore recomputed reconstructions of the remembered 

orientation using a basis set containing nine orthogonal Kronecker delta functions, where 

each function was centered on one of the nine possible remembered orientation values (see 

Saproo and Serences, 2014). If representations of the remembered orientation are 

categorical, then we should recover a representation with a sharp peak at the remembered 

orientation and a uniformly small response to all other orientations. Conversely, if the 

representations are continuous, then we should observe a graded response function similar to 

those shown in Figures 4C and S3C.

Figures 4E and S3E plot reconstructed representations of the remembered orientation 

obtained using this method in delay period ROIs. In regions containing a robust 

representation of the remembered orientation (e.g., bilateral SPL and left sPCS), 

reconstructions peaked at the remembered orientation and gradually decreased with the 

angular distance from this orientation. This result suggests that representations of the 

remembered orientation are continuous rather than categorical.

Whole-Brain Identification of Feature-Selective WM Representations

Finally, we combined the IEM approach used in previous sections with a roving searchlight 

analysis (e.g., Kriegeskorte et al., 2006) to identify cortical regions representing the 

remembered orientation irrespective of changes in delay period activation. We first defined a 

spherical neighborhood with an 8 mm radius around each voxel in the cortical sheet. Voxels 

within each neighborhood were used to compute a reconstruction of the remembered 

orientation, and the amplitude of each reconstructed representation was estimated by fitting 

the reconstructed channel response function with an exponentiated cosine function 

(Equation 4). We then generated a separate SPM for each subject that marked clusters 

representing the remembered orientation by submitting neighborhood-level reconstruction 

amplitude estimates from the remaining five participants to a one-tailed t test against zero 

(see Figure 5A). Although this “hold-one-participant-out” approach yields a unique set of 

clusters for each participant, it avoids circularity by ensuring that reconstructions of the 

remembered and non-remembered orientations remain statistically independent from the 

criteria used to define these clusters. Finally, we projected each participant's SPM onto a 

computationally inflated representation of his or her gray-white matter boundary (Figure 

5B). Clusters containing a robust representation of the remembered orientation (tcritical = 

2.778, with 4 degrees of freedom and p = 0.05, one-tailed and uncorrected for multiple 

comparisons in order to maximize sensitivity) were retained for subsequent analyses.

We observed robust representations of the remembered orientation across a broad network 

of cortical areas, including subregions of retinotopically organized visual and posterior 

parietal cortex, lateral occipital cortex (LOC) and bilateral dorsolateral prefrontal cortex 

(dlPFC; Figure 5B). Next, we identified clusters supporting a robust reconstruction of the 

remembered orientations located near three broad PFC cortical areas: left dlPFC, right 
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dlPFC, and left vlPFC. As shown in Figure 5, SPMs for each of our participants had at least 

one significant cluster in left dlPFC, while SPMs for four and five of our six participants had 

at least one cluster located near left vlPFC and right dlPFC, respectively. We also observed 

significant clusters located near anterior portions of medial prefrontal cortex, but these were 

only present in the SPMs for two or three participants (e.g., participants AB and AC; Figure 

5B). Next, we combined clusters within the same general anatomical location (e.g., left 

dlPFC) to generate a set of three ROIs located in left dlPFC, right dlPFC, and left vlPFC. 

Although the precise location(s) of these ROIs varied across participants, they were 

generally located less than a few millimeters apart (see Table 2). We then extracted 

multivoxel activation patterns from each cluster located near left and right dlPFC and left 

vlPFC (separately for each participant).

Figure 6A plots event-related average BOLD responses time locked to the onset of the 

sample display in each ROI. In left dlPFC there was an initial transient response to the 

sample display, followed by a sustained lower-amplitude response that persisted until the 

onset of the probe display. This pattern was reminiscent of many regions demonstrating 

elevated delay period activation (Figure 4A). However, we observed no changes in the 

amplitude of either right dlPFC or left vlPFC. Regardless of overall changes in the BOLD 

response, we were unable to classify the identities of either the remembered or non-

remembered orientations from delay period activation patterns in any ROI, replicating the 

general pattern seen in ROIs with elevated delay period activation (Figure 4B). However, an 

IEM revealed a robust representation of the remembered orientation in right dlPFC (p = 

0.013) and left vlPFC (p = 0.001), but not left dlPFC (p = 0.231). Conversely, we could not 

recover a representation of the non-remembered orientation using activation patterns from 

any of these areas (all p values > 0.62). Representations of the remembered orientation in 

left vlPFC and right dlPFC were also reliably stronger than representations of the non-

remembered orientation (p = 0.018 and 0.008, respectively). Figure 6D plots time-resolved 

reconstructions of the remembered and non-remembered orientations. With the exception of 

right vlPFC, representations of the remembered orientation emerged shortly after the onset 

of the sample display and persisted for the majority of the trial.

Finally, we reconstructed representations of the remembered and non-remembered 

orientations in each ROI using a basis set of delta functions. As shown in Figure 6E, 

reconstructions of the remembered orientation peaked at the remembered orientation and 

decreased gradually with angular distance from this value in in both right dlPFC and left 

vlPFC (a similar trend was also observed in left dlPFC, but this region did not contain a 

robust representation of the remembered orientation), consistent with a continuous rather 

than categorical representation.

Discussion

Recent models of WM postulate that storage is mediated by the coordination of neural 

activity in largely separable frontoparietal and posterior sensory cortical networks. 

According to one influential model (e.g., Sreenivasan et al., 2014a; D'Esposito and Postle, 

2015), subregions of frontoparietal cortex encode representations of task-relevant factors 

(e.g., task sets and stimulus-response mappings) rather than feature-selective information. 
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These representations, in turn, serve to coordinate the creation and maintenance of stimulus- 

or feature-specific representations in posterior sensory areas. Evidence supporting this 

model comes primarily from studies suggesting that it is possible to decode the attributes of 

a remembered stimulus in posterior sensory cortex during WM, but not in frontoparietal 

regions that show elevated delay-period activation (e.g., Riggall and Postle, 2012; Emrich et 

al., 2013; Lee et al., 2013; Sreenivasan et al., 2014b).

The present data challenge this framework by demonstrating that representations of a 

remembered feature are distributed throughout the cortical hierarchy, including many 

retinotopically organized regions of visual and posterior parietal cortex (Figures S1 and S2), 

and subregions of frontoparietal cortex defined by elevated delay-period activation (Figures 

3, 4, and S3) or local information content as indexed by a multivariate searchlight analysis 

(Figures 5 and 6). Collectively, these results suggest that frontoparietal cortical areas 

contribute to WM storage by both actively representing task-relevant information (e.g., 

Figures 3, 4, 5, and 6) and coordinating the representation of this information and/or 

modulating responses to incoming sensory signals in posterior sensory cortex via top-down 

feedback signals. Our data also reveal a very nuanced pattern of function across sub-regions 

of frontoparietal cortex: some regions show only sustained delay period activation (e.g., left 

middle frontal gyrus; Figure 3 and Table 1), some show only feature-selective response 

patterns (e.g., left ventrolateral and right dorsolateral prefrontal cortex; Figure 6), and other 

regions show both sustained activation and feature selectivity (e.g., right superior parietal 

lobule; Figure 4). The co-existence of these three response patterns suggests the possibility 

of distinct functional networks that operate to jointly mediate both top-down cognitive 

control, broadly construed, as well as the maintenance of feature-specific information about 

currently relevant stimuli.

Although we report robust representations of a remembered feature in several subregions of 

PFC (see Figures 4 and 6), there is ample evidence suggesting that many of these subregions 

also modulate perceptual and WM representations in posterior sensory cortical areas. For 

example, a recent transcranial magnetic stimulation (TMS) study in humans demonstrated 

that stimulating the lateral prefrontal cortex during the encoding period of a WM task 

modulates the selectivity of responses in visual cortex during a subsequent memory delay 

(Lee and D'Esposito, 2012). In related work, Ekstrom et al. (2008) demonstrated that 

stimulating the frontal eye fields during a challenging perceptual task has a systematic effect 

on exogenously driven responses in early visual cortex of macaque monkeys (see also Ruff 

et al., 2006; Moore and Armstrong, 2003). Finally, patient studies suggest that recognition 

and recall performance on tasks requiring participants to manipulate information held in 

WM (e.g., recalling a list of words or digits in reverse order; D'Esposito and Postle, 1999) or 

suppress distracting information during storage (Chao and Knight, 1998) are impaired 

following lesions to PFC. These results imply that PFC plays an integral role in controlling 

access to WM (see also Miller et al., 1996; McNab and Klingberg, 2008). Our results also 

suggest that some feature-specific information about WM representations is also encoded in 

many posterior cortical regions, including subregions of retinotopically organized visual 

cortex and posterior parietal cortex (see Figures S1 and S2 and Figure 5). This distributed 

code may at least partially explain why WM storage is largely unaffected following lesions 

to PFC.
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How Are WM Representations Encoded?

In a recent study, Mendoza-Halliday et al. (2014) recorded from three interconnected 

cortical regions implicated in motion processing in macaque monkeys—the middle temporal 

area (MT), the medial superior temporal area (MST), and the lateral prefrontal cortex (lPFC)

—while monkeys remembered the direction of a moving dot stimulus over a short delay. 

Large increases in spiking activity over the delay interval that encoded the remembered 

motion direction were observed in areas MST and lPFC, but not area MT. Conversely, these 

authors observed sustained direction-selective changes in MT local field potential power 

(LFP; particularly for low frequencies in the theta, alpha, and beta bands) as well as robust 

spike-field coherence between spikes recorded from lPFC and MT LFP power in the β band. 

Given these results, Mendoza-Halliday et al. proposed that feedback signals generated in 

MST or lPFC modulate subthreshold synaptic activity in MT, thereby biasing responses to 

subsequent sensory inputs. This proposal is broadly consistent with a model of WM in 

which memoranda are initially encoded by transient spiking activity in posterior sensory 

cortex and stored by sustained spiking activity in anterior association regions, including 

lPFC. This sustained activity also acts as a “top-down” feedback mechanism that induces 

subthreshold changes in the activity of visual cortical neurons in a manner that biases 

responses to further sensory input.

Why, then, have human neuroimaging studies consistently failed to find stimulus- or 

feature-specific activation patterns in frontoparietal cortex during WM? Critically, the model 

proposed by Mendoza-Halliday et al. (2014) hinges on the assumption that WM 

representations are encoded primarily by sustained changes in patterns of spiking activity. 

However, WM representations might also be encoded by “subthreshold” changes in neural 

membrane potentials below the spiking threshold or other neural properties that are not 

reflected in action potentials (Stokes, 2015). For example, a recent theoretical paper suggests 

that WM representations could be sustained by changes in synaptic weights within a 

recurrent neural network that could be read out by a sweep of spiking activity (e.g., 

Mongillo et al., 2008). A similar principle might hold for changes in sub-threshold 

membrane potentials, which, once elevated, reduce the input required to produce spikes. 

Assuming that these non-spiking response properties can be detected in large-scale neural 

activity measures such as the LFP, and given known links between the LFP and the BOLD 

signal (Logothetis et al., 2001; Magri et al., 2012), it is plausible that neuroimaging methods 

may be particularly useful in exploring networks that support WM via these mechanisms 

(see, for example, Boynton, 2011).

Conclusions

Multiple neuroimaging studies have identified feature- and stimulus-specific WM 

representations in visual and posterior parietal cortex (Serences et al., 2009; Harrison and 

Tong, 2009; Ester et al., 2013; Christophel et al., 2012; 2015), but not frontal and anterior 

parietal cortical areas (e.g., Riggall and Postle, 2012; Emrich et al., 2013; Lee et al., 2013; 

Sreenivasan et al., 2014b). In light of these findings, current models (e.g., Sreenivasan et al., 

2014a; D'Esposito and Postle, 2015) propose that WM storage is mediated by the 

coordinated activity of two largely disjoint networks: a frontoparietal network that encodes 

task goals and abstract representations of memoranda, and a posterior sensory “feature 
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storage” network that enables the storage of detailed visual representations. Our findings 

instead suggest that feature-specific WM representations are encoded by a broadly 

distributed network of sensory and frontoparietal cortical areas. Representations of 

memoranda in frontoparietal cortical regions may be multiplexed with representations of 

other task-relevant information such as motor programs, stimulus-response mappings, and 

decision criteria (e.g., Mante et al., 2013; Rigotti et al., 2013; Stokes et al., 2013; Raposo et 

al., 2014), thereby enabling the flexible control of behavior in response to changing task 

demands.

Experimental Procedures

Participants

Six neurologically intact volunteers (3 females, mean age 26.83 years, all right handed) from 

the University of California San Diego community participated in two (n = 2) or three (n = 

4) 2-hr experimental scanning sessions. One participant was author T.C.S. Each participant 

also completed a single 2-hr retinotopic mapping scan session; data from this session were 

used to define retinotopically organized regions of visual and posterior parietal cortex (see 

Retinotopic Mapping and ROI definition, Supplemental Experimental Procedures). 

Participants also completed a short (∼30 min) behavioral training session prior to being 

scanned in order to familiarize them with the WM task. All participants reported normal or 

corrected-to-normal and gave both written and oral informed consent as required by the 

local Institutional Review Board. Participants were compensated at a rate of $10/hr for 

behavioral training and $20/hr for scanning.

Orientation WM Task

Stimuli were generated in MATLAB using the Psychophysical Toolbox software package 

(Brainard, 1997; Pelli, 1997) and projected onto a 110 cm (width) display located at the base 

of the magnet bore. Participants viewed the display from a distance of approximately 370 

cm via a mirror attached to the scanner's head coil. A representative trial of the task is 

depicted in Figure 1. Participants saw two “sample” gratings (radius 1.88°, 3 cycles/degree) 

to the left and right of a fixation diamond (width 0.6°) along the horizontal meridian (6.15° 

eccentricity). Each grating flickered at 3 Hz (i.e., 167 ms on, 167 ms off) for a total of 1,000 

ms. Each sample grating was assigned an orientation drawn from a uniform distribution over 

0°–160° in 20° increments, plus a small angular jitter (±1°–5°; randomly chosen on each 

trial). Immediately after offset, one half of the fixation diamond changed colors from black 

to green; this change served as a “post-cue” and indicated which of the two gratings was to 

be remembered over a subsequent 10 s blank delay. We refer to the postcued grating as the 

“remembered” grating and the non-postcued grating as the “non-remembered” grating. The 

delay period was followed by the presentation “probe” grating. The initial orientation of the 

probe grating was randomized with respect to the remembered orientation on each trial to 

prohibit anticipatory motor responses. Participants were instructed to adjust the orientation 

of the probe (using an MR-compatible button box) to match that of the remembered sample. 

Participants were given 3 s to adjust the probe, and the probe's orientation at the end of this 

interval was taken as the participant's final response. Trials were separated by a 4 or 6 s 

inter-trial interval (pseudorandomly chosen after each trial). Each experimental block 
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contained 18 trials and lasted 378 s. Stimulus orientations and locations (i.e., left or right 

visual field) were fully crossed within a single block of trials. Each participant completed 

nine blocks per scanning session, and the orientations of the remembered and non-

remembered gratings were fully crossed across these nine blocks.

Orientation Encoding Model

A linear encoding model was used to characterize orientation-selective responses in each 

functionally defined ROI. This model rests on the assumptions that the measured response in 

a given voxel is an approximately linear sum of underlying neural activity, and that at least 

some of the voxels within a given ROI exhibit a non-uniform response profile across 

orientations (e.g., Brouwer and Heeger, 2009, 2011).

We began by modeling the response of each voxel within a given ROI as a linear sum of 9 

information channels. Following Brouwer and Heeger (2009, 2011), we let B1 (m voxels × n 

trials) be the observed signal in each voxel in each trial, C1 (k channels × n trials) be a 

matrix of predicted responses for each information channel on each trial, and W (m voxels × 

k channels) be a weight matrix that characterizes the mapping from “channel space” to 

“voxel space.” The relationship between B1, C1, and W can be described by a general linear 

model of the form:

(Equation 1)

C1 reflects the predicted response in each modeled information channel on each trial. For 

most analyses (Figures S1 and 2; panels C and D in Figures 4, 6, and S3), we generated a 

basis set containing nine half-wave rectified sinusoids centered at different orientations (0°, 

20°, 40°, etc) and raised to the 8th power. These functions were chosen because they 

approximate the shape of single-unit tuning functions in V1, where the half-bandwidth of 

orientation-selective cells has been estimated to be approximately 20° (though there is 

substantial variability in bandwidth; see Ringach et al., 2002; Gur et al., 2005). We used 

these functions and the remembered orientation estimate the responses of each channel 

during WM. In other analyses (panel E of Figures 4, 6, and S4), we modeled the response of 

each information channel using a delta function centered at one of the 9 orientations used in 

the task, so that each column of C1 was 1 at the relevant orientation for that trial and 0 

elsewhere.

Given B1 and C1, we estimated the weight matrix Ŵ (m voxels × k channels) using ordinary 

least-squares regression:

(Equation 2)

Given these weights and voxel responses observed in an independent “test” dataset, we 

invert the model to transform the observed test data B2 (m voxels × n trials) into a set of 

estimated channel responses, C2 (k channels × n trials):
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(Equation 3)

The estimated channel responses were circularly shifted to a common center (0°) and 

averaged across trials. To generate the smooth, 180-point functions shown in Figures 3 and 

4, we repeated the encoding model analysis a total of 19 times and shifted the centers of the 

orientation channels by 1° on each iteration.

We implemented a “leave-one-out” cross-validation routine such that data from all but one 

experimental block acted as B1 and were used to estimate Ŵ, while data from the remaining 

scan acted as B2 and were used to estimate C2. This approach ensures that the data used to 

estimate the weight matrix Ŵ (B1) and channel responses (B2) were statistically 

independent. The entire analysis was repeated until all blocks within a given scanning 

session were held out as a test set, and the resulting channel responses were concatenated 

across trials. Channel response estimation was performed separately for each 2-hr 

experimental session, and the results were averaged across sessions.

With the exception of the sample-by-sample analyses shown in Figures 4, 6, S1, S2, and S3, 

all multivariate analyses were based on data averaged across three TRs beginning 8, 10, and 

12 s after the start of each trial to account for hemodynamic lag. Similar findings were 

obtained when we used data from TRs beginning 6, 8, and 10 s after the start of each trial. 

Time-resolved reconstructions (Figures 4D, 6D, S1, S2, and S3D) were computed by 

applying an IEM to activation patterns measured at samples obtained 2–12 s after the onset 

of the sample display. Note that the average of sample-by-sample reconstructions obtained 

at 8, 10, and 12 s following the onset of the probe display need not match the reconstructions 

obtained by applying an IEM to activation patterns averaged across these samples (Figures 

4C, 6C, S1, S2, and S3D).

Quantification and Comparison of Reconstructed Representations

Reconstructed representations of the remembered and non-remembered orientations were 

quantified using bootstrapping. For a given ROI, we began by computing representations of 

the remembered and non-remembered orientations separately for each participant (n = 6) 

and experimental session (n = 2 or 3). These reconstructions were stacked, yielding a set of 

two 16 (number of sessions across all participants) by 180 (smoothed orientation channels) 

data matrices. In retinotopically organized visual and posterior parietal areas, we created 

separate matrices for contralateral and ipsilateral representations. Next, we randomly 

sampled (with replacement) and averaged 16 rows from each matrix, yielding one 

representation of the remembered orientation and one representation of the non-remembered 

orientation. Each representation was fit with an exponentiated cosine function of the form:

(Equation 4)

where x is a vector of channel responses. μ, k, and β control the center (i.e., mean), 

concentration (i.e., inverse of width) and baseline (i.e., vertical offset) of the function, while 

α corresponds to the amplitude of the function (i.e., vertical stretching/scaling; signal above 
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a noisy baseline). We used the latter to define a measure of the robustness of the 

reconstructed representation. Fitting was performed by combining a general linear model 

with a grid search procedure (see Supplemental Experimental Procedures).

This entire procedure was repeated 2,500 times, yielding 2,500 amplitude estimates for 

representations of the remembered and non-remembered orientations. We determined 

whether a given ROI contained a significant representation of the remembered or non-

remembered orientation by computing the proportion of resampled amplitude estimates for 

each stimulus that exceeded 0 (p < 0.05; one-tailed). We also examined whether amplitude 

estimates were higher for the remembered relative to the non-remembered orientations by 

computing the proportion of times that the difference between resampled amplitude 

estimates for the remembered and non-remembered orientations were less than 0.

Finally, because each scan was treated independently, participants who completed three scan 

sessions (n = 4) will exert a greater impact on the outcome of this analysis than those who 

completed two scan sessions (n = 2). We therefore confirmed that the effects reported here 

generalized when we excluded data from the final scan for each of the four participants who 

completed three sessions (see Table S2).

Searchlight Analysis

An IEM was combined with a roving “searchlight” procedure to identify regions 

representing the remembered orientation across the entire brain. For each participant, we 

first generated a cortical mask marking only gray matter voxels. We then defined a spherical 

“neighborhood” (radius 8.0 mm) centered on voxel in the mask. Neighborhoods containing 

fewer than 100 voxels (e.g., due to cortical folding patterns) were discarded, resulting in an 

average cluster size of 198 voxels (with a maximum size of 257 voxels). Within each of 

these neighborhoods, we used an IEM to estimate the responses of nine hypothetical 

orientation channels corresponding to the possible orientations of the remembered stimulus 

(see Figure 2) and fit the resulting reconstructions with the function described in Equation 4. 

Estimates of α obtained from fitting were then used to define a set of candidate ROIs for 

each participant via a “hold-one-participant-out” cross-validation routine. For each 

participant, submitted neighborhood-level reconstruction amplitude estimates from the 

remaining five participants to a one-tailed t test against a distribution with a mean of zero. 

Thus, for participant AA, we retained data from participants AB, AC, AI, AL, and AP, while 

for participant AC, we retained data from participant AA, AB, AI, AL, and AP (and so 

forth). We then generated a statistical parametric map (SPM) marking voxels whose 

amplitude estimates were reliably greater than 0 [t(4) = 2.78, p < 0.05, one-tailed]. We then 

projected each participant's SPM onto a computationally inflated representation of his or her 

gray-white matter boundary, and used BrainVoyager's “Create POIs from Map Clusters” 

function with an area threshold of 20 mm2 to identify ROIs containing a robust 

representation of the remembered stimulus.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Highlights

• Activity in frontoparietal (FP) cortex is elevated during active memory storage

• FP activity is thought to reflect top-down biasing signals rather than storage

• We show that sub-regions of FP cortex encode feature-specific information 

during WM

• These representations are dissociable from overall changes in mean activation
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Figure 1. Behavioral Task and Behavioral Performance
(A) Participants viewed displays containing two lateralized gratings for 1,000 ms and were 

immediately post-cued to remember the orientation of the grating on the left and right side 

of fixation (indicated by the green half of fixation diamond). Following a 10 s delay, a 

randomly oriented probe grating appeared at the location of the remembered grating and 

participants were given 3 s to adjust its orientation to match that of the remembered grating 

using a button box (one button rotated the grating clockwise, the other rotated the grating 

counterclockwise, as illustrated by the dashed yellow arrow, not present on the visual 

display). The initial orientation of the probe was randomized with respect to the remembered 

orientation on each trial.

(B) Histograms of absolute recall error (i.e., reported minus actual orientation) for each of 

the six participants.
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Figure 2. Inverted Encoding Model for Orientation Enables Reconstruction of Working Memory 
Representations from fMRI Activation Patterns
(A) On each trial, we measured delay period activation levels from a population of voxels 

within a given cortical area.

(B) We modeled the response of each voxel to different orientations over trials as a weighted 

sum of nine hypothetical orientation channels, each with an idealized response function.

(C) The result of this operation is a set of channel weights that characterize the orientation 

selectivity of each voxel.

(D) We then use the pattern of channel weights across all voxels within an ROI and a novel 

activation pattern from those voxels from a single trial to estimate the response of each 

orientation channel on that trial. See text and Experimental Procedures for further 

information. Trial-by-trial reconstructions were coregistered to a common orientation (0°) 

and averaged. Data in (A)–(D) are synthetic and for illustrative purposes only.
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Figure 3. ROIs with Elevated Delay Period Activation
We used a random-effects general linear model to evaluate changes in the BOLD signal 

during the sample, delay, and probe epochs (see Experimental Procedures). We projected 

regions with elevated delay period activation onto a computationally inflated visualization of 

the cortical surface for a representative participant. This visualization was used to define the 

ROIs described in Figure 4, Figure S3, and Table 1 (see text and Experimental Procedures 

for details).
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Figure 4. Univariate and Multivariate Analyses of BOLD Activation Patterns in a Subset of 
Regions with Elevated Delay Period Activity
(A) Estimated BOLD responses time locked to the onset of the sample array in each ROI. 

The vertical dashed lines at 0 and 11 s mark the onset of the sample and probe displays, 

respectively, and shaded regions mark the temporal epoch used in delay-period multivariate 

analyses (SVM classification and IEM reconstruction; B, C, and E).

(B) Multivariate classification accuracy for the remembered (blue) and non-remembered 

(red) orientations in each ROI. Horizontal dashed line at 0.1111 denotes theoretical chance 

classification accuracy assuming an infinite number of trials, and the solid red line at 

approximately 0.15 depicts empirically estimated chance decoding accuracy given the 

number of observations in each testing session (see Supplemental Experimental Procedures). 

Symbols correspond to individual participants.

(C) Reconstructions of the remembered and non-remembered orientations in each ROI. Data 

were averaged across samples obtained 8, 10, and 12 s following the onset of the sample 

display before modeling began.

(D) Time-resolved reconstructions of the remembered (“R”) and non-remembered (“NR”) 

orientations obtained by applying an IEM independently to data from each sample across an 

interval spanning 2 to 12 s after the onset of the sample display. All panels have the same 

color scale (see color bar).
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(E) Reconstructions of the remembered and non-remembered orientations obtained using a 

basis set of nine Kroeneker delta functions (rather than the smooth sinusoids shown in 

Figure 2). Smooth reconstructions that peak at the remembered orientation (0°) are 

consistent with a continuous (rather than categorical or discrete) representation. For data 

analyzed from all delay-period ROIs, see Figure S3. All error bars and shaded regions are ±1 

within-participant SEM.

Ester et al. Page 23

Neuron. Author manuscript; available in PMC 2016 August 19.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 5. Searchlight-Defined ROIs Representing the Remembered Orientation
(A) Schematic of “leave-one-participant-out” cross-validation procedure. We generated an 

SPM marking neighborhoods containing a robust representation of the remembered 

orientation for each participant (e.g., AA) by submitting neighborhood-level amplitude 

estimates from the remaining five participants (e.g., AB-AP) to a t test against a distribution 

with a mean of 0. Thus, each participant's map was generated using data from the five other 

participants, but not his or her own data.

(B) Clusters containing a robust representation of the remembered orientation generated 

using the leave-one-participant-out approach described in (A). Each row corresponds to a 

different participant. These visualizations were used to define ROIs in bilateral dlPFC and 

left vlPFC (see text for details).
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Figure 6. Reconstructions of the Remembered and Non-remembered Orientations in 
Searchlight-Defined Subregions of Pre-frontal Cortex
All conventions are identical to those shown in Figure 4.

(A) Estimated BOLD responses time locked to the onset of the sample display.

(B) Multivariate classification accuracy.

(C) Reconstructions of the remembered and non-remembered orientations. Note that these 

ROIs were defined using a leave-one-participant-out cross-validation approach (Figure 5). 

This ensures that the reconstructions shown here are statistically independent of the criteria 

used to define each participant's ROIs.

(D) Representations of the remembered (“R”) and non-remembered (“NR”) orientations 

computed on a sample-by-sample basis. All panels are on the same color axis (see color 

bar).

(E) Reconstructions of the remembered and non-remembered orientations obtained using a 

basis set of Kroeneker delta functions.
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