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ABSTRACT OF THE DISSERTATION

Essays on Higher Education Effectiveness and Budget Decisions

by

Quanfeng Zhou

Doctor of Philosophy, Graduate Program in Economics
University of California, Riverside, September 2022

Dr. Michael Bates, Chairperson

This dissertation consists of three essays that study higher education effectiveness and bud-

get decisions. In the first chapter, I evaluate whether instructional spending in colleges,

the main input in the human capital production process, is effective in promoting student

earnings after graduation. Using a nationally representative dataset, I find a positive elas-

ticity between instructional spending and student earnings of around 2 percent which is

robust to various specifications and potential confounding factors. The effects are mostly

driven by private institutions and four-year institutions. The effects are slightly lower for

well-established public institutions. Cost-benefit analysis reveals that a student has to work

for over 40 years until her increased earnings can cover the cost of the spending, indicating

the cost-ineffectiveness of increasing instructional spending from an investment perspective.

In the second chapter, we analyze one driving factor for college budget decisions

- the competition for good students. We construct a model to show that colleges choose

their share of spending on educational inputs and on amenities to attract good students.

Their optimal decision depends on their competitors’ choices. Simulation results reveal
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that over the range where budget choices are commonly made, colleges respond positively

to their competitors’ decisions. In addition, when the competitive pressure from competi-

tors weakens, such responsiveness also declines. Empirical evidence generally supports the

predictions from the simulation exercise.

In the third chapter, we propose a method that bounds the treatment effect for the

general population of interest under randomized controlled trials. Our bounds depend on

a set of mild assumptions that are different from existing methods in the literature. Hence,

we view our method as an alternative for applied researchers to choose from. Applying our

method to analyze the effectiveness of a first-year learning program on retention rates, our

bounds suggest a possible negative population effect and restrict the possibility of a large

positive population effect, despite the estimated positive effect for the experimental sample.

We also show that assumptions required for other methods in the literature to be applicable

are unlikely to hold in this context, highlighting the importance of the availability of our

new method.
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Chapter 1

Does Higher Instructional

Spending in Colleges Promote

Student Earnings?

1.1 Introduction

More money is spent on fewer college students in the United States now than a

decade ago. In real terms, between academic year (AY) 2009-10 and 2018-19, expenditure

per full-time equivalent (FTE) student increased by 24.6% for public institutions and 16.4%

for private nonprofit institutions.1 The large increases in per-student spending result from

both the growth of total spending and the decline in enrollment. In AY2018-19, all post-

1Table 334.10 and Table 334.30, Digest of Education Statistics 2020, National Center for Education
Statistic (NCES). In 2019 constant dollar, expenditure per full-time equivalent (FTE) student was $31,076
in AY2009-10, and $38,709 in AY2018-19 for public institutions. In private institutions, expenditure per
FTE student was $54,416 in AY2009-10, and $63,321 in AY2018-19.
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secondary institutions spent a total of $626 billion on instruction, institutional support,

research, academic support, and other services, rising from $535 billion in AY2009-2010.

Over the same period, fall enrollment for degree-seeking students declined from 21 million to

19.6 million.2 With the large increases in per-student spending, it is natural to ask whether

these increases are worthwhile.

Instructional spending is the largest spending category for most institutions, while

it has been decreasing as a share of total spending.3 Figure 1.1 depicts the growth of

instructional spending and total spending. We see that its growth lagged the growth of

total spending, and indeed, its share decreased from 41% in 1986 to 29% in 2018. What

might justify that institutions are allocating relatively fewer funds to instruction? This

paper investigates the (in)effectiveness of instructional spending in promoting students’

earnings after graduation.

Figure 1.2 plots the percentage change in average wage earnings for young workers

(age 22-30) with at least an associate degree between 2012 and 2019 against the percentage

change in instructional spending per college student between 2009 and 2016 in each state.

The dashed line is a linear fit weighted by the population of such young workers in 2019. We

observe a clear positive correlation between the larger increase in spending and the larger

increase in wage earnings of young workers.4 Whether such positive correlation is caused by

2Total spending is in 2019 constant dollars. Author’s calculation based on data from the Integrated
Postsecondary Education Data System (IPEDS). Fall enrollments are retrieved from Table 303.10, Digest
of Education Statistics 2020, National Center for Education Statistic.

3According to the IPEDS, instructional spending consists of expenses related to general academic instruc-
tion, occupational and vocational instruction, community education, preparatory and adult basic education,
and regular, special, and extension sessions. It may also consist of research, public service, and information
technology related expenses if an institution does not separately budget those expenses.

4The weighted correlation coefficient is 0.39. This is largely driven by the five largest states: California,
Texas, Florida, New York, and Pennsylvania which are almost perfectly correlated with a correlation coeffi-
cient above 0.96, either weighted or unweighted. The five largest states also correspond to a much steeper
slope. The unweighted correlation coefficient is 0.13 among all states.
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any confounding factors or if there is a causal relationship between instructional spending

and student earnings remains an open and important question to investigate.

To address the above issue, this paper employs the two-way fixed effects regres-

sion using data from the College Scorecard project to estimate the impact of instructional

spending on student earnings. In the main specification, I include the institution fixed ef-

fects, cohort fixed effects, state-specific time trends, and a rich set of control variables. In

addition to the average earnings, I also examine the effects over the 25th, 50th, and 75th

percentiles in the earning distribution, for earnings six, eight, and ten years after their first

attendance. Therefore, this paper draws a complete picture of the relationship between

instructional spending and student earnings in the short term after graduation.

Under the main specification, I find that the elasticities of instructional spending

on earning outcomes are 0.5, 1.7, and 1.9 percent for average earnings six, eight, and ten

years after first attendance. They are higher on lower percentiles in the earning distribution,

ranging from 0.3 to 3 percent. To put the above numbers into perspective, evaluated at

the mean values of spending and earnings, a 10% increase of $806 in instructional spending

(per year) will lead to an increase in wage earning by $71 eight years after a student’s

first attendance. After interacting instructional spending with the type of institution, I

find that the results are driven mainly by private institutions and four-year institutions.

The estimated elasticities are from 0.6 to 3.7 percent for private institutions, while only

between 0.3 and 0.8 percent for public institutions. The estimated elasticities are between

0.6 to 5.9 percent for four-year institutions. The data that I use consists of more than 6,700

institutions, representing nearly 95% of all postsecondary institutions in the United States.

3



Therefore, the above results are very likely to be externally valid.

To provide evidence that the estimates are not driven by confounding factors,

I employ the sensitivity analysis proposed in Oster (2019) that examines to what extent

the estimates can survive a confounding factor that will bring them towards zero. The

results suggest that most of my estimates can survive a confounding factor of 0.5, that is,

the selection on unobservables being half as strong as the selection on all observed control

variables. A third of my estimates can survive a confounding factor close to 1, a level that

55% of published work using observational data cannot, as studied in Oster (2019).

This paper also uses the instrumental variable (IV) regression to estimate the

effect of instructional spending on student earnings. The instrument variable, state-level

budget shock multiplied by an institution’s historical financial dependence on state appro-

priations, was constructed in Deming and Walters (2017).5 I use the public institutions

from my analysis sample for this exercise as the instrument is only applicable to public

institutions. Although the instrument has high predictive power in the first stage of my

treatment variable, instructional spending, the second stage was imprecisely estimated with

large standard errors. The result from the IV regression is unsurprising, given that I find

small and statistically insignificant effects for public institutions in the two-way fixed effects

regressions.

I evaluate the cost-effectiveness of instructional spending by comparing the invest-

ment with the discounted series of earning increases, assuming my estimated effects are

persistent throughout a student’s lifetime. Using a highly forward-looking discount factor

5In their paper, they use two instrument variables (1) state-level legislative cap on tuition fee increases,
and (2) budget shock multiplied by historical dependence to estimate the impact of two treatment variables
(a) tuition fee, and (b) spending on college completion rate.
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of 0.9975, a student has to work for 42 years (37 years for private institution and 58 for

public institution attendees) until the net present return becomes positive. Alternatively,

assuming a student works for 45 years after graduation, for the net present return to be

non-negative, the discount factor needs to be 0.9946 (0.9887 for private institution and

1.0066 for public institution attendees). Commonly, we think people and society as a whole

are not as forward-looking. Therefore, my results provide a possible explanation for why

institutions have been adjusting and lowering the share of spending on instruction.

This paper fits in the extensive literature on estimating the return to school quality.

The largest strand of the literature focuses on the return to school spending before college

on various outcomes, including test pass rates, college enrollment, years of education, and

earnings in the labor market (Grogger (1996); Papke (2005); Lafortune et al. (2018); Hyman

(2017); Jackson et al. (2016)), and conclude positive effects, but only recently. Earlier

studies found that throwing money at public schools is ineffective in promoting students’

performance (e.g., Hanushek (1981)). Another strand of the literature focuses on the earning

returns to college quality, examining other dimensions of quality such as peer quality (Dale

and Krueger (2002, 2011)) and selectivity of the college (Behrman et al. (1996); Hoekstra

(2009)). A set of recent papers estimate the impact of college spending on outcomes such

as enrollment, persistence, and completion (Webber and Ehrenberg (2010); Webber (2012);

Deming and Walters (2017)).

This paper fills the gap by examining the effect of college spending on students’ la-

bor market earnings. We care about other outcomes, including persistence and completion,

because we believe they map into earnings. There is an early wave of papers that directly
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estimate the impact of college spending on earnings, using cross-sectional data from Project

Talent that surveys World War II veterans (Solomon (1975); Wachtel (1976); Foster and

Rodgers (1980)). They estimate an elasticity coefficient between 10 to 20 percent, which is

much higher than I find.

This paper is more closely related to the study by Griffith and Rask (2016). By

matching individual-level data to institution characteristics from IPEDS and creating a

cross-sectional dataset, they estimate the relationship between college spending and stu-

dent earnings. The individual-level data are a subset of the students from the Education

Longitudinal Study of 2002 (ELS:02) who had valid labor market outcomes and chose to

go to four-year colleges. They employ an ordinary least square (OLS) estimation strategy

and include a large set of control variables for their identification. An important variable,

the average spending at other institutions the student applied to, is argued to capture the

unobserved quality of the student and would hence take care of the selection of students into

institutions. They use the Heckman selection model to account for attrition and selection

into college.

This paper exploits a newly available dataset that allows me to apply a different

empirical methodology for identification. Using institution-level panel data, I include insti-

tution fixed effects that account for any time-invariant unobserved variables of institutions

that could be a confounding factor and unaccounted for when using cross-sectional data.

In addition, the subset of the survey participants in the ELS:02 who chose to go to college

might not be nationally representative, causing concerns about both the internal and exter-

nal validity of the results. The data used in this paper cover almost all major postsecondary
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degree-granting institutions in the United States and is much less concerned with the is-

sue of external validity. I also include cohort fixed effects and state-specific time trends to

capture general movements in labor market conditions both nationally and statewide. My

identifying variation is exogenous to those confounding factors.

My results also echo a more recent paper by Mountjoy and Hickman (2021). Using

more granular data from the state of Texas, they identify that increase by a standard

deviation in a composite index of non-peer inputs, which includes instructional expenditures,

full-time faculty share, tenure-track faculty share, and faculty-student ratio, predicts a $753

additional earnings value-added. My results suggest that a standard deviation ($5, 935)

increase in instructional spending (on the average of $8, 066) leads to an increase in average

earnings by $601, eight years after first attendance.

This paper proceeds as follows. I describe the data and background information

in Section 1.2. Section 1.3 contains the empirical specification and discusses the identifi-

cation strategy. The results are presented in Section 1.4. Section 1.5 considers using an

instrumental variable regression approach and discusses its results. Section 1.6 conducts a

cost-benefit analysis of the results and concludes.

1.2 Data and Background

I need a dataset containing both students earning outcomes and college education

information to answer my research question. Ideally, linking education records to earnings

nationwide generates a most comprehensive dataset for the analysis. However, such a

project requires enormous resources and has not been accomplished so far to the best of my
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knowledge.6 As the independent variable of interest, instructional spending per student,

varies only at the institution level, unlike some other variables of interest in related research

questions such as student loan status and academic performance that change at the student

level, this paper utilizes a nationally representative dataset from the College Scorecard

project, where instructional spending per student and earning outcomes are available at

the institution level for different cohorts.

The project was created in 2013 under President Barack Obama’s administration

to make data about colleges more accessible to the general public. It combines data from

multiple existing systems and government agencies, including Integrated Postsecondary

Education Data System (IPEDS), Department of Treasury, and National Student Loan Data

System (NSLDS).7 The project linked the student-level earnings data from administrative

tax records maintained by the Department of the Treasury to the records in NSLDS. The

linked records were then aggregated to the institution level and matched to institution

characteristics that have been collected annually by the IPEDS.

There are two important advantages of using this data. First, the data are highly

representative of institutions in the United States. All postsecondary institutions partic-

ipating in any federal financial assistance program authorized by Title IV of the Higher

Education Act are mandatory to report their data to the IPEDS, making it cover almost

all postsecondary institutions in the United States. I observe at least 6,400 unique insti-

6Many researchers studying closely related questions collaborated with local governments and universities
to match the state Unemployment Insurance (UI) data to the education records. For example, Mountjoy and
Hickman (2021) focus on the state of Texas. However, States vary significantly in observed and unobserved
ways, raising the issue of external validity. In addition, State UI data cannot capture students who work in
a state different from where they attend college.

7Other agencies include Department of Education, Office of Postsecondary Education (OPE) and Federal
Student Aid (FSA). They facilitated the linking process for the College Scorecard project and provided other
variables that are not used in this paper.
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tution identifiers each year. Among all institutions, 4,355 appear in all years, of which

3,824 have valid spending information in all years, representing between 84% to 90% of the

total student enrollment. My analysis sample represents 89% of all undergraduate student

enrollment.8 Second, this is an institution-level panel dataset starting from 1996 cover-

ing topics including cost, enrollment, completion, finance, demographic and socioeconomic

backgrounds of students, program offerings, awards and scholarships, and many others,

allowing me to control for a rich set of the institution and student characteristics.

This data also have the following complications. First, the earning outcomes are

estimated for undergraduate Title IV recipients working and not enrolled in graduate pro-

grams when earnings are measured. The share of each institution’s entering class represented

by Title IV students can vary substantially due to differences in family income of students

attending those institutions and state and institutional aid policies. Second, the earning

statistics are calculated based on pooled two-year cohorts. On the one hand, this reduces

measurement error and can lead to more stable estimates. On the other hand, it shortens

the panel, making it harder to identify an effect as there are fewer variations in the in-

dependent variable. Third, earning outcomes are suppressed for confidentiality reasons for

cohorts less than 30, leading to missing values in the earning outcomes for about one-fifth of

the institution-cohort observations. Those are typically small institutions. Last, spending

is reported based on fiscal years (Oct 1st to Sept 30th), while expenditures commonly affect

students throughout academic years (Sept 1st to Aug 31st). As a check for robustness, I

adjust for this difference in calculating the average spending. I complement the College

Scorecard project data with the State Higher Education Finance (SHEF) project for my

8I discuss in more detail how I construct my analysis sample in Section 1.2.2.
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instrumental variable analysis.9 The variables I use are state-level appropriations for public

institutions and the number of FTE enrolled students each year. In addition, I use the

variables state appropriations to each public institution and the total revenues from the

finance component of IPEDS in 1990.

I use the Consumer Price Index (CPI) retrieved from the Bureau of Labor Statistics

to deflate the earning variables and the Higher Education Price Index (HEPI) retrieved from

Commonfund Institute to deflate the spending variables.10 All monetary terms are in 2014

dollars unless otherwise stated.

1.2.1 Data Structure

The original data are a panel of institutions over the years. I transformed it into

an institution-cohort panel. For example, in the 2009 data file, the variable average earning

ten years after entry is essentially the average earning of the 1999 cohort, measured in 2009,

ten years after they entered college. Assuming it is a four-year institution, I can go to

the data file from 1999 to 2002 to match the spending information and other institution

characteristics to the earning variables of this cohort. In addition, in the 2007 data file,

the variable average earning eight years after entry measures the earnings of this same

1999 cohort in 2007.11 Therefore, I observe multiple earning outcomes for a given cohort.

Following the above transformation, I end up with a panel where earnings six, eight, and

9The State Higher Education Finance (SHEF) project is under the State Higher Education Executive
Officers (SHEEO) Association. Deming and Walters (2017) used the same data.

10The HEPI is an inflation index specifically designed to reflect price levels for higher education inputs.
All results are qualitatively the same if I use CPI to adjust for price level changes for my spending variable.

11The two cohorts may not be identical, though, as the earnings are only measured for those who are
working. The employment status could differ between 2007 and 2009. The two cohorts would still overlap
significantly.
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ten years after entry are measured for cohorts from 1996 to 2007 (with gaps). In addition

to the average earnings, I also observe the 25th, 50th, and 75th percentile of the earnings

for each cohort. Figure 1.3 shows the availability of the earning variables by cohort. I have

a panel of eight, seven, and six cohorts for earning outcomes six, eight, and ten years after

entry, respectively.

1.2.2 Sample Restrictions

After the transformation, the panel consists of 51,779 institution-cohort observa-

tions where the variable instructional spending and at least one of the earning outcome

variables are non-missing. I call this the “Full Sample”.

I focus on the institutions that remain consistent (two-year vs. four-year) levels

throughout the period to avoid dramatic institutional upheavals that potentially affect

spending and student earnings. Change in institution levels also leads to ambiguity in

calculating the average instructional spending for a cohort. This restriction leaves out

5,125 institution-cohort observations.

Further, I exclude observations where the spending variable takes on extremely

large or small values. For instance, the highest value in the data is 29 million dollars per

student per year in instructional spending, which comes from a nursing school in Rhode

Island. Therefore, I follow the literature and take the threshold used in Deming and Walters

(2017) to admit only observations with spending between $50 and $100,000 per year. This

restriction takes out another 4,410 institution-cohort observations, many of which are highly

specialized, such as training institutions for aviation and performing arts.12

12Their students most likely work in highly isolated labor markets. Therefore, excluding those institutions
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The remaining data with 42,244 institution-cohort observations form my analysis

sample, covering a total of 5,360 institutions.13 I take the average of the instructional

spending over the two years (four years) starting from the year of entry of the cohort in

two-year (four-year) institutions.14 Lastly, I average over two adjacent cohorts to correspond

to the earning outcomes that are measured for two-year pooled cohorts.

1.2.3 Summary Statistics

Table 1.1 presents summary statistics for the outcome variables. In calculating

the summary statistic, I weighed the sample by the undergraduate enrollment. In the full

sample, the average earnings for students six, eight, and ten years after entering college

are $36,204, $41,459, and $46,090, respectively (in 2014 dollars). The median earning is

lower than the average, being $32,922, $37,248, and $40,799, respectively. In the analysis

sample, average earnings are $36,626, $41,980, and $46,700, which is about $400-$600 higher

than that in the full sample, or by roughly 1 to 1.5%. The numbers suggest that students

graduating from institutions that have changed their levels or have reported extremely high

or low values of spending per student earn relatively less, though the difference is small.

In Table 1.2, I present summary statistics for the treatment variable and the set

of control variables. First, let us focus on instructional spending. The average instructional

spending per student in the full sample is $9,722. The extremely high entries of spending

lead to not only a higher level of average spending, even after being weighted by under-

graduate enrollments, but also an implausibly large standard deviation of $129,516. In the

does not have an enormous impact on the population of general interest.
13Not all institutions appear in all years.
14As noted in Section 1.2.1, I average over an additional year to check for robustness due to the slight

misalignment between the fiscal year and academic year. Results are almost identical and are not presented.
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analysis sample, average instructional spending per student is $8,066, with a much more

reasonable standard deviation of $5,935.15 In Figure 1.4, I plot the kernel density of the

log instructional spending in the full sample and the analysis sample. The log values of the

two samples are centered at the same point. A small amount of the mass in the tails in the

full sample is moved closer to the mean in the analysis sample, as I exclude extreme values.

Overall, they align nicely.

The first set of control variables in the analysis sample is measured for the entering

cohort. They include the average SAT score (1,076), the average family income ($40,244),

the average median household income ($82,677), and the average age at entry (23.9). An-

other set of the control variables are demographic characteristics averaged over the region

where students of the entering cohort come from. They include the percent of White, Black,

Asian, and Hispanic from students’ zip codes through the Census data, as well as the per-

cent holding Bachelor’s degree, Graduate or Professional degree, born in the U.S., and the

local unemployment rate and poverty rate. I also control for characteristics of all the en-

rolled students in the institution, namely, the fraction that is female, married, dependent,

veteran, and first-generation college students. For all control variables, the analysis sample

has almost identical means to the full sample.

From the above comparisons, the analysis sample is representative of the charac-

teristics of postsecondary institutions and college students in the United States. It covers

5,360 institutions, representing 89% of all undergraduate enrollment during its period. To

15I compare $8,066 (in 2014 dollars) to similar statistics found in Table 373 in the Digest of Education
Statistics 2010, published by the National Center for Education Statistics. In the Digest, instructional
spending per student from AY2003-04 to AY2007-08 ranges between $7,792 and $8,221, after adjusting to
2014 dollars. The average $8,066 lies perfectly within the range, while $9,722 is unreasonably too high. I
note the difference that my average is calculated over AY1996-97 to AY2007-08, a more extended period
than that reported in the Digest.

13



avoid losing observations due to missing values resulting from item non-response, I recoded

the missing values of the control variables to negative ones. I then added indicator variables

that equal one if the corresponding data element is missing and zero otherwise.

1.3 Model and Specification

1.3.1 Model

I consider the relationship between spending and student earning as a production

process, as discussed in Black and Smith (2006). Following their formulation, consider the

education production function

Y = f(x1, ..., xk, U, ε), (1.1)

where Y denotes student log earnings. I denote different educational inputs such as spend-

ing, peer quality, student-to-faculty ratio, and others with x1, ..., xk. U represents other

observed factors affecting student earnings, and ε is an idiosyncratic error.

I am interested in estimating the parameter

β =
∂E(Y |x1, ..., xk, U)

∂x1
, (1.2)

where x1 is the instructional spending per student. This parameter is of particular interest

to policymakers in making spending decisions, especially when facing budget shocks.

It is implausible to argue that one can exhaust the list and control for all edu-

cational inputs x1, ..., xk, nor do I make this claim. Black and Smith (2006) lament that

most existing empirical work that (implicitly) claims to have estimated the parameter β
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only controls for a single input x1. They point out that controlling for only x1 leads to the

estimation of a different parameter

β′ =
∂E(Y |x1, U)

∂x1
, (1.3)

that is of no clear economic interpretation and empirical relevance. In addition, omitted

variable bias arises when the researcher fails to control for another input xj that is correlated

with x1. For instance, they showed that five measures or proxies of input (faculty-student

ratio, rejection rate, freshman retention rate, mean SAT score, and mean faculty salaries) are

positively correlated with the coefficient of correlation ranging from 0.3 to 0.7. Therefore,

β′ will likely pick up part of the effects of other inputs and hence be greater than β. Indeed,

I find similar correlations in my data. Using three variables from my data: average SAT

score of the entering class, instructional spending per student, and first-year retention rate,

I demonstrate their correlation coefficients in Table 1.3. In the top panel, they range from

0.4 to 0.7, very close to what was found in Black and Smith (2006).

I make two improvements that significantly ameliorate this issue. First, I control

for another input: the average SAT score of the entering class. Consider the first-year

retention rate as an omitted variable. In the top panel of Table 1.3, the correlation coefficient

between instructional spending and retention rate is 0.45. I show in the mid-panel that

conditional on the average SAT score, the remaining variation in instructional spending and

retention rate has a correlation coefficient of only 0.03. Controlling the average SAT score

could greatly reduce bias caused by the omission of other inputs that are correlated with the

SAT score. Second, due to the panel nature of my data, any inputs that are not time-varying
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are controlled by including institution fixed effects, even if unobserved or unquantifiable,

such as the location of the institution. For time-varying inputs, again, consider the first-

year retention rate as the omitted variable. The retention rate and instructional spending

are both correlated to the level of prestigious of the institution, which is unobserved and

cannot be controlled. By subtracting from the two variables their institution average, in

the bottom panel of Table 1.3, the correlation coefficient between the demeaned values is

only 0.05, much smaller than 0.45 in the top panel. Therefore, including institution fixed

effects could also greatly reduce the potential bias caused by time-varying inputs that are

not controlled in the regression.

Therefore, I consider the parameter I estimate in the reduced form a close approx-

imation to the parameter of interest β.

1.3.2 Two-way Fixed Effects Regression

I estimate the following reduced form equation using the analysis sample defined

in Section 1.2.

ln(Earning)ic = α+ β · ln(InExp)ic +Xic · γ + κi + ηc + θs(i) · c+ uic (1.4)

where for institution i cohort c, ln(Earning)ic is the log of one of the earning outcomes

and ln(InExp)ic is the log of the average instructional spending per student defined in

Section 1.2.2. Xic denotes the set of control variables described in Section 1.2.3. In addition,

I also control for the program offering in each institution by including the share of degrees

awarded to each Classification of Instructional Programs (CIP) code.
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Exploiting the advantages of this panel data set, κi controls for the institution fixed

effects. It is well understood that estimating using cross-sectional data without controlling

for institution fixed effects is likely to suffer from omitted variable bias as I discussed in

Section 1.3.1.

School spending and student earnings are likely to be simultaneously affected by

business cycles. I include ηc as controls for the cohort fixed effects and θs(i) · c as controls

for linear state-specific time trends to address the issue. The cohort fixed effects control

for cohort-specific events at the national level, such as recessions. But that alone may not

be enough, as labor market conditions can vary differently across the nation. I include the

state-specific time trends to better address this problem. I do so at the state level for the

following two reasons. First, for public institutions, spending changes are primarily affected

by state legislation and state appropriations, which happens at the state level. Second,

the time trends should ideally capture the movement in economic conditions in different

labor markets. Each state can be viewed as a large and relatively concentrated labor

market, though not perfectly isolated. It is inappropriate to consider each institution as a

separate labor market, and hence I do not replace state-specific time trends with institution-

specific time trends. The error term uic is assumed to be independent of ln(InExp)ic after

conditioning on all the control variables, fixed effects, and state-specific time trends.

I allow for arbitrary correlation in error terms within an institution by conducting

inference using institution-clustered standard errors. If not taken into account, such corre-

lations often vastly underestimate the standard errors of the estimated coefficients, leading

to over-rejection of the null hypothesis. As a robust exercise, I also calculate the cluster-
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robust bootstrap standard errors that maintain the error structure within an institution by

resampling at the institution level.

I start by estimating a regression that does not exploit the panel feature of my

data. Pooling all the institution-cohort observations, I regress ln(Earning)ic on ln(InExp)ic

and the controls only to mimic the estimation of early studies. I then add the fixed effects

and eventually the state-specific time trends to see how the estimated coefficients evolve.

The preferred specification is the complete Equation 1.4. Lastly, I interact the treatment

with the type of institution to analyze effect heterogeneity.

1.3.3 Parallel Trends Assumption

The two-way fixed effects specification implicitly makes a parallel trends assump-

tion for identification. Conditioning on all the control variables had institutions that ex-

perienced changes in instructional spending not undergo such changes; the change in their

average earnings would have behaved in the same way as the institutions that did not

experience changes in instructional spending, on average.

In standard difference-in-difference estimation, researchers adopting the parallel

trends assumption typically plot a graph showing that the control and treatment groups’

average outcomes are two parallel lines before the treatment starts (or in the pre-period).

As instructional spending is a continuous variable and continuously changing, it is unclear

which institutions are the control group and the treated group, and what periods are the

pre-period and post-period. I attempt to mimic the idea and provide a figure evaluating

whether the parallel trends assumption holds, while I bear in mind that this is at best

suggestive. To do so, I regress the instructional spending on all the control variables and
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predict the residuals, which are my identifying variation. I cut my panel by the midpoint

(the year 2002) into two artificial “pre-period” and “post-period”.16 I select the institutions

that have a small standard deviation (below the median) in the identifying variation in the

“pre-period”. Among those institutions, I divide them into three groups: whether the

instructional spending increased, decreased, or experienced little to no change (“control

group”) between 2002 and 2003, and plot the average earnings eight years after entry over

time for each group.

The top panel of Figure 1.8 plots the histogram of the standard deviation in the

identifying variation in the “pre-period”. The distribution is highly skewed towards zero

with a median of 0.103, indicated by the dashed line. Institutions below the median are

included for analysis in the bottom panel. In the bottom panel, the red line (increased

spending) and the green line (decreased spending) are shifted so that their levels match the

blue line (no change, or “control group”) in 2002. We see that there is a decreasing pre-

trend for institutions with increased spending from 2002 to 2003 compared to the “control

group”. But instead of continuing to decrease, the average earnings increased relative to

the “control group” when their spending increased in 2003. The other group of institutions

where spending decreased from 2002 to 2003 does not exhibit an obvious pre-trend. There

is a slight negative relative difference in earnings to the “control group” in 2003 when the

spending decreased.

Although the above evidence is imperfect, it is suggestive that the parallel trends

assumption can hold in my data.

16Realistically, the changes in treatment happen all the time, and it is not clear what pre-period and
post-period should be.
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1.3.4 Oster’s Sensitivity Analysis

Even with both sets of fixed effects and state-specific time trends, other time-

varying variables may exist that correlate with both spending and earnings. I follow the

method first proposed in Altonji et al. (2005) and later formalized in Oster (2019) to analyze

the sensitivity of the coefficients estimated using the two-way fixed effects regression to

potential confounding factors.

The method involves two sensitivity parameters. The first parameter δ measures

the ratio of selection on unobserved confounders to the selection on observed variables. The

second parameter Rmax represents the amount of variation in the outcome variable that

would have been explained if all confounding variables had been included. If we choose

Rmax = 1, we assume that there is no idiosyncratic variation in student earnings that

is uncorrelated with instructional spending.17 I describe the approach in more detail in

Appendix A.1.

With a choice of Rmax, a researcher can ask two questions under this framework.

First, how “strong” do the confounding factors need to be relative to the existing control

variables in bringing the estimated coefficients toward zero? A “strong” confounding factor

is one that highly correlates with the treatment variable. Second, for a given value of

δ, what will the estimate of β be after adjusting for such a level of confounding?18 An

intuitive choice considered in Altonji et al. (2005) is δ = 1, which represents the case where

17By choosing Rmax = 1, we assume that all the variation in student earnings can be explained by either
(1) instructional spending or (2) observed control variables including the fixed effects and state-specific time
trends, or (3) unobserved variables that are orthogonal to the observed control variables and are correlated
to instructional spending (confounders).

18Oster assumes the case where controlling for the unobserved confounders will cause the estimated coef-
ficient to move in the same direction as controlling for the observed variables does. In this paper, they move
towards zero.
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the selection on unobserved confounders is equally important as the selection on observed

variables.

A choice of Rmax also has to be made. Oster (2019) studies 76 results in 27

papers published in top journals. She finds that a choice of Rmax following the rule Rmax =

min(1.3R̃, 1) will allow 90 percent of the results using randomized data to survive a δ = 1.

The R̃ here is the R-squared in the controlled regression. In my case, it is the within R-

squared in Equation 1.4. Choosing Rmax using this rule has an intuitive understanding.

When choosing control variables, researchers usually choose the ones that are most relevant

to explaining the outcomes according to either theory or previous knowledge. Therefore,

adding the remaining confounders may only explain a small additional proportion of the

variation in the outcome variables. I follow Oster (2019) and set the Rmax = min(1.3R̃, 1)

in the analysis.

1.4 Empirical Results

1.4.1 Pooled OLS Regression Results

Table 1.4 presents the pooled OLS regression results. The estimates in column (1)

suggest that the elasticities of instructional spending on earnings are 2.7, 3.5, and 4 percent

for mean earnings six, eight, and ten years after entering college. Those are comparable in

magnitude to other estimates in the literature using cross-sectional data. In column (2), I

include only one additional control variable: the average SAT score of the entering class,

while not exploiting the panel feature of my data. The estimated coefficients are brought

down by a third. It implies that including only one educational input while not controlling
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for others can lead to biased estimates as many educational inputs are positively correlated.

In the third column, I additionally include both the cohort fixed effects and institution fixed

effects. The estimates for mean earnings eight and ten years after entry are further brought

down by 30-40 percent, becoming 1.7 and 1.9 percent. The estimate for mean earning six

years after entry is brought down by two-thirds and becomes insignificant. It is evident

that using cross-sectional data and not controlling for the fixed effects also produces biased

estimates. Lastly, in column (4), I use the full specification by including the state-specific

time trends, and the estimates are not different from those in column (3).

1.4.2 Two-way Fixed Effects Regression Results

In Table 1.5, I present the results for all outcome variables using the specification

described in Equation 1.4. I also summarize the estimated coefficients along with the confi-

dence intervals in Figure 1.5 to visually present the findings. We observe positive estimated

coefficients for all earning outcomes, though the coefficients for the earning outcomes six

years after entry are not all statistically significant.

The first observation is that the effects are not obvious shortly after graduation (six

years after entry) but become more obvious eight and ten years after entry. The magnitude

of the estimated elasticities is small, being 0.5, 1.7, and 1.9 percent for mean earnings six,

eight, and ten years after entry. To put the numbers into perspective, the mean value of

instructional spending in my analysis sample is $8,066. The average earnings ten years

after entry is $46,700. If spending increases by 10%, that is, by $806, it will lead to a 0.19%

increase in earnings ten years after entry, which is $89.
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The second observation is that the estimated elasticities are higher at lower per-

centiles in the earning distribution. This pattern holds for earnings six, eight, and ten years

after entry. It suggests that higher instructional spending is overall effective in improving

student earnings, and more so for students of lower earnings. However, since the estimates

are elasticities, the effects in levels do not necessarily obey this pattern.

Different earning outcomes use slightly different sets of institutions due to data

availability. To ensure the differences in results are not driven by the sample variation,

Table 1.6 presents the results for the same specification using the same set of institutions

where all earning outcome variables are available. The pattern that estimated elasticities

are higher at the lower percentiles in the earning distribution remains the same. The

point estimates are 1.1, 1.3, and 1.1 percent for earnings six, eight, and ten years after

entry. They are not statistically different from previous results using the larger set of

institutions. However, they do differ in magnitude and are less dispersed, suggesting that

the differences between the estimates for earnings six, eight, and ten years after entry could

be caused by differential samples. In Appendix A.2, I analyze the effect heterogeneity across

the institution and the time dimensions. I find strong evidence suggesting the effects are

different over time and little evidence that there is great heterogeneity across institutions.

1.4.3 Results by Types of Institution

A natural question to ask is if the above-estimated effects differ by the type of

institutions. As the data cover more than 5,300 institutions, I have the statistical power

to estimate those effects separately. I interact the instructional spending with an indicator

variable for public institutions to allow different slopes to be estimated.
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The results are presented in Table 1.7. It becomes apparent that the estimated

elasticities are different for public and private institutions. The coefficients are 0.6, 2, and

2.3 percent for mean earning six, eight, and ten years after entry for private institutions. For

public institutions, they are only 0.3, 0.6, and 0.35 percent and are statistically insignificant.

I again visually summarize the coefficients and the confidence intervals for private institu-

tions in Figure 1.6. The overall pattern looks similar between Figure 1.5 and Figure 1.6

that the coefficient is larger at lower earning percentiles.

It warrants further investigation of why instructional spending is effective in private

institutions but ineffective in public institutions. I divide the public institutions into more

established ones and less established ones. I make the distinction by whether they were

observed in 1990. Only a tiny fraction of the institutions that were not observed in 1990

are recently established. As reporting was not mandatory for those not receiving Title IV

funds, the majority of them chose not to report to the IPEDS in 1990 and decided to report

later on. Table 1.8 presents the results for public institutions by whether they were observed

in 1990. Estimated coefficients for institutions that are more established are 1.1, 1.3, and

0.8 percent. There are closer to the estimated coefficients for private institutions and are

statistically significant. The fact that less established institutions face a higher marginal

cost in the market of college professors may explain this difference. They usually have to

offer higher compensation to attract faculty members of equal caliber than more established

institutions.

I also interact the instructional spending with an indicator for whether the insti-

tution is a four-year institution. Table 1.9 presents the results. The estimated elasticities
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are 1.1, 3.1, and 3.5 percent for earning six, eight, and ten years after entry for four-year

institutions, while they are indistinguishable from zero for two-year-or-less institutions.

1.4.4 Sensitivity for Coefficients in the Main Results

I present the results of the sensitivity analysis discussed in Section 1.3.4. Table 1.10

shows the answer to the first question: how strong a confounding factor has to be so that

the estimated coefficients will be brought to zero? The coefficients and standard errors are

the same as reported in Table 1.5. For results that are insignificant, they obviously can only

survive a very low level of confounding. For coefficients that are significant, most of them

can survive a level of confounding around δ = 0.5. This is lower than the ideal threshold of

δ = 1 for the following reason. As I am including a rich set of control variables, the within

variations explained by the controlled regression (R̃) are above 80%, leading to Rmax = 1

when using Rmax = min(1.3R̃, 1). As discussed in Oster (2019), Rmax = 1 is a strict criteria

where only 9% of the studies using nonrandomized data can survive a δ = 1. To back up

the above point, my coefficients for earnings ten years after entry can survive a δ = 1 when

the within variation explained by the controlled regression is not as high (around 70%) and

Rmax = min(1.3R̃, 1) < 1.

The second question is: for a given value of δ, what will the estimate of β be

after adjusting for that level of confounding? To answer it, Figure 1.7 plots the estimated

coefficient against values of δ ranging from 0.1 to 1, for all outcome variables. The plot

ends when the next value of δ will change the sign of the estimated β. It happens at the

value of the corresponding δ shown in Table 1.10. It is worth noting that, for the elasticity

of the mean earnings ten years after entry, controlling for an unobserved confounder that is
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half as strong as all currently controlled variables will only bring the estimated coefficients

down from 1.9 percent to 0.9 percent. From Table 1.5, the standard error is 0.23 percent,

indicating that the coefficient will remain positive and likely remain significant. The same

holds for all the elasticities of earning outcomes ten years after entry in the distribution.

1.5 Instrumental Variable (IV) Regression

In this section, I use the variable (Zi,c) constructed by Deming and Walters (2017)

as an instrument variable for the instructional spending. Specifically,

Zi,c =

(
Appropi,90

TotalRevenuei,90

)
·
(
StateApprops(i),c

FTEStudents(i),c

)
(1.5)

where for institution i, Appropi,90 is the state appropriation in 1990 and TotRevi,90 is the

total revenue in 1990. The first factor measures institution i’s historical financial dependence

on state appropriations. In the second factor, s(i) denotes the state of the institution

i. Therefore, the second factor is the state-level average appropriation per FTE enrolled

student in year c. As the state-level appropriation only affects public institutions, I run the

IV regression using the set of 1,690 public institutions from my analysis sample. Not all

1,690 public institutions were observed in 1990. Nearly one-fourth of them were not.

In the first stage, I estimate the following equation, including the current and one

lag of the instrumental variable, along with the entire set of control variables, institution

fixed effects, and cohort fixed effects.

ln(InExpic) = α1 + β11 ln(Zi,c) + β12 ln(Zi,c−1) +Xicγ1 + κ1i + η1c + u1ic (1.6)
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I do not include state-specific time trends, which deviates from my main specifi-

cation in the two-way fixed effects estimation. I do so because the instrument is largely

affected by state-level time trends. The second factor
(

StateApprops(i),c
FTEStudents(i),c

)
only varies at the

state level. Including state-specific time trends will absorb almost all variations in the

instrument. I include both the contemporaneous and one lag of Zi,c to have maximum

predictive power in the first stage. The F-statistic for the joint test of the significance of

the contemporaneous and one lag of the instrument is 18.6.

I recalculate the two-year or four-year average instructional spending based on the

institution level with the predicted single-year instructional spending. Using that, in the

second stage, I estimate the following equation

ln(Earningic) = α2 + β2 ˆln(InExpic) +Xicγ2 + κ2i + η2c + u2ic (1.7)

As the two stages are separately estimated, I cluster-bootstrap the entire process

to calculate the standard errors.

Table 1.11 presents the IV regression results. We observe that the estimated

coefficients bounce around zero and are all imprecisely estimated, with the standard errors

five to ten times as large as those from the two-way fixed effects regressions. This is

unsurprising given that we find small to no effect for public institutions in Section 1.4.3.

The IV regression results do not further support, nor contradict the two-way fixed effects

results. Unfortunately, the IV regression does not provide additional insights.
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1.6 Discussion

Although this paper intends to inform policymakers in making decisions on ad-

justing instructional spending when facing budget shocks, in no way do I suggest that a

conclusive decision can be made merely based on the results presented in this paper. I

investigated earning outcomes, which is only one of the outputs of the education produc-

tion function. Potentially, the same set of inputs that promote the earnings margin also

improves many other margins. For example, higher spending may increase the possibility

of going to graduate school, the possibility of working in a job that brings less disutility,19

and the possibility of meeting a better spouse. Those dimensions are no less important than

monetary returns and await further empirical investigations.

To put my estimated coefficients into perspective, I evaluate them at my anal-

ysis sample’s mean earnings and instructional spending. A standard deviation increase

in instructional spending ($5,935) from the mean ($8,066) leads to increases in earnings

eight years after entry by $601 overall ($687 for private institutions and $447 for public

institutions that are more established). This is comparable to the estimates in Mountjoy

and Hickman (2021) where they find a standard deviation increase in a composite index of

institution quality increases student earnings eight to ten years after graduation by $753.

Griffith and Rask (2016), however, find a larger elasticity coefficient. According to their

estimate, such an increase will lead to an increase in earnings of $1,333 four years after

graduation, with a wide confidence interval covering zero.

19In Griffith and Rask (2016), they find a marginally significant positive association between higher in-
structional spending and the probability that one works a job matching the field of study in college.
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Though I find instructional spending effective in promoting student earnings, is it

still effective considering the cost? To answer this question, I plot the net present return

of an investment in increasing instructional spending from the sample mean for four years

in a four-year institution. I consider three different discount factors, representing different

levels that a person’s values a dollar one year from now. The first is based on the nominal

interest rate in Oct 2021, which is 0.25% so that the discount factor is 0.9975. The second

is based on the nominal interest rate in Sep 2019 to be free from the drastic changes in

economic conditions due to the pandemic, and the discount factor is 0.9825.20 The third is

based on the real interest rate in Sep 2019, and the discount factor is 1.0006.21 The first

and the third choices of the discount factors reflects a highly forward-looking perspective

due to the recent economic conditions in the United States. The third choice corresponds

to a view that values a dollar in the future more than a dollar now. The cumulative return

assumes the estimated elasticities (in Table 1.5, Table 1.7, and Table 1.8) for earnings eight

years after first attendance are persistent throughout students lifetime.22

Figure 1.9 plots the net present return as the cumulative net present value divided

by total investment. The total investment is an increase in instructional spending every

year for four years.23 Using the discount factor 0.9975, a student has to work for 42

years (37 years for private institution and 58 for public institution attendees) until the

net present return becomes non-negative. Using the less forward-looking discount factor

0.9825, a private institution attendee has to work for 58 years (or to the age of 80, assuming

20The monthly average of the 1-year treasury bill secondary market rate is 1.75%, retrieved from the
Federal Reserve Bank.

21Annual inflation rate is 1.81% in 2019, retrieved from the Bureau of Labor Statistics.
22The combined evidence in the literature supports the assumption that the elasticities can be persistent.
23I consider four-year institutions only because in Section 1.4.3, only four-year institutions were found to

have positive effects.
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graduating at 22) until the net present return becomes positive. Using the third discount

factor 1.0006, where the student values the future more than the current, she has to work

for 39 years (35 years for private and 53 years for public institution attendees) until the

investment in instructional spending start to pay off.

Alternatively, I evaluate for what value the discount factor has to take so that the

net present return is non-negative after working for a fixed number of years. Figure 1.10

plots such relationships for overall, private, and public institutions assuming a student

works for 35 to 55 years. First, public institutions require an extremely forward-looking

perspective, given their low estimated return. In other words, unless one view future dollars

more than current dollars, investment in instructional spending cannot pay off. For example,

if one works for 35 years, a discount factor of 1.02 is required, which is unrealistic. For private

institutions, up to a small degree of discounting, investment in instructional spending can

still pay off. If one works for 45 years, a discount factor of 0.9889 will break even.

The results above may justify that institutions have been shifting away from al-

locating additional funds to instructional spending. However, the budget decision process

surely does not solely rely on the perceived effectiveness of instructional spending but is

oriented by the values and goals of the different institution. Future research is warranted

to evaluate how institutions make their budget decisions.
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Table 1.1: Summary Statistics - Outcome Variables

(1) (2)
Full Sample Analysis Sample

Mean SD N Mean SD N

Earning, six years after entry
Mean 36204 9393 40122 36626 9086 32741
25th percentile 19494 6642 35834 19880 6555 29545
Median 32922 8707 40122 33373 8549 32741
75th percentile 47769 11254 35834 48246 10885 29545

Earning, eight years after entry
Mean 41459 11562 33803 41980 11175 27535
25th percentile 22385 7788 30240 22859 7701 24866
Median 37248 9997 33803 37782 9830 27535
75th percentile 54199 13559 30240 54771 13094 24866

Earning, ten years after entry
Mean 46090 13691 27872 46700 13251 22669
25th percentile 24517 8675 24957 25046 8580 20527
Median 40799 11232 27872 41401 11062 22669
75th percentile 60032 16027 24957 60706 15490 20527

Notes: Data from College Scorecard project. The full sample consists of observations where instructional

spending and at least one of the earning outcome variables are nonmissing. Analysis sample removes from

the full sample (1) institutions that have changed their levels (two-year vs. four-year), and (2) institutions

that had higher than $100,000 or lower than $50 instructional spending per student. Mean and standard

deviation are weighted by the number of undergraduate enrollments. All monetary terms are in 2014

dollars.
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Table 1.2: Summary Statistics - Treatment and Control Variables

(1) (2)
Full Sample Analysis Sample

Mean SD N Mean SD N

Instructional spending per student 9722 129516 50263 8066 5935 40962
Average SAT 1077 119 11311 1076 115 10668
Family income 38938 19908 50231 40244 19957 40939
Median household income 82071 17743 24716 82667 17681 20102
Age at entry 24.0 2.9 50231 23.9 2.9 40939
White 74.4 15.1 24716 74.6 15.1 20102
Black 12.8 11.8 24716 12.7 11.8 20102
Asian 3.9 4.8 24716 3.9 4.8 20102
Hispanic 13.9 17.4 24716 13.4 16.6 20102
Bachelor 15.6 4.0 24613 15.7 4.0 20028
Graduate or professional 8.7 2.9 24613 8.8 2.9 20028
Born in U.S. 87.4 10.5 24613 87.7 10.2 20028
Unemployment rate 3.77 1.08 24716 3.74 1.05 20102
Poverty rate 10.02 6.00 24716 9.85 5.77 20102
Female 0.60 0.11 45688 0.60 0.10 37290
Married 0.15 0.10 47865 0.15 0.10 38888
Dependent 0.60 0.22 49347 0.62 0.22 40247
Veteran 0.03 0.03 33178 0.03 0.03 27221
First generation 0.43 0.12 47374 0.42 0.12 38703

Notes: Data from College Scorecard project. See notes in Table 1.1 for sample restrictions. Mean and

standard deviation are weighted by the number of undergraduate enrollments. White refers to the percent

of the population from students’ zip codes who are White, via Census data. The same holds for Black,

Asian, Hispanic, Bachelor, Graduate or professional, Born in the U.S., Unemployment rate, and Poverty

rate. All monetary terms are in 2014 dollars.

32



Table 1.3: Correlation of Different Educational Inputs

SAT InExp Retention

SAT 1
InExp 0.611 1
Retention 0.707 0.448 1

Res InExp Res Retention

Res InExp 1
Res Retention 0.0287 1

Dm InExp Dm SAT Dm Retention

Dm InExp 1
Dm SAT 0.185 1
Dm Retention 0.0453 0.112 1

Notes: Data from College Scorecard project. The top panel shows the correlation between the raw values

of the average SAT score, instructional spending per FTE student, and first-year retention rate. In the mid

panel, I correlate residuals of instructional spending and retention rate from two separate regressions on

the SAT score, respectively. In the bottom panel, I correlate the demeaned value of the three variables

after subtracting from them the institution average.
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Table 1.4: Effect of Instructional Spending on Earnings, Pooled OLS Regression

(1) (2) (3) (4)

Log mean earning six years after entry
ln(InExp/FTE) 0.0270 0.0186 0.00545 0.00535

(0.0053) (0.0035) (0.0030) (0.0027)

Number of Institutions 4721 4721 4721 4721

Log mean earning eight years after entry
ln(InExp/FTE) 0.0351 0.0271 0.0173 0.0175

(0.0049) (0.0038) (0.0030) (0.0028)

Number of Institutions 4323 4323 4323 4323

Log mean earning ten years after entry
ln(InExp/FTE) 0.0403 0.0276 0.0192 0.0194

(0.0052) (0.0037) (0.0023) (0.0023)

Number of Institutions 3998 3998 3998 3998

Other Controls Yes Yes Yes Yes
Average SAT No Yes Yes Yes
Fixed Effects No No Yes Yes
State-Specific Time Trends No No No Yes

Notes: Data from College Scorecard project for cohorts between 1996 and 2007. See notes in Table 1.1 for

sample restrictions. Control variables include average SAT score, average family income, median household

income, the average age at entry for the entering cohort, racial composition, educational level,

unemployment rate and the poverty rate of the place of origin of the entering students, the fraction of the

enrolled students that are female, married, dependent, veteran, and first-generation college student, and

composition of degrees conferred by Classification of Instructional Programs (CIP) codes. Regressions are

weighted by the average cohort size in each institution. Standard errors in parentheses are calculated using

cluster-robust standard errors at the institution level.
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Table 1.5: Effect of Instructional Spending on Earnings

(1) (2) (3) (4)
Mean Pct25 Pct50 Pct75

Log earnings six years after entry
ln(InExp/FTE) 0.0053 0.014 0.0057 0.0030

(0.0027) (0.0044) (0.0029) (0.0026)

Number of Institutions 4721 4721 4721 4721

Log earnings eight years after entry
ln(InExp/FTE) 0.017 0.025 0.019 0.015

(0.0028) (0.0039) (0.0029) (0.0027)

Number of Institutions 4323 4323 4323 4323

Log earnings ten years after entry
ln(InExp/FTE) 0.019 0.031 0.023 0.017

(0.0023) (0.0034) (0.0023) (0.0021)

Number of Institutions 3998 3998 3998 3998

Notes: Data from College Scorecard project for cohorts between 1996 and 2007. See notes in Table 1.1 for

sample restrictions. All regressions include cohort fixed effects, institution fixed effects, state-specific time

trends, and a set of control variables. Control variables include average SAT score, average family income,

median household income, the average age at entry for the entering cohort, racial composition, educational

level, unemployment rate and the poverty rate of the place of origin of the entering students, the fraction

of the enrolled students that are female, married, dependent, veteran, and is first-generation college

student, and composition of degrees conferred by Classification of Instructional Programs (CIP) codes.

Regressions are weighted by the average cohort size in each institution. Standard errors in parentheses are

calculated using cluster-robust standard errors at the institution level.
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Table 1.6: Effect of Instructional Spending on Earnings, Same Institutions

(1) (2) (3) (4)
Mean Pct25 Pct50 Pct75

Log earnings six years after entry
ln(InExp/FTE) 0.011 0.017 0.011 0.0087

(0.0024) (0.0036) (0.0024) (0.0023)

Log earnings eight years after entry
ln(InExp/FTE) 0.013 0.022 0.014 0.010

(0.0023) (0.0030) (0.0023) (0.0023)

Log earnings ten years after entry
ln(InExp/FTE) 0.011 0.019 0.014 0.0092

(0.0020) (0.0029) (0.0020) (0.0019)

Number of Institutions 3826 3826 3826 3826

Notes: Data from College Scorecard project for cohorts between 1996 and 2007. See notes in Table 1.1 for

sample restrictions. All regressions include cohort fixed effects, institution fixed effects, state-specific time

trends, and a set of control variables. Control variables include average SAT score, average family income,

median household income, the average age at entry for the entering cohort, racial composition, educational

level, unemployment rate and the poverty rate of the place of origin of the entering students, the fraction

of the enrolled students that are female, married, dependent, veteran, and is first-generation college

student, and composition of degrees conferred by Classification of Instructional Programs (CIP) codes.

Regressions are weighted by the average cohort size in each institution. Standard errors in parentheses are

calculated using cluster-robust standard errors at the institution level.
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Table 1.7: Effect of Instructional Spending on Earnings, by Public and Private Institutions

Treatment: Ln(InExp/FTE) (1) (2) (3) (4)
Mean Pct25 Pct50 Pct75

Log earnings six years after entry
Private 0.0059 0.016 0.0056 0.0030

(0.0032) (0.0051) (0.0033) (0.0030)
Public 0.0030 0.0068 0.0065 0.0034

(0.0044) (0.0066) (0.0048) (0.0045)

Number of Institutions 4721 4721 4721 4721

Log earnings eight years after entry
Private 0.020 0.029 0.021 0.017

(0.0032) (0.0045) (0.0033) (0.0030)
Public 0.0060 0.0068 0.0079 0.0047

(0.0053) (0.0065) (0.0055) (0.0051)

Number of Institutions 4323 4323 4323 4323

Log earnings ten years after entry
Private 0.023 0.037 0.027 0.020

(0.0025) (0.0039) (0.0026) (0.0024)
Public 0.0035 0.0048 0.0036 0.0012

(0.0040) (0.0050) (0.0036) (0.0037)

Number of Institutions 3998 3998 3998 3998

Notes: Data from College Scorecard project for cohorts between 1996 and 2007. See notes in Table 1.1 for

sample restrictions. All regressions include cohort fixed effects, institution fixed effects, state-specific time

trends, and a set of control variables. See notes in Table 1.4 for descriptions of the control variables. The

treatment variable is instructional spending per FTE student. Instructional spending is interacted with the

type of institution. Outcome variables are mean, 25th percentile, median, and 75th percentile of earnings

six, eight, and ten years after entry. Regressions are weighted by the average cohort size in each institution.

Standard errors in parentheses are calculated using cluster-robust standard errors at the institution level.
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Table 1.8: Effect of Instructional Spending on Earnings, Public Institutions

Treatment: Ln(InExp/FTE) (1) (2) (3) (4)
Mean Pct25 Pct50 Pct75

Log earning six years after entry (No. of Institutions: 1686)
Not Observed in 1990 -0.0063 -0.0016 -0.0059 -0.0087

(0.0050) (0.0064) (0.0054) (0.0051)
Observed in 1990 0.011 0.012 0.014 0.012

(0.0037) (0.0053) (0.0040) (0.0037)

Log earning eight years after entry (No. of Institutions: 1648)
Not Observed in 1990 -0.0012 0.0037 0.00077 -0.0023

(0.0055) (0.0075) (0.0059) (0.0045)
Observed in 1990 0.013 0.012 0.014 0.012

(0.0050) (0.0066) (0.0055) (0.0051)

Log earning ten years after entry (No. of Institutions: 1609)
Not Observed in 1990 -0.0021 0.011 0.0042 -0.0043

(0.0064) (0.0084) (0.0061) (0.0058)
Observed in 1990 0.0079 0.0094 0.0058 0.0048

(0.0034) (0.0044) (0.0031) (0.0032)

Notes: Data from College Scorecard project for cohorts between 1996 and 2007. See notes in Table 1.1 for

sample restrictions. All regressions include cohort fixed effects, institution fixed effects, state-specific time

trends, and a set of control variables. See notes in Table 1.4 for descriptions of the control variables. The

treatment variable is instructional spending per FTE student. Instructional spending is interacted with

whether the institution was observed in 1990. Outcome variables are mean, 25th percentile, median, and

75th percentile of earnings six, eight, and ten years after entry. Regressions are weighted by the average

cohort size in each institution. Standard errors in parentheses are calculated using cluster-robust standard

errors at the institution level.
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Table 1.9: Effect of Instructional Spending on Earnings, by Institution Levels

Treatment: Ln(InExp/FTE) (1) (2) (3) (4)
Mean Pct25 Pct50 Pct75

Log earning six years after entry (No. of Institutions: 4721)
Two-year or less -0.0029 -0.0045 -0.0024 -0.00081

(0.0027) (0.0044) (0.0029) (0.0025)
Four-year 0.011 0.028 0.012 0.0059

(0.0041) (0.0068) (0.0044) (0.0040)

Log earning eight years after entry (No. of Institutions: 4323)
Two-year or less 0.0024 0.0024 0.0034 0.0036

(0.0027) (0.0038) (0.0028) (0.0026)
Four-year 0.031 0.047 0.034 0.025

(0.0046) (0.0067) (0.0048) (0.0044)

Log earning ten years after entry (No. of Institutions: 3998)
Two-year or less 0.0052 0.0048 0.0065 0.0054

(0.0022) (0.0034) (0.0023) (0.0021)
Four-year 0.035 0.059 0.040 0.029

(0.0036) (0.0049) (0.0037) (0.0034)

Notes: Data from College Scorecard project for cohorts between 1996 and 2007. See notes in Table 1.1 for

sample restrictions. All regressions include cohort fixed effects, institution fixed effects, state-specific time

trends, and a set of control variables. See notes in Table 1.4 for descriptions of the control variables. The

treatment variable is instructional spending per FTE student. Instructional spending is interacted with

whether the institution is a four-year institution. Outcome variables are mean, 25th percentile, median,

and 75th percentile of earnings six, eight, and ten years after entry. Regressions are weighted by the

average cohort size in each institution. Standard errors in parentheses are calculated using cluster-robust

standard errors at the institution level.
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Table 1.10: Sensitivity: What value of δ will drive β to 0?

(1) (2) (3) (4)
Mean Pct25 Pct50 Pct75

Log earnings six years after entry
ln(InExp/FTE) 0.00535 0.0141 0.00573 0.00303

(0.0027) (0.0044) (0.0029) (0.0026)

R̃ 0.900 0.903 0.917 0.897

Rmax = min(1.3 · R̃, 1) 1 1 1 1
δ 0.302 0.508 0.343 0.183

Log earnings eight years after entry
ln(InExp/FTE) 0.0175 0.0253 0.0191 0.0149

(0.0028) (0.0039) (0.0029) (0.0027)

R̃ 0.806 0.808 0.838 0.801

Rmax = min(1.3 · R̃, 1) 1 1 1 1
δ 0.486 0.483 0.561 0.431

Log earnings ten years after entry
ln(InExp/FTE) 0.0194 0.0310 0.0225 0.0168

(0.0023) (0.0034) (0.0023) (0.0021)

R̃ 0.686 0.662 0.753 0.687

Rmax = min(1.3 · R̃, 1) 0.892 0.860 0.980 0.893
δ 0.974 1.139 0.893 0.822

Notes: This table applies the sensitivity analysis described in Oster (2019) to the main estimation

equation. The coefficients and the standard errors are the same as in Table 1.5. R̃ is the R-squared for the

controlled regression. Rmax is conceptually the maximum variation in the outcome variable that could be

explained by including all possible confounding variables. Using Rmax = min(1.3 · R̃, 1) was suggested by

Oster (2019) based on a review of existing published articles. δ is the degree of selection on potential

confounding variables relative to the degree of selection on observed variables that are already included in

the equation. Larger δ indicates more robust estimated coefficient.

.
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Table 1.11: IV Regression: Effect of Instructional Spending on Earnings, Public Institutions

(1) (2) (3) (4)
Mean Pct25 Pct50 Pct75

Log earnings six years after entry
Ln(InExp/FTE) 0.016 -0.041 0.006 0.007

[.026] [.044] [.029] [.026]

Number of Institutions 1266 1266 1266 1266

Log earnings eight years after entry
Ln(InExp/FTE) 0.007 -0.066 -0.021 0.008

[.02] [.038] [.025] [.019]

Number of Institutions 1260 1260 1260 1260

Log earnings ten years after entry
Ln(InExp/FTE) -0.009 -0.047 -0.010 0.002

[.021] [.03] [.021] [.024]

Number of Institutions 1252 1252 1252 1252

Notes: This table presents the IV regression results. The instrument is the log of the institution’s financial

dependence on state appropriations in 1990 multiplied by average state appropriations per student, and its

one-lag value. See Section 1.5 for more detailed discussion. Data from the College Scorecard project and

State Higher Education Finance project for cohorts between 1996 and 2007. The analysis sample consists

of institutions that have remained consistent in their level and have reported instructional spending per

student between $50 to $100,000. All regressions include a set of control variables, institution fixed effects,

and cohort fixed effects. See notes in Table 1.4 for descriptions of the control variables. The first-stage

F-statistic in 18.6. Standard errors in brackets are calculated based on 100 replications of cluster-bootstrap

of the entire process at the institution level.
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Figure 1.1: Growth of Instructional Spending and Total Spending
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Notes: Author’s calculation based on data from the Integrated Postsecondary Education Data System

(IPEDS). The dashed line represents an institutional change in the data collection process. Comparisons

should not be made before and after the change.
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Figure 1.2: Change in Instructional Spending and Change in Wage Earnings of Young
Workers with College Degree
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Notes: Each point represent a state. States are grouped into four regions and are indicated by different

colors. The horizontal axis shows the percentage change in spending per FTE student between 2009 and

2016. The vertical axis shows the percentage change in wage earnings for young workers (age 22-30) with

at least an associate degree between 2012 and 2019. The dashed line is a linear fit weighted by the

population of young workers with at least an associate degree in 2019. Calculations are based on data from

Integrated Postsecondary Education Data System (IPEDS) and American Community Survey (ACS). All

monetary terms are deflated using Consumer Price Index from the Bureau of Labor Statistics.
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Figure 1.3: Data Structure and Availability for Outcome Variables

Notes: Colored area indicates that outcome variable is available in that year. Cohorts are pooled at the

two-year level. Cohort 1997 includes all students entering the institution in Fall 1996 and Fall 1997.
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Figure 1.4: Distribution of the Instructional Spending
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Notes: The full sample consists of 51,779 institution-cohort observations. The analysis sample consists of

42,244 observations, which are institutions that have remained consistent in their levels, and have not

reported to have instructional spending per student falling outside the range of $50 to $100,000.
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Figure 1.5: Effect of Instructional Spending per FTE Student on Earnings (All Institutions)
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Notes: This figure visually summarizes estimation results of the effect of instructional spending per

student on average student earnings. 95% confidence intervals are attached to the point estimates. See

Table 1.5 for the exact values.
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Figure 1.6: Effect of Instructional Spending per FTE Student on Earnings (Private Insti-
tutions)
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Notes: This figure visually summarizes estimation results of the effect of instructional spending per

student on average student earnings for private institutions. 95% confidence intervals are attached to the

point estimates. See Table 1.7 for the exact values.
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Figure 1.7: Confounding Adjusted Estimated Elasticities (All Institutions)
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Notes: This figure plots the estimated coefficients in Table 1.5 against levels of adjustment for confounding

factors with the method discussed in Oster (2019). The parameter Rmax is chosen as min(1.3R̃, 1) where R̃

is the R-squared in the controlled regression, as suggested in the original paper. Remaining positive for a

high level of confounding adjustment indicates a more robust estimated coefficient.
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Figure 1.8: Parallel Trends Assumption
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Notes: The figure in the top panel plots the histogram of the standard deviations of the identifying

variation in the artificial “pre-period” (before 2002). The identifying variation is the predicted residuals

from a regression of instructional spending on all the control variables, cohort fixed effects, institution fixed

effects, and state-specific time trends. The figure in the bottom panel plots the average earnings eight

years after first attendance for the above three groups over time.
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Figure 1.9: Net Present Return of Instructional Spending
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Notes: This figure plots the cumulative return of instructional spending as a percentage of total investment

in instructional spending at a four-year college.
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Figure 1.10: Discount Factor for the Investment in Instructional Spending to Break Even
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Notes: This figure plots the value of the discount factor so that the net present return of the investment in

instructional spending after working for a fixed number of years will break even. The total investment is an

increase in instructional spending each year for four years. The cumulative return assumes the estimated

returns (in Table 1.5, Table 1.7, and Table 1.8) for earnings eight years after first attendance are persistent

throughout students’ lifetime.
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Chapter 2

Competition for Better Students

and College Budget Decisions

2.1 Introduction

Going to college is a mixture of many experiences, including investing in human

capital and consuming amenities. The budget allocation decisions in college determine

the provision of educational inputs, consumption amenities, and many other services that

directly affect the college experience and, in turn, impact student outcomes. Over the past

decades, the composition of college budget spending underwent notable changes. Nationally,

instructional spending as a share of total spending decreased from 41% in 1986 to 29%

in 2018. The percentage of spending on research has also declined, even for four-year

institutions. Over the same period, the three spending categories with the most notable

increases are hospitals, student services, and others. Moreover, there exist considerable
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variation in budget spending decisions across institutions, even among institutions of the

same type. Therefore, a key question is to understand how different factors contribute to

the decision-making process regarding budget allocations.

This paper focuses on evaluating whether and to what extent colleges make their

budget decisions to compete for good students. We construct a model for the college admis-

sion and human capital production process. Based on the idea that improving reputation

is the most common goal for colleges, and the ability to promote good student outcomes is

the primary reason for a college to be perceived as outstanding, we assume colleges aim to

maximize the average earnings of their students. This objective differs from other papers

in the literature. Many assumed that the colleges’ objective was to maximize enrollment,

peer quality at admission, total revenue (or profit), or a function of those. We argue that

while those measures are commonly used as proxies for a college’s reputation, they are the

results rather than the cause. The outcomes of the graduating cohorts contribute most to

the movements in the way the general public perceives a college, or say its reputation.1

Using student earnings as the objective function creates an interesting trade-off

for colleges. On the one hand, by increasing the share of spending on educational inputs, a

college can better create value-added to the students through the human capital production

process. On the other hand, a higher level of consumption for amenities makes a college

generally more attractive, and it can more likely attract students with higher baseline ability

levels. Jacob et al. (2018) finds that most students value the consumption of amenities,

while the taste for academic quality is confined to students of higher ability. It is, therefore,

1MacLeod et al. (2017) finds that employers are willing to pay a wage premium for a higher college
reputation. Higher reputation is also correlated with the earning growth path, suggesting that reputation
matters beyond the signaling of individual skills.

53



essential to model the different student types with heterogeneous tastes for educational

inputs and consumption of amenities.2

While we do not estimate the structural parameters of our model, we specify

them based on existing knowledge in the literature and match moments in the data. We

simulate the case with two competing colleges of similar quality to illustrate whether and

how a college responds to budget changes of the competing college. We find that when the

competing college is spending a relatively high share of its budget on educational inputs, the

best choice of the college is to undercut its competitor. This reflects the idea that by slightly

decreasing the spending on educational inputs and increasing the spending on consumption

amenities, a college can become better off by attracting a student body of higher quality.

Over this range, our model predicts a positive relationship between the budget decisions

among two competing colleges.

When the competing college spends a relatively low share of its budget on edu-

cational inputs, and as it further decreases its share, the best response of the college is to

spend increasingly more on educational inputs. The reason is that when the competitor is

spending a small share on educational inputs, they are particularly unattractive to students

with high learning abilities. They are also generally unattractive to an average student as

students value their earnings after graduation, and a low level of spending on educational

inputs does not promote that margin as much. Hence the competitor imposes a meager

amount of competitive pressure. In such cases, the college does not need to spend as much

on consumption amenities to attract good students. They will spend increasingly more on

2We acknowledge that the spending on educational inputs and consumption amenities is not necessarily
mutually exclusive. For example, events that promote social networks are both investment and consumption.
Practically, there is a continuum of trade-offs. To fix the idea and illustrate our main point, we take the
dichotomous approach in categorizing spending.
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educational inputs to better promote the outcomes of the students they admit. Our model

thus predicts a negative relationship over this range. Overall, the best response function is

U-shaped between two colleges of similar characteristics.

We simulated a second case of the competition between two colleges with lower

competitive pressure. Intuitively, the responsiveness declines as the competitive pressure

become lower. Our simulated result confirms that intuition. As two colleges become more

heterogeneous, the region where one institution is unresponsive to its competitor expands

until a certain point where the best response functions become flat lines.

We verify the above findings with our empirical analysis, using data from the Inte-

grated Postsecondary Education Data System (IPEDS). We find that most colleges respond

positively to increases in spending on educational inputs by their competitors, which is ro-

bust across several ways in defining the competing institution. Overall, a 10 percentage

points increase in the average share of spending on educational inputs by competitors is

associated with a 4 to 7 percentage points response. Associate’s colleges, doctoral universi-

ties, master’s colleges, and universities, special focus four-year colleges, and others are more

responsive than special focus two-year colleges and baccalaureate colleges.

Our empirical evidence confirms the upward sloping part of the U-shaped best

response function. We estimate a different slope parameter over five intervals for each type

of institution. Only special focus two-year colleges have a negative slope at the bottom end

of the unit interval and positive slopes over the remaining unit interval, consistent with the

U-shaped predictions. All other types of colleges have positive slopes throughout the unit

interval.
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We also estimate the responsiveness in the log level of spending on educational

inputs. As is expected, we find positive associations between a college’s choice and its

competitors, with elasticity parameters estimated to be between 5 and 18 percent. We

consider another source of the decline of competitive pressure - increasing distances between

colleges. We find that such association fades away as we expand the definition of competing

colleges by including colleges further away in our calculation of average spending, except

for doctoral universities. As we calculate the average level of spending on educational

inputs among colleges within a radius of 1,000 miles, the association found above completely

disappears.

This paper contributes to the growing literature analyzing education institutions

as markets. While extensive studies have analyzed the impact of educational spending

decisions on student outcomes (Hanushek, 1981; Grogger, 1996; Papke, 2005; Webber and

Ehrenberg, 2010; Jackson et al., 2016; Hyman, 2017; Lafortune et al., 2018), less is known

about the determinants of those decisions, particularly for colleges. Robins (1973) provide

some institutional knowledge. Rothschild and White (1993, 1995) provide insights into the

determinants of pricing strategies of higher education institutions. This paper takes the

angle of competition for good students between colleges and studies how that can affect

budget allocation decisions.3

Jacob et al. (2018) is the closest study to this paper that estimates the demand

elasticities for academic quality and consumption amenities using net revenue as the objec-

tive function of colleges. The types of students that colleges compete for in their setting

3We abstract away from the joint decision-making process on the enrollment and revenue maximization
margins.
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are wealthy students willing to pay a higher tuition price. In our setup, colleges compete

for students with higher baseline levels of human capital or higher learning capabilities.

This paper is also related to another strand of the literature that studies the com-

petition between educational institutions. Hoxby (2000) finds that competition improves

production efficiency in public schools and improves student outcomes. Belfield and Levin

(2002) make a good review of the early literature. We approach our question by considering

the competition by providing better consumption amenities. Epple et al. (2006) provides

a general equilibrium model without considering the consumption of amenities. They fo-

cus less on the budget decision-making process and more on the hierarchy of colleges with

different educational qualities.

The paper proceeds as follows. In Section 2.2, we describe the model setup and

the predictions from the simulated model. In Section 2.3, we introduce the data we use,

the empirical specification, and the results. Section 2.4 concludes.

2.2 Model

2.2.1 Students

An individual student values her college experience. Her utility depends on the

consumption of amenities when she attends a certain college and her wage earnings after

graduation. For a student i, her utility function is given by

ui = log(ci1) + βi log(ci2) (2.1)
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where ci1 is her consumption when attending college, ci2 is her consumption after

graduation, and βi is an aggregate discount factor.4

By attending college j, ci1 equals to Aj the spending on consumption amenities

by college j. ci2 equals to her wage income, which is assumed to equal her human capital

at graduation. That is, ci2 = Hi2.

We model the human capital production function based on the classic literature

and the empirical evidence found in Jacob et al. (2018), with a slight modification. They

find that most students value the consumption of amenities, while the taste for academic

quality is confined to students of higher ability. They measure the ability level by test scores

before entry, which we argue is highly correlated with a student’s learning ability. We,

therefore, model that students with higher learning abilities can better utilize the spending

on educational inputs by a college, that scales their initial level of ability, or human capital

through the production process.

Specifically, through attending college j, a student’s human capital evolves accord-

ing to the following process

Hi2 = ζj · Eπi
j ·Hi1 (2.2)

4The utility function is an aggregation of period utility function where the period utility is uit = log(c′it)
for t = 0, . . . . , T . Suppose student i has a (conventional) discount factor βi0. Her utility is then ui =∑T

t=0(β
t
i0 log(c

′
it)). We aggregate her life into two periods, the first in college (assuming four years) and

the second in her work life. We assume her consumption in college is constant, that is c′it = ci1 for
t = 0, . . . , 3, and her consumption trajectory in work life is an exponential function of her initial earning
after graduation, that is c′it = c

v(i,t)
i2 for t = 4, . . . , T where v(i, t) can be a simple linear function in t to

represent wage growth with experience, or take a more complex form. It may vary across individual i to reflect
individual heterogeneity in the wage trajectory. Her utility can thus be written as ui = (

∑3
t=0 β

t
i0) log(ci1)+

(
∑T

t=4 β
t
i0v(i, t)) log(ci2), or ui = log(ci1) + βi log(ci2) where βi = [

∑T
t=4 β

t
i0v(i, t)]/[

∑3
t=0 β

t
i0].
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where ζj is the human capital production technology for institution j, Ej is the

spending on educational inputs at institution j, πi is student i’s ability in learning, and Hi1

is the initial level of human capital she is endowed with.

2.2.2 Colleges

Colleges have many objectives. To name a few, most colleges aim to promote lead-

ership, innovation, equity, and social responsibility. As efforts to achieve those objectives

are usually complementary rather than contradictory, the literature has so far used either

a single measure as the objective or a combination of a few, while there is not a consensus

on the objective function of colleges. An arguably most common objective for colleges is

to promote their reputation. While different indicators have been used as proxies for rep-

utation, such as admission rates and peer quality at admission, they are the results rather

than the causes of changes in college reputation. Using Ph.D. programs as an example, if

placements have been undesirable for consecutive years, the program will likely become less

attractive to potential incoming students. Similarly, if earnings for graduating cohorts at

a college have been lower than the expectation, after taking into consideration changes in

general labor market conditions, it will likely constitute a decline in the reputation of the

college. Moreover, although there has been some adoption of the value-added measure in

postsecondary institutions in evaluating the effectiveness of education (e.g., Mountjoy and

Hickman (2021)), it is not as accessible to the general public. We, therefore, argue that it is

the earning outcomes of the graduating cohorts that contribute most to the movements in

the perceived reputation of colleges by the public, and is also what colleges aim to maximize.
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We assume that colleges aim to maximize the average earnings of their graduating

students, that is

Uj =
1

Nj

∑
i∈Ij

wi2 (2.3)

where Nj is the number of students admitted, Ij is the set of the index of students

i that attend college j, and wi2 is the wage earning for student i at graduation, which we

assume to be equal to her human capital Hi2 after the knowledge learning (production)

process at college j.

We further assume that there is more demand for colleges than capacities available,

and the maximum capacities are exogenously determined. Colleges cannot turn students

away until they are at full capacity. This assumption ensures in our model that no college

can maximize the average student earnings by choosing to admit a single high-achieving

student and reject all other applications. Therefore, the preference of college over every

student is merely based on their wi2, or equivalently Hi2, which is deterministic on the

college’s characteristics and choice. Practically, colleges make many decisions in companion

with their budget decisions, such as the number of students they admit (subject to a physical

capacity), the price they charge, and the programs they offer, and in the meantime, they

also face a budget constraint. As our intention with this model is to illustrate how the

competition between colleges affects budget allocation decisions rather than to fully describe

the complex joint decision-making process, we simplify those aspects and take them as

given.5

5Epple et al. (2006) study a general equilibrium model that predicts a hierarchy of colleges that differ by
the educational quality provided, without the component of consumption amenities.
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For a given budget (total spending per student) Bj , a college chooses sj , the share

of spending on educational inputs. The remaining is then the spending on consumption

amenities. Effectively, Ej = sjBj and Aj = (1− sj)Bj .

2.2.3 Admission

The student utility conditional on attending college j can be written as

ui = log(1− sj) + βiπi log(sj)︸ ︷︷ ︸
Budget decision of college j

+ log(Bj)(1 + βiπi) + βi log(ζj)︸ ︷︷ ︸
Characteristics of college j

+βi log(Hi1) (2.4)

The terms in the first brace depend on the budget decision of college j, and student

characteristics. The terms in the second brace depend on college characteristics that are

assumed to be exogenously determined in this model, as well as student attributes. The

last term does not depend on college choices or characteristics. It only reflects a shift in the

level of utility a student can achieve given her initial level of human capital.

For a specific type of student (βi, πi, Hi1), there is an optimal level of sj that

college j can choose that will maximize the terms in the first brace. However, it does not

necessarily make the college j most attractive to that type of student if there is another

college j′ with better human capital production technology ζj′ and/or higher overall budget

spending per student Bj′ , and an adequate choice of sj′ that will yield a higher overall

utility.

In fact, considering all postsecondary institutions and all pairwise comparisons,

many of those pairs are of vastly different in their ζj and Bj such that the student body

they each try to attract do not overlap. In such cases, the decision made by one college
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will not impact the other from the perspective of competition for good students.6 In our

model, if the difference between two colleges in the terms in the second brace is too large,

such that regardless of the choice of sj′ , there is no sj that will make ui|j > ui|j′ for any

student type, then the choice of sj′ should not have a direct impact on sj .
7

We assume that the matching of colleges and students follows a student-proposing

deferred acceptance mechanism proposed in Gale and Shapley (1962). As the preferences

for both sides are deterministic based on the student characteristics (βi, πi, Hi1), college

characteristics (ζj , Bj) and college budget decision (sj), there is a deterministic matching

outcome

I(s1, . . . , sJ) = {I1(s1, . . . , sJ), . . . , IJ(s1, . . . , sJ)} (2.5)

where Ij index the set of students i that are admitted to college j. We emphasis

here that for all j = 1, . . . , J , Ij depends on the vector of choices (s1, . . . , sJ) that is made

by all colleges. Moving beyond, we write I = {I1, . . . , IJ} to make the expression less

cumbersome.

The college utility is thus

Uj =
1

Nj

∑
i∈Ij

ζj · (sjBj)
πi ·Hi1 (2.6)

College j makes its choice of sj to maximize Uj , conditional on the vector of choices

s−j made by other colleges. It is analytically infeasible to find the global optimum using the

6Practically, a community college will likely not consider the competition for good students with univer-
sities in the Ivy League.

7The choice of sj′ may have an impact on sj indirectly, through the competition for students with
college(s) j′′ that are of technology ζj′′ and budget Bj′′ in between the values of j and j′.
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first order condition
∂Uj(sj ,s−j)

∂sj
as the set of individuals over which Uj is calculated, Ij , is

also changing as sj changes. Let s
∗
j (s−j) = argmaxsj Uj denote the optimal choice made by

college j, conventionally known as the best response function of college j to other college’s

choices.

The equilibrium is at the intersection of the best response functions of all colleges.

It is defined as the set of choices of (s1, . . . , sJ) such that s∗j = s∗j (s
∗
−j) for all j = 1, . . . , J ,

or to put in words, each college’s choice is maximizing their utility in response to the choices

made by all other colleges. The set of students admitted to each college in this equilibrium

is a deterministic function of (s1, . . . , sJ), and the fact that the matching is made through

a centralized mechanism ensures that the capacity constraints for colleges are satisfied.

While the determination of the equilibrium and its uniqueness are important in

estimating the model parameters, the computational burden grows exponentially as the

number of institutions that we consider increases. It soon passes what can be calculated

within a feasible amount of time. We hence turn to simulated examples to illustrate the

idea and obtain insights. We are particularly interested in the sign of the slopes of the best

response functions, that is, how sj changes as s−j changes. We test empirically whether

and how colleges respond to their competitors’ choices of s−j .

2.2.4 Simulated Example

Students are heterogeneous in their aggregate discount factor βi for future con-

sumption, learning abilities πi, and initial human capital Hi1. We assume that they follow

a joint normal distribution
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
βi

πi

Hi1

 ∼ N




µβ

µπ

µH

 ,


σ2
β ρ12σβσπ ρ13σβσH

ρ12σβσπ σ2
π ρ23σπσH

ρ13σβσH ρ23σπσH σ2
H



 (2.7)

If ρ12 is positive, that is if students who value future consumption more are in

the meantime more likely to be of higher learning abilities, the extent that colleges can

become generally more attractive to students by increasing their spending on consumption

amenities will be weakened. To the extent that they are perfectly positively correlated, the

above strategy remains valid. If ρ12 is negative, the college will be more able to strategically

attract better students by increasing their spending on consumption amenities.

By similar arguments, the sign of ρ13 and ρ23 only affect the extent to which

colleges can strategically make their choices, but do not eliminate the possibility. To simplify

the model, we restrict that ρ12 = ρ13 = ρ23 = 0.8 The model predictions are qualitatively

unaffected when we choose positive (or negative) values of ρ.9

Instead of estimating the parameters (µβ, µπ, µH) and (σβ, σπ, σH), we specify

them based on prior knowledge. βi is an aggregate discount factor as discussed in section

2.2.2. Based on a yearly discount factor of 0.96, an annual wage growth rate of 2%, and

assuming a 40-years work life, we set µβ = 6.5. The mean value of πi is chosen to match

the moment observed in our data. In Equation 2.4, the optimal level of sj is βiπi

1+βiπi
. In

the data, we observe that the average share of spending on educational inputs is around

8Intuition may suggest a positive ρ23. Students with a higher initial endowment of human capital, which
in our setting is the amount of human capital when they graduate from high school and before entering
college, should also be more likely to have higher learning abilities, as students who are better at learning
will have learned more before graduating from high school. It is less intuitive in terms of the signs of ρ12
and ρ13.

9See Figure B.1 and Figure B.2 in Appendix B.2.
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30%. Therefore, we set µπ = 0.07 so that E
(

βiπi

1+βiπi

)
≈ 0.3. The distribution of the initial

amount of human capital (Hi1) cannot be separately identified from the human capital

production technology in our model. Fortunately, it only provides variation in the students’

baseline quality and does not interact with the school’s choice or the school’s characteristics.

Therefore, we set it arbitrarily with µH = 1. The standard deviations (σβ, σπ, σH) are

chosen as (1.4, 0.017, 0.2) to generate the necessary variation in the student attributes.

We further simplify the case to two colleges in our simulated example. There

are several reasons for making this simplification. First and foremost, as we are interested

in whether a college strategically responds to budget changes of its competitors, but not

whether and how such responsiveness differs when budget decisions are made deferentially

among competing institutions, it is not necessary to have more than one competing insti-

tution. Second, we may conceptually view the combination of all competitors as a single

institution. Third, it is computationally costly and visually difficult to calculate and rep-

resent the best response function of choices made by the competitors when there is more

than one competitor. It has been a common practice in the literature when joint admission

decisions are made for many colleges to aggregate multiple institutions of reasonably similar

characteristics into one (Jacob et al. (2018); He et al. (2021)). We acknowledge that the

results obtained under such simplification can not be generalized. We leave it to future

work to consider the more complex strategic responds among multiple institutions.

In Figure 2.1, we plot the simulated best response functions of two colleges. The

parameters we set for the two institutions are very close so that the pressure from its

competitor’s budget choice remains relevant throughout the domain. We see that when the
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competitor is setting a high level of s, that is, when the competitor is spending a high share

of its budget on educational inputs, it is best to undercut the competitor. This reflects the

idea that by slightly lowering the spending on educational inputs and increasing that on

consumption amenities, a college will be able to become slightly more attractive overall,

and hence admit a student body with a higher baseline level of human capital. We expect

a positive relationship between a college’s spending and its competing institution over this

range. The point where the two functions intersect is at around 35%. This is a construct of

the way we set µπ. The best response functions below 35% are negatively sloped. Over this

range, the competitor is setting a very low share of spending on educational inputs, and

it is also below the optimal level for most types of students, as we can see from Equation

2.4. Over this range, the competitor is becoming generally less attractive as it lowers its s.

The pressure from the competition for good students, therefore, becomes less relevant. The

college can increase its utility by setting a higher level of s, as a higher level of s directly

improves the human capital production outcomes of its students.

We simulate the second case of two colleges that are more heterogeneous. In Figure

2.2, the difference in human capital production technology ζj and total spending per student

Bj is more significant between the two colleges than what we set in Figure 2.1. When the

two colleges are less homogeneous, college 2 does not respond to budget choices made by

college 1 when s1 is between 0.29 and 0.43. Within this range, college 1 is more attractive to

students than college 2, regardless of the choice of college 2. College 2 is therefore unable to

compete for a better student body through its choice of s2, hence setting s2 to the maximum

possible value as doing so will best promote the student it can admit. As stated above, the
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competitor (college 1 in this case) is the combination of colleges that are relevant in college

2’s decision-making process. As we include more colleges that are more heterogeneous from

college 2 in that set, we expect college 2’s responsiveness to decline.

As the model parameters are specified rather than estimated, we refrain from

drawing quantitative conclusions based on our model but only predict the signs of the

slope. We turn to quantitative analysis in our empirical section.

2.3 Data and Empirical Results

2.3.1 Data

In this paper, we use the college characteristics from the Integrated Postsecondary

Education Data System (IPEDS). We specifically use the variables of spending on different

expenditure categories (instruction, research, student service, etc) to calculate sj in our

model. The data contain information on the latitude and longitude of institutions, allowing

us to calculate the distance between two institutions.10 We also utilize the Carnegie Clas-

sifications of colleges which are based on the purpose of the institution. We aggregate over

twenty detailed categories into seven broad categories.11 We assume that colleges within

each of those categories are more likely to target the same student body when making

strategic decisions. In robustness checks, we relax this assumption.

10We use the formula d(j, j′) = 3963·arccos(sin(latj)·sin(latj′)+cos(latj)·cos(latj′)·(cos(longj−longj′))))
to calculate the earth surface distance, where (latj , longj) and (latj′ , longj′) are the coordinates of institution
j and j′.

11The seven categories are associate’s colleges, special focus two-year colleges, doctoral universities, mas-
ter’s colleges and universities, baccalaureate colleges, special focus four-year, and others.
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2.3.2 Empirical Specification

We consider the following regression equation

sj,t = β · s̄−j,t + ηj + θt +Cj,t + εj,t (2.8)

where sj,t is a measure of spending on educational inputs at college j in year t,

s̄−j,t =

∑
j′∈I−j,t

sj′,t

|I−j,t| is an average of s−j,t over the set of relevant competing institutions,

denoted as I−j,t which we will discuss in more detail below about how we construct it

empirically, ηj is the institution fixed effects, θt is the time fixed effects, Cj,t is a vector of

institution characteristics, and εj,t are assumed to be idiosyncratic errors.

Identification issues will arise if εj,t is correlated with s̄−j,t, conditional on all

other variables included. As s̄−j,t is a measure of group averages, the issue caused by the

association between any individual college’s budget choice sj′,t for j′ ∈ I−j,t and εj,t is

ameliorated after the aggregation. The group level association between s̄−j,t and εj,t can be

more serious for cases where the number of institutions in I−j,t is small. For example, if two

institutions are cooperating and make their budget decisions jointly, we will underestimate

the competitive pressure. We argue that in such cases, the cooperative relationship is

usually long-lasting. By including institution fixed effects, our estimates are less susceptible

to biases caused by such issues. Another argument for this concern is that for the vast

majority of the institution-year observations in our sample, the s̄−j,t is averaged over 10

colleges. It is much less likely for the average of a large group of colleges to be associated

with the idiosyncratic error term. To further account for issues such as changes in general

labor market conditions, we also include the year fixed effects in our regression.
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2.3.3 Share of Spending on Educational Inputs

We estimate the following regression equation

sj,t =
7∑

p=1

(βp · 1(CCj = p) · s̄−j,t) + ηj + θt +Cj,t + εj,t (2.9)

where sj,t is the share of spending on educational inputs at college j in year t,

s̄−j,t =

∑
j′∈I−j,t

sj′,t

|I−j,t| is an average of s−j,t over the set of relevant competing institutions,

denoted as I−j,t, and p from 1 to 7 indicates the seven Carnegie Classifications. We interact

the average share of spending at competing institutions with the type of college to allow

for a different slope coefficient. In this section, we construct I−j,t,x = {j′ : (1 − x) · Bj,t ≤

Bj′,t ≤ (1 + x) · Bj,t} where x = 0.05, 0.1, 0.25, and 0.5 so that the results are robust to

the choice of x, and Bj is the overall budget of institution j in year t. Such construction

is based on the simulation results where we find only colleges of close Bj and ζj compete

against each other. As we do not observe and cannot quantify ζj empirically, we choose the

set of relevant competing institutions as those with similar levels of the overall budget.

Table 2.1 presents the estimation results. Across the board, colleges of all types

respond to spending changes in competing institutions. A 10 percentage points increase in

the average share of spending on educational inputs at competing institutions is associated

with a 4 to 7 percentage points increase in the share of spending on educational inputs.

Associate’s colleges, doctoral universities, master’s colleges and universities, special focus

four-year colleges, and others are more responsive at between 6 to 7 percentage points.

Special focus two-year colleges and baccalaureate colleges are less responsive at between 4

and 5 percentage points. The results are qualitatively similar for different values of x.
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As is shown in the simulated example, the best response function is U-shaped.

We further investigate if such a pattern is observed empirically. To do so, we estimate the

following regression equation

sj,t =
5∑

k=1

7∑
p=1

(
βp,k · 1(CCj = p) · 1

(
k − 1

5
≤ s̄−j,t ≤

k

5

)
· s̄−j,t

)
+ηj+θt+Cj,t+εj,t (2.10)

where the terms are defined the same as above and we further allow five different

slopes for different values of s̄−j,t for each type of college p.12 A U-shaped best response

function predicted by our model will correspond to negative values of βp,k when k = 1 or

k = 2, which increase and become positive as k increases.

Table 2.2 shows the results for the above exercise. We find mixed evidence for the

above hypothesis. For associate’s colleges, we find small and positive coefficients when k =,

which increases as k increases. Special focus two-year colleges are closest to our prediction

of a U-shaped function. The slope is negative when k = 1 and is positive when k ≥ 2,

though not increasing with k. Doctoral universities, master’s colleges and universities, and

others all have large and positive slopes when k = 1, and the slopes decrease as k increases.

For baccalaureate colleges and special focus four-year colleges, the pattern is unclear. The

empirical evidence does not confirm the U-shaped best response function, possibly because

that our model did not completely consider the joint decision-making process.

12Dividing the unit interval into five is a compromise. Ideally, we want to divide it as fine-grained as
possible to allow for more flexible slope coefficients. In the data, very few institution-year observations are
associated with an average share of spending on educational inputs by their competing institutions that are
below 0.3 or above 0.6. Our attempt to empirically shed light on the best response function away from the
equilibrium value is impeded by the insufficient amount of observations in those ranges.
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2.3.4 Log of Spending on Educational Inputs

We then test the prediction of whether a lower level of competitive pressure is

associated with a lower level of responsiveness. We consider the case of using the log level

of spending on educational inputs as our variable of interest.13 For values of d ranging from

10 to 500 and for each one of the seven types of institutions, we estimate the following

regression equation

ln(Ej,t,d) = β1 · ln(Ē−j,t,d) + ηj + θt + εj,t,d (2.11)

where Ej,t,d is the spending per student on educational inputs at college j in year

t. Here, we consider the relevant competing colleges as those of the same type of colleges

within a radius d. Let d(j, j′) denote the distance between two colleges j and j′. The set of

relevant colleges for college j in year t is defined as I−j,t,d = {j′ : CCj = CCj′ , d(j, j
′) ≤ d}

where CCj is the Carnegie Classification of college j. Therefore, Ē−j,t,d =

∑
j′∈I−j,t,d

Ej′,t

|I−j,t,d| is

the average spending per student on educational inputs over the set of relevant competing

institutions.

Figure 2.3 plots the estimated coefficients and the corresponding 95% confidence

interval for the above regression equations. For doctoral universities, baccalaureate colleges,

and special focus four-year colleges, we cannot reject the null hypothesis that they do not

respond to changes in spending on educational inputs by other colleges of the same type

due to imprecisely estimated standard errors. Associate’s colleges, special focus two-year

colleges, and master’s colleges and universities respond to a 10 percent increase from their

13We are slightly departing from the model. Practically, spending on educational inputs and consumption
amenities does not exhaust all spending categories of a college.
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competing institutions by increasing their spending on educational inputs by approximately

1 percent.

A common concern is whether the results are driven by the definition of competing

institutions. Figure B.3 in Appendix B.2 shows the results when the competing institutions

are not restricted to colleges of the same type, that is, we set I−j,t,d = {j′ : d(j, j′) ≤ d}.

Another concern is whether the results are driven by changes in the composition of the

analysis sample. Figure B.4 in Appendix B.2 presents the same results for colleges with at

least one competing institution within 30 miles radius. We observe generally similar patterns

and are thus assured that the above findings are robust to alternative constructions of the

sample.

We further observe that colleges are most responsive to budget changes to compet-

ing colleges of close distance. While not modeled in this paper, it is well documented in the

literature that students generate dislike for colleges far away from their homes, which can

serve as another source of decreasing levels of competitive pressure. By relaxing the defini-

tion of relevant competing colleges to include colleges that are further away, the competitive

pressure becomes lower. To test whether the responsiveness decreases as competitive pres-

sure decreases, we estimate the following regression equation

ln(Ej,t,d) = β1 · ln(Ē−j,t,d) + β2 · ln(Ē−j,t,d) · d+ ηj,d + θt + εj,t,d (2.12)

where Ej,t,d is the spending per student on educational inputs at college j in year

t, and it does not vary as d varies. There are approximately 50 times more institution-

year observations as a result of this construction. We thus include the institution-distance
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fixed effects ηj,d and the year fixed effects θt to reduce potential bias. We also use the

cluster-robust standard error at the institution-distance level to obtain reliable inference

results.

Table 2.3 presents the regression results for six different types of colleges. We

first observe that in general, colleges are responding positively to increases in spending

on educational inputs by their competing colleges. This was not clear from the previous

figures, possibly due to imprecisely estimated standard errors. Associate’s college, special

focus two-year colleges, and baccalaureate colleges are most responsive to such changes.

If competing institutions increase spending by 10 percent, those three types of colleges

will respond by increasing spending by 1.6 to 1.8 percent. Doctoral universities, master’s

colleges and universities, and special focus four-year colleges also respond positively, but to

a lesser extent. A 10 percent increase in spending on educational inputs by their competing

institutions is only associated with a 0.5 to 0.9 percent increase in response. The estimates

are consistent with what we see in Figure 2.3.

The estimated coefficients on the product term of the average spending and the

distance in the second row shed light on whether a higher distance between institutions leads

to lower levels of responsiveness to budget changes. Except for doctoral universities, the

responsiveness declines for all other types of colleges and will reach zero when we expand the

relevant competing institutions to those that are around 750 to 1,000 miles far. It confirms

our conjecture that the competitive pressure is higher among institutions that have a more

common target student body.
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2.4 Conclusion

In this paper, we construct a simple model to illustrate the idea that colleges make

budget decisions as an attempt to compete for good students. A simulated example shows

that the best response function of a college to its competitor’s budget decisions can be U-

shaped. We also show that such responsiveness declines as the competitive pressure weaken

when the colleges become more heterogeneous. While our theoretical model has simplified

the joint decision-making process, we view it as a base model that is informative and also

can be extended for more comprehensive analysis.

Our empirical analysis finds evidence that generally supports the predictions from

the simulated example. Overall, colleges respond positively to budget increases in educa-

tional inputs by their competitors. In terms of share of spending on educational inputs,

the response is between 4 to 7 percentage points to an increase of 10 percentage points. In

terms of response to log levels of spending, the estimated elasticities are between 5 to 18

percent. Those results are supportive of the upward sloping part of the U-shaped best re-

sponse function. We attempt to search for evidence for the downward sloping part, and we

find mixed evidence. Of the seven Carnegie classifications of colleges that we consider, only

the special focus two-year colleges exhibit a negative slope when competitors are spending a

low share on educational inputs, as the model would predict. Other types of colleges always

have positive slopes, unless when imprecisely estimated.

The findings in this paper can be extended in several ways. First, our model does

not reflect the dynamics in the accumulation of human capital production technology at

colleges. The competition for good students can be even more important in a model where
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the human capital production technology (ζj) evolves based on the quality of the graduating

students. Unlike in firms where production technology benefits from investment in R&D,

the human capital production technology can benefit from the interactions between good

students and teachers, which does not require monetary input but requires high-quality

students as input. Second, we assumed an exogenously determined capacity of colleges so

that nothing happens on the enrollment margin as college budget spending changes. While

such simplification allows us to better focus on the idea we propose, it ignores a potentially

interesting interaction between the number of students enrolled and their quality. To jointly

consider those issues, a dynamic structural model that extends the work by Epple et al.

(2006) with its structural parameters estimated is called for.
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Table 2.1: Response in Spending to Changes in Competing Institutions, by Type

(1) (2) (3) (4)
I5% I10% I25% I50%

Associate’s Colleges×s̄−j 0.59∗∗∗ 0.67∗∗∗ 0.74∗∗∗ 0.79∗∗∗

(0.03) (0.04) (0.05) (0.05)
Special Focus Two-Year Colleges×s̄−j 0.41∗∗∗ 0.36∗∗ 0.40∗∗ 0.47∗∗∗

(0.09) (0.11) (0.13) (0.13)
Doctoral Universities×s̄−j 0.57∗∗∗ 0.62∗∗∗ 0.67∗∗∗ 0.71∗∗∗

(0.04) (0.04) (0.05) (0.05)
Master’s Colleges and Universities×s̄−j 0.58∗∗∗ 0.66∗∗∗ 0.72∗∗∗ 0.78∗∗∗

(0.04) (0.04) (0.05) (0.05)
Baccalaureate Colleges×s̄−j 0.40∗∗∗ 0.43∗∗∗ 0.46∗∗∗ 0.52∗∗∗

(0.04) (0.05) (0.05) (0.06)
Special Focus Four-Year Colleges×s̄−j 0.58∗∗∗ 0.59∗∗∗ 0.59∗∗∗ 0.62∗∗∗

(0.06) (0.07) (0.08) (0.08)
Others×s̄−j 0.68∗∗∗ 0.70∗∗∗ 0.74∗∗∗ 0.79∗∗∗

(0.02) (0.03) (0.03) (0.03)

Observations 162282 162282 162282 162282

Notes: The dependent variable is the share of spending on educational inputs. The independent variable is

the same measure averaged over colleges of similar overall budget. Column (1) averages over colleges with

overall budget within 5% difference. Column (2), (3), and (4) average over colleges with overall budget

within 10%, 25%, and 50%, respectively. A different slope is estimated for s̄−j for each type of the college.

All regressions include institution fixed effects and year fixed effects. Standard errors are clustered at the

institution level.

∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001
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Table 2.2: Response in Spending to Changes in Competing Institutions, by Institution Type
and Interval

(1) (2) (3) (4)
I5% I10% I25% I50%

Associate’s Colleges:
×s̄−j × 1(s̄−j ∈ [0, 0.2]) 0.39 0.32 -0.47∗∗∗ -

(0.51) (0.35) (0.11) -
×s̄−j × 1(s̄−j ∈ [0.2, 0.4]) 0.43∗∗∗ 0.46∗∗∗ 0.51∗∗∗ 0.57∗∗∗

(0.04) (0.05) (0.06) (0.06)
×s̄−j × 1(s̄−j ∈ [0.4, 0.6]) 0.47∗∗∗ 0.51∗∗∗ 0.56∗∗∗ 0.61∗∗∗

(0.03) (0.04) (0.05) (0.06)
×s̄−j × 1(s̄−j ∈ [0.6, 0.8]) 0.66∗∗∗ 0.64∗∗∗ 1.05∗∗∗ 1.02∗∗∗

(0.03) (0.09) (0.03) (0.07)
×s̄−j × 1(s̄−j ∈ [0.8, 1]) - - - -

Special Focus Two-Year Colleges:
×s̄−j × 1(s̄−j ∈ [0, 0.2]) -1.39∗ -1.48∗ -0.94∗ -0.85

(0.67) (0.69) (0.40) (0.70)
×s̄−j × 1(s̄−j ∈ [0.2, 0.4]) 0.37∗∗ 0.32∗ 0.25 0.44∗∗

(0.12) (0.14) (0.15) (0.16)
×s̄−j × 1(s̄−j ∈ [0.4, 0.6]) 0.39∗∗∗ 0.33∗∗ 0.30∗ 0.44∗∗

(0.11) (0.13) (0.14) (0.15)
×s̄−j × 1(s̄−j ∈ [0.6, 0.8]) 0.32∗∗ 0.33∗ 0.31∗ 0.45∗∗

(0.12) (0.14) (0.15) (0.16)
×s̄−j × 1(s̄−j ∈ [0.8, 1]) 0.28∗∗∗ 0.18 - -

(0.07) (0.11) - -

Doctoral Universities:
×s̄−j × 1(s̄−j ∈ [0, 0.2]) 0.68∗∗∗ 0.81∗∗∗ 0.83∗∗∗ 0.85∗∗∗

(0.07) (0.08) (0.10) (0.11)
×s̄−j × 1(s̄−j ∈ [0.2, 0.4]) 0.65∗∗∗ 0.73∗∗∗ 0.78∗∗∗ 0.82∗∗∗

(0.04) (0.05) (0.06) (0.06)
×s̄−j × 1(s̄−j ∈ [0.4, 0.6]) 0.62∗∗∗ 0.69∗∗∗ 0.73∗∗∗ 0.77∗∗∗

(0.04) (0.05) (0.05) (0.06)
×s̄−j × 1(s̄−j ∈ [0.6, 0.8]) 0.50∗∗∗ 0.46∗∗∗ 0.45∗∗∗ 0.48∗∗∗

(0.07) (0.03) (0.04) (0.05)
×s̄−j × 1(s̄−j ∈ [0.8, 1]) - - - -

Master’s Colleges and Universities:
×s̄−j × 1(s̄−j ∈ [0, 0.2]) - - - -
×s̄−j × 1(s̄−j ∈ [0.2, 0.4]) 0.74∗∗∗ 0.88∗∗∗ 1.00∗∗∗ 1.12∗∗∗

(0.04) (0.05) (0.06) (0.07)
×s̄−j × 1(s̄−j ∈ [0.4, 0.6]) 0.71∗∗∗ 0.84∗∗∗ 0.94∗∗∗ 1.05∗∗∗

(0.04) (0.05) (0.05) (0.06)
×s̄−j × 1(s̄−j ∈ [0.6, 0.8]) 0.35∗∗∗ 0.42∗∗∗ 0.56∗∗∗ -

(0.02) (0.02) (0.03) -
×s̄−j × 1(s̄−j ∈ [0.8, 1]) - - - -
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Table 2.2 (Continued)

(1) (2) (3) (4)
I5% I10% I25% I50%

Baccalaureate Colleges:
×s̄−j × 1(s̄−j ∈ [0, 0.2]) - - - -
×s̄−j × 1(s̄−j ∈ [0.2, 0.4]) 0.45∗∗∗ 0.47∗∗∗ 0.57∗∗∗ 0.70∗∗∗

(0.05) (0.05) (0.07) (0.07)
×s̄−j × 1(s̄−j ∈ [0.4, 0.6]) 0.44∗∗∗ 0.46∗∗∗ 0.54∗∗∗ 0.65∗∗∗

(0.04) (0.05) (0.06) (0.07)
×s̄−j × 1(s̄−j ∈ [0.6, 0.8]) - - - -
×s̄−j × 1(s̄−j ∈ [0.8, 1]) - - - -

Special Focus Four-Year Colleges:
×s̄−j × 1(s̄−j ∈ [0, 0.2]) 0.39∗ 0.50∗ 0.58 0.46

(0.18) (0.20) (0.35) (0.30)
×s̄−j × 1(s̄−j ∈ [0.2, 0.4]) 0.66∗∗∗ 0.69∗∗∗ 0.72∗∗∗ 0.78∗∗∗

(0.07) (0.08) (0.09) (0.09)
×s̄−j × 1(s̄−j ∈ [0.4, 0.6]) 0.62∗∗∗ 0.65∗∗∗ 0.67∗∗∗ 0.72∗∗∗

(0.06) (0.07) (0.08) (0.09)
×s̄−j × 1(s̄−j ∈ [0.6, 0.8]) 0.49∗∗∗ 0.54∗∗∗ 0.46∗∗∗ 0.56∗∗∗

(0.06) (0.07) (0.08) (0.08)
×s̄−j × 1(s̄−j ∈ [0.8, 1]) - - - -

Others:
×s̄−j × 1(s̄−j ∈ [0, 0.2]) 0.72∗∗∗ 0.51∗∗ 0.49∗ 0.87

(0.15) (0.19) (0.21) (0.47)
×s̄−j × 1(s̄−j ∈ [0.2, 0.4]) 0.66∗∗∗ 0.64∗∗∗ 0.67∗∗∗ 0.70∗∗∗

(0.03) (0.04) (0.04) (0.04)
×s̄−j × 1(s̄−j ∈ [0.4, 0.6]) 0.68∗∗∗ 0.68∗∗∗ 0.72∗∗∗ 0.74∗∗∗

(0.03) (0.03) (0.04) (0.04)
×s̄−j × 1(s̄−j ∈ [0.6, 0.8]) 0.64∗∗∗ 0.62∗∗∗ 0.63∗∗∗ 0.69∗∗∗

(0.02) (0.03) (0.04) (0.04)
×s̄−j × 1(s̄−j ∈ [0.8, 1]) 0.65∗∗∗ 0.65∗∗∗ 0.68∗∗∗ 0.70∗∗∗

(0.03) (0.04) (0.06) (0.07)

Observations 162282 162282 162282 162282

Notes: The dependent variable is the share of spending on educational inputs. The independent variable is

the same measure averaged over competing colleges. Column (1), (2), (3), and (4) averages over colleges

with overall budget within 5%, 10%, 25%, and 50% difference, respectively. A different slope is estimated

for s̄−j in one of the five intervals, interacted with the type of the college. All regressions include

institution fixed effects and year fixed effects. Standard errors are clustered at the institution level.

∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001
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Table 2.3: Response in Spending to Changes in Competing Institutions

(1) (2) (3) (4) (5) (6)

Ln(Avg InExp) 0.16∗∗∗ 0.18∗∗∗ 0.05∗∗∗ 0.09∗∗∗ 0.16∗∗∗ 0.06∗∗∗

(0.01) (0.01) (0.01) (0.01) (0.03) (0.01)
Ln(Avg InExp) -0.21∗∗∗ -0.19∗∗∗ 0.01 -0.11∗∗∗ -0.25∗∗∗ -0.10∗∗

×Distance (1,000 miles) (0.02) (0.04) (0.02) (0.03) (0.07) (0.03)

Observations 1075744 248611 422652 670528 642949 716366

Notes: The dependent variable is spending per student on educational inputs. The independent variable is

the same measure averaged over colleges of the same type within a radius d that ranges from 10 to 500

miles. The seven types of institutions are categorized based on the Carnegie Classifications. Each column

represent the regression results for one type of the institution. All regressions include institution-distance

fixed effects and year fixed effects. Standard errors are clustered at the institution-distance level.

Column (1): Associate’s Colleges; Column (2): Special Focus Two-Year; Column (3): Doctoral

Universities; Column (4): Master’s Colleges and Universities; Column (5): Baccalaureate Colleges; Column

(6): Special Focus Four-Year.

∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001
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Figure 2.1: Best response functions between two colleges, higher competitive pressure
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Notes: This figure plots the best response functions of two colleges in setting their share of spending on

educational inputs sj to each other’s decisions. Characteristics for college 1 is technology in human capital

production ζ1 = 1.1, total spending per student B1 = 8010, and capacity N1 = 800. Characteristics for

college 2 is ζ2 = 1.101, B2 = 8000, and N2 = 1, 500. Total number of students is N = 10, 000 and is drawn

from the distribution in Equation 2.7.
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Figure 2.2: Best response functions between two colleges, lower competitive pressure

0

20

40

60

80

100

S
2

0 20 40 60 80 100
S1

S2 Best Response S1 Best Response

Notes: This figure plots the best response functions of two colleges when the competitive pressure is lower.

Characteristics for college 1 is technology in human capital production ζ1 = 1.11, total spending per

student B1 = 8000, and capacity N1 = 1, 500. Characteristics for college 2 is ζ2 = 1.1, B2 = 8100, and

N2 = 800. Total number of students is N = 10, 000 and is drawn from the distribution in Equation 2.7.
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Figure 2.3: Response to change in spending on educational inputs by competing institutions
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Notes: This figure plots the estimated coefficients and the 95% confidence intervals as responses of a college

to changes in its competing institutions’ spending on educational inputs. Competing institutions are

defined as institutions located within the specified miles radius and are of the same Carnegie classification.
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Chapter 3

Bounding Average Treatment

Effects Using Observed or

Unobserved Variable

3.1 Introduction

The average causal effect of one treatment variable on an outcome of interest

is often paramount in empirical research. As a result, researchers often either design or

exploit random variation in the treatment in order to estimate such average treatment ef-

fects (ATEs). In such settings, researchers may recover the local average treatment effect

(LATE), in which ‘local’ typically refers to a population that complies with the randomiza-

tion (Imbens and Angrist, 1994). There is another way, however, in which these estimates

are local - the sample into randomness. While much attention was given to generalize from

83



the LATE to the experiment sample ATE, or the selection into compliance, relative less

attention was given to the selection into experiment. If we wish to place bounds around

the population ATE, both selection margins are important.

Experimental samples may differ from the population at large due to researcher

site selection, would-be participants’ decisions about whether or not to participate, or sim-

ply from micronumerosity (Allcott, 2015). For example, in conducting the Perry Preschool

experiment, researchers recruited and enlisted children from surrounding neighborhoods in

Ypsilanti, Michigan who had IQ scores that ranged from 75 to 85 (Weikart et al., 1978). In-

dividuals randomized in the National Supported Work Demonstration used in the LaLonde

(1986) evaluation of observational methods, the Moving to Opportunity housing voucher

experiment (Goering et al., 1999), and the Oregon health insurance experiment (Finkelstein

et al., 2012) are all self-selected into the experimental sample to some degree. More broadly,

institutional review boards (IRB) largely require consent from participants for field experi-

ments. Regardless of the source, researchers often worry about bias between the treatment

effects of the experiment sample and that of the general population of interest arising from

such differences. While the issue is most commonly discussed with experiments, sample

selection is not unique to randomized control trials. Researchers often must make choices

when compiling analysis samples, exogenous variation does not always occur in the pop-

ulations of most interest, and often participants may choose whether to complete survey

requests.

Absent compulsory random variation for the entire population of interest, what

can researchers learn about the ATE? Andrews and Oster (2019) use observed variables to
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address selection into the sample on unobserved variables. Kowalski (2018) places bounds

on the sample ATE from a well-identified LATE. Each approach utilizes a different set of

assumptions to extrapolate away from the group of subjects for whom a causal effect is

directly estimated. We explore bounds on the population ATE when there is both non-

compliance with exogenous variation in treatment within the sample while allowing for

nonrandom sampling from the population of interest. We extend each approach to address

both margins threatening external validity, adopting each set of relevant assumptions. We

finally introduce an additional reasonable set of assumptions to use to estimate the third

set of bounds and compare all three approaches.

Andrews and Oster (2019) define the following “External validity bias arises here if

the effects of the treatment on the volunteers [or selected samples] differ from effects in the

overall population” and state that “Our goal is to provide a framework in which to consider

selection on unobservables when studying external validity.” However, their approach relies

on observed variables and assumptions regarding the relationship between the observed,

unobserved, and dependent variables, which may not always hold. Further, while providing

a valuable framework of inquiry Andrews and Oster (2019) stops short of providing a way

forward in the presence of noncompliance with a randomized assignment. The question of

extrapolating from a local average treatment effect (LATE) to approximate or bound the

average treatment effect (ATE) remains open.

Brinch et al. (2017) and Kowalski (2018) seek to use differences in outcomes across

populations to address the external validity of LATEs. Under the assumption that potential

outcomes are monotonically related to the probability of treatment, Brinch et al. (2017) and
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Kowalski (2018) place bounds on the ATE within the estimation sample, but unfortunately

provide no way forward to deal with sample selection. Further, this assumption is strong

and leads us to reject external validity even when the differences in treated and untreated

average outcomes are identical between experimental participants and nonparticipants.

We propose bounds that allow for both margins of selection into compliance and

into the sample. In order to narrow the bound widths, we add an additional assumption:

our monotonicity of potential outcomes assumption holds that on average, sub-populations

are either positively or negatively selected on both potential outcomes. This assumption

seems likely to hold in many instances. Though such a framework is not necessary, it is

theoretically justified by dynamic complementarities as presented in Cunha and Heckman

(2007).

We apply our method to a study of the efficacy of a first-year learning program

on retention rates with a randomized control trial. Our bounds suggest that the ATE of

the entire first-year student population is between −0.687 and 0.056. Despite the width of

these bounds, we find the upper bound to be informative. In this data, the estimated lower

bound for the population ATE following Kowalski (2016) is 0.046, close to the upper bound

that we find when considering individuals’ participation decisions in the study. When we

weigh on observed variables according to Andrews and Oster (2019), we obtain a lower

bound on the global average intent to treat (ITT) of 0.044, which is again just slightly

lower than our upper bound. The reason that there is little to no overlap in the bounds by

Kowalski (2016) or Andrews and Oster (2019), and by ours is that the assumptions made in

Kowalski (2016) or Andrews and Oster (2019) is likely untrue in this data. Using the same
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data, Azzam et al. (2022) finds evidence indicating negative selection into the experiment

sample based on observed variables and positive selection into the experiment sample based

on unobserved variables.

We view our approach as an alternative to the existing tools in the literature in

assessing the issue of external validity. We impose a set of assumptions that are weak and

different from the existing ones, so that our method is generally applicable, and using which

is at the choice of the researcher. While our bounds may be wide, it can be informative of

the sign of the population ATE.

3.2 Setup and Method

We consider the following model:

yi = bidi + ϵi,

where yi is an outcome variable, di stands for treatment status, bi = β + ei where

ei is the heterogeneous responsiveness to treatment, and ϵi represents unobserved individual

heterogeneity. Typically we want to identify the average causal effect of the treatment β.

In RCT where the treatment status is randomly assigned, assuming perfect compliance,

estimating the above regression identifies the average treatment effect ES(Y1 − Y0), where

we use ES to emphasize that the average is taken over the experiment sample.

To inform policy, we are interested in the parameter EP (Y1 − Y0) where EP is

the expectation taken over the population of interest. When the experiment sample is not

randomly drawn from the population and is determined through a selection process that

87



can be related to the responsiveness to the treatment, as is the case in most of the field

experiments, we can hardly expect EP (Y1 − Y0) = ES(Y1 − Y0). Using the estimates for

ES(Y1 − Y0) to inform policy can therefore be misleading. We propose three methods to

provide bounds for EP (Y1 − Y0).

RCTs are often used to evaluate existing programs. In quasi-experimental research

often exogenous variation is only a subset of the variation in treatment in the population.

In both designs, however, researchers rarely make use of the data in which the variation

in treatment is not exogenous. One exception is the the within-study design literature

launched by the seminal work LaLonde (1986). In LaLonde (1986) and the many that

have come after, results from observational approaches – such as OLS, propensity score

matching (PSM), and regression discontinuity – are benchmarked against experimental

results. Reviews of these studies in Glazerman et al. (2003), Bloom et al. (2005), and

Cook et al. (2008) have found that in most cases there are significant differences between

experimental and observational results, and these differences have served to elevate RCT

relative to observational approaches.

Cook et al. (2008) comment that there is heterogeneity among within-study com-

parisons and give seven criteria for evaluating such comparisons. One criterion is that

“The experiment and observational study should estimate the same causal quantity,” such

as ITTs or ATEs. We add that self-selection into experiments alters the causal quantity

being estimated. This is because a program may have different effects on the type of people

who sign up for the experiment than it does on people who do not. If the population of

interest is the experimental participants, the RCT provides a valid estimate of the policy-
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relevant parameter, worthy of use for benchmarking. In that case, considering individuals

from an observational setting outside the population of interest alters the estimand of the

observational approach. It would be unsurprising were the observational approach to fail

to estimate a parameter other than its estimand. On the other hand, if the population

of interest is broader than the RCT participants, without further testing we do not know

whether the differences in estimates arise from internal validity failings of the observational

approach or external validity failings of the RCT.

To illustrate this point, let us use the OLS estimates on the entire freshman

class (which we hold here is the population of interest) for comparison against the RCT

estimates. The results from columns 3 through 6 of Table 5 may be interpreted as a

weighted decomposition of such OLS regression estimates in which retention is regressed

upon treatment, ignoring the randomization. We acknowledge that this design is not

an exemplar of observational approaches, but use it for ease of explanation. Note that

plim(βOLS) = ATE + BiasOLS and plim(βIV ) = LATE, assuming proper randomization.

The local aspect of this LATE pertains to participation in the randomization, but it be-

comes more localized with noncompliance. The upshot here is that the two estimators may

converge to different parameters, even if the controls included in OLS are sufficient to cap-

ture selection into treatment. We can relate the two parameters according to the following,

maintaining perfect compliance with randomization within the experiment:

ATE = LATE × P (L = 1) + E(bi|L = 0)× (1− P (L = 1)) (3.1)
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where E(bi|L = 0) is the average effect among those who do not participate in the

experiment. It is typical in this literature to suspect bias in the observational approach. In

comparing the two estimates, we observe the following:

plim(βOLS)− plim(βIV ) = [1− P (L = 1)][E(bi|L = 0)− LATE] + biasOLS (3.2)

Equation 3.2 nicely demonstrates that the comparison in results provides a mixture

of the possible external invalidity of the RCT (E(bi|L = 0)−LATE) and the possible bias in

the OLS estimate. Thus, differences in estimates alone cannot point to the general failings

of either approach.

3.2.1 Using Selection on Observed Variables

Andrews and Oster (2019) provides a way to correct the bias between the popu-

lation ATE and the experiment sample ATE caused by observed variables. They assume

that the individual treatment effects are a function of a set of observed and unobserved

variables.

yi1 − yi0 = TEi = α+ C ′
iγ + U ′

iδ + εi (3.3)

By obtaining an estimate of the coefficients for the observed variables (γ̂) using

the experiment sample and inserting the mean values of those observed variables from the

population, they correct for the bias between the population ATE and the experiment

sample ATE caused by differences in the observed variables.
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In the cases where there is no bias between the population ATE and the experiment

sample ATE caused by unobserved variables, the above correction can be used to generate

(approximately) a valid estimate for the population ATE. They consider three special cases.

In the first case, unobserved variables are unrelated to treatment effects heterogeneity (δ =

0). In the second case, unobserved variables do not predict selection into the experiment. In

the third case, the set of unobserved variables that predict treatment effects heterogeneity

and that predicts selection into experiment are unrelated.

While in some settings one of the three special cases may be satisfied, generally

they are too restrictive and unlikely to hold. In a more general setting, they provide a

way to bound for the ATE in the population with an additional assumption. They assume

that the bias in the ATE between the population and the experiment sample caused by

differences in unobserved variables operates in the same direction and, is no larger than,

the bias caused by differences in observed variables, or the corrections made as described

above. With this assumption, we can calculate a bound for the population ATE based on

the experiment sample ATE and the correction for bias made based on the difference in the

observed variables between the experiment sample and the population.

3.2.2 Extension Beyond the ITT Using Selection on Observed Variables

Without perfect compliance, we can only identify either the LATE, or to say the

ATE for the compliers, or the ITT for the experiment sample without further assumptions.

To move forward, a common assumption made is the ignorability of the selection into

treatment within the experiment sample. This assumption is more likely to hold when

the number of observations that are not compliant with the treatment assignment is small.
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Alternatively, if the data can pass the tests proposed in Black et al. (2017), which are the

necessary conditions, we may also feel more confident in making this assumption.

With the ignorability of the selection into treatment assumption, we can proceed

with the procedures described in the previous section and obtain the same types of conclu-

sions based on the assumptions regarding the bias caused by selection on observed variables

and the bias caused by selection on unobserved variables that we are willing to make. We

consider this as an extension of the procedures described in Andrews and Oster (2019).

3.2.3 From the LATE to the Sample LATE

Brinch et al. (2017) and Kowalski (2018) examine what we might learn about the

ATE within an analysis sample, given that we can estimate a LATE. With the objective of

providing tests for whether the LATE generalizes to the remaining sample with minimally

restrictive assumptions, Brinch et al. (2017) introduces two assumptions. They assume

that outcomes in each potential state of the world are weakly monotonically related to

the probability of treatment. Such an assumption follows by maintaining a Roy model of

economic decision-making. For instance, those who have a high likelihood of participating

in a retention program have a high chance of persisting in college relative to those who have

a low probability of entering the program, in the state of the world in which both participate

in the program. Conversely, those who have a low likelihood of participating in the program

may have a relatively high chance of persisting in college relative to likely program entrants,

in the state of the world in which both do not enter the program. While this example fits

the economic theory, Brinch et al. (2017) make no restriction on the direction of potential

outcomes as the probability of treatment, only that it is monotonic.
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Kowalski (2018) applies those assumptions to place bounds on the sample ATE.

Consider the case of a binary treatment and binary instrument for either an experimental

or quasi-experimental setting. Let T = N,C,A be the individual types, never-takers, com-

pliers, and always-takers. Without further assumptions, we can say that the probability of

treatment is lowest for the never-takers and highest for the always-takers with the compliers

lying between. Let E[Y1|D = 1, Z = 0] = E[Y1|T = A] be the observed potential outcome

under treatment of always takers, and E[Y0|D = 0, Z = 1] be the observed potential out-

come under no treatment of never takers. We can estimate the potential outcome under

treatment for those who comply with the exogenous variation using the share of compliers

among those for whom D = 1 and Z = 1, p(T = C|D = 1, Z = 1) which we estimate in the

first stage, and E[Y1|D = 1, Z = 1], which we observe in the data. Thus,

E[Y1|T = C] =
E[Y1|D = 1, Z = 1]− (1− p(T = C|D = 1, Z = 1))E[Y1|T = A]

p(T = C|D = 1, Z = 1)
. (3.4)

Likewise, we can construct the expected potential outcome in the absence of treatment for

those who comply with the exogenous variation using the share of compliers among those

for whom D = 0 and Z = 0, p(T = C||D = 0, Z = 0) which we estimate in the first stage,

and E[Y0|D = 0, Z = 0], which we observe in the data:

E[Y0|T = C] =
E[Y0|D = 0, Z = 0]− (1− p(T = C|D = 0, Z = 0))E[Y0|T = N ]

p(T = C|D = 0, Z = 0)
. (3.5)

Suppose that we observe E[Y1|T = A] > E[Y1|T = C] > E[Y0|T = C] > E[Y0|T =

N ]. The LATE = E[Y1|T = C]− E[Y0|T = C] > 0. Under the assumption that outcomes

in each potential state of the world are weakly monotonically related to the probability of

treatment, E[Y1|T = N ] (which we do not observe) is bounded above by E[Y1|T = C], such
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that the maximum treatment effect among the never-takers is E[Y1|T = C]−E[Y0|T = N ].

Similarly, E[Y0|T = A] is bounded below by E[Y0|T = C], such that the maximum treatment

effect for the always-takers is given by E[Y1|T = A]−E[Y0|T = C]. The maximum ATE for

the sample is then given by the weighted sum of the LATE and the maximum treatment

effects of the always-takers and never-takers with the weights determined by the shares of

the three populations within the data.

We may obtain further tightening if we allow the probability of treatment to vary

continuously as a function of the observed variables and assume that potential outcomes

are linearly related to the probability of treatment. However, this assumption is strong and

even the weak monotonicity in potential outcomes over the discrete probability of treatment

may lead us to reject external validity even when the differences in treated and untreated

average outcomes are identical between populations within the sample.

It is not obvious how to apply the method to the population recognizing selection

into the analysis sample. We do so, by estimating the probability of treatment

3.2.4 Our Approach

Let L denote the experiment participation status. We write

EP (Y1 − Y0) = P (L = 1)EP (Y1 − Y0|L = 1)

+ P (L = 0, D = 1)EP (Y1 − Y0|L = 0, D = 1)

+ P (L = 0, D = 0)EP (Y1 − Y0|L = 0, D = 0)

where by definition we have ES(Y1 − Y0) = EP (Y1 − Y0|L = 1).
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We make three assumptions regarding the selection into the experiment and the

selection into treatment. Assumptions 1 and 2 allow us to derive a simple bound for the

population ATE while adding assumption 3 allows us to tighten the bound.

Assumption 1: Ignorability of noncompliance with randomization

E(Y |L = 1, D = 0) = E(Y0|L = 1) and E(Y |L = 1, D = 1) = E(Y1|L = 1)

This assumption states that on average the potential outcomes in the experiment

sample are the same conditional or unconditional on the treatment status. This assumption

is reasonable when the rate of noncompliance in the experiment sample is low, or when tests

on the selection into treatment in the experiment sample are rejected.

Assumption 2.1: Weakly monotonic selection of participation by the potential

outcome

E(Y0|L = 1, D = 0) ≥ E(Y0|L = 0, D = 0)

⇐⇒E(Y1|L = 1, D = 0) ≥ E(Y1|L = 0, D = 0)

and

E(Y0|L = 1, D = 1) ≥ E(Y0|L = 0, D = 1)

⇐⇒E(Y1|L = 1, D = 1) ≥ E(Y1|L = 0, D = 1)

This is the key assumption we make to obtain bounds on the population ATE.

It states that, on average, if the potential untreated outcome for those who participate in
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the experiment is no smaller than those who do not participate in the experiment, then

the potential treated outcome for those who participate in the experiment should also be

at least as large as those who do not participate in the experiment, and vice versa, and it

true for both the treated and untreated students. This assumption rules out the case where

in the groups of students who eventually do and do not take up the treatment, those who

self-select into the experiment are the ones less likely to benefit or more likely to get hurt

from the treatment. This assumption may be violated when selection into the experiment

is made based on criteria that are different from the outcome we study. For example, in

our application, if students choose to participate in the experiment without the intention

to obtain a chance to enroll in the program and complete the first year more smoothly, but

with the intention to improve their social network so that they can find a part-time job

more easily, our assumption may not hold.

Proposition 1: Assuming that Assumption 1 and Assumption 2.1 hold. Then

UB ≥ EP (Y1 − Y0) ≥ LB (3.6)

where LB and UB are two constants that can be calculated from the data. See

Appendix C.1 for proof.

Proposition 1 is the main result of this paper. Although there is no guarantee that

the bounds are tight and informative in all settings, they rely on weak assumptions and

are applicable to many settings. The calculation is arithmetically extremely simple. We

encourage researchers running RCT to calculate those simple bounds as long as the data

permits and the assumptions are likely to hold.
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The ignorability of noncompliance with randomization assumption is sometimes

too strong to be made. We consider an alternative assumption.

Assumption 2.2: Weakly monotonic selection into noncompliance by the poten-

tial outcome

E(Y0|AT ) ≥ E(Y0|C) ⇐⇒ E(Y1|AT ) ≥ E(Y1|C)

and

E(Y0|NT ) ≥ E(Y0|C) ⇐⇒ E(Y1|NT ) ≥ E(Y1|C)

Assumption 2.2 is in the similar spirit to Assumption 2.1. It states that the poten-

tial outcomes are monotonic in the decision of noncompliance with the random assignment,

and is less restrictive than Assumption 2.1.

Proposition 2: Assuming that Assumption 2.1 and Assumption 2.2 hold. Then

UB ≥ EP (Y1 − Y0) ≥ LB (3.7)

where LB and UB are two constants that can be calculated from the data. See

Appendix C.2 for proof.

Based on either set of the assumptions, we provide bounds for the population ATE.

If the estimated effects local to the experiment sample or the compliers in the randomization

are lying outside those bounds, it is indicative that the effects identified in the RCT may

not be generalized. It is then crucial to distinguish which parameter is most relevant to

inform policy.
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3.3 Application

We use as an application the study of the effectiveness of a first-year learning

program on college retention at a large, selective, four-year, public institution, as studied

in Azzam et al. (2022). Such programs are common in four-year institutions in the United

States with the stated intended purpose often to increase college retention. This setting has

many attractive features. First, it is a large RCT with over 1,500 students entering the RCT

and the randomization appears to be carried out effectively. Second, the data consists of the

entire freshman class over 8,500, which we define as the population of interest. Third, we can

see students’ decisions to enter the RCT, their decision to comply with the randomization,

and their decision about whether to receive treatment in the absence of randomization

with over 100 students receiving treatment without receiving randomization. Lastly, as the

program was scaled up such that 90 percent of subsequent cohorts also received treatment

the ATE was of direct policy importance.

Azzam et al. (2022) finds that there is no statistically significant effect of the

program on the retention rates among the compliers in the experiment sample. Further,

they find that the experiment sample is negatively selected based on observed variables

and positively selected on unobserved variables. It is hence unlikely that the bias caused by

selection due to observed variables and unobserved variables have the same direction, as the

method proposed in Andrews and Oster (2019) will need to assume. Moreover, Figure 3.1

shows the average outcomes among the treated and untreated students who are and are not

in the experimental sample. We observe that the average treated outcome in the experiment

sample is higher than the average untreated outcome, while the average untreated outcome
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in the non-experimental sample is higher than the average treated outcome. The assumption

made in Kowalski (2018) that the potential outcomes are monotonically related to the

probability of treatment is therefore also under question.

In the need for an understanding of the population ATE that is of policy relevance,

and in the absence of an existing method that could provide reasonable results, we apply

the method we propose. The assumption we make that the noncompliance is ignorable in

the experiment sample does not hold trivially. In panel A of Table 3.1, we show that the

issue of selection within the experimental sample (or noncompliance) seems to be of minor

concern, using the tests proposed in Black et al. (2017). We are hence more confident with

applying our method to this setting and compare the results to those from the (extended)

methods in Andrews and Oster (2019) and in Kowalski (2018).

3.3.1 Results

Table 3.2 reveals the estimated intent to treat estimates (ITT) of the treatment

assignment on retention in panel A, the estimated LATE of the FYLC program in panel

B, and panel C shows the first stage estimates of the randomized assignment of treatment

on program take-up. It reveals a strong first stage in which treatment assignment increases

the likelihood a participant enters the FYLC by 68 percentage points. However, neither the

ITT nor the LATE reveals any statistically significant impact of the program, though the

LATE point estimates of around 3 percentage points would be meaningful, particularly if

those results were to scale to the remaining freshman class.

In Table 3.3, we present the bounds calculated using different methods. Column

(1) shows the Manski’s bounds with no assumption imposed. The upper bound is 11.9
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percentage points and the lower bound is -68.9 percentage points. Unsurprisingly, the

resulting bounds are wide barely informative. The original method proposed by Andrews

and Oster (2019) can only be used to bound the parameter of the population intent to treat,

which is between 4.4 to 9.6 percentage points, as is shown in column (2). In column (3),

we apply the extended version of the Andrews and Oster (2019) by adding the assumption

of ignorability of noncompliance in the experiment sample. The bounds for the population

ATE are 6.8 and 14.8 percentage points. The AO method indicates a large and positive

population effect, despite the statistically insignificant effect of 3 percentage points found

for the experiment sample. In column (4), we apply the Kowalski (2018) method to extend

from the LATE to the experiment sample ATE. The bounds for the experiment sample

ATE are 2.5 and 17.2 percentage points. We then extend the Kowalski (2018) method by

adding the assumption that the potential outcomes are weakly monotonically related to the

probability of participation in the experiment. The implied bounds for the population ATE

are 4.6 and 14.8 percentage points under this added assumption. Similar to the Andrews and

Oster (2019) method, the Kowalski (2018) method also indicates a positive and potentially

large treatment effect for the entire freshman student population. In column (6), we use

Assumption 1 and Assumption 2.1, and find an upper bound of the population ATE of

5.6 percentage points and a lower bound of -68.9 percentage points.1 While the bounds we

produce are also wide, the upper bound restricts the possibility of a large positive population

effect, in contrast to the other two methods. Also, there is little overlap between the bounds

for the population ATE suggested by the Andrews and Oster (2019) method or the Kowalski

1The lower bound coincides with the Manski’s bound because based on our assumptions and the data we
have, we are effectively only bounding the upper end of the ATE. Under a different setting and dataset, our
bounds could be different from the Manski’s bounds on both ends.
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(2018) methods and ours. In column (7), we use Assumption 2.1 and Assumption 2.2, which

is less restrictive than the ignorability of noncompliance with randomization assumption.

The implied population treatment effect becomes wider but is still bounded from above by

8.7 percentage points.

3.4 Conclusion

In this paper, we tackle the issue of external validity in RCTs due to their policy

relevance in many situations. By utilizing a special setting where some individuals not

participating in the experiment self-selected to receive treatment and their outcomes were

observed by the researcher, we propose a method of calculating bounds for the parameter of

population ATE, relying on very weak assumptions. While such a setting is less common,

our proposed method is still valuable. We view our method as a complement to existing

methods in the literature to be applied to different cases. As we have illustrated in the

paper, in the setting of our application that studies the effect of a first-year learning program

on retention rates, the assumptions made in other existing methods are unlikely to hold.

Indeed, the bounds we obtain using our method are very different from the bounds obtained

using other methods. As a future step, we need to explore ways to tighten the bounds.
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Table 3.1: Selection within and into the analysis sample

Panel A: Testing selection within the experimental sample
(1) (2) (3) (4)

Won 0.009 0.005 0.000 0.005
(0.025) (0.029) (0.026) (0.029)

Same sign p-value 0.852 0.999

Observations 803 762 803 762
Controls No No Yes Yes
Sample C + NS T + CO C + NS T + CO
Treatment status Untreated Treated Untreated Treated

Panel B: Testing selection into the experiment among the untreated
(1) (2) (3) (4)

Lottery 0.028** 0.067* 0.039*** 0.063*
(0.011) (0.034) (0.011) (0.033)

Same sign p-value 0.051 0.062

Observations 7252 879 7252 879
Controls No No Yes Yes
Sample C + NS T + CO C + NS T + CO

+ NET + NET + NET + NRT
Treatment status Untreated Treated Untreated Treated
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Table 3.2: RCT estimates

(1) (2)
Panel A: ITT on retention

Won lottery 0.019 0.018
(0.015) (0.015)

Panel B: LATEs of FYLC on retention

FYLC 0.029 0.027
(0.022) (0.022)

Panel C: First stage on FYLC

Won lottery 0.648*** 0.648***
(0.019) (0.019)

Observations 1565 1565
Retention Mean 0.91 0.91
Controls No Yes
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Table 3.3: Bounds for population parameter by existing methods and our proposed method

(1) (2) (3) (4) (5) (6) (7)

Manski AO AO* K K* MZ1 MZ2
ATE ITT ATE SATE ATE ATE ATE

Upper bound 0.119 0.096 0.148 0.172 0.148 0.056 0.087
Lower bound -0.689 0.044 0.068 0.025 0.046 -0.689 -0.689

* Indicates extensions of the published methods.
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Figure 3.1: Retention rates among the experimental and non-experimental populations by
treatment status.
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Chapter 4

Conclusions

This dissertation studies higher education effectiveness and its relationship with

budget spending decisions. The first two chapters are motivated by the observation of

changes in the composition of college spending decisions. In the first chapter, I investigate

whether higher spending on educational inputs is effective in promoting student earnings.

The empirical results suggest positive effects that are smaller and more precisely estimated

than existing estimates in the literature. Several factors may contribute to the differences

in the estimates. First, my data covers almost all institutions in the United States while

earlier studies rely on data that are usually specific to a state or a school system. Second,

the panel structure of my data allows me to control the unobserved institution effects

that are likely to be correlated with both the spending decisions and student earnings. I

further analyze the heterogeneity of the effects and find that the effects are mainly driven

by private institutions and four-year institutions. In addition, the effects are likely to vary

over the time dimension. The difference in the estimates between what I find and what is
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in the literature is not just numerical but also leads to vastly different policy implications

concerning the cost-benefit analysis. My estimates suggest that if we view an increase in

educational inputs as a monetary investment and the resulting higher student earnings as

its return, students will need to work for over 40 years before such an investment is paid

off, while the higher estimates in the literature require just less than 20 years.

In the second chapter, we investigate what drives the budget decision on instruc-

tional spending when it is an (in)effective educational input. In particular, we analyze

whether competition for good students between colleges can explain the decision-making

process. We construct a simple theoretical model where students value both the consump-

tion of amenities and human capital production, and colleges value the outcome of their

students that depends on the outcomes of the human capital production process. Colleges

make a trade-off between spending more on educational inputs so that they better promote

the human capital of the student body they admit, and spending more on consumption

amenities so that they can attract a student body with higher endowments of human cap-

ital or learning abilities. Simulation results show that colleges respond positively to their

competitors’ decisions over the range where budget choices are commonly made, and such

responsiveness declines as the competitive pressure from its competitors declines. Empirical

evidence generally supports our predictions. We find that in terms of share of spending on

educational inputs, a 10 percentage point increase by competitors is associated with a 4-8

percentage point increase. In terms of the absolute amount of spending on educational

inputs, we find an estimated elasticity between 5 to 18 percent between a college and its

competitors. The estimated elasticity is lowest for Doctoral universities and highest for spe-
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cial focus two-year colleges. We also find that the responsiveness declines as the distance

between the colleges and their competitors increases.

In the third chapter, we generalize causal parameters that are identified through

randomized control trials and are valid internally for the experiment sample to a more

general population of interest. This is a crucial step in applied research work in determining

whether we want to expand a small-scale program to its large-scale operations. The method

we propose relies on a set of weak assumptions that are likely to hold in a general case.

Our approach complements several other existing methods in the literature that aim at the

same goal and depend on different sets of assumptions. With an application to evaluate the

effectiveness of a first-year learning program on retention rates, our method suggests that

despite a positive treatment effect found for the experimental sample, the average treatment

effect for the entire freshmen student body is bounded from having a large positive effect,

and may likely to have a negative one. We also show that assumptions required for two

other methods are unlikely to hold in this particular setting, highlighting the importance

of having an additional tool at hand.
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Appendix A

Appendix for Chapter 2

A.1 Oster’s Sensitivity Analysis

In this section, I describe the Oster’s approach in more detail. Following the

formulation in Oster (2019), suppose that the true relationship can be written as

ln(Earningic) = α+ β · ln(InExpic) +W 1ic +W2ic + vic (A.1)

The term W1ic here corresponds to the collection of observed variables that are

controlled in the regression. In my case, W 1ic = Xic · γ + κi + ηc + θs(i) · c. The term

W2ic represents a combination of all possible unobserved confounders. It also takes care of

measurement errors, but not model misspecification. It is assumed that after controlling

for W2, we have E(v|X,W1,W2) = 0.

Oster (2019) formalizes the sensitivity analysis first proposed in Altonji et al.

(2005). In the framework she described, there are two parameters to be considered. The
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first parameter δ = cov(W2,ln(InExp))/var(W2)
cov(W1,ln(InExp))/var(W1)

is conceptualized to be the degree of selection on

unobserved confounders relative to the degree of selection on observed variables. The second

parameter Rmax is the maximum amount of variation in the outcome variable that could

be explained when all possible confounding variables are controlled for. Rmax = 1 when

we assume var(v|InExp,W 1,W2) = 0. For given values of δ, Rmax, and the estimation

model, Oster (2019) established the relationship so that the coefficient adjusted for such a

level of confounding factors β̃ can be calculated. Alternatively, fixing Rmax and δ̃ = 0, I

can calculate the corresponding value of δ, which is presented in Table 1.10.

A.2 Heterogeneous Effect by Cohort and Institution

Section 4 of Wooldridge (2021) provides a method to test whether the treatment

effects are heterogeneous across units and time when applying two-way fixed effects estima-

tion, which I briefly describe here. The test involves estimating the following two regression

equations

yit = α+ xitβ + x̄i.λ+ x̄.tξ + (x̄i. ⊗ x̄.t)π + eit (A.2)

and

yit = α+ xitβ + x̄i.λ+ x̄.tξ + (x̄i. ⊗ x̄.t)π + xit ⊗ (x̄i. − x̄)ζ1 + xit ⊗ (x̄.t − x̄)ζ2 + eit

(A.3)

where x̄i. =
1
T

∑T
t=1 xit, x̄.t =

1
N

∑N
i=1 xit, and x̄ = 1

NT

∑N
i=1

∑T
t=1 xit. Testing the

null H0 : π = 0 in Equation A.2 is a simple test of whether having additive unit and time
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effects is sufficient, and testing the null H0 : ζ1 = 0 and/or H0 : ζ2 = 0 in Equation A.3

tests for heterogeneous slopes across the unit and/or the time dimension. I apply the

above method to my main estimation model with a subset of the control variables, because

otherwise with all the control variables and the interaction terms, the number of regressors

explodes. I use the five control variables that are most correlated with instructional spending

and student earnings at the same time, or to put in other words, the control variables that

will cause the greatest bias if omitted. The five variables are the average age at entry, the

share of female students, the average SAT score, the average family income, and the median

household income.

Table A.1 shows the results for the above exercises. Overall, the results suggest

that the additive structure of the institution and cohort fixed effects are sufficient and the

interaction terms of the institution-specific cohort averages and the cohort-specific institu-

tion averages are not necessary. In addition, there is little evidence of heterogeneous effects

across institutions but some evidence of heterogeneous effects across cohorts. Note that the

estimated coefficients are much larger because only five control variables are included, for

the purpose to examine effect heterogeneity.

To further examine the heterogeneous effects across the time dimension, I interact

the cohort indicators with the instructional spending. Table A.2 presents the results for

earnings six years after entry.1 The effects are small and even negative before the 2000

cohort and are positive and increasingly larger in later cohorts. Such a pattern of effect

heterogeneity across cohorts is consistent with the diminishing return to educational input

as institutions have been lowering their inputs on instructional spending.

1The very similar pattern is observed for earnings eight and ten years after entry, and hence not presented.
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Table A.1: Test for Heterogeneous Effects Across Institutions and Cohorts

(1) (2) (3) (4)
Mean Pct25 Pct50 Pct75

Log earnings six years after entry 0.028∗∗∗ 0.056∗∗∗ 0.031∗∗∗ 0.022∗∗∗

(0.0055) (0.0092) (0.0060) (0.0051)

Number of Institutions 4808 4808 4808 4808
p-value for H0 : π = 0 0.92 0.69 0.43 0.77
p-value for H0 : ζ1 = 0 0.90 0.46 0.57 0.96
p-value for H0 : ζ2 = 0 0.00 0.00 0.01 0.07

Log earnings eight years after entry 0.048∗∗∗ 0.076∗∗∗ 0.054∗∗∗ 0.043∗∗∗

(0.0041) (0.0065) (0.0044) (0.0039)

Number of Institutions 4402 4402 4402 4402
p-value for H0 : π = 0 0.23 0.05 0.04 0.19
p-value for H0 : ζ1 = 0 0.96 0.45 0.37 0.95
p-value for H0 : ζ2 = 0 0.00 0.00 0.06 0.15

Log earnings ten years after entry 0.044∗∗∗ 0.067∗∗∗ 0.050∗∗∗ 0.039∗∗∗

(0.0034) (0.0056) (0.0038) (0.0031)

Number of Institutions 4069 4069 4069 4069
p-value for H0 : π = 0 0.20 0.38 0.35 0.27
p-value for H0 : ζ1 = 0 0.09 0.05 0.01 0.07
p-value for H0 : ζ2 = 0 0.01 0.01 0.13 0.22
∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001
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Table A.2: Heterogeneous Effects Across Cohorts

(1) (2) (3) (4)
Depvar: Log earnings six years after entry Mean Pct25 Pct50 Pct75

cohort=1996 × ln(InExp/FTE) -0.023∗∗∗ -0.015 -0.017∗∗ -0.022∗∗∗

(0.0052) (0.0079) (0.0055) (0.0049)

cohort=1998 × ln(InExp/FTE) -0.011∗∗ -0.00075 -0.0065 -0.011∗∗

(0.0043) (0.0068) (0.0046) (0.0042)

cohort=2000 × ln(InExp/FTE) 0.012∗∗ 0.034∗∗∗ 0.017∗∗∗ 0.0063
(0.0045) (0.0072) (0.0048) (0.0042)

cohort=2002 × ln(InExp/FTE) 0.014∗∗∗ 0.010 0.0097∗ 0.011∗∗

(0.0036) (0.0057) (0.0038) (0.0035)

cohort=2004 × ln(InExp/FTE) 0.0094∗ 0.016∗∗ 0.0074 0.0053
(0.0038) (0.0061) (0.0040) (0.0036)

cohort=2005 × ln(InExp/FTE) 0.025∗∗∗ 0.048∗∗∗ 0.024∗∗∗ 0.021∗∗∗

(0.0047) (0.0076) (0.0050) (0.0045)

cohort=2006 × ln(InExp/FTE) 0.046∗∗∗ 0.077∗∗∗ 0.046∗∗∗ 0.043∗∗∗

(0.0062) (0.011) (0.0067) (0.0059)

cohort=2007 × ln(InExp/FTE) 0.054∗∗∗ 0.072∗∗∗ 0.052∗∗∗ 0.052∗∗∗

(0.0086) (0.013) (0.0091) (0.0084)

Number of Institutions 4721 4721 4721 4721
∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001
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Appendix B

Appendix for Chapter 3

B.1 Heterogeneous Effect by Cohort and Institution

We apply the Wooldridge (2021) test for heterogeneous response across time and

institution for our estimation equation 2.12. We estimate the following two regression

equations

yj,t,d = α+ x−j,t,dβ + x̄−j,.,dλ+ x̄.,t,.ξ + (x̄−j,.,d ⊗ x̄.,t,.)π + εj,t,d (B.1)

and

yj,t,d =α+ x−j,t,dβ + x̄−j,.,dλ+ x̄.,t,.ξ + (x̄−j,.,d ⊗ x̄.,t,.)π (B.2)

+ xit ⊗ (x̄−j,.,d − x̄)ζ1 + xit ⊗ (x̄.,t,. − x̄)ζ2 + εj,t,d

where yj,t,d = ln(Ej,t,d), x−j,t,d = (ln(E−j,t,d), ln(E−j,t,d) ∗ d), x̄−j,.,d = 1
T

∑T
t=1 x−j,t,d,

and x̄−j,.,d = 1
J×D

∑J
j=1

∑D
d=1 x−j,t,d.
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Table B.1 presents the estimation results for the above equations. While the

estimated coefficients remain mostly qualitatively the same, their magnitudes have altered

slightly. The results of the test suggest the responses to competitors’ budget changes are

likely to be heterogeneous across both the time dimension and the institution dimension. It

remains to be explored the factors contributing to those heterogeneities which are currently

not modeled.

Table B.1: Test for Heterogeneous Effects

(1) (2) (3) (4) (5) (6)

Panel A (Equation B.1)
Ln(Avg InExp) 0.20∗∗∗ 0.20∗∗∗ 0.14∗∗∗ 0.19∗∗∗ 0.21∗∗∗ 0.08∗∗∗

(0.01) (0.01) (0.02) (0.02) (0.03) (0.01)
Ln(Avg InExp) -0.31∗∗∗ -0.27∗∗∗ 0.41∗∗∗ 0.15∗∗ -0.36∗∗∗ -0.25∗∗∗

×Distance (1,000 miles) (0.03) (0.05) (0.08) (0.06) (0.09) (0.03)
p-value for H0 : π = 0 0.00 0.00 0.00 0.00 0.00 0.00

Panel B (Equation B.2)
Ln(Avg InExp) 0.16∗∗∗ 0.18∗∗∗ 0.05∗∗∗ 0.09∗∗∗ 0.16∗∗∗ 0.06∗∗∗

(0.01) (0.01) (0.01) (0.01) (0.03) (0.01)
Ln(Avg InExp) -0.21∗∗∗ -0.19∗∗∗ 0.01 -0.11∗∗∗ -0.25∗∗∗ -0.10∗∗

×Distance (1,000 miles) (0.02) (0.04) (0.02) (0.03) (0.07) (0.03)
p-value for H0 : ζ1 = 0 0.00 0.00 0.00 0.00 0.00 0.00
p-value for H0 : ζ2 = 0 0.00 0.00 0.00 0.00 0.00 0.00

Observations 1075744 248611 422652 670528 642949 716366

Cluster-robust standard errors in parentheses.

Column (1): Associate’s Colleges

Column (2): Special Focus Two-Year

Column (3): Doctoral Universities

Column (4): Master’s Colleges and Universities

Column (5): Baccalaureate Colleges

Column (6): Special Focus Four-Year
∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001
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B.2 Robustness Appendix

Figure B.1: Best response functions between two colleges, positive correlation between πi
and Hi1
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Notes: This figure plots the best response functions of two colleges in setting their share of spending on

educational inputs sj to each other’s decisions. Characteristics for college 1 is technology in human capital

production ζ1 = 1.1, total spending per student B1 = 8010, and capacity N1 = 800. Characteristics for

college 2 is ζ2 = 1.101, B2 = 8000, and N2 = 1, 500. Total number of students is N = 10, 000 and is drawn

from the distribution in Equation 2.7 with ρ23 = 0.5.
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Figure B.2: Best response functions between two colleges, negative correlation between πi
and Hi1
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Notes: This figure plots the best response functions of two colleges in setting their share of spending on

educational inputs sj to each other’s decisions. Characteristics for college 1 is technology in human capital

production ζ1 = 1.1, total spending per student B1 = 8010, and capacity N1 = 800. Characteristics for

college 2 is ζ2 = 1.101, B2 = 8000, and N2 = 1, 500. Total number of students is N = 10, 000 and is drawn

from the distribution in Equation 2.7 with ρ23 = −0.5.
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Figure B.3: Response to change in spending on educational inputs by competing institutions
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Notes: This figure plots the estimated coefficients and the 95% confidence intervals as responses of a

college to changes in its competing institutions’ spending on educational inputs. Competing institutions

are defined as institutions located within the specified miles radius.
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Figure B.4: Response to change in spending on educational inputs by competing institutions
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Notes: This figure plots the estimated coefficients and the 95% confidence intervals as responses of a

college to changes in its competing institutions’ spending on educational inputs. Competing institutions

are defined as institutions located within the specified miles radius and of the same Carnegie classification.

The sample is restricted to colleges with at least one competing institution within 30 miles radius so that

the analysis sample is constant as radius changes in each subgraph.
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Appendix C

Appendix for Chapter 4

C.1 Proof of Proposition 1:

Without lose of generality, suppose in the data, we observe E(Y |L = 0, D = 1) <

E(Y |L = 1, D = 1) and E(Y |L = 0, D = 0) > E(Y |L = 1, D = 0).

Given that E(Y |L = 0, D = 1) < E(Y |L = 1, D = 1), we have E(Y1|L = 0, D =

1) < E(Y1|L = 1, D = 1). By assumption 2, we have E(Y0|L = 0, D = 1) ≤ E(Y0|L =

1, D = 1). By assumption 1, E(Y0|L = 1, D = 1) = E(Y0|L = 1, D = 0). Therefore, we

have 0 ≤ E(Y0|L = 0, D = 1) ≤ E(Y0|L = 1, D = 0).

Similarly, when we observe in the data that E(Y |L = 0, D = 0) > E(Y |L =

1, D = 0), we have E(Y0|L = 0, D = 0) > E(Y0|L = 1, D = 0). By assumption 2, we have

E(Y1|L = 0, D = 0) ≥ E(Y1|L = 1, D = 0). By assumption 1, E(Y1|L = 1, D = 0) =

E(Y1|L = 1, D = 1). Therefore, we have E(Y1|L = 1, D = 1) ≤ E(Y0|L = 0, D = 1) ≤ 1.

The population ATE can be written as
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E(Y1 − Y0) = P (L = 1)E(Y1 − Y0|L = 1)

+ P (L = 0, D = 1)E(Y1 − Y0|L = 0, D = 1)

+ P (L = 0, D = 0)E(Y1 − Y0|L = 0, D = 0)

Substitute the upper bounds and lower bounds of the two terms E(Y0|L = 0, D =

1) and E(Y0|L = 0, D = 1) that was derived above. All other terms are observed in the

data. Hence we obtain the upper bound and lower bound for E(Y1 − Y0).

C.2 Proof of Proposition 2:

Without lose of generality, suppose in the data, we observe E(Y |L = 0, D =

1) < E(Y |L = 1, D = 1), E(Y |L = 0, D = 0) > E(Y |L = 1, D = 0), E(Y |L = 1, D =

1, Z = 0) > E(Y1|L = 1, C), and E(Y |L = 1, D = 0, Z = 1) > E(Y0|L = 1, C), where

E(Y1|L = 1, C) and E(Y0|L = 1, C) are two terms that can be calculated from the data.

By Assumption 2.2, since E(Y1|AT ) = E(Y |L = 1, D = 1, Z = 0) > E(Y1|L =

1, C), we have E(Y0|AT ) > E(Y0|L = 1, C), and similarly, since E(Y0|NT ) = E(Y |L =

1, D = 0, Z = 1) > E(Y0|L = 1, C), we have E(Y1|NT ) > E(Y1|L = 1, C).

We can write

E(Y0|L = 1, D = 1) =P (Z = 1|L = 1, D = 1)[P (C|Z = 1, L = 1, D = 1)E(Y0|C)+

P (AT |Z = 1, L = 1, D = 1)E(Y0|AT )]+

P (Z = 0|L = 1, D = 1)E(Y0|L = 1, D = 1, Z = 0)
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E(Y1|L = 1, D = 0) =P (Z = 1|L = 1, D = 0)E(Y1|NT )+

P (Z = 0|L = 1, D = 0)(P (C|Z = 0, L = 1, D = 0) ∗ E(Y1|C)+

P (NT |Z = 0, L = 1, D = 0) ∗ E(Y1|NT ))

All terms in the above two expressions are either observed or bounded, so that the

above two terms are also bounded.

By Assumption 2.1, we can calculate the upper bounds and lower bounds of the

two terms E(Y0|L = 0, D = 1) and E(Y0|L = 0, D = 1) based on their values in relation

to E(Y0|L = 1, D = 1) and E(Y1|L = 1, D = 0). Thus, under the same reasoning and

calculation as in the proof of Proposition 1, we provide upper bound and lower bound for

the term E(Y1 − Y0).
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