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Environmental contamination is widespread and can negatively impact
wildlife health. Some contaminants, including heavy metals, have immuno-
suppressive effects, but prior studies have rarely measured contamination
and disease simultaneously, which limits our understanding of how con-
taminants and pathogens interact to influence wildlife health. Here, we
measured mercury concentrations, influenza infection, influenza antibodies
and body condition in 749 individuals from 11 species of wild ducks over-
wintering in California. We found that the odds of prior influenza
infection increased more than fivefold across the observed range of blood
mercury concentrations, while accounting for species, age, sex and date.
Influenza infection prevalence was also higher in species with higher
average mercury concentrations. We detected no relationship between
influenza infection and body fat content. This positive relationship between
influenza prevalence and mercury concentrations in migratory waterfowl
suggests that immunotoxic effects of mercury contamination could promote
the spread of avian influenza along migratory flyways, especially if influ-
enza has minimal effects on bird health and mobility. More generally,
these results show that the effects of environmental contamination could
extend beyond the geographical area of contamination itself by altering
the prevalence of infectious diseases in highly mobile hosts.

1. Introduction
Environmental pollution is widespread. Many contaminants, such as heavy
metals and organic compounds, can persist in ecosystems for years or decades
[1], leading to prolonged exposure of wildlife to potential toxicants. Exposure
to contaminants can impact wildlife health, behaviour, survival and reproduction
[2,3], but animals can detoxify and/or excrete many contaminants, and the phys-
iological effects of contamination vary across species and ecological contexts [2,4].
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Figure 1. Hypothesized and predicted relationships among mercury concen-
trations, body condition, active infection and antibody detection. Dashed
blue arrows represent negative relationships between variables and solid
orange arrows represent positive relationships. Grey ovals are variables that
are important mechanistically but were not measured directly in this study.
In pathway A, MeHg immunotoxicity compromises the innate immune response
to infection, leading to a higher probability of active infection, more antibody
production and an increased probability of antibody detection. In B, MeHg
immunotoxicity compromises the adaptive immune response, reducing anti-
body detection but increasing the probability of active infection. In C, MeHg
toxicity reduces host body condition, reducing the energy available to
mount an immune response and increasing infection probabilities. In
pathway D, MeHg toxicity reduces host body condition, altering physiologic
conditions for viral replication and decreasing the probabilities of both active
infection and antibody detection. Feedbacks complicate these relationships,
including disease-induced reductions in body condition following influenza
infection and effects of body condition on MeHg concentrations (due to con-
centrating of body MeHg with mass loss). (Online version in colour.)
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Understanding how and when contaminants most strongly
affect wildlife is important for prioritizing monitoring, mana-
ging exposure and implementing mitigation measures.

Infection with pathogens and parasites is one important
context in which contaminants might affect wildlife health
and fitness [5]. Wildlife naturally experience infection over
their lives, but the probability and effects of infection are con-
text dependent. For example, the pathogens that cause
chytridiomycosis in amphibians and white-nose syndrome in
bats can cause massive die-offs, but in some contexts cause
no disease [6,7]. This variation in pathogen impacts stems
fromdifferences in pathogen exposure, susceptibility (i.e. prob-
ability of infection given exposure) and immune responses
across hosts. Exposure to contaminants could influence these
pathways via changes to a host’s behaviour, immune system
and/or energetic state [8], but the relationships between
contamination and infection are complex. For instance, con-
taminants could increase infection prevalence if they have
immunosuppressive effects [9–11] (figure 1a,b), but could
decrease infection prevalence if contamination reduces host
competence [12] or parasite fitness [8] (figure 1d ). Therefore,
the influence of environmental contaminants on infection
prevalence depends on the contaminant–pathogen combi-
nation, the host’s physiological response to each, and the
environmental context.

In addition to altering infection prevalence, the toxic
effects of contaminants can increase disease severity by redu-
cing the amount of energy available to mount an immune
response (figure 1c). Body condition metrics (e.g. body
mass or fat stores), which represent energy stores and overall
health, are useful and common proxies for the severity
of disease. However, relationships of body condition with
infection or contamination are bidirectional (figure 1) [13].
For example, animals in poor body condition sometimes
increase their feeding rates, which can increase their exposure
to trophically transmitted pathogens and contaminants.
Changes in body size can also concentrate or dilute contami-
nants in a host’s body (figure 1), which could change their
toxicity [14]. Body condition is therefore a measurement of
overall health that depends on interacting ecological factors
including disease and contamination, as well as stress,
nutrition and reproductive status [13].

Waterfowl are natural hosts of avian influenza viruses
(hereafter influenza) and exposure to environmental contami-
nants could affect the prevalence and disease severity of this
common pathogen. Influenza is endemic in waterfowl popu-
lations, but infection prevalence is highest in late summer
[15], in juveniles [16] and in dabbling and filter-feeding ducks
[17,18]. Antibodies against influenza, which generally last
months to over a year [19–21], are more prevalent in adults
[16,22]. Influenza is transmitted via the environment and can
persist in wetland environments for months or longer [23,24].
Infection occasionally affects body condition, behaviour and/
or movement, but low pathogenic avian influenza infection
is generally considered asymptomatic in wild birds [25]. How-
ever, co-exposure to immunotoxic contaminants could increase
infection probabilities and magnify any negative health effects
of infection. In addition, highly pathogenic strains of avian
influenza viruses, which cause severe disease in poultry
and occasionally humans and other mammals [26,27], are
increasing in wild waterfowl [28]. Understanding the factors,
including contaminant exposure, that influence influenza infec-
tion in wild birds is therefore important for informing
assessments of risk to wildlife, livestock and human health.

Mercury contamination from natural and anthropogenic
sources (e.g. atmospheric deposition from industrial outputs,
gold mining [29]) is common in the aquatic habitats inhabited
by waterfowl. Bacteria in aquatic soils convert inorganic
mercury into methylmercury (MeHg), its toxic form, which is
then acquired by animals through feeding and biomagnifies
through food webs [30,31]. Animals can sequester and
depurate mercury (e.g. via eggs and feathers), but it also bioac-
cumulates throughout individuals’ lifetimes, so mercury
concentrations in the internal tissues of wild animals reflect a
combination of long-term and recent exposure [31]. Animals
that feed at higher trophic levels (e.g. diving ducks as
compared to dabbling ducks) tend to have higher mercury con-
centrations from increased dietary exposure [32]. MeHg
exposure can reduce body condition [33,34], reproductive
output [4,35] and survival [36]. MeHg can also alter immune
function in mammals and birds [37], including compromising
both the innate immune response (e.g. inflammation [9,38–41])
and theadaptive immuneresponse (e.g. lymphocyteproduction
[38,42,43], antibody titres [10]). Both innate and adaptive immu-
nity influence the probability and severity of influenza infection
[44,45], somercury contamination could affect the prevalence of
influenza infection and its impacts waterfowl populations.

Here, we study relationships among mercury contami-
nation, influenza infection and body condition in 11 species of
dabbling and diving ducks in the Pacific Flyway. The Central
Valley and San Francisco Bay Estuary of California are hotspots
of mercury contamination in North America [4,46] and are



Table 1. Sample sizes and prevalence of detected influenza antibodies or viral RNA in samples from ducks collected in the San Francisco Bay Estuary, California
during winters of 2017–2018 and 2018–2019. All samples included in this table also included paired mercury data. Confidence intervals (CI) are derived from
10 000 bootstrapped samples.

common name scientific name
antibody sample
size (ELISA)

antibody
prevalence [95% CI]

active infection
sample size (rRT-PCR)

active infection
prevalence [95% CI]

American green-

winged teal

Anas crecca

carolinensis

11 0.36 [0.09, 0.64] 89 0.08 [0.03, 0.13]

American wigeon Mareca americana 22 0.50 [0.27, 0.68] 64 0.05 [0.00, 0.11]

canvasback Aythya valisineria 70 0.84 [0.74, 0.91] 65 0.05 [0.00, 0.11]

cinnamon teal Anas cyanoptera 7 0.71 [0.29, 1.00] 15 0.13 [0.00, 0.33]

gadwall Mareca strepera 17 0.59 [0.35, 0.82] 33 0.03 [0.00, 0.09]

greater scaup Aythya marila 24 0.83 [0.67, 0.96] 24 0.04 [0.00, 0.12]

lesser scaup Aythya affinis 86 0.77 [0.67, 0.86] 88 0.09 [0.03, 0.16]

mallard Anas platyrhynchos 50 0.80 [0.68, 0.90] 90 0.04 [0.01, 0.09]

northern pintail Anas acuta 28 0.79 [0.64, 0.93] 61 0.08 [0.02, 0.15]

northern shoveler Spatula clypeata 26 0.88 [0.73, 1.00] 89 0.11 [0.04, 0.18]

ruddy duck Oxyura jamaicensis 96 0.65 [0.55, 0.74] 102 0.06 [0.02, 0.11]

total/mean 437 0.74 [0.70, 0.78] 720 0.07 [0.05, 0.09]
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important sites for overwintering waterfowl; approximately
60% of the migratory waterfowl in the Pacific Flyway overwin-
ter in this region annually [47,48]. Multiple waterfowl species
co-occur at overwintering sites in the region, which enables
cross-species influenza transmission and viral reassortment
[49,50], and waterfowl occasionally use wetlands and agricul-
tural habitats near and within poultry facilities [51]. This
combination of mercury contamination, high waterfowl abun-
dance and intensive poultry production makes northern
California an important region for understanding howmercury
contamination affects influenza prevalence and wildlife health.

We hypothesized that influenza infection would be
positively related to mercury concentrations due to the immu-
notoxic effects of mercury [9,31] (figure 1), even while
accounting for factors that could influence both infection and
mercury concentrations, including age [16,31], species [4,17],
sex [11,52] and body condition [33,53]. We also hypothesized
that influenza infection would have sublethal effects on body
condition [25,54], and that these effects would be exacerbated
by mercury, especially at high mercury concentrations [55].
We explored these relationships for both active infection (i.e.
PCR analysis of cloacal and oropharyngeal swabs) and for
detectable antibodies (i.e. ELISA assay of blood samples, here-
after ‘prior infection’). Antibodies to influenza are estimated to
last 6 months-1.5 years [19–21] but usually peak within three
weeks of infection [19,20]. The strength of the antibody
response and the probability of detecting antibodies following
infection vary across age classes and species [20,56]. Antibody
assay results therefore represent probable prior infection
within the last 1.5 years, but most likely within the last six
months [57], and depend on individual traits.
2. Methods
(a) Study system and data collection
Dabbling and diving ducks were collected lethally by scientists
during the non-breeding season (October–March) in 2017–2018
and 2018–2019 from two major bays in the San Francisco Bay
Estuary of California (table 1). Cloacal and oropharyngeal
swabs and a cardiac venipuncture, which supplied blood
samples for both antibody and mercury analysis, were taken
within 5 min of collection. We determined age ( juvenile or
adult) and sex using plumage characteristics [58–60]. In the lab-
oratory, we measured body mass, extracted sera for blood
mercury analysis, dissected carcasses to extract samples of liver
and muscle for mercury analysis [61] and validated field
ageing and sexing techniques [62,63]. For more detail, see
electronic supplementary material, methods.
(b) Mercury concentrations
We measured total mercury (THg) concentrations in blood, liver
and muscle (electronic supplementary material, methods). We
used whole blood THg concentration to represent body MeHg
concentration, because 95% of THg in blood is MeHg [31,64],
and because studies of blood mercury are common [34], allowing
us to compare our results directly to those from other studies. For
the 88 birds (12% of data) for which blood mercury values were
unavailable, we estimated blood THg concentrations using the
strong relationships between mercury concentrations in blood
and those in muscle and liver tissue [61] (electronic supplemen-
tary material, methods). We repeated analyses without these
imputed data and found qualitatively similar results.
(c) Influenza laboratory analysis
Cloacal and oropharyngeal swabs were tested for the presence of
influenza RNA using real-time reverse transcriptase-PCR (rRT-
PCR) targeting the matrix gene [65] (electronic supplementary
material, methods). We considered a sample to indicate active
influenza infection if the cycle threshold (Ct) value was less
than or equal to 45 [66]. All rRT-PCR-positive samples tested
negative for highly pathogenic H5 clade 2.3.4.4 viruses [66], the
only highly pathogenic influenza lineage previously identified
in North American wild birds, and thus most likely represent
infection with low pathogenic influenza viruses. Sera samples
were tested for the presence of influenza A antibodies using
commercially available blocking enzyme-linked immunoassay
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(ELISA; AI MultiS-Screen Avian Influenza Virus Antibody Test
Kit; IDEXX Laboratories, Westbrook, Maine, USA). We con-
sidered samples with a signal-to-noise ratio less than 0.5 to be
positive for the presence of influenza antibodies [45,67].

(d) Body condition and composition
We used percentage crude fat from a sample of the whole body, as
determined by body composition analysis (electronic supplemen-
tary material, methods), to measure body condition. For data
analysis, we standardized percentage fat within species, age class
and/or sex, which accounted for differences in average fat content
among groups that were unrelated to condition. To do so, we
subtracted the mean and divided by the standard deviation
within each group (i.e. z-score scaling). For most species, we
standardized percentage fat within three groups: adult male, adult
female and juveniles of both sexes; for the two species that had
fewer than eight sampleswithin a group (cinnamon teal and greater
scaup), percentage fat was scaled across all individuals in the
species. Because we used percentage fat (rather than fat mass), our
measurement of body condition accounted for body mass.

(e) Statistical analysis
We first examined relationships between blood mercury con-
centrations and influenza prevalence at the species level using
univariate generalized linear models (GLMs). We modelled anti-
body prevalence and active infection prevalence separately; each
GLM used a logit link function where the response variable was
the number of positive and negative samples for each species and
the predictor variable was the species’ geometric mean blood
mercury concentration (log10-transformed).

Next, we studied relationships between influenza infection
probabilities, mercury and ecological variables at the individual
level. We transformed the date of sampling (hereafter date) to a
fraction of the year beginning on 1 July so that it would be con-
tinuous throughout the winter. To do so, we converted each date
to the day of year, subtracted 365 from any day after 180 (30 June)
and divided these numbers by 365. In our dataset, this variable
ranged from −0.21 (16 October) to 0.24 (30 March), where 0
was 1 January.

We used GLMs and generalized additive models (GAMs) and
AICc-based multi-model inference [68,69] to analyse relationships
among influenza infection, mercury contamination, body con-
dition and ecological variables. First, we built a GLM predicting
the influenza antibody status of an individual (a binary variable)
from the following predictors: species (11 species, a categorical
variable), age class (adult or juvenile, categorical), sex (male or
female, categorical), blood mercury concentration (log10 µg g−1

wet weight (ww)), percentage crude fat (scaled), date (scaled),
date2 and year (2017 or 2018, categorical). The quadratic effect of
date was included because influenza prevalence is higher in
mid-winter than during fall and spring migration in many ducks
[70]. We also included the interaction between age and date to
test for age-specific changes in the probability detecting antibodies
over the season, as well as pairwise interactions of blood mercury
concentration with species, age and sex, to examine differences in
each group’s response to mercury. The GLM used a logit link.

For model selection, our candidate model set included most
model subsets, but included interactions and quadratic effects
only when main effects were also included. Model selection was
implemented using the MuMIn package in R [71,72]. Because
there were many models with similar AICc values, indicating
uncertainty in our ability to identify a single best model, we
used model averaging on the full candidate set to estimate the
overall effect of each variable. We used conditional averaging,
which averages parameters from models in which they appear
[69]. We report results from the averaged model following guide-
lines for reporting statistical evidence from Muff et al. [73] and
using predictions from the averaged model [74]. We report 85%
confidence intervals (CIs), which are consistent with model selec-
tion criteria [75], and provide 95% CIs for reference. In addition,
we calculated relative variable importance using Akaike weights
(w = e−0.5ΔAICc) and an adjusted metric of relative variable impor-
tance [76], in which variables with a relative importance greater
than 0 have a higherweight than expected based on their inclusion
in the candidate set (electronic supplementary material, methods).
We alsomeasured relative support for pairs ofmodels in themodel
set using evidence ratios (i.e. ratios of Akaike weights [69]) and
differences in R2 values.

We used the same procedure and the same set of predictor
variables to fit, evaluate and average models for active influenza
infection status (Ct≤ 45).

Finally, we used a similar procedure to model body condition,
measured using percentage crude fat (scaled, described above).
For this model set, we tested both linear models and GAMs,
which can model complex nonlinear relationships [77], because
avian endogenous reserves can change rapidly and nonlinearly
throughout the non-breeding season [78]. We modelled body con-
dition as a normally distributed (Gaussian) variable. Predictors in
the LMswere bloodmercury concentration, antibody status, active
infection status, date, year and the interaction of blood mercury
with antibody status, active infection status, age, sex and species.
The GAMs included smoothed effects of all continuous variables
(mercury, date and the interactions of mercury) instead of their
parametric terms, and the same categorical variables as the LMs
(electronic supplementary material, methods). We performed
model averaging using the model set (LMs or GAMs) with the
lowest AICc.
3. Results
We analysed 437 influenza antibody samples and 720 active
influenza infection samples with paired mercury data from 749
individuals across 11 species of dabbling and diving ducks
(table 1). Mean blood mercury concentrations ranged from
0.007 µg g−1 ww in American wigeon to 0.566 µg g−1 ww in
greater scaup. Antibody prevalence ranged from 0.364 (i.e.
36.4%) in American green-winged teal to 0.885 in northern sho-
veler. Across species, antibody prevalence increased with blood
mercury concentrations (figure 2a). Active influenza infection
prevalence ranged from 0.030 in gadwall to 0.133 in cinnamon
teal; active infection prevalence was unrelated to average
blood mercury concentrations at the species level (figure 2b).

(a) Prior infection
At the individual level, the most important variables predict-
ing prior influenza infection (i.e. antibody detection) were
age, date, date2, blood mercury and the interaction between
date and age. The averaged model showed a positive effect
of blood mercury concentration on antibody status
(figure 3; electronic supplementary material, table S1); the
evidence for this effect was relatively weak, but its effect
size was substantial (odds ratio (OR): 1.723; 85% CI: [1.087,
2.729]; p = 0.089), indicating that the odds of prior infection
increased 1.7 times for every 10-fold increase in mercury con-
centrations, and that the predicted probability of infection
increased 1.2- to 3.7-fold across the observed range of mer-
cury concentrations (0.001–1.623 µg g−1 ww), depending on
other variables in the model.

The averaged model also provided strong evidence for a
positive effect of age on antibody status, such that the odds
of prior infection were 2.7 times greater in adults than
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juveniles (OR: 2.697; 85% CI: [1.564, 4.651]; p = 0.009)
(figure 3). For juveniles, the probability of prior infection
(i.e. antibody detection) increased over the course of the
winter, whereas prior infection probabilities in adults chan-
ged relatively little over time and were highest in mid-
winter (electronic supplementary material, figure S1). The
full model (i.e. containing all predictor variables) had an R2

of 0.15 (electronic supplementary material, table S2).
Most models with substantial support (i.e. low AICc) con-

tained terms for blood mercury and/or species (electronic
supplementary material, table S2). The model with the lowest
AICc included both, but models without each variable were
competitive (ΔAICc < 2). Evidence for the nested model with
blood mercury only (i.e. age, date, date2, blood mercury and
age × date) was 1.5 times stronger than for the model with
species only, but this model explained 3% less of the variance
in antibody status (R2 of 0.08 versus 0.11, electronic supplemen-
tary material, table S2). Together, these patterns suggest prior
infection is positively associated with blood mercury concen-
trations and that blood mercury concentrations explain a
small portion of the variation in antibody detection, both
within and across species.

(b) Active infection
Our ecological predictors explained very little of the variation
in active infection status; the full model had an R2 of only
0.08, there was no strong evidence for an effect of any vari-
able in the averaged model, and the intercept-only model
was competitive (ΔAICc = 1.490, electronic supplementary
material, table S3), indicating that the other parameters
were uninformative [75]. The only variables with positive
relative importance scores were age and the interaction
between age and date (electronic supplementary material,
table S4). Nevertheless, the direction of each effect in the
averaged model was consistent with our hypotheses and
with results from the antibody status models (electronic sup-
plementary material, figure S3): infection probabilities tended
to increase with blood mercury concentrations (OR: 1.609;
85% CI: [1.021, 2.536]; p = 0.132); adults were generally less
likely to be infected than juveniles (OR: 0.471; 85% CI:
[0.220, 1.006]; p = 0.153); and infection probabilities tended
to decrease through the winter for juveniles (electronic
supplementary material, figure S3).

(c) Body condition
GAMs performed better than linear models for predicting
body condition. Across all GAMs, date was the only variable
with a positive relative importance score (electronic sup-
plementary material, table S5); body condition decreased
nonlinearly through the winter. The R2 of the full GAM
was 0.11. In the averaged model, there was no evidence for
an effect of active influenza infection status or influenza
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antibody status on body condition, and no evidence for an
interaction of either with mercury concentration.
4. Discussion
Environmental contaminants can influence wildlife health by
mediating the prevalence of pathogens and the severity of
disease. Here, we found evidence for a positive relationship
between the probability of prior influenza infection and
blood mercury concentrations across 11 species of waterfowl
wintering in California’s San Francisco Bay Estuary. The odds
of prior infection (i.e. antibody detection) increased 5.2 times
across the observed range of blood mercury concentrations
(0.001–1.623 µg g−1 ww) and the odds of active influenza
infection increased 5.1 times (0.001–2.023 µg g−1 ww). We
found no effect of influenza infection on body fat stores,
even in an interaction with mercury. Our results also confirm
established age-specific patterns of influenza infection in wild
waterfowl, including higher probabilities of prior infection
and lower probabilities of active infection in adults as
compared to juveniles [21].

The positive relationship between prior infection and
mercury concentrations suggests that immunotoxic effects
of chronic mercury exposure could increase the probability
of influenza infection. Mercury contamination has documen-
ted impacts on immune function in multiple avian taxa
[9,10,37,42,55], but has rarely been linked to actual infections
(but see [11]). Blood mercury concentrations represent a com-
bination of chronic and acute mercury exposure that could
affect both long- and short-term infection dynamics [79,80],
and our results showed that the positive relationship between
influenza infection and mercury concentrations was stronger
when measuring antibodies indicative of prior infection than
for active infection. This pattern suggests that short-term
active infection risk might depend on ecological drivers of
influenza exposure (e.g. habitat use, local density or stochas-
ticity [81]), whereas chronic mercury contamination could
increase influenza infection risk over the long term by
increasing susceptibility to infection upon exposure [42].
Further, while influenza antibody prevalence was related to
average mercury concentrations across species, this relation-
ship persisted at the individual level, suggesting that
interspecific differences in habitat use, diet and immunology
can explain some, but not all, of the relationship between
mercury and influenza infection probability. Together, these
results provide compelling evidence that the immunotoxic
effects of mercury might increase the prevalence of influenza
antibodies across waterfowl host species.

Although the probability of detecting antibodies
increased through the winter, suggesting that influenza trans-
mission was ongoing, most of the variation in active infection
status remained unexplained by our covariates. Even vari-
ables known to affect influenza prevalence in wild birds
(e.g. species and age [17,49]) were only weakly related to
infection status. Influenza prevalence in wild ducks usually
peaks in autumn in the Northern Hemisphere [15] and
infected birds shed influenza for only 5–11 days [54,82]; this
combination of low infection prevalence during winter and
the short infectious period produced an infection prevalence
of only 7% in our dataset, which limited the statistical power
to detect any effects. By contrast, detectable antibodies are
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estimated to last months to over a year [19–21] and antibody
prevalence was 74%. The substantial increase in antibody
detection through the winter among juvenile birds implies
that infections were occurring but difficult to detect, whereas
antibodies left longer lasting evidence of prior infection. Alter-
natively, individual traits such as age and species could
produce an apparent relationship between antibody detection
andmercury concentrations; for example, if adults exhibit both
longer antibody persistence and higher contaminant concen-
trations [31,57], the relationship between antibody detection
and contaminants could be driven primarily by age. However,
our results suggest that antibody–mercury relationships persist
evenwithin age and species groups. These results highlight the
value of analysing antibody data alongside samples for active
infection, especially for pathogens like influenza, where infec-
tion is only detectable for a short duration but antibodies last
much longer.

Despite the positive relationship between the probability
of prior influenza infection and mercury concentrations, we
found no evidence that body condition was related to influ-
enza infection, even in combination with mercury. This
pattern could indicate that low pathogenic influenza has no
effect on bird body condition (and vice versa), or that unmea-
sured variables (e.g. time since infection) or sampling biases
(e.g. contaminant- or infection-induced changes in behaviour
and mortality) obscured the true relationship between fat
stores and influenza infection [13]. Most prior studies have
concluded that low pathogenic influenza infection has no
effects on wild waterfowl body condition [25], but at least
one field study found that influenza-infected swans fed at
reduced rates, suggesting that they had lower energy intake
[83]. While reduced energy intake would eventually affect
fat stores, behavioural adaptations to short-term infection,
such as reducing flight activity (an energetically demanding
behaviour [84]), could offset any energy imbalance from
infection-induced reduced feeding rates. Further, mercury
concentrations in most ducks we studied were below bench-
marks for effects of mercury on reproductive success and
mortality (less than 1.0 µg g−1 ww blood) [4]. However, sub-
lethal effects of mercury can occur as low as 0.2 µg g−1 ww
blood in some birds [4]. For comparison, blood mercury con-
centrations in our data ranged from 0.001 to 2.02 µg g−1 ww,
with a geometric mean of 0.07 µg g−1 ww. Longitudinal or
experimental studies that control for infection timing, body
condition prior to infection, and behavioural responses to
infection could further explore how influenza infection and
environmental contamination interact to affect body condition.

Even in the absence of direct effects on wild bird health,
the positive relationship between low pathogenic influenza
infection and mercury concentrations could have important
implications for the epidemiology of influenza viruses and,
ultimately, avian health. All 11 species we studied can be
medium- or long-distance migrants, some of which breed
as far north as Alaska and northern Canada. Migrants can
spread viruses over large spatial scales, introduce influenza
viruses of diverse origins into resident populations [16,50]
and amplify local viral transmission [16]. Immunotoxic
effects of mercury could therefore promote the spatial
spread of influenza viruses by increasing infection prevalence
in migrants, especially if neither infection nor mercury con-
tamination impairs their long-distance movements. While
most influenza viruses have minimal impacts on wild water-
fowl, highly pathogenic strains, which are an emerging
disease threat for wild birds, can cause significant morbidity
and mortality [28]. Further, influenza infection can cause
mass mortality in poultry [26], so increased susceptibility to
highly pathogenic avian influenza in wild birds could pose
a significant health risk to both wild and domestic birds as
well as economic risk to the agriculture sector.

Beyond its implications for the mercury-influenza system,
this study highlights the potential strength of the relation-
ships among contaminants, infection and wildlife health.
The increase in antibody detection associated with mercury
was as large as some species-specific differences in influenza
prevalence [17,18], suggesting that contaminant-induced sus-
ceptibility to pathogens could be a major contributor to
differences in infection prevalence across species. Moreover,
we observed these relationships at relatively low mercury
concentrations, consistent with a prior study of bat immune
function [38], and suggesting that infection risk might be
relatively sensitive to contaminant exposure. In addition,
although we found no association between infection and
body condition, environmental contaminants might have
more significant population impacts when interacting with
more virulent and emerging pathogens. The immunotoxic
effects of environmental contaminants could also scale up
to affect population or community health; infectious diseases
spread between individuals, across space and among species,
meaning that hosts with minimal contaminant exposure
could experience negative impacts of contaminants via
increased prevalence of infectious diseases. Understanding
when and where these effects appear is particularly impor-
tant because environmental contaminants can persist in the
environment for years after emissions end [1,29].
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