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Supercomputing applications rely on strong scaling to achieve faster results on a larger

number of processing units. But, at the strong-scaling limit, where communication is

a relatively large portion of an application’s runtime, today’s state-of-the-art hybrid

MPI+threads applications perform slower than their traditional MPI everywhere coun-

terparts. This slowdown is primarily due to the supercomputing community’s outdated

view: the network is a single device. NICs of modern interconnects feature multiple net-

work hardware contexts. These parallel interfaces into the network are not utilized in

MPI+threads applications today because MPI libraries still use conservative approaches

to maintain MPI’s ordering constraints. MPI libraries do so because domain scientists

today do not do a good job exposing logically parallel communication in their multi-

threaded MPI communication even though the existing MPI standard provides them

with opportunities to do so. Only when domain scientists and MPI developers take a

step forward together can we eliminate the communication bottleneck in MPI+threads

applications.

This dissertation eliminates the communication bottleneck by bridging the two ends of

the HPC stack—MPI library developers and domain experts—that typically do not talk to

each other directly. Through collaborations with system researchers and MPI library de-
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velopers, we develop a fast MPI+threads library capable of achieving scaling communi-

cation throughput similar to that of MPI everywhere and make high-speed multithreaded

communication a reality. Through collaborations with domain scientists, we use various

designs to expose logically parallel communication to the fast MPI+threads library on

exemplar applications targeted to run on the upcoming exascale systems. Our conver-

sations with the end-users—the domain experts—educate us on the usability aspects of

the various designs. Hence, in addition to the performance comparisons of the various

designs, we discuss the strengths and limitations of the different designs and provide our

design recommendation for the supercomputing community. Through such collabora-

tions on both ends of the HPC stack, we unlock the true potential of the MPI+threads

programming model. Prominent modern applications and computational frameworks,

such as Uintah, WOMBAT, and Legion, now perform significantly faster (up to 2x) at the

strong-scaling limit.
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Chapter 1

Introduction

Multiple national-level efforts across the globe are striving to reach the next frontier in

computing: exascale computing. In the pursuit of achieving an exaflop, that is, 1018

floating point operations per second, the architectures of supercomputers have critically

evolved over the last decade, jeopardizing the traditional models of programming them.

Even with modern programming models, however, domain scientists rely on the efficient

use of a larger number of parallel processing units to achieve faster scientific productivity

(strong scaling) [76, 47]. At the limits of strong scaling, the workload per processing unit

is small and the communication between the units occupies a significant portion of an

application’s runtime. We can witness this behavior in both the scientific computing and

AI domains. Scientific computing typically consists of stencil-style workloads with neigh-

borhood communication that takes up a large fraction of the runtime at scale [102, 103, 91],

and communicating gradients in deep learning is a major bottleneck for distributed DNN

training at scale [104, 65]. Hence, as we inch towards exascale computing, it is critical that

applications are able to achieve high parallel efficiencies with scalable communication

performances using modern programming models.
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1.1 Background and Architecture Trends

The Message Passing Interface (MPI) has been the de facto standard for programming su-

percomputers and it is typically used in a SIMD fashion by launching a process per core.

This approach is commonly referred to as MPI everywhere since it enables the domain sci-

entist to transparently utilize both the core-level and node-level parallelism on large-scale

distributed systems. The traditional MPI everywhere programming model has served the

community well for decades, but it is no longer a good fit for modern processors, and it is

not enough to program modern supercomputers. Two architecture trends have primarily

imperiled MPI everywhere.

Trend 1. As the serial throughput of a CPU has stagnated, vendors have increased the

number of cores per processor over the last decade to achieve high aggregate compu-

tational throughput. This trend remains to continue on the upcoming exascale super-

computers (e.g., 64 cores on the Frontier exascale machine of the US) [6, 97]. An impor-

tant aspect of this trend is that the processor’s other resources, such as memory, have

not increased proportionally to the increase in the number of cores. We can witness

this trend even on the world’s fastest supercomputer (as of November 2020), Fugaku,

where the ratio of memory to core is less than one (48 cores with 32 GB RAM per node).

The MPI everywhere model falters on today’s many-core processors because of its high

memory requirements [86]. In domain decomposition scenarios, for example, the halo

regions of processes contain duplicated data, which increases with the increase in the

domain’s dimensionality. More important, the static split of resources with MPI every-

where on such many-core processors leads to inefficient resource usage because of re-

source wastage [106].

Trend 2. The second, more recent trend, has been the move towards heterogeneous com-

puting environments through multiple accelerators per node. The Sierra and Summit
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supercomputers, for example, feature 4 and 6 GPUs per node, respectively. More impor-

tant, all the upcoming US exascale supercomputers—El Capitan, Frontier, and Aurora—

will feature multiple GPUs per node. To fully utilize the computational capability of a

modern supercomputer, domain scientists must program both processors and GPUs, and

hence cannot rely on using only MPI everywhere, that is, they must use a GPU program-

ming model (e.g. CUDA) to utilize the massive parallelism within a GPU. Additionally,

modern GPU-based distributed applications use MPI to utilize the GPU-level parallelism

by using multiple processes to drive the multiple GPUs on the node [70, 63, 69, 28]. The

MPI everywhere approach used in such distributed GPU-based applications, however,

suffers from the same scaling problems resulting from trend 1.

1.2 The Problem with Modern Programming Models

To utilize the modern many-core processors in a scalable fashion, domain scientists have

introduced a ”new normal” in their programming model of choice: MPI+threads (e.g.,

MPI+OpenMP). In this approach, the user spawns a process per node or NUMA do-

main and a thread per core, enabling core-level parallelism through threads and node-

level parallelism through MPI processes. The MPI+threads model is a better fit than

MPI everywhere for modern processors that feature a decreased share of resources per

core because it allows applications to efficiently share the processor’s resources between

cores. Additionally, it has lesser memory requirements—-in the example of domain de-

composition scenarios, MPI+threads eliminates the duplication of data on a node and

reduces the amount of memory required by a factor of the number of threads compared

to MPI everywhere. As a result, many applications that have ported their codes to use the

MPI+threads programming model are able to scale to a large number of nodes on mod-

ern systems [35, 42]. Evidently, MPI+threads is a critical model to program the many-core
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processors of exascale machines in a scalable fashion.

Although MPI+threads helps applications to scale, in practice, the MPI+threads version

of an application tends to perform slower than the application’s MPI everywhere counter-

part [64, 38, 55]. MPI+threads programming includes many challenges over MPI every-

where. These include mitigating synchronization overheads of the shared-memory pro-

gramming model [54, 88, 61], and preventing performance-degrading memory accesses

(e.g., false-sharing effects). But the most important challenge is the dismal communica-

tion performance of an MPI+threads application that is most visible at the strong-scaling

limit. The MPI+threads version of the hypre solver [29], for instance, spends 2.81×more

time in MPI than does its corresponding MPI everywhere version. This drastically slow

multithreaded MPI performance is also the reason why GPU-based applications use mul-

tiple processes instead of threads to drive the communication for distinct GPUs. The

problem lies in the multithreaded issue of MPI communication operations from a single

process.

State-of-the-art MPI libraries use conservative approaches, such as a global critical sec-

tion, to maintain thread safety and MPI’s ordering constraints which severely limit the

overall performance of MPI+threads applications. Several research efforts aim to miti-

gate thread contention in the MPI library through fine-grained critical sections, software

combining, and dedicated communication threads [31, 27, 26, 100], but such efforts do

not improve the scalability of multithreaded communication performance. The root of

this limiting communication performance scalability stems from an outdated view held

by the supercomputing community: the network is a single device.

Trend 3. A trend that has been overlooked by the supercomputing community is the in-

crease in network parallelism available on a single node of a supercomputer. The network

interface cards (NICs) of modern interconnects, such as Nvidia-Mellanox InfiniBand and

HPE Cray Slingshot, feature multiple network hardware contexts. These contexts serve as
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Figure 1.1: Network utilization in the state of the art.

parallel interfaces into the network from a single node. Looking forward, as we approach

the physical limits of a single network link’s throughput, the only way to increase the

aggregate throughput from a node is through the use of multiple NICs, implying another

dimension to network parallelism. The Summit supercomputer, for example, already fea-

tures dual-rail Mellanox EDR InfiniBand on each of its nodes.

The outdated view does not hurt MPI everywhere applications because each MPI process

transparently maps to a distinct network hardware context and utilizes the available net-

work parallelism (see Figure 1.1). But the same outdated view hurts multithreaded MPI

communication drastically—MPI libraries today map to only a single network hardware

context and do not capitalize on the available network parallelism with MPI+threads.

More important, domain scientists today do not do a good job exposing the indepen-

dence between the MPI communication from multiple threads even though the existing

MPI standard provides them with opportunities to do so.
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1.3 Research Approach and Contributions

To effectively utilize the available network parallelism in MPI+threads applications, do-

main scientists must expose the communication independence in their MPI+threads ap-

plications through logically parallel communication—operations that are not subject to MPI’s

ordering constraints. Only once applications expose such information can the MPI library

map the logically parallel communication to the underlying network parallelism. Of

course, this mapping is possible only when the MPI library establishes parallel commu-

nication channels and enables efficient multithreaded access to the library’s software re-

sources. Unlike the other challenges of MPI+threads programming that can be addressed

by the application developer alone, the challenge of efficient multithreaded MPI commu-

nication requires efforts from the supercomputing community as a whole, as we can see

in Figure 1.2.

To achieve the goal in Figure 1.2, this dissertation bridges the two ends of the HPC stack—

MPI library developers and domain experts—that typically don’t talk to each other di-

Figure 1.2: Goal of network utilization in MPI+threads matching that of MPI everywhere.
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rectly. Only when both domain scientists and MPI developers take a step forward to-

gether can we observe a formidable impact on MPI+threads applications. We study each

level of the HPC stack with a bottom-up approach and provide solutions for the prob-

lems at each level. This bottom-up approach was necessary since the MPI library sits

in between the applications and network hardware. To accommodate the performance

needs of an application, the MPI library first needs to be aware of the capabilities of mod-

ern hardware. Through collaborations with system researchers and MPI library devel-

opers, we make high-speed multithreaded MPI communication a reality. And through

collaborations with application developers, we expose the applications’ logically parallel

communication to the fast MPI+threads library. Through both collaborations, this disser-

tation showcases significant boosts to performance on exemplar applications targeted to

run on the upcoming exascale systems. To that end, this dissertation makes the following

contributions.

1. Analytical communication models. Motivated by the onset of new prominent ven-

dors, such as Arm and AMD, in HPC, we discovered that the communication per-

formance of the new vendors is slower than that of traditional vendors such as In-

tel. To guide the optimization efforts of system engineers in this regard, we provide

models to analyze and generate a breakdown for a system’s communication perfor-

mance in Chapter 2. We provide a detailed measurement methodology to measure

the time spent in each component so that researchers can analyze the communica-

tion performance of any system of their interest. This work is the first of its kind for

an Arm-based server.

2. Modern network hardware capabilities. Creating multiple communication chan-

nels for MPI+threads requires understanding the performance capabilities of mod-

ern NICs with respect to multithreaded communication. Compared to an MPI

everywhere environment, an MPI+threads environment allows cores to share re-

7



sources efficiently. In Chapter 3, we analyze the performance impact of sharing

communication resources between threads and provide a resource-sharing model

that captures the tradeoff space between communication throughput and resource

efficiency.

3. A fast MPI+threads library. Using the lessons learned from our modeling studies,

we establish parallel communication streams inside the MPI library and utilize the

underlying network parallelism. Our designs do not sacrifice correctness for per-

formance. Chapter 4 details how our designs yield MPI+threads communication

performance similar to that of MPI everywhere. This work is the first to achieve

scaling multithreaded communication throughput for both point-to-point and RMA

operations without any extensions to the MPI standard.

4. Application case studies. Using our fast MPI+threads library, we showcase how

applications can, through logically parallel communication, achieve not only high

scalability, but also high performance with MPI+threads. In Chapter 5, we compare

the performance differences of the different mechanisms—user-visible endpoints

and existing MPI mechanisms—of exposing logical communication parallelism for

three applications from different domains: Uintah (CFD), WOMBAT (astrophysics),

and Legion (data-centric programming system) applications. Exposing logical com-

munication parallelism can boost performance by up to 2×.

5. Listening to domain scientists. The end-users of designs that express logically par-

allel communication are domain scientists. Hence, it is imperative to pay attention

to the concerns of the domain scientists with respect to each design. In Chapter 6,

we summarize the opinions, thoughts and concerns that we have gathered from

our collaborations with several domain scientists who represent different types of

MPI+threads applications.
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Chapter 2

Analytical Models of Communication

Internode communication is the crux of supercomputing. Modern supercomputers fea-

ture new vendors such as Arm, AMD, and Nvidia in addition to the traditional play-

ers such as Intel and IBM. How do the communication performances of non-traditional

vendors fare? Figure 2.1 shows a performance comparison between three server-class

CPUs from three different vendors for a communication-intensive microbenchmark on

the same Mellanox InfiniBand network. An Intel core injects messages into the network

2.38× faster than an AMD core and 1.64× faster than an Arm-based core.
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Figure 2.1: Communication performance comparison between HPC vendors.
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While non-traditional vendors are better than traditional vendors at other aspects, such as

memory bandwidth, they are not at par with existing machines with respect to commu-

nication performance. Finding the causes of slowdowns in communication performance

is not an easy task since the critical path of communication involves all components of

a system: CPU, I/O, and network. Blindly optimizing each component is impractical

considering the technical challenges associated with each and the wide variety of use

cases. How should system engineers then organize their optimization efforts? A detailed

breakdown showing the contribution of each component to the overall communication

performance of a system would provide system researchers and engineers with a holistic

picture and guide their optimization efforts.

To break down high-performance communication, we study and develop analytical mod-

els for the injection overhead and end-to-end latency of a system. These models detail the

time spent in all components of a system. Specifically, we focus on the communication

performance of small messages because at the limits of strong scaling lies fine-grained

communication of small messages. Moreover, modern networks feature optimized mech-

anisms for small-message communication. We use our models to break down the commu-

nication performance of a system of two Arm-based ThunderX2 servers interconnected

with Mellanox InfiniBand. We choose to study an Arm-based server because the Arm

architecture powers Fugaku, the fastest supercomputer in the world(as of November

2020), and we choose Mellanox InfiniBand since it occupies the highest interconnect per-

formance share on the TOP500. This work is the first of its kind for an Arm-based server.

We learn from our study that CPU, I/O, and network components equally contribute to

the communication performance of small messages; the times spent in each of the cat-

egories are on the same order of magnitude. Hence, optimizations of each category’s

constituents would be beneficial. This raises the question: how much will optimizing com-

ponent X improve the overall communication performance? The answer to this question can
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guide the research and engineering efforts for not just the Arm-based server but also of

the HPC community at large. We answer this question through a what-if analysis of the

impact of optimizations on the overall communication performance.

2.1 Background

2.1.1 Communication Components

We can classify the various components involved in sending a message into one of three

categories: CPU, I/O, or network fabric, as shown in Figure 2.2. Software stacks on

the CPU include the Message Passing Interface (MPI) and the communication protocol

processing in the underlying communication frameworks. I/O encompasses subsystems

on the processor chip such as PCI Express (PCIe). Network components are the high-

performance interconnects switches and physical wire. Each of these components on the

critical path of communication poses an opportunity for optimization. Depending on the

use case, however, the share of time spent in different components can vary. For example,

the latency of sending a large message is driven by the time spent in the network compo-

nents, in which case, optimizing the software stack would be a futile effort. On the other

hand, the time spent in the software stack during the propagation of a small message is

a considerable portion of the overall latency and, hence, optimizing the time spent in the

Figure 2.2: Components involved in the transmission of a message.
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CPU would be beneficial. Therefore, it is important to understand where researchers and

engineers should focus their optimization efforts.

2.1.2 PCIe Express

The Network Interface Cards (NICs) of modern interconnects are typically connected to

the processor chip on the node as a PCI Express (PCIe) device. The main conductor of

the PCIe subsystem is the Root Complex (RC). It connects the processor and memory to

the PCIe fabric. The peripherals connected to the PCIe fabric are called PCIe endpoints.

The PCIe protocol consists of three layers: the Transaction layer, the Data Link layer, and

the Physical layer. The first, the upper-most layer, describes the type of transaction oc-

curring. In this paper, two types of Transaction Layer Packets (TLPs) are relevant: Mem-

oryWrite (MWr) and Memory Read (MRd). Unlike the standalone MWr TLP, the MRd

TLP is coupled with a Completion with Data (CplD) transaction from the target PCIe

endpoint which contains the data requested by the initiator. A MWr TLP is categorized

as a posted transaction, meaning that the initiator of the TLP need not maintain any state

regarding the transaction after issuing it. On the other hand, a MRd TLP is categorized as

a non-posted transaction, meaning that the initiator will receive a Completion with Data

(CplD) transaction from the target PCIe endpoint with the requested data. The Data Link

layer ensures the successful execution of all transactions using Data Link Layer Packet

(DLLP) acknowledgements (ACK/NACK) and a credit-based flow-control mechanism.

An initiator can issue a transaction as long as it has enough credits for that transaction.

Its credits are replenished when it receives Update Flow Control (UpdateFC) DLLPs from

its neighbors. Such a flow-control mechanism allows the PCIe protocol to have multiple

outstanding transactions.

12



2.1.3 Mechanisms of a High-Performance Interconnect

From a CPU programmer’s perspective, there exists a transmit queue (TxQ) and a com-

pletion queue (CQ). The user posts their message descriptor (MD) to the transmit queue,

after which they poll on the CQ to confirm the completion of the posted message. The

user could also request to be notified with an interrupt regarding the completion. How-

ever, the polling approach is performance-oriented since there is no context switch to the

kernel in the critical path. The actual transmission of a message over the network occurs

through coordination between the processor chip and the NIC using memory mapped

I/O (MMIO) and direct memory access (DMA) reads and writes. We describe these steps

below using Figure 2.3.

0. The user first enqueues an MD into the TxQ. The network driver then prepares the

device-specific MD that contains headers for the NIC, and a pointer to the payload.

1. Using an 8-byte atomic write to a memory-mapped location, the CPU (the network

driver) notifies the NIC that a message is ready to be sent. This is called ringing the

DoorBell. The RC executes the DoorBell using a MWr PCIe transaction.

2. After the DoorBell ring, the NIC fetches the MD using a DMA read. A MRd PCIe

transaction conducts the DMA read.

3. The NIC will then fetch the payload from a registered memory region using another

DMA read (another MRd TLP). Note that the virtual address has to be translated to

its physical address before the NIC can perform DMA-reads.

4. Once the NIC receives the payload, it transmits the read data over the network.

Upon a successful transmission, the NIC receives an acknowledgment (ACK) from

the target-NIC.
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Figure 2.3: PCIe transactions and mechanisms on sender node to transmit data over wire.

5. Upon the reception of the ACK, the NIC will DMA-write (using a MWr TLP) a

completion (64 bytes in Mellanox InfiniBand) to the CQ associated with the TxQ.

The CPU will then poll for this completion to make progress.

In summary, the critical data path of each post entails one MMIO write, two DMA reads,

and one DMA write. The DMA-reads translate to round-trip PCIe latencies which are

expensive.

Network optimizations for small messages. A faster way to send a message that elim-

inates the PCIe round-trip latencies is Programmed I/O (PIO). With PIO, the CPU copies

the MD as a part of the DoorBell. Thus, the NIC doesn’t need to DMA-read the MD.

Another feature for small payloads is inlining which means that the payload is a part of

the MD. Hence, when the NIC receives the MD, it does not need to DMA-read the pay-

load. Typically, communication frameworks, such as UCX, combine PIO with inlining.

This eliminates both the DMA-reads (steps (2) and (3)). In Mellanox InfiniBand, the PIO

occurs in 64-byte chunks. Note that the CPU does more work in PIO (64-byte copy in-

stead of an 8-byte write) and inlining (memcpy). However, the increase in CPU’s work

compared to the benefit gained from elimination of PCIe round-trip latencies is minimal.
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2.2 Evaluation Setup

To measure the breakdown of time spent in communication components we use a sys-

tem of two nodes, node 1 and node 2, that are connected to each other using a high-

performance interconnect. Node 1 plays the role of the initiator in our following experi-

ments. We use the CPU’s timers to measure the time spent in software. To measure the

time spent in other components, we use traces from a PCIe analyzer. Note that one can

use this analysis infrastructure for any CPU or interconnect of interest.

The nodes in our setup are ThunderX2-based (TX2) servers and are connected with the

TOP500-popular Mellanox InfiniBand [24] high-speed interconnect. Specifically, we use

ConnectX-4, a recent Mellanox InfiniBand adapter, and attach it to the node through a

PCIe slot. A Lecroy PCIe analyzer sits just before the NIC on node 1, as shown in Fig-

ure 2.4. The overhead of the PCIe analyzer is negligible as we did not observe any dif-

ference in performance with and without it. Larsen et al. observe the same [67]. The

analyzer is a passive instrument that allows data to pass through fully unaltered [19].

For our software stack, we use the CH4 device of MPICH [87] with Unified Commu-

nication (UCX) [93] as the underlying communication framework. Specifically, we use

UCX’s accelerated rc x transport which is UCX’s implementation of the data-path opera-

tions, such as posting to the transmit queue and polling from the completion queue, for

modern Mellanox InfiniBand adapters.

Figure 2.4: Two-node setup with PCIe analyzer on node 1.
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2.3 Measurement Methodology

Software measurements. To measure time spent in the CPU, we wrap the relevant code

with UCX’s UCS profiling infrastructure [23], which, for aarch64, internally reads the

cntvct el0 register timer preceded by an isb. The profiling infrastructure reads the

timer at the start and end of the code of interest. Since the execution times of these re-

gions of interest are in the order of nanoseconds, the overhead of the timer infrastructure

needs to be accounted for. The mean overhead of UCS’s profiling infrastructure on our

evaluation setup is 49.69 nanoseconds (a standard deviation of 1.48 for 1000 samples); we

report software measurements in the rest of this chapter after removing this overhead.

While measuring time of a component, we do not simultaneously measure time in any

other component to minimize any effects of artificial slowdowns caused by the timer in-

frastructure.

System measurements. We use the PCIe analyzer to measure the time spent in the hard-

ware components such as the network and I/O components. We also use it to validate

our software measurements wherever possible. The analyzer records a timestamp for

each transaction that it traces (see Figure 2.5). Hence, to measure the time taken for an

event, we take the delta of the timestamps of the PCIe activity that occur immediately

after and immediately before the event of interest.

Each reported CPU or PCIe analyzer measurement is a mean of at least 100 samples.

Figure 2.5: PCIe trace of downstream PCIe transactions for UCX’s RDMA-write injection-
rate benchmark (put bw).
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2.4 Definitions

For our modeling and analysis in this chapter, we define two levels of communication

components: low and high.

Low-level components include the low-level communication protocol (LLP), the I/O sub-

system, and the network components. The LLP software drives the I/O and network

hardware. In our study, UCX’s low-level transport API, UC-Transports (UCT), is the LLP

driver. UCT abstracts the capabilities of the various hardware architectures with minimal

software overhead.

High-level components include high-level communication protocols (HLP). The most

commonly used programming model for large-scale parallel systems today is MPI [97].

Modern MPI implementations, such as the CH4 device of MPICH, use abstract commu-

nication frameworks, such as UCX’s UC-Protocols (UCP) layer, so that the MPI libraries

do not need to maintain separate critical paths for all interconnects. UCP implements

high-level communication protocols such as collectives, message fragmentation, etc. us-

ing the low transport-level capabilities exposed through UCT. MPI libraries use UCP to

implement the specifications of the MPI standard.

We define variables to represent time in each component.

• Post – Total time spent in the initiation of an operation

• Progress – Total time spent during the progress of an operation

• LLP post – LLP performing a PIO post of one 8-byte message

• LLP prog – LLP dequeuing one entry of the completion queue during the progress

of an operation
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• HLP post – Time spent in HLP during a Post

• HLP tx/rx prog – Time spent in the HLP during the progress of a send (TX) or receive

(RX) operation

• PCIe – payload traversing PCIe between RC and NIC

• Wire – payload traversing the physical wire of the interconnect

• Switch – overhead added by a network switch

• Network – the total time in the interconnect (Wire + Switch)

• RC-to-MEM(xB) – RC writing an x-byte payload to memory

2.5 Overall Injection Overhead

Injection is the insertion of a message into the network. The message is injected when

the payload reaches the NIC. We study the case when the user is transmitting messages

continuously since this represents a system’s injection limit. Then, the system’s injection

overhead, Inj overhead, is the time difference between messages arriving at the NIC. This

Inj overhead explains why all the messages in a burst do not reach the NIC at time zero.

We first model the injection overhead of PIO posts for a small message, then measure the

overhead according to the model, and finally validate it for an Arm-based server.

2.5.1 Modeling

Since the depth of the transmit queue (TxQ) is finite, the user cannot post indefinitely.

Polling the completion queue (CQ) serves as the dequeue semantic for the TxQ. Hence,

the user must poll in between their posts to inject messages into the NIC. Say, the user
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polls after every p posts. If p = 1, the depth of the TxQ is not utilized and the post

translates to a synchronous post, that is, the user will be able to post the next message only

after the previous message has reached the target node (since the completion is generated

only when the host NIC receives an ACK from the target NIC (see Section 2.1.3)).

To remove the overhead of waiting for a previous message to complete, the user must

choose a value of p such that the completion for an earlier message is available during

a poll. Such a value of p depends on the value of Post and the time taken to generate a

completion, gen completion. From Section 2.1.3, we can deduce that

(2.1)gen completion = 2× (PCIe + Network) + RC-to-MEM(64B)

since the PCIe wire and the interconnect’s network fabric are traversed twice: first while

transmitting the message to the target NIC, and second while receiving the ACK from the

target NIC and writing the corresponding completion. A completion in InfiniBand is 64

bytes and hence, the RC conducts a 64-byte write to memory on behalf of the host NIC.

Then, to remove the overhead of waiting for a previous message, the lower bound on p is

(2.2)p ≥ gen completion/Post

In our modeling of the injection overhead, we assume that the user meets this lower

bound on p.

Typically, the API of the network driver allows the user to poll a batch of completions,

reducing the overhead of expensive memory barriers and function calls [66]. Say the

user polls b number of completions in each batch. This means that the user can post

only b posts in the next round of posts since only b entries have been dequeued from

the TxQ. Note that b meets the lower bound mentioned above. Additionally, the user

could perform some miscellaneous operations during the window of b posts or b polls.

Let tot misc demarcate the cumulative time spent in these other operations. Then, the
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Figure 2.6: Injection overhead observed by the NIC.

overhead of the CPU to post a message is

(2.3)
CPU time =

b× Post + b× Progress + tot misc

b
= Post + Progress + Misc

where Misc = tot misc/b is the miscellaneous overhead amortized for each message.

Hence, on average, messages arrive at the RC every CPU time. Since PCIe supports mul-

tiple outstanding requests (see Section 2.1.3), the RC initiates MWr PCIe transactions tar-

geting the NIC as soon as it receives messages from the CPU. Considering that the RC is

implemented with hardware logic, the time it takes to generate a transaction would be

in the order of a few cycles. Hence, we ignore its contribution to the injection overhead.

Note that the RC can generate transactions only if it has enough credits. Otherwise, it

needs to wait for an UpdateFC DLLP from the NIC which would incur the overhead of

the PCIe wire between the NIC and the RC (PCIe). Experientially, we observe that a single

core does not exhaust the credits for MWr transactions. Hence, we do not model for the

overheads imposed with exhausted credits in this chapter.

Once the message leaves the RC, it incurs PCIe before arriving at the NIC. Hence, the

injection overhead of a single message is

(2.4)Msg inj overhead = CPU time + PCIe

While Msg inj overhead describes the time taken by each message to reach the NIC, it is not
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the same as the injection overhead observed by the NIC, Inj overhead, as we shall see next.

When the system is issuing messages continuously, the CPU time of the next message

overlaps with the PCIe of the previous one (see Figure 2.6). Hence, the time difference

between the initiation of messages is CPU time. This holds true for any relation of PCIe

with CPU time (assuming that PCIe is not long enough to exhaust the RC’s credits). When

PCIe > CPU time, PCIe of the next message can also overlap with PCIe of the previous

one. Hence, from the perspective of the NIC, the time difference between the arrival of

messages is the same as that between the initiation of messages, that is,

(2.5)Inj overhead = CPU time
= Post + Progress + Misc

2.5.2 Breakdown

Given the modeled injection overhead of a system (Inj overhead in Equation 2.5), we mea-

sure its breakdown for the Arm-based server considering both low and high level com-

ponents and their interactions. Post is simply the sum of the times spent in the high-level

communication protocol (HLP) and the low-level communication protocol (LLP) to ini-

tiate a send operation, that is, Post = LLP post + HLP post. Progress is the total overhead

imposed by both the HLP and LLP for the progress of the send operation. Unlike Post,

however, Progress is not a simple sum of LLP prog and HLP tx prog because of certain

performance-oriented optimizations which result in complex mechanisms.

We measure the times for the low and high-level components separately and then com-

bine them together to provide the complete breakdown. Finally, we provide key insights

from the breakdown of the overall injection overhead.
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Low-level Components

Using the low-level UCT driver, we run the UCX perftest’s injection-rate microbench-

mark, namely the put bw test, with a single core. Each message is 8 bytes, the size of a

double. By involving just the low-level components, Equation 2.5 becomes

(2.6)Inj overhead = CPU time
= LLP post + LLP prog + Misc

We measure LLP post, LLP prog, and Misc by wrapping the UCS profiling infrastructure

around the calls to uct ep put short, uct worker progress, and the relevant re-

gions of the microbenchmark, respectively. Table 2.1 reports our measurements and Fig-

ure 2.7 shows a percentage breakdown of Inj overhead when only low-level components

are involved. LLP post constitutes more than half of the the injection overhead. We de-

scribe what occurs in the different components next.

LLP post. The user-space network driver prepares the appropriate resources and writes

directly to the NIC’s registers without any involvement of the kernel. The following de-

tails the steps involved in an LLP post.

1. Prepare message descriptor (MD) – this involves the time taken to write the control

segment of the descriptor. It also involves a memcpy of the small payload when

inlining is used.

2. A store memory barrier – this ensures that the MD is completely written before the

CPU signals the NIC. This barrier is relevant only for a weak memory model (dmb

st on aarch64).

3. DoorBell counter increment – the NIC reads a DoorBell counter to perform specula-

tive reads. The CPU updates this counter before writing to the NIC.
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4. A store memory barrier – this ensures that the NIC sees the update to the DoorBell

counter before any subsequent write to its device memory.

5. PIO copy – this is the CPU’s write to the memory-mapped device memory in-

structing the NIC to transmit the message. Device memory is typically an un-

cached, buffered memory region that supports out-of-order writes. For the TX2-

based server in our setup, we use Device-GRE memory for the memory-mapped

location. Though there would be a store memory barrier (dsb st) after the PIO

copy to flush the data to the NIC, we observed experientially that this flush is not

necessary for the microarchitecture of the TX2-based server. The PIO copy of an

8-byte message is one 64-byte chunk in Mellanox InfiniBand (see Section 2.1.3).

To measure the breakdown of the time spent in the different sections of the LLP, we wrap

the relevant regions of code in the implementation of uct ep put short. While the

categories listed above are critical components of an LLP post, they do not account for

other miscellaneous time such as the function call overhead, branches to decide code

path, etc. We compute this time by taking the difference of LLP post and the sum of the

times spent in the categories. Table 2.1 reports our measurements and Figure 2.8 shows

the breakdown of an LLP post for the TX2-based server. PIO constitutes the majority of

LLP post. We discuss it later in Section 2.7.1 in the context of simulated optimizations.

LLP prog. During the progress of an operation the LLP reads the designated memory lo-

cation (where the NIC DMA-writes its completions). This progress operation constitutes

a load memory barrier for aarch64’s weak memory model to ensure that the read for a

completion queue entry occurs before subsequent updates to data structures.

Misc. Since miscellaneous time between consecutive posts is specific to the benchmark,

we study the behavior of the microbenchmark and measure the miscellaneous time ac-

cordingly. This time is reported in Table 2.1.
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Table 2.1: Measured times of low-level software components.

Component Time (ns)
Message descriptor (MD) setup 27.78

Barrier for message descriptor (MD) 17.33
Barrier for DoorBell counter (DBC) 21.07

PIO copy (64 bytes) 94.25
Other in LLP post 14.99

LLP post (total of above) 175.42
LLP prog 61.63

Misc in Inj overhead 58.68

61.18% 21.49% 17.33%

0 25 50 75 100
Percent

LLP_post LLP_prog Misc

Figure 2.7: Breakdown of injection overhead with the LLP.
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Figure 2.8: Breakdown of time in an LLP post (MD: message descriptor; DBC: DoorBell
counter).
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Figure 2.9: Distribution of the observed injection overhead (maximum value is an outlier).
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Validating modeled injection overhead. Since the PCIe analyzer sits just before the NIC,

the timestamps of the 64-byte PIO posts correspond to the times at which the messages

reach the NIC. Hence, calculating the delta of the timestamp of consecutive transactions

results in the observed Inj overhead. Figure 2.9 shows the distribution of this overhead.

The modeled injection overhead (295.73 nanoseconds) is within 5% of the mean observed

injection overhead (282.33 nanoseconds).

High-level Components

We present a breakdown of time spent in the high-level communication protocol (HLP)

for a communication-initiation operation such as an MPI Isend, and a communication-

progress operation such as a successful (i.e. no busy-waiting) MPI Wait corresponding to

an MPI Irecv.

Communication initiation. In an MPI Isend, the MPI library first decides how to best

execute the operation by checking if the data is contiguous, computing which commu-

nication interface to use, etc. Ultimately it calls into the UCP layer (ucp tag send nb)

which eventually executes the LLP in the UCT layer (uct ep am short). To measure

the time spent in MPI and UCP for an MPI Isend, we first measure the total time of

MPI Isend, the total time of ucp tag send nb inside MPICH, and the total time of

uct ep am short inside UCP by wrapping them with the UCS profiling infrastructure.

We can then measure the time spent in MPI and UCP by taking the differences of times be-

tween the upper and lower layers. For example, subtracting the total time of ucp tag send nb

from that of MPI Isend gives us the time spent in MPI.

Communication progress. In an MPI Wait, the MPI library executes its progress engine

which ultimately calls into the UCP layer (ucp worker progress). UCP then ensures

progress on all outstanding operations that have been posted by progressing the low-level
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Table 2.2: Measured times of various components.

Component Time (ns)
MPI Isend in MPICH 24.37

MPI Isend in UCP 2.19
Callback for a completed MPI Irecv in MPICH 47.99
Successful MPI Wait for MPI Irecv in MPICH 293.29

Callback for a completed MPI Irecv in UCP 139.78
Successful MPI Wait for MPI Irecv in UCP 150.51

8.24% 91.76%

33.91% 66.09%

MPI_Isend

RX MPI_Wait

0 25 50 75 100
Percent

HLP UCP MPICH

Figure 2.10: Breakdown of time in HLP.

UCT layer (uct worker progress). When an operation completes, UCT executes a reg-

istered callback into the upper UCP layer to update data structures that indicate the com-

pletion of the operation. Similarly, the UCP callback also executes a registered callback

into the upper MPI layer to indicate that the operation has completed. Note that these

callbacks are executed before returning from uct worker progress. To measure the

time spent in MPICH and UCP for an MPI Wait, we measure the times spent in the reg-

istered MPICH and UCP callbacks in addition to measuring the total times of MPI Wait,

ucp worker progress, and uct worker progress. Since the UCP callback entails

the MPI callback, we measure the time spent in the UCP callback only by taking the dif-

ference between the total times spent in the callbacks. We then measure the time spent in

MPI and UCP by taking the differences of times between the upper and lower layers and

adding in the time for the upper layer’s registered callback. For example, subtracting the

total time of ucp worker progress from that of MPI Wait and adding in the time of

the MPI callback yields the time spent in MPI [108].
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Table 2.2 reports the time spent in MPI and UCP on top of the LLP’s HW/SW interface for

an MPI Isend (26.56 nanoseconds in total), and a successful MPI Wait for an MPI Irecv

(443.8 nanoseconds in total). Figure 2.10 shows their percentage breakdown.

The Complete Picture

As mentioned earlier, Post in Equation 2.5 is the the sum of LLP post and HLP post (201.98

nanoseconds). Progress, on the other hand, is not a straightforward sum of the low and

high level components because of their complex interactions. We describe the optimiza-

tions responsible for the complex behavior.

UCP reduces the overhead of progressing send operations by using unsignaled comple-

tions, which means the NIC DMA-writes a completion only every c operations to indicate

the completion of all c operations (c = 64 in UCX). Hence, the overhead of progress is

amortized over c operations. Depending on the value of c and the depth of the underly-

ing transmit queue (TxQ), certain posts of the LLP can fail due to a full TxQ. UCT defers

the successful execution of such ”busy posts” during the progress of operations implying

that the progress of some operations includes the overhead of initiation in LLP (LLP post).

We carefully account for such complex interactions between the components and measure

Progress and Misc to be 59.82 nanoseconds and 3.17 nanoseconds, respectively. Less than

a nanosecond of Progress occurs in the LLP (due to the amortization); the rest occurs in

the HLP (HLP tx prog).

Validating modeled injection overhead. In Section 2.5.2 we validated that a microbench-

mark can accurately measure the true injection overhead of a system. Hence, we use OSU

Micro-Benchmark’s [22] message rate test1 to measure the observed injection overhead.

By taking the inverse of the message rate, we measure the mean injection overhead to

1We remove the send-receive sync after every window of posts for a clear analysis.
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be 263.91 nanoseconds. The injection overhead computed with Equation 2.5 is 264.97

nanoseconds which is within 1% of the observed overhead. Figure 2.11 shows the break-

down of the overall injection overhead.

Key Insights

Insight 1. An application cannot indefinitely initiate messages due to the limited depth

of the transmit/receive queue; the progress of an operation serves as a ”semantic bot-

tleneck.” However, once optimizations like unsignaled completions for send operations

minimize the performance overheads imposed by this bottleneck, Figure 2.11 shows that

Post dominates (more than 70% of total) the overall injection overhead. Within Post, the

low-level communication protocol (LLP) dominates as seen in ”Initiation” of Figure 2.12.

Insight 2. Figure 2.12 shows that the HLP dominates the progress of both send and re-

1.20% 22.58% 76.23%

0 25 50 75 100
Percent

Misc Post_prog Post

Figure 2.11: Breakdown of the overall injection overhead.

1.61% 98.39%

21.53% 78.47%

86.85% 13.15%

TX Progress

RX Progress

Initiation

0 25 50 75 100
Percent

Communication protocol LLP HLP

Figure 2.12: Breakdown of time in HLP and LLP during the initiation and progress of
communication.
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ceive operations. Furthermore, the progress of a receive operation is 4.78× higher than

that of a send operation.

2.6 End-to-End Latency

Latency is the total time incurred by a message starting from the time the host node initi-

ates the transfer to the time of writing the payload in the destination buffer on the target

node.

2.6.1 Modeling

We study the latency of a short message transmitted using send-receive semantics. The

initiation of the transmission begins with an Post, after which the message traverses the

PCIe fabric and reaches the NIC. The NIC then transmits the message over the network

fabric to reach the target node. On the target node, the NIC performs a MWr PCIe trans-

action, which traverses the PCIe wire and instructs the RC to write the payload into the

target node’s memory. Meanwhile the CPU on the target node has been polling for its

posted receive to complete. The user can use its receive buffer only after a successful poll.

Thus, for a payload of size, x, the time for latency is derived as follows,

(2.7)Latency = Post + 2(PCIe) + Network + RC-to-MEM(xB) + Progress

2.6.2 Breakdown

Considering the low and high level components involved in the latency of a system, Equa-

tion 2.7 becomes
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Table 2.3: Measured times of system hardware components.

Component Time (ns)
PCIe for a 64-byte payload 137.49

Wire 274.81
Switch 108

Network (total of above) 382.81
RC-to-MEM(8B) 240.96

(2.8)Latency = HLP post + LLP post + 2(PCIe) + Network
+ RC-to-MEM(xB) + LLP prog + HLP rx prog

We measure the time for each component according to Equation 2.8 to achieve the break-

down of the latency of the two-node TX2-based system.

Low-level Components

The values of LLP post and LLP prog in Equation 2.8 are the same as the ones measured

in Section 2.5.2. Table 2.3 contains the times for the rest of the system components. We

describe how to measure them next.

PCIe. To measure PCIe, we first measure the round-trip latency of the PCIe wire between

the NIC and the RC. Since the PCIe analyzer sits just before the NIC, any transaction

initiated by the NIC and the corresponding ACK DLLP from the RC will give us the start

and end time of the required round-trip. For this purpose, we use the MWr transactions

initiated by the NIC during the DMA-write of completions. The timestamp in the MWr

transaction is the start time of the round trip and that in the corresponding ACK DLLP

is the end time. Dividing this round-trip value by two is PCIe (the size of this MWr

transaction is the same as that of the PIO copy: 64 bytes).
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Figure 2.13: Measuring RC-to-MEM(xB) using the time delta between an inbound pong
and outbound ping on node 1.

Network. One way to measure Network would be to first measure the time difference

between when a PIO post reaches the NIC and when the NIC receives an ACK from the

target node for that PIO post. Then, dividing that difference by two would correspond

to Network since the difference entails a round-trip Network latency. The timestamps on

the PCIe trace of the ping-pong style am lat benchmark allow us to employ this method.

A downstream 64-byte PCIe transaction corresponds to a ping and the next upstream

64-byte PCIe transaction corresponds to the ping’s completion which is generated upon

reception of the ACK. Doing so, we measured the value of Wire to be 274.81 nanoseconds

for a direct NIC-to-NIC connection. If the NICs are connected via a switch, the over-

head of Switch is 108 nanoseconds. We measured this overhead by taking the difference

between two latency measurements: one with a switch involved and one without.

RC-to-MEM(8B). To measure RC-to-MEM(8B), we utilize the timestamps on the PCIe

trace data of the am lat ping-pong benchmark. As shown in Figure 2.13, the time differ-

ence between an incoming pong and outgoing ping entails an RC-to-MEM(8B), two PCIes

(one for the inbound pong and the other for the outbound ping), a LLP prog (successful

poll), and a LLP post (the ping). Once we measure the pong-ping difference from the PCIe
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trace, we can compute the value of RC-to-MEM(8B) since we have measured the values

of the other components.

Validating modeled latency. Plugging in the measured values into Equation 2.8 we ob-

tain Latency = 1135.8 nanoseconds. The observed latency from UCX’s am lat test is

1190.25 nanoseconds, which is within 5% of the modeled latency.

High-level Components

HLP post in Equation 2.8 is the same as the one in Section 2.5.2. HLP rx prog in Equa-

tion 2.8 is the sum of the times spent in the registered callbacks of the MPI library and UCP

along with the remaining time spent in the MPI library after ucp worker progress re-

turns. Note that the latter is not the equivalent of the total time spent in MPI for a success-

ful MPI Wait minus the time spent in the MPI library’s callback. MPI Wait is a blocking

call and incurs a portion of its 293.99 nanoseconds before even progressing UCP. MPICH

internally loops on ucp worker progress until the operation is complete. Hence, we

specifically measure the time spent in MPICH after a successful ucp worker progress

and observe this time to be 36.89 nanoseconds. Adding this time to the times spent in

the callbacks of MPICH and UCP reported in Table 2.2, the value of HLP rx prog is 224.66

nanoseconds.

The Complete Picture

Summing up the values of LLP prog, HLP post, and HLP rx prog to the modeled latency

in Section 2.6.2, the end-to-end latency is 1387.02 nanoseconds. This is within 4% of the

observed latency of 1336 nanoseconds measured by OSU Micro-Benchmark’s point-to-

point latency test. Figure 2.14 shows a detailed breakdown of this latency.
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Figure 2.14: Breakdown of the end-to-end latency.
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Figure 2.15: High-level breakdown of the end-to-end latency.
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Figure 2.16: Breakdown of time spent on node.
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Key Insights

Insight 3. Figure 2.15 presents the overall percentage breakdown of the end-to-end la-

tency of a small message in the three categories: CPU, I/O, and network. The constituents

of the software and I/O categories contribute almost equally (within 4% of each other) to

their respective total times. In the case of Network, the latency of Wire dominates the

overall off-node time. Note that none of the three categories dominates the overall la-

tency. However, we observe that the network fabric constitutes less than a third of the

overall latency while CPU and I/O components together contribute towards 72.4% of the

latency. Hence, most of the overhead in the transmission of a small message is incurred

on the node.

Insight 4. Figure 2.16 shows a high-level breakdown of the time spent on the node during

the transmission of the message. The majority of this time occurs on the target node. Out

of the time on the target node, the majority occurs during I/O, the majority of which is

comprised by the RC writing the payload to memory. On the contrary, software comprises

the majority of the time spent on the initiator node. This is due to the use of Programmed

I/O (see Section 2.1.3) for short messages. Consequently, I/O on the initiator node com-

prises only of a PCIe transaction unlike that on the target node.

2.7 Simulated Optimizations

In this section, we use the insights gained from the breakdown of the overall injection

overhead and the end-to-end latency of a system to study the effects of optimizing the

CPU, I/O, and network fabric components on the injection and latency of small message

transfers. In the figures that follow, we aim to answer the following question: if we op-

timize component X by Y%, what is the corresponding reduction in injection overhead
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and latency? The horizontal axes of Figures 2.17 and 2.18 represent the degree of opti-

mization for the component of interest. It consists of five evenly spaced reductions in

overhead, starting from 10% (1.1× faster) to 90% (10× faster). The vertical axis repre-

sents the speedup in the overall injection or end-to-end latency as a result of reducing the

component’s overhead. Such a way to simulate optimizations has provided key insights

in a wide variety of scenarios [83, 84, 82]. Note that the components of our models are

not concurrent, that is, their executions do not overlap. Hence, evaluating the impacts of

reductions in overheads on benchmarks such an MPI stencil kernel through a distributed

system simulator (such as SimGrid [39]) results in exactly the same linear speedups that

we generate through a manual what-if analysis in Figures 2.17 and 2.18.

We organize our discussion into a set of relevant optimizations that target the different

components. For each optimization we discuss their likelihood and evaluate their impact.

We consider speedups more than 5% to be substantial.

2.7.1 On-node optimizations

We learned in Section 2.6.2 that most of the time in the transmission of a small message

is spent on the node (insight 3). CPU and I/O components make for the on-node time.

Below we discuss three relevant optimizations.

NIC integrated into a System-on-Chip

The idea of this optimization is that the NIC sits on the same die as that of the processor.

The deployment of such a solution would be in the form of a System-on-Chip (SoC) so that

instead of interfacing with the CPU through the PCIe subsystem, the NIC would connect

to the network-on-chip (NoC). Such a tight integration of the NIC and the CPU would
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eliminate a majority of the I/O subsystem’s overhead, which accounts for the majority of

the time in the latency of a small message. While integrated NICs are not commonplace in

today’s HPC systems, they are more than likely to become ubiquitous in the future given

the potential of their impact. There have been multiple works [37, 68] that argue for

and evaluate the performance of SoC-integrated NICs showing their benefits in terms of

better performance and higher CPU availability for all message sizes. More recently, Arm-

based supercomputers are on the rise [62] since they allow HPC vendors to integrate their

custom solutions (such as an integrated NIC) with Arm IP on SoCs. The Tofu interconnect

D [25] on Fujitsu’s Fugaku machine is a prominent example of this optimization. With

Tofu’s NIC integrated into a Fugaku node, the RDMA-write latency has been improved

by nearly 400 nanoseconds.

Impact. ”Integrated NIC” in Figure 2.18b shows the impact of a solution that simply

brings the NIC closer to the TX2-based SoC. While one can expect such a solution to

eliminate most of the I/O overhead, we can observe over a 15% improvement in overall

latency even with a modest 50% reduction in I/O time. In fact, a tightly integrated NIC

allows for opportunities to reduce the involvement of the CPU in the LLP’s HW/SW

interface and thereby increase its availability for computational tasks. Recall that the

reason for the use of PIO for small messages is expensive PCIe round-trip latencies with

the communication-offloading approach (see Section 2.1). Since an integrated NIC would

sit close to memory, round-trip latencies performed by the hardware logic of the NIC

would most likely be faster than involving the CPU in PIO.

Improving the initiation of a message in the low-level communication protocol

This optimization deals with how writes to device memory occur in the microarchitecture

of a processor. Ideally, writes to aarch64’s Device memory [71] should be as fast as writes

to its Normal memory [71]. Such an optimization is likely since the current difference be-
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tween 64-byte writes to Normal and Device memory is more than 90%, hinting that there

exists room for optimization in the TX2-based server. Optimization efforts would reduce

the time spent in the PIO copy, which accounts for more than 50% of the time in LLP post

(see Figure 2.8). Researchers at Arm have used the results of this study to improve the

latency of writes to Device Memory in the microarchitecture of the server’s next iteration:

ThunderX3.

Impact. ”PIO” in Figure 2.17 and Figure 2.18a shows the impact of improving the 64-

byte PIO copy on the overall injection and end-to-end latency, respectively. A regular

64-byte memcpy on the TX2-based server takes less than a nanosecond as expected. If

we modestly project the overhead of PIO to reduce to 15 nanoseconds (84% reduction),

overall injection can improve by more than 25% and end-to-end latency can improve by

more than 5%.

Reducing software overheads

This optimization deals with software engineering targeted to reduce overheads in the

HLP. However, unlike the previous optimizations, it is unlikely that this optimization

would reduce overheads by more than 50%. For example, the current implementation

of MPICH is highly optimized [87], reducing the number of instructions by 76% from its

previous implementation for an MPI Isend. We conjecture that software optimizations

would reduce overheads by less than 20%.

Impact. Figure 2.17 and Figure 2.18a show the what-if analysis for the different con-

stituents in the HLP and LLP. The ”HLP” and ”LLP” lines in the figures reflect the upper

bound on speedups that would result from optimizing the components that constitute the

HLP and LLP, respectively. For both injection and latency, optimizing the progress of op-

erations in the HLP (HLP tx prog and HLP rx prog) can achieve speedups close to HLP’s
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Figure 2.17: Simulated speedups in overall injection by reducing CPU overheads.
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Figure 2.18: Simulated speedups in end-to-end latency by reducing overheads of CPU,
I/O, and network components.

upper bound. Similarly, optimizing LLP post can achieve speedups close to LLP’s upper

bound. If we consider software overheads would be reduced at most by 20%, the upper

bounds reflect a less than 5% speedup in the end-to-end latency. On the other hand, a

20% reduction in overhead in the LLP can speedup injection by up to 13.33% while that

in the HLP can do so by up to 6.44%.

2.7.2 Off-node optimizations

Figure 2.15 shows that 27.6% of the end-to-end latency is spent on the interconnect’s Wire

and in the Switch. Our foresight is that the reduction in off-node overheads is less than

likely and that the resulting speedups with off-node optimizations alone would not be
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substantial. We explain our foresight below.

The reduction in Wire’s overhead is less than likely due to engineering complexities at the

physical layer. In fact, it is possible that the latency will increase in future interconnects

in order to accommodate for higher throughput. The conversion between the parallel

PCIe signals and the serial signals on the interconnect’s fiber transmission link occurs

through SerDes (serializer/deserializer) integrated circuits. For throughputs higher than

100 Gb/s, the SerDes unit needs to be able to deliver higher throughput. While higher de-

grees of pulse amplitude modulation (PAM) deliver higher signal rates, they require more

complex forward error correction (FEC), which increases the latency of the transmission

in some cases by 300 nanoseconds [96, 48, 36].

The current latency of a high-performance interconnect’s switch is already an order of

magnitude lower than that of an Ethernet’s switch [90]. New technologies like GenZ

forecast their switch latencies to be 30-50 nanoseconds [40]. However, such low latencies

are yet to be demonstrated. Only an optimistic reduction to 30 nanoseconds (72% over-

head reduction) would correspond to a substantial speedup (5.45%) in end-to-end latency

according to Figure 2.18c.

2.8 Concluding Remarks

Our injection-overhead and latency models accurately describe high performance com-

munication. The communication performance breakdown of a system corresponding to

our model explains where and how much time is spent during communication. Like it

did for the engineers of the Arm-based server, a breakdown guides the optimization ef-

forts of system architects. Given that the communication performance of non-traditional

server-class CPUs is slower than that of traditional ones (see Figure 2.1), we encourage the
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researchers and engineers to use our detailed methodology to produce a communication

performance breakdown for systems of their own interest.

Future work. The models in this chapter are restricted to the case of a single core driving

communication. In a multithreaded environment, factors such as limited PCIe credits and

barrier synchronization have the potential to be more expensive. In the future, we would

like to extend our study to model the communication performance in a multithreaded

environment. Furthermore, from our discussions with scientists at various industry re-

search institutions, we learned that PCIe analyzers are typically not readily available be-

cause of their high costs (in the order of million US dollars). Certain Intel Xeon processors

provide performance counters to monitor PCIe traffic. Capturing PCIe behavior without

a PCIe analyzer but with PCIe-related counters on a processor for the purposes of mea-

suring time spent in system components remains an open question.
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Chapter 3

Multithreaded Communication

Capabilities on Modern Networks

Modern high performance interconnects, such as Mellanox InfiniBand, Intel Omni-Path,

and Cray Slingshot, feature multiple network hardware contexts on each network inter-

face card (NIC) attached to a node. They do so to accommodate parallel communication

from the many cores on a node. Each hardware communication context serves as an in-

terface into the network. So, with multiple network hardware contexts, each NIC enables

parallel communication into the network from a single node.

The multiple network hardware contexts are transparently utilized when multiple pro-

cesses exist since each process creates its own communication channel, but in a mul-

tithreaded environment each process needs to actively create multiple communication

channels to map to the multiple network hardware resources on the NIC. As discussed

in Chapter 1, MPI libraries today do not actively create multiple network communication

channels. While this design drastically hurts the performance of multithreaded MPI com-

munication, it is the most efficient in terms of resource usage. Middlewares, such as an
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Figure 3.1: Throughput (higher is better) and network resource usage (lower is better) in
state-of-the-art communication channels on Mellanox’s ConnectX-4 adapter.

MPI library, need to take into account both the performance needs of an application and

the availability of resources while creating multiple communication channels.

In this chapter, we study the capabilities of modern network hardware for the purpose of

developing middleware that can manage multithreaded communication efficiently. We

first study what exactly a network communication channel is, and what resources are

impacted when a new communication channel is created. Given that a multithreaded

environment, unlike a multiprocess environment, enables the sharing of communication

resources between cores, we also study the performance impact of sharing different sets of

communication resources between threads. Our study shows that the designs in state-of-

the-art MPI everywhere and MPI+threads implementations represent extreme ends of the

performance versus resource-efficiency tradeoff space and that multiple levels of sharing

exist in between each with their own performance and resource usage characteristics.

We study RDMA-enabled NICs since they are used widely in the interconnects of HPC

systems. RDMA NICs provide various performance advantages over the traditional Eth-

ernet NICs: user-level access to the NIC to eliminate the overheads of expensive context

switches to the kernel, and bypass of the remote CPU to access a remote node’s mem-
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ory. In particular, we study the capabilities of the Nvidia-Mellanox ConnectX series of

adapters which are used both for InfiniBand and new RoCE (RDMA over Converged

Ethernet) interconnects such as HPE Cray Slingshot [41].

3.1 Background

3.1.1 RDMA’s Software Stack

The hardware-agnostic API to communicate over RDMA NICs is Verbs. As part of the

InfiniBand standard, Verbs is a network-level API that is used by MPI libraries and, more

recently, portable communication frameworks such as UCX and OFI. The network driver

that implements Verbs for recent Nvidia-Mellanox ConnectX adapters (ConnectX-4 and

later) is mlx5.

3.1.2 Verbs Communication Objects

The software bidirectional communication portal in Verbs is the queue pair (QP): a pair

of send and receive FIFO queues, to which work queue entries (WQEs), Verbs’ message

descriptors, are posted. Each QP is associated with a completion queue (CQ) that contains

completion queue entries (CQEs) corresponding to the completion of signaled WQEs. To

create a QP, we need at least one memory buffer (BUF), device context (CTX), protection

domain (PD), and CQ. A memory region (MR) is required if the NIC needs direct access

to memory (as is the case in RDMA operations such as reads and writes). Additionally,

we can assign QPs to thread domains (TDs) to provide single-threaded access hints to the

QPs in a TD. Chapter 10 of the InfiniBand specification details the Verbs objects [5].
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The CTX is the container of all Verbs objects and is also a slice of the network hardware,

containing a subset of the NIC’s hardware resources. In mlx5 devices, the hardware re-

sources are part of the user access region (UAR) of the NIC’s address space. Each UAR

page consists of two micro UARs (uUARs)1. By default, a CTX contains eight UARs (UAR

pages) and, hence, 16 uUARs. The user’s QPs are mapped to one of the statically allocated

uUARs unless a QP is part of a TD in which case the QP is mapped to a uUAR in a UAR

that was dynamically allocated during TD creation. Appendix B exemplifies the QP-to-

uUAR assignment policy for the ConnectX Nvidia-Mellanox adapters.

3.1.3 RDMA Operational Features

Verbs features two types of operations: one-sided verbs and two-sided verbs. The former

is for RDMA operations such as reads, writes, and atomics which bypass the target CPU.

The latter is for send-receive style messaging where the target CPU informs the NIC,

using a receive WQE, where to write an incoming payload.

When the application executes a verb (e.g., ibv post send), what follows is a series of

coordinated operations between the CPU and the NIC to fetch the WQE (DMA read),

read its payload (DMA read), and signal its completion (DMA write). Section 2.1.3 of

Chapter 2 describes these mechanisms. As we learned there, the overhead of multiple

PCIe roundtrip latencies is hurtful especially for small-message communication. RDMA-

NICs provide certain operational features to reduce the overheads of these mechanisms.

While we have described some of them in Section 2.1.3, we reiterate them here in the

context of Verbs and Nvidia-Mellanox hardware. Consider the depth of the QP to be n.

Postlist. Instead of posting only one WQE per ibv post send, Verbs allows the appli-

cation to post a linked list of WQEs with just one call to ibv post send. It can reduce

1Appendix A provides further details about the anatomy of a UAR
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the number of DoorBell rings from n to 1.

Inlining. With this feature toggled on in a Verbs’ WQE, the CPU copies the data into the

WQE. Hence, with its first DMA read for the WQE, the NIC gets the payload as well,

eliminating the second DMA read for the payload.

Unsignaled Completions. Instead of signaling a completion for each WQE, Verbs allows

the application to turn off completions for WQEs provided that at least one out of every

n WQEs is signaled. Turning off completions reduces the DMA writes of CQEs by the

NIC. Additionally, the application polls fewer CQEs, reducing the overhead of making

progress.

BlueFlame. BlueFlame is Nvidia-Mellanox’s terminology for programmed I/O (PIO)—the

CPU writes the WQE along with the DoorBell, eliminating the first DMA read. With Blue-

Flame, the UAR pages are mapped as write-combining (WC) memory (Intel terminology).

Hence, the WQEs sent using BlueFlame are buffered through the CPU’s WC buffers. Note

that BlueFlame cannot be used with Postlist; the NIC must DMA-read the WQEs in the

linked list. While Verbs itself does not provide an option to control PIO, device-specific

methods exist to toggle PIO on or off.

Using both Inlining and BlueFlame for small messages eliminates two PCIe round-trip

latencies. While the use of Inlining and BlueFlame is dependent on message size, the use

of Postlist and Unsignaled Completions is reliant primarily on the user’s design choices and

application’s semantics.
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3.2 Communication Resources

To send messages across the network, the software (CPU) coordinates with the hardware

(NIC) to initiate a transfer and confirm its completion. This coordination occurs through

three communication resources: a software transmit queue, a software completion struc-

ture, and a NIC’s hardware resource. The three interact using the mechanisms described

in Section 2.1.3 and features described in Section 3.1.3. For Mellanox RDMA NICs, the

transmit queue is the queue pair (QP), the completion structure is the completion queue

(CQ), and the hardware resource is the uUAR contained within a UAR page (see Sec-

tion 3.1.2). The QP, UAR, and uUAR make up the initiation interface; the CQ is the com-

pletion interface.

The communication from a core maps to QPs, and the QPs map to a uUAR on a UAR of

the NIC. The interconnect’s driver dictates the mapping between the transmit queues and

the hardware resources while the user decides the mapping between the transmit queues

and completion structures—multiple QPs could share the same CQ, or each could have

its own.

The QP and CQ are associated with circular buffers that contain their work queue ele-

ments (WQEs) and completion queue entries (CQEs), respectively. The CPU writes to the

QP’s buffer, and the NIC DMA-reads it (when the Inlining feature is not used). The NIC

DMA-writes the CQ’s buffer and the CPU reads it when polling for progress. Both buffers

are pinned by the operating system during resource creation.

The QP and CQ occupy memory with their circular buffers. So, every time we create a

Table 3.1: Memory (bytes) used by Verbs resources

CTXs PDs MRs QPs CQs Total
256K 144 144 80K 9K 345K
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Figure 3.2: 93.75% hardware resource wastage in MPI everywhere.

QP or a CQ, we impact memory consumption. Table 3.1 shows the memory used by each

type of a Verbs resource that is required to open a QP. Creating one communication portal

requires at least 354 KB of memory, with the CTX occupying 74.2% of it.

However, the memory usage of the QP and the CQ is on the order of kilobytes, whereas

the memory on the nodes of clusters and supercomputers is typically on the order of hun-

dreds of gigabytes. Hence, we will notice a formidable impact on memory consumption

only when the number of the Verbs resources is on the order of thousands. The impact of

creating a QP or a CQ on memory is not of immediate concern.

On the other hand, the limit on the hardware resource is much smaller: 8K UAR pages

on the ConnectX-4 NIC with only two uUARs per UAR. The situation is similar for the

NICs of other interconnects such as Intel Omni-Path’s Host Fabric Adapter (HFI) , which

contains a maximum of 160 hardware contexts [7]. The 8K UARs on ConnectX-4 trans-

lates to a maximum of 1024 CTXs, given that each CTX allocates 8 UAR pages by default.

This upper limit reflects the maximum number of communication channels a multipro-

cess environment (MPI everywhere) can create since each process needs its own context.

Since each process uses only one uUAR out of the allocated 16 in a CTX, the resource

wastage in MPI everywhere’s network utilization is a staggering 93.75% (see Figure 3.2).
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Arguably, even if a multithreaded environment were to create multiple communication

channels by emulating those in MPI everywhere (a CTX per thread), it would not exhaust

the NIC’s hardware resources since the core count on modern processors is still far from

1024. The high resource wastage, however, is not a scalable approach. Eliminating this

huge wastage would enable vendors to significantly reduce the power requirements and

cost of their NICs. Multithreaded environments have the opportunity to prevent such

high resource wastage since threads can utilize the multiple uUARs allocated to the CTX.

3.3 Resource-Sharing Opportunities

In a multithreaded environment (MPI+threads), a thread can map to the hardware re-

sources in four possible ways. Figure 3.3 demonstrates the four ways described below.

1. Maximum independence – No sharing of any hardware resource between the threads;

each maps to its own UAR page (same as in MPI everywhere).

2. Shared UAR – Threads map to distinct uUARs but share the same UAR page.

3. Shared uUAR – Threads use their own QPs, but the distinct QPs share the same

uUAR. A lock is needed on the shared uUAR for parallel BlueFlame writes.

4. Shared QP – The threads share the same QP (same as in state-of-the-art MPI+threads),

in which case a lock on the QP is needed for concurrent device WQE preparation.

The lock on the QP also protects concurrent BlueFlame writes on the uUAR since the

lock is released only after a BlueFlame write.

Sharing software and hardware communication resources at different levels improves

resource efficiency but can hurt throughput. Next, we explore this tradeoff space between

resource efficiency and communication throughput.
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Figure 3.3: Four levels of thread-to-network-resource mapping in mlx5 between indepen-
dent threads.

3.4 Experiment setup

To evaluate the impact of sharing resources on performance, we write a multithreaded

RDMA-write message rate benchmark. We choose RDMA writes to eliminate any effects

of receiver-side processing on the critical path.

We conduct our study on the Joint Laboratory for System Evaluation’s Gomez cluster

(each node has quad-socket Intel Haswell processors with 16 cores/socket and one hard-

ware thread/core) using the rdma-core library [15]. Each node hosts a Mellanox ConnectX-

4 NIC. We ensure that each thread is bound to its own core. For repeatable and reliable

measurements, we disable the processor’s turbo boost and set the CPU frequency to its

base frequency: 2.5 GHz.

The design of our message-rate benchmark is adopted from perftest [12]. The loop

of a thread iterates until all its messages are completed. In each iteration, the thread

posts WQEs on a QP of depth, d in multiples of Postlist, p requesting for one signaled

completion every q WQEs, where q is the value of Unsignaled Completions. In each poll on

the CQ, the thread requests for c = d/q completions, namely, all possible completions in

an iteration. The depth of the CQ is c.

Postlist and Unsignaled Completions control the rate and amount of interaction between the

CPU and NIC. Empirically, we find that setting p = 32 and q = 64 achieves the maximum
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Figure 3.4: Performance (left) and resource usage (right) scalability with a CTX per thread.

throughput for 16 threads; hence, we use them as our default values. Note that we define

the values of Postlist and Unsignaled Completions with respect to the threads, not to their

associated QPs (relevant when threads share QPs).

To study the effect of an Verbs operational feature, we remove that feature while using

others, referring to this case as “All w/o f ,” where f is the feature of interest. To disable

BlueFlame, we set the MLX5 SHUT UP BF environment variable. To enable Inlining, we

set the IBV SEND INLINE flag on the send-WQE. We use “w/o Postlist” to mean p = 1,

and similarly “w/o Unsignaled” to mean q = 1.

Figure 3.4 shows the scalability2 of communication throughput across the operational fea-

tures of RDMA NICs, and it shows the communication resource usage of communication

channels created with one context per thread for 2-byte RDMA writes. The number of

QPs and CQs is an identity function of the number of threads; their memory consump-

tion increases from 89 KB with one thread to 1.39 MB with 16 threads. The usage of UARs

and uUARs also increases, but by a factor of 9 and 18, respectively, because each CTX

containing one TD-assigned-QP allocates 9 UARs, and each UAR consist of two uUARs.

2The NIC is attached only to the first socket; cross-socket NIC behavior is out of the scope of this work.
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3.5 Resource-Sharing Analysis

Figure 3.5: Hierarchical relation between the various Verbs objects (the arrow points to
the parent); each object can have multiple children but only one parent.

A Verbs user allocates and interacts with the communication resources described in Sec-

tion 3.1.3 through Verbs objects shown in Figure 3.5. Each of these objects represents a

level of sharing between threads. Hence, we analyze the impact of sharing each Verbs

object on performance and communication resource usage while considering the various

operational features of RDMA NICs described in Section 3.1.3.

In the figures below, x-way sharing means the Verbs object of interest is being shared

between x threads. For example, 8-way sharing for 16 threads means two instances of the

object exist with 8 threads sharing one instance of the object. Moreover, we are interested

in the change in throughput with increasing sharing rather than the absolute throughput

obtained.

Starting with naı̈ve communication channels—each thread using its own set of Verbs ob-

jects, that is, each thread using a dedicated Verbs CTX as in MPI everywhere—we move

down each level of Verbs object sharing according to the hierarchical relation shown in

Figure 3.5. Figure 3.4 shows the performance and communication resource usage of naı̈ve

communication channels for 16 threads.
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3.5.1 Memory Buffer Sharing

The highest level of sharing is a non-Verbs object: the memory buffer. We define the BUF

to be the pointer to the payload of the message. If the payload size is small enough, it

can be inlined within the WQE; that is, the CPU will read it. By default, the maximum

message size that can be inlined on ConnectX-4, exposed through Verbs, is 60 bytes; for

any larger message size the NIC must DMA-read the payload.

Performance. When the CPU reads the payload, sharing this BUF between the threads is

safe since parallel reads to the same memory location in a CPU are harmless. When the

NIC reads the payload, however, its TLB design is important to consider (the DMA read

entails a virtual-to-physical address translation). RDMA NICs typically employ a multi-

rail TLB design to handle multiple transactions in parallel and sustain the high speed of

the NIC’s ASIC. The parallel load is distributed between the TLBs using a hash function.

If this hash function is based on the cache line, parallel DMA reads to the same cache line

will hit the same translation engine, serializing the reads. With a shared BUF the WQEs

of multiple threads point to the same cache line, serializing the DMA reads.
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Figure 3.6: Message rate (left) and communication resource usage (right) with increasing
BUF sharing across 16 threads.
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Figure 3.6 shows that the throughput indeed decreases with increasing BUF sharing when

the NIC DMA-reads the payload (i.e. when messages are sent without Inlining). As val-

idation of our analysis, Figure 3.7(a) shows that transmitting independent 2-byte buffers

without 64-byte cache alignment hurts performance since all 16 buffers are on the same

cache line. While the total numbers of PCIe reads (measured using PMU tools [14]) with

and without cache alignment are equal, Figure 3.7(b) shows that the rate of the PCIe

reads is much slower when the buffers are on the same cache line than when the buffers

are cache aligned.

Resource usage. The BUF is a non-Verbs object. Hence, it does not affect the usage of any

of the communication resources, as we can see in Figure 3.6.

3.5.2 Device Context Sharing

We note that the Verbs user gets maximally independent (level 1 in Figure 3.3) paths with-

out CTX sharing since the QPs transparently get assigned to uUARs on different UARs.

Within a shared CTX, however, the user, by default, has no way to explicitly request

maximally independent paths for multiple QPs. When the user creates multiple thread

domains (TDs), the mlx5 provider is currently hardcoded to assign the TD-assigned-QPs
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Figure 3.8: Message rate (left) and communication resource usage (right) with increasing
CTX sharing across 16 threads.

to a uUAR using the second level of sharing, as shown in Figure 3.3. More abstractly,

Verbs users today have no way to request a sharing level for the QPs they create.

To overcome this Verbs design limitation, we propose a variable, sharing, in the TD ini-

tialization attributes (struct ibv td init attr) that are passed during TD creation.

The higher the value of sharing, the higher is the amount of hardware resource sharing

between multiple TDs. A sharing value of 1 refers to maximally independent paths. In

mlx5, only two levels of sharing exist for TDs, corresponding to (1) and (2) in Figure 3.3.

Performance. For maximally independent threads, sharing the CTX should not affect per-

formance since we emulate the thread-to-uUAR mapping in the MPI everywhere model.

Sharing a CTX with the second level of sharing between threads could hurt performance

since the uUARs on the same UAR could share the same set of the NIC’s registers. Ad-

ditionally, the CPU architecture’s implementation of flushing write combining memory

can impact performance in the second level of sharing since the memory attribute of the

uUARs is set at the page-level granularity by using the Page Attribute Table (PAT) [13].

Figure 3.8 shows that sharing the CTX does not hurt performance except when we do not

use Postlist that is, when we use BlueFlame writes (programmed I/O). For example, we
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notice a 1.15x drop in performance going from 8-way to 16-way CTX sharing even with

maximally independent QPs. While the engineers at Mellanox were able to reproduce

this drop even on a newer ConnectX-5 adapter, the cause for the drop is unknown. We

discovered that creating twice the number of maximally independent QPs but using only

half of them (even or odd ones) can eliminate this drop, as seen in the “All w/o Postlist

2xQPs” line. Additionally, from the “All w/o Postlist Sharing 2” line, we can see the

harmful effects of sharing a UAR when the mlx5 provider is hardcoded to use the second

sharing level for assigning TDs within a shared CTX to uUARs.

While this evaluation validates the need for maximally independent paths, it does not

explain the decline in throughput when there are concurrent BlueFlame writes to distinct

uUARs sharing the same UAR page. Finding the precise reason for this behavior is hard

since the hardware-software interaction is dependent on proprietary technologies.

Resource usage. Sharing the CTX is critical for hardware resource usage, as seen in Fig-

ure 3.8. The reason is that a maximally independent TD-assigned-QP within a shared

CTX adds only 1 UAR as opposed to the 9 UARs that are allocated when a QP is cre-

ated with a new CTX. Also, the 16 uUARs and 8 UARs statically allocated by the mlx5

provider during CTX creation (see Section 3.1.2) are wasted only once. Nonetheless, max-

imally independent QPs waste one uUAR per thread. While sharing the CTX does not

impact QP and CQ usage, it does reduce the overall memory consumption. For example,

when shared between 16 threads, the overall memory consumption reduces by 9x (from

5.15 MB to 0.35 MB).

Creating twice as many TD-assigned-QPs (“2xQPs” in Figure 3.8) increases resource us-

age since each of the extra 16 maximally independent QPs allocates their own QP and

UAR. The second level of sharing that mlx5 is hardcoded to use consumes 2x fewer UARs

than do maximally independent QPs.
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3.5.3 Protection Domain Sharing

The protection domain is just a means of isolating a collection of Verbs objects. Objects

contained under different PDs cannot interact with each other.

Performance. The software PD object is not accessed on the critical data-path; the pro-

tection checks occur in the NIC. Hence, from a performance perspective, sharing a PD

between multiple threads is harmless, as observed in Figure 3.9.

Resource usage. The PD does not impact the usage of any of the communication re-

sources, as we can see in Figure 3.9. The uUAR and UAR values reflect those of one

CTX since the PD can be shared only within a CTX.

3.5.4 Memory Region Sharing

The MR object pins memory in the virtual address space of the user. The operating system

prepares the pinned memory for DMA accesses from the NIC.

Performance. Sharing the MR between threads has no impact on performance since the

0

20

40

60

80

100

120

140

1 2 4 8 16
x-way PD- or MR-sharing

M
es

sa
ge

s/
s 

(x
10

^
6)

Features
All
All w/o BlueFlame
All w/o Inlining
All w/o Postlist
All w/o Unsignaled

Performance; 10-trial mean

0

10

20

30

40

50

1 2 4 8 16
x-way PD- or MR-sharing

C
ou

nt

Resource
QP
CQ
uUAR
UAR

Resource usage

Figure 3.9: Message rate (left) and communication resource usage (right) with increasing
PD or MR sharing across 16 threads.
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MR is just an object that points to a registered memory region. The MR may span mul-

tiple contiguous BUFs. Sharing an MR containing only one BUF means that the threads

are sharing the BUF as well, which implies the same effects of BUF sharing. Figure 3.9

confirms that sharing the MR does not affect performance as long as the threads have

independent cache-aligned buffers.

Resource usage. The MR does not control the allocation of any of the communication

resources. Hence, sharing it will have no impact, as we can see in Figure 3.9.

3.5.5 Completion Queue Sharing

The Verbs user can map multiple QPs to the same CQ, allowing for CQ-sharing between

threads. In HPC scenarios, the user actively polls the CQ (as opposed to relying on signals

involving the kernel) on the critical data-path to confirm progress in communication.

Performance. The CQ has a lock that a thread acquires before polling it. Hence, the

threads sharing a CQ contend on the CQ’s lock. Additionally, if QP i and QP j share

a CQ, then thread i driving QP i can read QP j’s completions. Hence, the completion
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Figure 3.10: Message rate (left) and communication resource usage (right) with increasing
CQ sharing across 16 threads.
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counter for any thread k requires atomic updates. Atomics and locks are obvious sources

of contention when sharing CQs between threads. Figure 3.10 demonstrates these hurtful

effects of CQ sharing. The effects are most noticeable in 16-way sharing because there

exists a tradeoff space between the benefits of Unsignaled Completions and the overheads

of CQ sharing. Figure 3.11(a) portrays this tradeoff space. Lower values of Unsignaled

Completions imply that the thread reads more completions from the CQ than for higher

values, translating to a longer hold-time of the shared CQ’s lock. Thus, the impact of lock

contention is most visible in “All w/o Unsignaled.” For higher Unsignaled Completion-

values, we see a drop only after a certain level of CQ sharing because the benefits of

Postlist outweigh the impact of contention. Removing Postlist shows a linear decrease in

throughput with increasing contention in Figure 3.11(b).

We note that even if the Verbs user can guarantee single-thread access to a CQ, the stan-

dard CQ does not allow the user to disable the lock on the CQ. The extended CQ, on the

other hand, allows the user to do so during CQ creation (ibv create cq ex) with the

IBV CREATE CQ ATTR SINGLE THREADED flag.

Resource usage. Sharing the CQ translates to fewer circular buffers, and hence it reduces

the memory consumption of the completion communication resource. But it does not
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affect hardware resource usage, as we can see in Figure 3.10. The uUAR and UAR usage

shown corresponds to that of one CTX since a CQ can be shared only within a CTX.

3.5.6 Queue Pair Sharing

Ultimately, the user can choose to share the queue pair between threads to achieve maxi-

mum resource efficiency. This is the case in state-of-the-art MPI implementations.

Performance. The QP has a lock that a thread needs to acquire before posting on it. Hence,

threads contend on a shared QP’s lock. Additionally, the threads need to coordinate to

post on the finite QP-depth of the shared QP using atomic fetch-and-decrement opera-

tions on the QP-depth value. These locks and atomics are sources of contention when

sharing QPs. Most important, the NIC’s parallel network resources are not utilized with

shared QPs since each QP is assigned to only one hardware resource through which the

messages of multiple threads are serialized. Figure 3.12 shows the expected decline in

throughput with increasing QP-sharing. Removing Postlist is more detrimental than re-

moving Unsignaled Completion because the contention on the QP’s lock without Postlist is
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Figure 3.12: Message rate (left) and communication resource usage (right) with increasing
QP sharing across 16 threads.

59



higher.

Resource usage. Sharing the QP means fewer circular buffers for the WQEs and hence

lower memory consumption. It does not affect hardware resource usage, as we can see

in Figure 3.12. QP sharing reduces the number of both QPs and CQs, reducing the to-

tal memory consumption of the software communication resources by 16x with 16-way

sharing.

3.5.7 Summary of Lessons Learned

Our resource-sharing analysis in this section showcases the tradeoff space between com-

munication performance and resource usage. Below is a summary of the key lessons

learned from our analysis.

• Each thread must have its own cache-aligned buffer to prevent a performance drop.

• CTX-sharing is the most critical for the usage of hardware resources. With 16-way

sharing, “2xQPs” can achieve the same performance as independent CTXs using 80

uUARs instead of 288. If 20% less performance is acceptable, we can use maximally

independent TDs that use 6x fewer resources. If 50% less performance is acceptable,

we can use “Sharing 2” that uses 9x fewer resources.

• Sharing the PD or the MR will not hurt performance, while keeping them indepen-

dent will not utilize any communication resource.

• Only QP- and CQ-sharing affects the memory consumption of the software resources.

However, the reduction in memory usage by sharing them is not as critical as the

consequent drop in performance. For example, 16-way sharing of the CQ improves

memory usage by 1.1x but can result in an 18x drop in performance.
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3.6 Resource-Sharing Model

Building on our analysis, we define a resource sharing model—scalable communication

channels—that concretely categorizes the design space of creating multiple communica-

tion channels into six categories. Below we describe the design of the initiation interface

in each category, state how the user can create it, discuss what occurs internally in the

RDMA software stack, and discuss its implications on performance and resource usage.

In all the categories, we maintain a separate CQ for each QP.

MPI everywhere. This category emulates the endpoint configuration when multiple ranks

run on a node. It represents level 1 in Figure 3.3. The user creates this by creating a

separate CTX for each thread, each containing its own TD-assigned-QP and CQ. Within

each CTX, the mlx5 driver assigns the QP to a uUAR. Since each CTX contains 9 UARs

(8 statically allocated and 1 dynamically allocated with the thread domain), consecutive

QPs transparently get assigned to distinct UAR pages. The performance of this category

is best possible since there is no sharing of resources. The resource usage of this category,

on the other hand, is high. Additionally, it is wasteful since only 1 of the 18 allocated

uUARs is used per thread. The memory consumption increases linearly with the number

of threads since the number of QPs and CQs is an identity function of the number of

threads.

2xDynamic. This category also represents a 1-to-1 mapping between a uUAR and a

thread. Unlike ”MPI everywhere,” however, the user creates only one CTX for all the

threads and creates twice as many TD-assigned-QPs as threads. The threads use only the

even or odd QPs. The mlx5 provider dynamically allocates a new UAR page for each

TD-assigned-QP and assigns the first uUAR to the QP, enabling a 1-to-1 mapping. Like

”MPI everywhere,” this category also delivers the best performance. Since the number

of QPs is twice the number of threads, however, each thread wastes 1 dynamically allo-
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cated UAR, 3 uUARs, and 1 QP. The memory consumption of QPs and CQs is twice that

of MPI everywhere. The statically allocated hardware resources are wasted regardless of

the number of threads.

Dynamic. This category also represents a 1-to-1 mapping between a uUAR and a thread,

but the number QPs equals the number of threads. The user creates this configuration

similarly to that in ”2xDynamic” but creates only as many QPs as threads. According to

Section 3.5.2, this configuration hurts communication throughput. In terms of resource

usage, however, only one uUAR is wasted per thread. The 8 statically allocated UARs

are naturally wasted; none of the dynamically allocated UARs are wasted. The memory

consumption of QPs and CQs is half of that in “2xDynamic” and same as that in ”MPI

everywhere”.

Shared Dynamic. This category represents level 2 in Figure 3.3. The user creates this

configuration using a shared CTX, similar to the way in “Dynamic,” but assigns each QP

to a TD with the second level of sharing. The mlx5 driver will dynamically allocate UARs

only for the even QPs and map the even QPs to the first uUAR and the odd QPs to the

second uUAR of the allocated UAR. According to Section 3.5.2, sharing the UAR will hurt

performance. The hardware resource usage is less than with “Dynamic” since only half

as many UARs and uUARs as threads are allocated. Apart from the 8 statically allocated

UARs and uUARs, none of the dynamically allocated resources are wasted. The memory

consumption of QPs and CQs is equivalent to that of “Dynamic.”

Static. The user uses the statically allocated resources within a CTX, resulting in a many-

to-one mapping between the threads and uUARs (and UARs). To do so, the user simply

creates a QP for each thread within a shared CTX without any TDs. The final state of the

mapping for a given number of QPs is dependent on the driver’s assignment policy. In

mlx5, with 16 QPs, we end up with a combination of the second and third level of sharing

in Figure 3.3—the 5th and 16th QP are mapped to the same uUAR (third level), while
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the others are mapped to the rest of the uUARs using the second level of sharing. The

hardware resource usage is the number of statically allocated resources. Resources are

wasted only when the number of threads is less than 16. The memory consumption is

equivalent to that of “Dynamic.”

MPI+threads. This category represents level 4 in Figure 3.3. The user creates this by

creating only 1 CTX, 1 QP, and 1 CQ. The mlx5 driver assigns the one QP to a low-latency

uUAR. The performance of this category is the worst possible since the communication of

all the threads is bottlenecked through one QP. The resource usage of this category is not

a function of the number of threads and hence is the best possible. All threads allocate

only 8 UARs, 16 UARs, 1 QP, and 1 CQ.

Note that the CQ can be shared in any manner in the above categories and its impact is

orthogonal to the effects of the initiation interface.

3.6.1 Demonstration

We showcase the scalable communication channels resource-sharing model described in

Section 3.6 on a global arrays communication kernel as an example using our two-node

evaluation setup. We could not use more than two nodes since thread domains are sup-

ported only on Linux kernel 4.16 onward, and the latest stable kernel at the time of ex-

periments was 4.17.2; the combination of a mlx5 device along with the latest stable kernel

was rare. We limit our evaluation to the semantics used in MPI libraries, that is, we do not

use the Postlist and Unsignaled Completions features; we use BlueFlame since it is toggled

on by default.

The pattern of fetching and writing tiles from and to a global array is at the core of

many scientific applications such as NWChem [101], which constitutes a multidimen-
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Figure 3.13: Scalable communication channels for the global array kernel with 16 threads.
Left: Communication throughput. Right: Communication resource usage

Table 3.2: Scalable Communication Channels for Global Arrays.

Category Performance Hardware resources Software resources
MPI everywhere 100% 100% 100%

2xDynamic 100% 31.25% 200%
Dynamic 94% 18.75% 100%

Shared Dynamic 65% 12.5% 100%
Static 64% 6.25% 100%

MPI+threads 3% 6.25% 6.25%

sional double-precision matrix multiply (DGEMM). We implement a DGEMM bench-

mark (A × B = C), where the global matrices A, B, and C reside on a server node and a

client node performs the DGEMM using Verbs for internode communication. We design

the benchmark such that all the QPs share the same PD but each has three BUFs and three

MRs—one for each of the three tiles from A, B, and C.

Figure 3.13 shows the performance and resource usage of scalable communication end-

points for 16 threads. We can observe that performance decreases with lower resource

usage. Table 3.2 shows the performance and resource usage of the different categories

normalized to those of the MPI everywhere category which achieves the highest perfor-

mance and highest resource usage. The main takeaway here is that resource sharing in the

2xDynamic category enables multiple threads to achieve the same performance as having
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dedicated communication channels by using only 31.25% as many hardware resources.

The memory consumption of QPs and CQs is the same for all categories except 2xDy-

namic and MPI+threads. While the number of QPs and CQs in 2xDynamic is twice that

of MPI everywhere, the overall memory usage in the former is 3.27x lower (1.64 MB vs

5.39 MB) since MPI everywhere has 16 CTXs while 2xDynamic has only one. The memory

consumption is the lowest in MPI+threads with only one QP and one CQ.

3.7 Concluding Remarks

State-of-the-art MPI implementations either achieve maximum communication through-

put and waste 93.75% of network hardware resources in MPI everywhere or achieve

maximum resource efficiency but perform up to 7x worse in MPI+threads. Our study

in this chapter shows that that a tradeoff space between communication performance

and resource efficiency exists in regards to creating multiple communication channels in

a multithreaded environment; the state of the art represents the two extreme ends of this

tradeoff space. The scalable communication channels resource-sharing model categorizes

this tradeoff space into six categories and shows that it is possible for a multithreaded

environment to achieve the same performance as a multiprocess environment using just

a third of the resources.

We conducted this study at the lowest Verbs level of the HPC software stack for full con-

trol during the resource-sharing analysis. Modern MPI libraries, however, use low-level

communication frameworks such as UCX or OFI for their network operations to trans-

parently obtain portability across the various interconnects. We can translate the lessons

learned from our Verbs-object sharing analysis to the newer abstract frameworks. In

UCX, for example, sharing the UCP Context between threads achieves the same network-
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hardware-resource savings that we witnessed by sharing the Verbs Context. Within a

shared UCP Context, we can achieve the same performance as multiple processes do by

using a distinct UCP Worker per thread as seen in Figure 3.14.
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Chapter 4

A Fast MPI+Threads Library

Having learned that the modern network hardware enables scalable multithreaded com-

munication both in terms of performance and resource usage, we move up a layer in the

HPC software stack to create multiple communication channels inside the MPI library.

State-of-the-art MPI libraries employ conservative semantics—a global critical section for

thread safety and utilization of only a single network context per process—to maintain

MPI’s ordering constraints. The existing MPI standard, however, does provide ways to

overcome its ordering constraints. Nonetheless, even if the application informs the MPI

library that two or more messages have no relative order between them by using, for

example, separate communicators for these messages, MPI libraries today do not funnel

them through distinct network contexts.

Creating multiple network communication channels inside the MPI library is a challeng-

ing endeavor. On top of the challenge of managing the limited network resources, MPI

libraries also need to ensure correct MPI semantics when funneling messages through

multiple network contexts. For example, certain corner cases with respect to communi-

cation progress must be handled for correctness, even though they sometimes hurt per-
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formance. Most important, MPI libraries must ensure threads can access its software

components such as the progress engine for parallel communication without contention;

otherwise, mapping to multiple network resources is a futile effort.

In this chapter, we first describe the different ways in which a user can express logical

communication parallelism with the existing MPI-3.1 standard. We then establish paral-

lel communication streams inside the MPI library through fine-grained critical sections

and virtual communication interfaces (VCIs) to execute logically parallel communication

without any contention. A VCI represents a dedicated communication stream that is

mapped to a distinct network hardware context. Most important, threads mapped to dif-

ferent VCIs do not contend with each other on the library’s software resources. Unlike

related work, correctness is a first-class citizen in our implementation, that is, we do not

sacrifice correctness for performance. Our work is the first to achieve scaling MPI+threads

communication performance that matches MPI everywhere communication performance

for both point-to-point and RMA operations.

4.1 Parallelism in the Current MPI-3.1 Standard

First, we discuss the opportunities that the existing MPI-3.1 standard provides with re-

spect to exposing logially parallel communication for point-to-point and RMA opera-

tions.

4.1.1 Point-to-Point Communication

For two-sided communication, MPI uses the 〈communicator, rank, tag〉 triplet to match

operations.
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Figure 4.1: Different combinations of 〈comm,rank,tag〉 tuples demonstrating point-to-
point parallelism in MPI-3.1. Dashed horizontal lines represent thread barriers.

Different communicators. MPI does not define any order between operations executed

on different communicators. This semantic implies that all operations on different com-

municators are logically parallel.

Same communicator, different ranks. Within a communicator, MPI specifies a nonover-

taking order [16]: if multiple ordered operations match the same target operation, the op-

eration that was issued first must consume the target operation before the one that was

issued later. No matching order applies to operations intended for different targets. For

example, no ordering constraints apply to multiple send operations that use the same

communicator but target different ranks. Hence, they can execute on parallel communi-

cation streams. On the other hand, receive operations that use the same communicator

cannot execute in parallel even if they specify different ranks. The reason is that it is

possible for any receive operation to contain the MPI ANY SOURCE wildcard. To ensure

correct matching order, the MPI library is forced to funnel all receive operations of a com-

municator through the same receive queue (see Figure 4.1).

Same communicator, same rank, different tags. Both send and receive operations that

target the same rank within a communicator but use different tags are not logically par-

allel. The order of operations in MPI is determined by the MPI user. In MPI+threads, the

MPI library cannot assume that operations on different threads occur in parallel; the op-

erations may be ordered through, for example, a thread barrier. Suppose the user issues
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two operations on two different threads with a barrier between the operations (see Fig-

ure 4.1). A target operation that satisfies both operations must first match the operation

that was issued before the barrier. To ensure this, the MPI library must use the same com-

munication queue for the operations from the two threads. If the operations use different

queues, the operation issued after the barrier could incorrectly match the target prior to

the one issued before the barrier.

Summary. The discussion above explains why domain scientists can maximize the

mulithreaded communication independence of point-to-point operations only through

communicators. Using tags and ranks is not sufficient because of wildcards on the re-

ceive side.

4.1.2 RMA

MPI’s one-sided communication, namely, remote memory access (RMA), is executed on

top of windows. Unlike point-to-point, RMA operations do not have any matching con-

straints and feature a lot more parallelism. MPI does not require any ordering for its Get,

Put, and Accumulate classes of operations if two or more operations target different ranks

or use different windows. Additionally, two or more Put or Get operations do not have

any ordering constraints even if they use the same window. Hence, multiple Get and

Put types of operations are logically parallel just by the virtue of issuing them through

parallel threads. But, by default, MPI-3.1 requires program order for Accumulate oper-

ations originating from the same source and targeting the same memory location on the

same window. It does, however, give the user the option to relax this ordering constraint

through the accumulate ordering hint. Without hints, multiple Accumulate-style op-

erations can execute on parallel communication streams if they use different windows or

target different memory locations.
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Summary. Even though multiple RMA operations on the same window are logically par-

allel, mixing synchronization operations, such as MPI Win flush, with communication

operations, such as MPI Get, can be tricky. Synchronization calls can wait for both past

and concurrent communication operations to complete. Thus, if one thread is waiting

inside MPI Win flush and another thread continuously issues MPI Get operations, the

first thread might block indefinitely. Apart from these constraints, all types of RMA op-

erations on different windows are logically parallel.

4.2 Software and Testbeds

Our work is based on the highly optimized CH4 [87] device of the MPICH library, which,

along with its derivatives, is the most widely used MPI implementation. The new CH4

device is a combination of three components: a core (ch4 core), a network module

(netmod), and a shared-memory module (shmmod). The netmod and shmmod are re-

sponsible for conducting internode and intranode communication, respectively. In this

work, we focus on the netmod component because MPI+threads applications would di-

rectly use the shared memory of the process for intranode communication.

For most common data operations, CH4 offloads functionalities, such as tag matching, to

the low-level communication library, such as OpenFabrics Interfaces (OFI) [52] or Unified

Communication X (UCX) [93]. Where the hardware cannot independently handle oper-

ations, CH4 falls back on using an active message implementation of the operation in its

ch4 core.

Our testbeds include two platforms: the Skylake cluster and the Gomez cluster in the

Joint Laboratory for System Evaluation at Argonne National Laboratory. The clusters

feature different interconnects: Skylake hosts Intel Omni-Path (OPA) and Gomez hosts
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Mellanox InfiniBand (IB) EDR. These two families of interconnects constitute the majority

of the interconnect performance share on the TOP500 list [20] (as of the November 2020

rankings). For Skylake, we use the OFI netmod in conjunction with PSM2; for Gomez,

we use the UCX netmod with Verbs.

For our analysis and evaluation, we use the cores on the socket that the NIC is attached to.

We ensure that the CPU speed is set to its base frequency and that turbo boost is turned

off.

4.3 Deserializing Access to the MPI Library

The critical precursor to utilizing network parallelism is fast multithreaded access to the

MPI library itself. The global critical section in today’s MPI implementations serializes

communication from multiple threads even if the communication operations issued by

those threads are independent. The MPI operation enters the critical section at the begin-

ning of its execution and exits it either when it returns from the function or when it yields

to other threads to make communication progress.

Fine-grained critical sections. Balaji et al. [31, 32] and Amer et al. [26, 27] split the global

lock in MPICH into multiple locks such that each lock protects a different class of objects.

For example, access to the network communication portal is protected by a lock differ-

ent from the one that protects the management of request objects. Although fine-grained

critical sections (FG) mean higher parallelism, they incur two expenses over a global crit-

ical section (Global): (1) more lock acquisitions and releases on the critical path and (2)

atomics for reference and completion counters.

The number of locks taken in FG depends on the type of operations. For any initiation

operation, we need at least one lock—the one that protects access to the communica-
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Figure 4.2: Overhead of FG.

0

1

2

3

1 2 4 8 16
Number of threads

M
es

sa
ge

s/
s 

(x
10

^
6) Critical section

Global
FG

8B MPI_Isend; MPICH/OFI/OPA

Figure 4.3: Global vs. FG.

tion portal. Generally, for MPI Isend and MPI Irecv, we need a second lock—the one

that allocates a request object from the global pool of requests. For progress operations,

the number of locks taken depends on the number of times the progress engine is in-

voked. The progress engine not only checks for the completion of an operation but also

progresses active outstanding schedules, such as those of non-blocking collectives. One

iteration of the progress engine in MPICH takes three locks: one to poll the communica-

tion portal and two to check the activeness of progress hooks1 (each hook maintains its

own thread safety). When an operation completes, another lock is taken when the request

object is returned to the pool.

Although FG enables parallelism when multiple threads compete for MPI resources, it

adds some overhead when there is no contention (e.g., when a single thread is active).

Figure 4.2 shows that, compared to Global, FG hurts performance by 16.71% in the un-

contended case. This performance difference is due to the higher number of locks and to

atomic counting (as we corroborate in Section 4.5.3). With increasing number of threads,

the performance difference between FG and Global reduces, and FG eventually outper-

forms Global at 16 threads, as seen in Figure 4.3. Moreover, although Global performs

better than FG for fewer threads, FG is critical when parallel communication streams ex-

ist even in uncontended case, as we show in Section 4.4.
1MPICH/CH4 currently maintains two progress hooks.
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4.4 Fast Parallel Communication Streams

To address the problem of network resource underutilization, we first define the virtual

communication interface (VCI) object. A VCI is an abstract representation of a commu-

nication stream. Each VCI maps to a communication context on the network hardware

and contains its own independent set of communication resources that maintain a FIFO

order of the MPI operations that map to it. Hence, with multiple VCIs, MPI libraries can

obtain parallel communication streams. The physical realization of a VCI depends on the

netmod and the underlying interconnect. A VCI in the OFI netmod is an OFI endpoint

(for transmission and reception) that is bound to an OFI completion queue (for progress).

For Intel OPA, the OFI endpoint maps to a hardware context on the Intel HFI network

adapter [7]. A VCI in the UCX netmod is a UCP worker. For Mellanox IB, the UCP

worker contains Verbs resources: a queue pair (QP) for transmission, a shared receive

queue for reception, and a completion queue for progress. The QP maps to the micro

UARs (hardware registers) on the Mellanox adapter (see Appendix A).

Thread safety. We extend the fine-grained critical sections from Section 4.3 such that each

VCI is associated with a distinct lock since each VCI is independent. The resources of a

VCI are then protected by the lock of the VCI. Threads that map to different VCIs can

access the VCIs without contention.

Connection establishment. Each VCI has its own transport-level address that needs to be

exchanged between the ranks in order to establish connections. We do so during the ini-

tialization of MPI. We first use PMI [30] to exchange the addresses of the zeroth VCIs on

every rank. Using the zeroth VCI, we exchange the addresses of the rest of the VCIs using

an allgather operation. As expected, establishing connections statically during initializa-

tion incurs an overhead that grows with the number of VCIs (see Figure 4.4). Similarly,

the finalization time increases since the tear-down time of VCIs is proportional to the
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Figure 4.4: Multi-VCI MPI Init and MPI Finalize overheads.

number of VCIs.2

Mapping logical communication parallelism to network parallelism. Once an

MPI+threads application exposes the logical parallelism in its communication, MPI li-

braries can map it to their internal VCIs so that logically parallel communication can

funnel through distinct network contexts. As we learned in Section 4.1, communicators

express parallelism between all point-to-point operations. But since users may use mul-

tiple communicators for purposes apart from exposing logically parallel communication,

we allow users to request a new VCI for a communicator through an Info hint3. By de-

fault, if the user does not supply any Info hint, all new communicators point to the same

single VCI. The same approach applies to the creation of new windows since all RMA

operations on different windows are unordered. With RMA operations, however, users

have the additional option of letting the MPI library automatically map the multithreaded

RMA operations within a window since some of them (e.g., MPI Get) can be unordered.

For such cases, we allow the user to request multiple VCIs for a window through Info

hints. Then, one way to automatically map multithreaded RMA operations to the mul-

2Features like OFI scalable endpoints can reduce the connection establishment and tear-down over-
heads, because they share the same transport-level address. However, we have not used them in this work
because their performance is still not on par with that of regular endpoints, at least for the PSM2 provider
that we used in this work. Furthermore, scalable endpoints share some resources, such as the OFI address
vector, accesses to which could be serialized in the critical path by the OFI provider [17].

3Introducing new implementation-specific Info hints does not violate the MPI-3.1 standard.
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Figure 4.5: Fine-grained critical sections with multiple VCIs.

tiple VCIs allocated to the window is through a hash function whose key is the thread

ID. This approach, however, suffers primarily from collisions in the hash function. Users

can benefit from automatic mapping when the semantics of MPI prevent them from us-

ing multiple windows but the application does not rely on ordering of operations (e.g.,

multithreaded MPI Accumulate in NWChem as we detail in Section 4.6.3).

Fallback mechanisms. As we learned in Chapter 3, however, the number of network

hardware resources on a NIC is limited. So, it is likely for the VCI pool to be empty during

communicator or window creation. For such cases, MPI libraries must maintain fallback

policies while mapping the application’s logically parallel communication to the network

hardware contexts. One example of such a fallback policy would be to round-robin over

the already allocated VCIs.

Simply employing multiple VCIs in an MPI library with fine-grained critical sections,

however, yields no performance benefit (see Figure 4.5). Together they perform similarly

to the original version of the MPI library which employs a global critical section and uses

a single VCI.
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4.4.1 Optimizing multi-VCI communication

To enable a fast MPI+threads library, we need to restructure the internals of the MPI li-

brary to provide contention-free paths to threads mapped to different VCIs. We identify

three sets of optimizations that dissolve bottlenecks present in the architectures of MPI

libraries. Although our work has been on MPICH, the concepts apply to other MPI li-

braries as well.

Per-VCI Progress

With only one VCI (Original), the job of the progress function was simple: poll for progress

on the single VCI. With multiple VCIs, a naı̈ve extension would be to poll for progress on

all the active VCIs. Although correct, this approach would be detrimental to performance

especially when multiple threads progress operations in parallel since they would con-

tend on the VCIs’ locks. Also, each thread would be doing more work than necessary.

Because all MPI communication operations map to a VCI, progress for an operation pri-

marily needs to poll the VCI on which the operation was posted. We extend the progress

engine to allow for per-VCI progress. First, we store the VCI used for an operation in its

request object. Using the information stored in the request object, the progress functions

poll for progress on the VCI that was used for the operation. When multiple threads

progress operations mapped to different VCIs, they do not contend.

Although per-VCI progress helps improve performance, progressing only the VCI used

by the current request is incorrect and can lead to deadlock. Consider the point-to-point

example in Figure 4.6. This is a correct MPI program—the first synchronous send4 on

rank 0 (line 3) should return because its matching receive has already been posted (line 9).

With current MPI libraries, this program completes because MPI Wait(req2) (line 17)

4conceptually similar to an MPI Send following the rendezvous protocol.
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1 /*Point-to-point example*/
2 Rank 0:
3 MPI_Ssend(comm1);
4 MPI_Ssend(comm2);
5
6
7
8 Rank 1 / Thread 0:
9 MPI_Irecv(comm1,req1);

10 #pragma omp barrier
11 #pragma omp barrier
12 MPI_Wait(req1);
13
14 Rank 1 / Thread 1:
15 MPI_Irecv(comm2,req2);
16 #pragma omp barrier
17 MPI_Wait(req2);
18 #pragma omp barrier

1 /*RMA example (large Puts)*/
2 Rank 0:
3 MPI_Get(win1);
4 MPI_Get(win2);
5 MPI_Win_flush(win1);
6 MPI_Win_flush(win2);
7
8 Rank 1 / Thread 0:
9 MPI_Get(win1);

10 #pragma omp barrier
11 #pragma omp barrier
12 MPI_Win_flush(win1);
13
14 Rank 1 / Thread 1:
15 MPI_Get(win2);
16 #pragma omp barrier
17 MPI_Win_flush(win2);
18 #pragma omp barrier

Figure 4.6: Point-to-point (left) and RMA (right) scenarios that would deadlock without
shared progress of VCIs.
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Figure 4.7: Effects of progress optimizations

initiates the reception of MPI Ssend(comm1) by polling the single VCI that both com-

municators map to, thus allowing MPI Ssend(comm1) to return. With multiple VCIs

and per-VCI progress, MPI Wait(req2) progresses only the VCI associated with comm2,

preventing MPI Ssend(comm1) to complete and causing deadlock. Figure 4.6 also de-

scribes a similar scenario with RMA operations using passive-target synchronization for

cases where the underlying network requires target-side CPU involvement for progress.

In summary, the pure per-VCI progress model can improve performance, but the global

progress model is necessary to ensure correctness even though it loses some performance.
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To account for such communication patterns, we use a hybrid progress model; that is, we

perform one round of global progress after a certain number of unsuccessful per-VCI

progress attempts to complete an operation. We demonstrate the benefit of our hybrid

per-VCI optimization in Figure 4.7. Communication throughput is 6.97× lower without

per-VCI progress (All w/o per-VCI progress) compared with the case where all optimiza-

tions are used.

Per-VCI Request Management

MPI libraries typically maintain a global memory pool for requests. So, even when oper-

ations from multiple threads map to different VCIs, they contend on the request-class’s

lock when they need to acquire a request (e.g., during an MPI Isend) or release it (e.g.,

during an MPI Wait). To address this contention, we maintain a cache of requests for

each VCI. Access to each cache is protected by the VCI’s lock. During the creation of a

request, we first attempt to acquire a request from the cache belonging to the VCI that

the operation maps to. This does not require acquiring an extra lock because the lock

for the VCI is already held for the operation. If the cache is empty, we fall back on ac-

quiring a request from the global pool, which requires acquiring the request class’s lock.

The caching idea extends to releasing a request to the cache of a VCI as well. Thus, in

the common case, we reduce the number of lock acquisitions in initiation operations to 1

(FG+per-VCI req-cache in Table 4.1, which summarizes the locks taken in different critical

sections). Although the request class’s lock is not taken (in the common case) for progress

functions either, the VCI’s lock pertaining to the request is taken twice—the final freeing

of the request occurs in the MPI runtime layer, outside the critical section that protects the

progress of the VCI.

In addition to traditional requests, MPICH maintains a pre-completed lightweight re-

quest for small-message transmissions. Up to a certain message size, modern intercon-
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Table 4.1: Summary of locks on the critical path of initiation and progress operations in
different critical sections.

MPI op. \ Critical section. Global FG FG + per-VCI req-cache
Isend 1 (Global) 2 (VCI + Request) 1 (VCI)

Isend (immediate) 1 (Global) 1 (VCI) 1 (VCI)
Put 1 (Global) 1 (VCI) 1 (VCI)

Wait 1 (Global) 2 (VCI + Request) 2 (VCI + VCI (request freeing))
Wait (immediate) 1 (Global) 0 0
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Figure 4.8: Effects of request-management optimizations

nects guarantee completion as soon as they are posted; they do not require any polling

of the network.5 MPICH optimizes memory usage for such operations by maintaining

a global lightweight request that is marked as complete. These operations then simply

increase the reference counter of the pre-completed request. A lightweight request is a

single object and not a pool, so it cannot be cached like traditional requests. What we

do instead is replicate this lightweight request and provide each VCI with its own. The

per-VCI lightweight requests do not need atomic operations for their updates since each

is protected by the lock of the VCI it belongs to.

Figure 4.8 shows the benefits of the per-VCI request management optimizations. Without

the optimizations, throughput is 39.98× lower (All w/o per-VCI req-mgmt) compared

with all optimizations.

5A correct MPI implementation would need to poll the network intermittently even for such operations
to progress any active message execution of an operation.
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Figure 4.9: Effects of cache line awareness.

Cache-line Awareness

We implement the VCI pool as an array of structs. Each VCI struct holds the lock for

that VCI. Locks of consecutive VCIs are likely to lie on the same cache line, resulting in

the effects of false sharing when threads map to different VCIs. Hence, we use compiler

attributes to cache-align each VCI. Figure 4.9 shows that without a cache-aware VCI, the

message rate is 1.49× lower (All w/o cache-aware VCI).

Summary

All the thread-safety and multi-VCI optimizations described in this section are critical

for enabling fast parallel streams of communication for MPI+threads. The message rate

achieved by the optimized MPI library with 16 threads for 8-byte MPI Isends is 94.43×

higher than that achieved by the original version of the MPI library.
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4.5 Microbenchmark Analysis

We showcase the performance of the fast MPI+threads library on communication-intensive

microbenchmarks for both point-to-point (MPI Isend) and RMA (MPI Put) operations.

The benchmark demonstrates the maximum rate at which multiple cores can inject mes-

sages into the network simultaneously. Each core on the host node targets a distinct core

on the remote node. We compare the following modes of execution.

• MPI everywhere parallelism using the original MPICH version that uses one VCI.

• MPI+threads (ser comm+orig mpich) parallelism with the user not exposing com-

munication parallelism on the original MPICH that uses one VCI and the Global

critical section.

• MPI+threads (ser comm+vcis)—same as above but using the optimized multi-VCI

based MPICH/CH4.

• MPI+threads (par comm+orig mpich) parallelism with user-exposed parallelism on

the original MPICH.

• MPI+threads (par comm+vcis)—same as above but using the optimized multi-VCI

based MPICH/CH4.

For our analysis with MPI+threads, we spawn one rank per node with an OpenMP thread

per core. MPI everywhere uses a rank per core. When users do not expose parallelism

(ser comm), all threads use the same communicator or window. In user-exposed paral-

lelism (par comm), each thread pair uses its own communicator or window.
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4.5.1 Point-to-point communication

For the different modes of execution on OFI/OPA and UCX/IB, Figure 4.10 shows the

message-rate scalability of a small-message MPI Isend, and Figure 4.11 shows the mes-

sage rate of MPI Isend with 16 cores across varying message sizes. MPI everywhere

achieves the highest throughput in all cases. When users expose communication paral-

lelism, they achieve scaling communication throughput. When users expose no commu-

nication parallelism (ser comm), however, there is no performance gain with increasing

number of threads regardless of the optimizations in the MPI library.
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Figure 4.10: Message-rate scalability of 8-byte MPI Isend.
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Figure 4.11: MPI Isend throughput with varying message sizes.
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4.5.2 RMA communication

Similar to Figures 4.10 and 4.11, Figures 4.12 and 4.13 demonstrate, for the different modes

of execution on OFI/OPA and UCX/IB, the throughput scalability of a small-message

MPI Put, and the 16-core message rate of MPI Put across varying message sizes, respec-

tively.

Network hardware limitations. The MPI+threads message rate of MPI Put on OFI/OPA

is dismal even with exposed parallelism on VCIs. The reason is that Intel OPA emulates

its RMA operations in software, requiring the application on the target side to actively

progress a VCI for a performance-oriented execution of the operation. When the appli-

cation provides no help, OPA relies on its low-frequency PSM2 progress thread for com-

pletion of the operation. In our benchmark, all the threads from all processes first initiate

their RMA operations in parallel. Then, one thread waits on an MPI barrier, after which

all threads synchronize with a thread barrier. The communicator used for the MPI barrier

internally uses a VCI different from those of the windows on which the RMA operations

are issued. Thus, none of the threads directly make progress on the incoming messages

of the RMA VCIs. The thread waiting on the MPI barrier occasionally performs global

progress, so the benchmark eventually completes, but such global progress is infrequent

and thus hurts performance.

With UCX/IB, on the other hand, we see no such degradation in performance because

Mellanox IB is capable of implementing contiguous MPI Put operations fully in hard-

ware. Thus, even if the target threads are not making direct progress on the RMA VCIs,

the operations still complete quickly.

The main point demonstrated here is the tradeoff between dedicated progress and shared

progress. MPI everywhere has no distinction between dedicated and shared progress

because it only has a single VCI. For MPI+threads, when a single VCI is used (i.e., orig-
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Figure 4.12: Message-rate scalability of 8-byte MPI Put.
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Figure 4.13: MPI Put throughput with varying message sizes.

inal MPICH), like MPI everywhere, it has no distinction between dedicated and shared

progress either. But, for MPI+threads, when we use multiple VCIs, the same indepen-

dence of VCIs that enables good performance through the avoidance of locks also hurts

shared progress between the threads. One can work around this issue by, for example,

having each thread be responsible for progress on its window (in the same way that MPI

everywhere works). One possibility is that threads call MPI Win free on their own win-

dows in parallel (see Figure 4.14), thus making progress on the corresponding VCIs, al-

though how practical this possibility is in real applications remains to be seen.

Busy target. Typically, the target side is involved in its own computational activities and

does not just wait for communication to complete, as in Figure 4.14. The target’s com-

putation then determines the productivity of operations that need the target VCI to be

progressed. Figure 4.15 shows a deteriorating MPI Put message rate when the computa-
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Figure 4.14: Parallel Win free.
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Figure 4.15: Busy target.

tion before the call to MPI Win free increases on the threads of the target rank.

4.5.3 Thread-safety costs

A corresponding MPI everywhere configuration represents the practical upper bound

of the communication performance of an MPI+threads configuration. Our optimized

MPI+threads library utilizes the same level of network parallelism as MPI everywhere.

However, MPI+threads incurs thread safety overheads over MPI everywhere even in the

uncontended case. These overheads are most visible for small messages (see Figure 4.11)

since the message rate is bound by the CPU, not by the network. The sources of the thread
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Figure 4.16: MPI+threads costs (note: error bars overlap).

safety overheads are lock acquisitions and atomics for completion or reference counting.

Figure 4.16 shows that if we disable locking and atomics,6 MPI+threads can match the

throughput of MPI everywhere.

4.6 Communication Pattern Analysis with Mini-Apps

The effectiveness of using multiple VCIs in MPI+threads depends on the communication

pattern of applications. In this regard, we classify MPI+threads communication patterns

into three categories: (1) patterns that can directly use dedicated communication channels

where VCIs saturate the network performance similarly to MPI everywhere; (2) patterns

that require shared progress (see Section 4.5.2) where VCIs can suffer from loss in per-

formance compared to MPI everywhere; and (3) patterns that need direct access to the

network resources where using VCIs transparently through MPI mechanisms can hurt

performance compared to MPI everywhere. Through mini-apps of applications, we study

the communication performance of the three categories.

6Since each thread maps to its own VCI in the MPI+threads microbenchmark, disabling thread safety,
although incorrect, does not lead to erroneous behavior.
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4.6.1 Halo Communication in Stencil Applications

Stencils are arguably the most common design patterns in scientific computing applica-

tions. They are at the heart of various application domains such as computational fluid

dynamics, image processing, and partial differential equation solvers. Prominent appli-

cations with the stencil communication pattern include Nek5000 [79] and LAMMPS [80].

Using a 2D 5-point stencil, we evaluate the neighborhood halo exchange (non-blocking

point-to-point) time per iteration of the stencil pattern. We first partition the mesh into

blocks across nodes, and then within each node we further partition the sub-block among

cores (Figure 4.17 shows an example). The squares formed by the intersection of the

dashed blue lines represent cores that are driven by processes in MPI everywhere and

threads in MPI+threads parallelism. The blue dashed lines also represent boundaries

where the halo exchange takes place through shared memory. MPI still executes intra-

node halo exchanges in MPI everywhere. In MPI+threads, threads use MPI only for

internode halo exchanges and directly read the shared memory for intranode commu-

nication. The stencil pattern falls into the first category of applications—the internode

communication of threads on edges of the nodes is independent and can execute on its

own communication stream.

Figure 4.17: 6x6 grid with 3x3
sub-blocks per node.

Figure 4.18: Logical paral-
lelism with communicators in
MPI+threads stencil.
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Figure 4.19: Halo communication across varying mesh sizes.

To expose the logically parallel point-to-point communication, we use two sets of

communicators—odd and even—for each of the north-south and east-west exchanges.

Each set contains as many communicators as there are threads on the node edge. Fig-

ure 4.18 shows an example. Depending on the Cartesian coordinates of the rank, the

threads on a rank would use either the odd set or the even set. The odd-even sets prevent

multiple threads from using the same communicator. Without them, T0 on R0 and R2 in

Figure 4.18 would use the same NS 0 communicator, requiring T2 on R0 to also use the

NS 0 communicator and thus serializing the communication of T0 and T2 on R0. Periodic

stencils where the number of ranks along a dimension of the process-grid is odd require a

separate set of communicators for the wraparound. The communicator usage can indeed

be reduced without hurting performance by using only one communicator for the threads

on corners, since their halo exchanges execute in serial.

Our evaluation utilizes all 9 nodes of the Skylake OFI/OPA cluster and engages 16 cores

per node. Figure 4.19 shows the halo communication times for MPI everywhere and

VCIs in MPI+threads across varying mesh dimensions. This time discards the cost of

any load imbalance since we use MPI barriers before the start of each halo exchange. We

observe that the communication performance of VCIs matches that of MPI everywhere
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parallelism.

4.6.2 Remote Data Fetches in OpenMC

The Center for Exascale Simulation of Advanced Reactors (CESAR) was a DOE co-design

center whose primary objective was to adapt algorithms to the next-generation HPC ar-

chitectures on the path to exascale systems. CESAR focused on algorithms that target the

high-fidelity analysis of nuclear reactors. These include algorithms governing thermal

hydraulics and neutronics. Applications simulating the former typically have a neigh-

borhood, stencil style of communication, which we evaluated in Section 4.6.1. The latter

consists of distributed Monte Carlo (MC) neutron-transport codes, such as OpenMC [89].

Siegel et al. [94] presented the original energy-banding (EB) algorithm for OpenMC, and

Felker et al. [46] extended the EB idea to distributed-memory machines by distributing

the cross-section data (composed of energy bands) across multiple nodes. Rather than

the domain, particles are evenly distributed between the nodes. During simulation, each

node fetches one band of the cross section using MPI Get operations, tracks the move-

ment of its share of particles, and iterates over the number of bands.

CESAR’s EBMS miniapp [2] captures the communication pattern of the distributed EB

idea. It utilizes MPI shared memory [56]: multiple processes on a node share a receive

Figure 4.20: Communication parallelism in MPI+threads EBMS.
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Figure 4.21: Time per remote fetch across varying band sizes with 16 cores per node on
UCX/IB (left) and OFI/OPA (right).

buffer that is large enough to hold one band of the cross-section. While the computation

is distributed among the different processes on the node, only one process is responsible

for communication. We extended the EBMS miniapp to distribute the communication

workload among the processes as well [3]. We also implemented a MPI+threads version

of the miniapp with one multithreaded process per node. The communication workload

between the cores is the same for both the MPI everywhere (+ shared memory) and the

MPI+threads versions.

The EBMS pattern falls into both the first and second categories of communication pat-

terns. It falls into the first category because MPI Get operations of different threads are

independent; they can execute on distinct communication streams. The pattern falls into

the second category because of the use of RMA—the underlying interconnect may be

limited and rely on shared progress between threads.

To leverage the independence between threads with MPI-3.1, we use a separate window

per thread as shown in Figure 4.20. The windows point to the same memory, that is, the

memory is not duplicated for each window.

Our evaluation utilizes 4 nodes and engages 16 cores per node on both the Gomez UCX/IB

and Skylake OFI/OPA clusters. We measure the time for each fetch of a portion of
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Figure 4.22: Get and flush time across varying band sizes on OFI/OPA.

a band that resides on a remote node. A remote fetch includes an MPI Get and an

MPI Win flush. Figure 4.21 shows the time for a remote fetch on the UCX/IB clus-

ter. The communication performance of VCIs in MPI+threads is the same as that of MPI

everywhere.

On the other hand, the remote-fetch times on Skylake OFI/OPA (see Figure 4.21) show

that exposing parallelism in MPI+threads hurts performance, especially for large mes-

sages. The time for a remote fetch is governed by the issue of the fetch (MPI Get) and its

completion (MPI Win flush). If we separate them out, Figure 4.22 shows that the time

for an MPI Get using multiple VCIs is the same as that in MPI everywhere but the time

of MPI Win flush is more expensive. The reason is that the communication pattern of

the application does not guarantee that the remote VCI being targeted by the MPI Get

operations will be progressed—the thread mapped to the target VCI on the remote rank

could be waiting on a thread-barrier that exists between each iteration of the simulation.

Intel OPA relies on the application to make progress on the target VCI for the completion

of large-message RMA transfers and for a productive execution of small to medium mes-

sage transfers. Hence, the execution is dependent on the occasional global progress in the

progress engine (see Per-VCI Progress in Section 4.4.1).
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4.6.3 Block-Sparse Matrix Multiplication in NWChem

NWChem [101] is a prominent quantum chemistry application suite for large-scale sim-

ulations of chemical and biological systems. To distribute the multidimensional arrays

across the memories of multiple nodes, it uses the Global Arrays (GA) [75] library, which

provides access to remote data through one-sided MPI operations. When NWChem is

used for quantum chemical many-body methods, such as CCSD and CCSD(T), the dom-

inant cost is that of BSPMM: block-sparse matrix multiplication (tensor contractions).

NWChem implements BSPMM with dense matrix operations using a get-compute-update

pattern: each worker (processing entity) uses MPI Get to retrieve the submatrices it

needs, and after the multiplication it uses an MPI Accumulate to update the memory

at the target location.

Using a mini-app [1], we evaluate a 2D version of this communication pattern that per-

forms A× B = C, wherein the input matrices A and B are composed of tiles. Each tile is

either a dense or zero matrix. The nonzero tiles are evenly distributed among the ranks in

a round-robin fashion. Each rank maintains a work-unit table that lists all the multiplica-

tion operations that workers need in order to cooperatively execute. Rank 0 hosts a global

counter, which the workers fetch and add atomically (MPI Fetch and op). The fetched

counter serves as an index to the work-unit table. Each worker locally accumulates its

C tiles until the next fetched work unit corresponds to a different C tile, in which case

the worker uses an MPI Accumulate to update the C tile. A worker is a process in MPI

Figure 4.23: Logical parallelism in MPI+threads BSPMM.
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Figure 4.24: BSPMM Get communication performance on Intel Omni-Path.
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Figure 4.25: BSPMM Accumulate communication performance on Intel Omni-Path.

everywhere and a thread in MPI+threads.

MPI+threads BSPMM’s communication pattern falls under the third category. Although

each thread can use its own window for its MPI Get to fetch tiles of A and B, MPI-

3.1’s default semantics constrain the threads within a process to use a single window for

the MPI Accumulate. Each thread cannot use its own window for MPI Accumulate

because atomicity across windows for the same memory location is undefined.

Figure 4.24 and Figure 4.25 portray the performance of BSPMM’s communication pat-

tern on 4 nodes of the Skylake OFI/OPA cluster with 16 cores engaged per node. We

measure the time taken to initiate the operations (e.g., MPI Get) separately from the

time taken to complete them (e.g., MPI Win flush). VCIs initiate MPI Get operations as

fast as MPI everywhere. However, for MPI Accumulate operations, MPI+threads with
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MPI-3.1 is constrained by the use of a single window, so VCIs issue operations slower

than MPI everywhere. The flush of MPI Get operations demonstrates behavior simi-

lar to that in the EBMS pattern (see Section 4.6.2). MPI+threads with a single window

flushes MPI Accumulate operations as fast as MPI everywhere for small and medium

tiles because of the use of a single VCI—the probability of the remote target VCI being

progressed is higher since all threads on the target rank map to it. The Accum-flush of

MPI everywhere, however, is slow for large tile dimensions because the worker (process)

cannot progress its VCI until it finishes its computational tasks, which is larger for large

tile dimensions. On the other hand, if a worker in MPI+threads is busy with computa-

tional tasks, other workers (threads) on the same process might progress the VCI, either

because they all map to the same VCI or because of shared progress between threads,

allowing for a more productive execution of a large-message RMA operation than that in

MPI everywhere.

An important point to note is that the MPI Accumulate operations in BSPMM

do not need to be ordered. Hence, if the user hints this relaxation using the

accumulate ordering=none hint, the MPI library can issue the operations from dif-

ferent threads in parallel using automatic mapping to VCIs and thereby achieve simi-

lar performance as MPI everywhere in issuing operations, as we can see in Figure 4.25.

For Accum-flush, however, VCIs with hints suffer compared to a single VCI because the

probability of the remote VCIs being progressed is lesser when multiple VCIs exist. Our

previous work did not capitalize on this hint [107].

4.7 Related Work

The communication performance of MPI+threads has been a decade-long concern. Re-

searchers have studied the problem in various ways, ranging from mitigating lock con-
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tention on the MPI library’s software resources [27, 26, 32] to extending the MPI stan-

dard [43, 51]. We discuss prior works that are conceptually related to ours.

4.7.1 MPI Endpoints demonstration

Dinan et al. [44] and Sridharan et al. [95] demonstrate scaling performance of MPI+threads

with the MPI Endpoints proposal (we discuss this mechanism of exposing communica-

tion parallelism in further detail in Section 5.2.1). Their works, however, do not describe

the designs of changes required to the MPI library to enable scalable MPI+threads com-

munication. Additionally, their work does not describe the notion of shared progress

between threads, which is critical for correctness. Our work, on the other hand, does not

sacrifice correctness for performance.

4.7.2 Intel MPI

Since its 2019 release, the Intel MPI library has utilized multiple network hardware con-

texts on Intel Omni-Path through its multiple endpoints support [8]. However, this sup-

port is only for a nonstandard threading level: MPI THREAD SPLIT, which does not
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Figure 4.26: VCIs compared against Intel MPI.
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cover all cases possible in the MPI THREAD MULTIPLE threading level. In contrast, our

work with VCIs supports MPI THREAD MULTIPLE fully and correctly. Nevertheless,

VCIs outperform the multiple-endpoints support in Intel MPI, as we can see in Figure 4.26

4.7.3 Open MPI

A couple of works [50, 78] on Open MPI are conceptually similar to our work—they use

fine-grained critical sections and map parallelism available in the existing MPI standard

to multiple network hardware contexts to improve MPI+threads communication perfor-

mance. However, both works do not compare against MPI everywhere. Additionally, like

the MPI Endpoints work, neither of these works discusses the notion of shared progress,

ignoring correctness.

Gopalkrishnan et al. [50] evaluate the communication performance of MPI+threads with

OFI scalable endpoints. Recognizing the practical performance limitations of scalable

endpoints, our work uses regular OFI endpoints instead, and hence we observe much

larger speedups than their work obtains.

Similar to VCIs in our work, Patinyasakdikul et al. [78] define Communication Resource

Instances (CRIs). Their approach involves creating a pool of CRIs and either assigning

CRIs to operations in a round-robin fashion or assigning CRIs to threads using thread-

local storage. While this approach may be correct for a subset of operations, some CRIs

break MPI’s semantics for operations such as MPI Accumulate operations to the same

target location. Such operations are ordered by default on a window. In terms of perfor-

mance, even with user-exposed parallelism their point-to-point communication perfor-

mance does not scale with increasing number of threads unlike the results of our work.
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4.8 Concluding Remarks

For both point-to-point and RMA operations, an MPI library is able to achieve scaling

communication throughput by establishing fast parallel communication streams. These

parallel communication streams are a result of utilizing the network parallelism avail-

able on the NICs of modern interconnects and enabling fast multithreaded access to the

MPI library’s software resources. MPI+threads applications can utilize such fast parallel

communication streams by exposing the logical parallelism in their multithreaded com-

munication to the MPI library. In the next chapter, we discuss the various venues in which

domain scientists can express logically parallel communication.
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Chapter 5

Unlocking MPI+Threads Applications

with Logically Parallel Communication

In this chapter, we utilize the fast MPI+threads library that we developed in Chapter 4 to

unlock the true potential of the MPI+threads programming model for applications. The

key contributing factor of a fast MPI+threads library is the proactive use of network paral-

lelism inside the library. By mapping to multiple network hardware contexts per process,

MPI libraries can funnel parallel independent communication through distinct network

contexts. The MPI libraries, however, are helpless if domain scientists do not distinguish

between operations that are ordered and those that are independent. The MPI standard

enforces certain ordering constraints that the MPI library must adhere to for correctness.

Hence, if the MPI communication from multiple threads is independent, application de-

velopers must identify this independence in its MPI communication and expose logical

communication parallelism to the MPI library. Only the application can provide such infor-

mation to the MPI library. How then can domain scientists utilize network parallelism

in their MPI+threads applications? The MPI community holds two schools of thought in

this regard.
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The earlier school of thought believes in providing domain scientists with user-visible

endpoints to express parallelism by creating multiple ranks per process [95, 44, 58]. While

endpoints are a flexible mechanism for applications to control their multithreaded com-

munication, the challenge with introducing endpoints is intrusive changes to the MPI

standard in the form of new APIs [43, 11]. The MPI forum has deliberated the MPI End-

points proposal but ultimately suspended the consideration of the proposal since the op-

posing school of thought noted that the existing MPI semantics already allow domain

scientists to expose logically parallel communication. So, why not capitalize on the ca-

pabilities of existing mechanisms? The recent school of thought advocates for the use

of existing MPI mechanisms such as communicators, tags, and windows. The challenge

with this approach is that existing MPI semantics can sometimes prevent users from ex-

posing the logical parallelism available in an application even if the app does not rely on

the limiting semantic. To work around this issue, the MPI forum has voted in new MPI

Info hints in the draft MPI-4.0 standard that allow domain scientists to inform the MPI

library which semantics an application does not need. Not only does such information

allow the MPI library to optimize communication, but it also provides domain scientists

with more opportunities to express parallelism with existing MPI mechanisms. Com-

pared to the API changes required for user-visible endpoints, the introduction of hints

are less intrusive extensions to the standard.

In this chapter, we present an overview of the mechanisms that domain scientists can use

to expose logically parallel communication both with the existing MPI-3.1 standard and

the potential future iterations of the standard (Section 5.2). We study the performance

implications of the different mechanisms on the end-to-end runtime of applications (Sec-

tion 5.3).
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5.1 Evaluation Testbeds

For our evaluation with applications, we use our MPI implementation (based on the

newest MPICH) from Chapter 4 that supports high-speed multithreaded communication.

Our testbeds include two small-scale platforms and two medium-to-large-scale plat-

forms. The small-scale platforms are the same as those used in Section 4.2. The Sky-

lake testbed consists of nodes with Intel Skylake nodes that are interconnected with Intel

Omni-Path (OPA), and the Gomez testbed consists of Intel Haswell nodes that are in-

terconnected with Mellanox InfiniBand EDR (IB). The medium-to-large-scale platforms

include the Bebop HPC system at Argonne National Laboratory and the HPC3 cluster at

UC Irvine. Bebop features two clusters: one with Intel Knights Landing (KNL) CPUs and

another with Intel Broadwell processors. Both clusters use the Intel OPA interconnect.

HPC3 features Mellanox IB. For Skylake and Bebop, we use MPCIH/CH4’s OFI netmod

in conjuction with PSM2 (OFI/OPA); for Gomez and HPC3, we use the UCX netmod

with Verbs (UCX/IB).

5.2 Mechanisms to Expose Logical Parallelism

5.2.1 User-Visible Endpoints

The MPI Endpoints proposal to extend the MPI standard allows the user to create multi-

ple MPI ranks per process by creating new communicators and windows with multiple

endpoints [11]. As is the case with messages from different MPI processes, messages

using different endpoints in a process have no order between them. Hence, by using

different endpoints for an application’s logically parallel communication, domain scien-

tists would expose logical communication parallelism within a process to the MPI library.
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Since endpoints take on the semantics of an MPI rank, they are directly addressable, giv-

ing users flexible control over the communication between endpoints. In other words, if

the user maps each thread to a distinct endpoint, then all threads are directly addressable.

The MPI library would then, in theory, map each endpoint to a dedicated communication

channel (a VCI from Chapter 4). This way, applications can establish dedicated commu-

nication channels to the network for each thread with a distinct endpoint per thread. It

is important to note that endpoints are not handles to network resources, rather they are

a means to express logically parallel communication. The MPI library would map the

communication from different endpoints to its internal communication channels which,

depending on the availability of network resources, could be fewer than the number of

endpoints.

The endpoints interface, albeit flexible, requires intrusive extensions to the standard in

the form of new APIs. MPI Comm create endpoints in the draft of the proposal [11]

allows the user to create a new communicator with a user-specified number of endpoints.

It returns an array of handles to a new communicator, each directly addressable through

a distinct rank in the new communicator. If the point-to-point operations of threads

are logically parallel, the user would use a distinct communicator-handle (endpoint) in

its point-to-point operation (e.g., MPI Isend) and specify the rank of remote endpoint

that it intends to target. The draft of the proposal contains a detailed explanation of the

API [11]. Although this draft does not describe an API to create an RMA window with

multiple endpoints, the idea would be similar to that of MPI Comm create endpoints

(e.g., MPI Win create endpoints) where the user would receive an array of handles

to a new window.
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5.2.2 Existing MPI Mechanisms

For both two- and one-sided MPI communication, existing MPI semantics allow applica-

tions to expose communication parallelism, as we saw in Section 4.1. MPI-3.1 provides

users with many opportunities to express parallelism for RMA operations (through dis-

tinct windows, or through multithreaded communication of unordered operations within

a window). But for point-to-point operations, MPI-3.1 allows the expression of logi-

cally parallel communication for point-to-point operations only through communicators,

which can be limiting for applications especially when the application does not rely on

the MPI semantics (non-overtaking order, or wildcards) that prevents the use of other

existing MPI mechanisms such as ranks and tags.

The Draft MPI-4.0 Standard

To overcome the limitations for expressing point-to-point communication parallelism in

the next iteration of the standard, MPI-4.0, the MPI forum has voted in new MPI Info

hints that will allow applications to relax the MPI semantics it does not need. Not only

does such relaxation of semantics yield new opportunities for performance optimizations

in the MPI library, but it also opens up new opportunities for the application to express

logically parallel communication.

Relevant Info hints from the draft MPI-4.0 standard in-

clude mpi assert no any source, mpi assert no any tag, and

mpi assert allow overtaking [10]. The first two, when set, inform the MPI

implementation that the application will not use wildcards on the given communicator.

The third informs the MPI library that the operations do not need to be matched in the

order that they were posted in (relaxing the non-overtaking order). These hints mean

that users can express logically parallel communication within a communicator by using
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distinct ranks and tags for each thread. Note that the matching semantics of MPI still

apply with these hints, that is, the 〈communicator, rank, tag〉 envelope of messages must

still match for successful communication.

5.2.3 Mapping Mechanisms to Network Parallelism

In Section 4.4 of Chapter 4, we learned that a fast MPI+threads library maps logically

parallel communication. Here, we expand upon how our implementation of the MPI

library maps the mechanisms of expressing parallelism to its VCIs.

In the endpoints mechanism, we map the communication from distinct endpoints to dis-

tinct VCIs. This mapping gives the user full control over communication between end-

points. Since users use existing MPI objects such as communicators and tags for other

purposes apart from expressing communication parallelism (further discussed in Chap-

ter 6), the possibility of a mismatch in expected mapping to VCIs is more likely with

existing MPI mechanisms than with user-visible endpoints.

To allow users to better control the mapping of their logically parallel communication to

VCIs with existing MPI mechanisms, we introduce a new set of MPI Info hints comple-

menting those introduced in the MPI-4.0 draft standard. The new set of hints does not

influence any MPI semantic, rather it is specific to our MPI implementation.1 The hints

allow domain scientists to relay application-specific communication parallelism informa-

tion to the MPI library to achieve the best mapping of the logically parallel communica-

tion to the underlying network parallelism. As discussed in Section 4.4, by default, if the

user provides no MPI Info hints, all communicators and windows map to the same single

VCI. By using Info hints, however, applications can request a new VCI or multiple new

VCIs for a communicator or window.
1Introducing new implementation-specific Info hints does not violate the MPI-3.1 standard.
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In point-to-point communication, if the user requests a single VCI for a communicator,

all operations using that communicator will funnel through the VCI mapped to that com-

municator. This allows users to expose logically parallel communication using commu-

nicators. If communicators are insufficient to expose parallelism in an application’s com-

munication pattern, domain scientists may request multiple VCIs for a communicator

and supply the appropriate MPI-4.0 hints (e.g., mpi assert no any tag) to expose the

communication parallelism within a communicator using, for example, tags. We provide

Info hints for the user to inform the MPI library which bits of the tag they will use to

express logical parallelism. This way the MPI library can optimize the mapping of tags to

VCIs by using only the reserved tag bits hinted by the user. Note that these hints do not

break MPI’s matching requirements. In any case, the user must ensure that the 〈comm,

rank, tag〉 envelopes of operations match for successful communication to occur.

To express RMA communication parallelism for non-atomic operations with existing MPI

mechanisms, users have the option to either let the MPI library automatically exploit their

multithreaded RMA operations or explicitly express the communication parallelism us-

ing separate windows. For such operations, we allow the user to choose whether they

prefer to use automatic mapping or explicit mapping to VCIs through an Info hint. For

atomic RMA operations, users only have the option of exposing parallelism through mul-

tiple windows unless they hint to the MPI library that the order of atomic operations on a

window does not matter, in which case they could use automatic mapping. The nature of

automatic mapping, however, incurs the overheads of hash collisions.When applications

use explicit mapping, all the operations of a window funnel through the VCI mapped to

that window.
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Figure 5.1: Microbenchmark performance comparison of mechanisms to expose logically
parallel point-to-point operations.
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Figure 5.2: Microbenchmark performance comparison of mechanisms to expose logically
parallel RMA operations.
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5.2.4 Microbenchmark evaluation

Figure 5.1 and Figure 5.2 compare the performance differences of the different mech-

anisms to expose logically parallel communication for point-to-point and RMA opera-

tions, respectively, on communication-intensive microbenchmarks. Given their flexible

interface, user-visible endpoints represent the upper bound in terms of exposing logical

communication parallelism for a given communication pattern. For the simple commu-

nication pattern of the message-rate benchmark, existing MPI mechanisms are able to

expose all of the available communication parallelism like user-visible endpoints. Hence,

all mechanisms perform equally well as we can see from the figures. When the commu-

nication performance is bounded by the injection overhead of the CPU (as is the case in

small-message communication), all MPI+threads mechanisms perform slower than the

corresponding MPI everywhere parallelism because thread-safety costs add to the injec-

tion overhead (see Section 4.5.3).

5.3 Application Case Studies

In this section, we demonstrate the impact of dissolving the communication bottleneck

on the end-to-end runtime of applications. We pick applications and computational

frameworks from three different domains—computational fluid dynamics (Uintah), as-

trophysics (WOMBAT), and data-centric programming systems (Legion)—that have been

designed to scale on the upcoming exascale machines.
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5.3.1 Uintah and hypre

Since its inception at the University of Utah, the Uintah computational software frame-

work has been used to solve a variety of fluid, solid, and fluid-structure interaction prob-

lems from diverse domains [34]. Its most notable application has been in the simulation of

next-generation combustion problems to aid the design process of coal boilers. Boiler sim-

ulations enable engineers to build, test, and optimize designs that achieve a less-polluting

coal burn. Uintah simulates the thermal radiation in such boilers using its ARCHES com-

ponent, a three-dimensional large eddy simulation code that simulates heat, mass, and

momentum transport in reacting flows using a low-Mach number approximation.

Challenges

Two components play key roles in ARCHES’ boiler simulations: Reverse Monte Carlo

Ray Tracing (RMCRT) [60] that solves the radiation transport equation, and the hypre

library [45] that solves a large system of linear equations projecting pressure at every

timestep. RMCRT has been extensively developed to scale [73, 59, 57], and a key con-

tributor to its scalability has been the adoption of the MPI+threads programming model.

RMCRT is a memory-intensive algorithm since each process requires global domain in-

formation for the traversal of rays through the entire domain. Given the data duplication

per node with MPI everywhere, RMCRT runs out of memory for large domains. For ex-

ample, the weak-scaling study with 1 patch per core in Figure 5.3 shows that Uintah runs

out of memory for the domain size at 64 nodes with MPI everywhere. On the other hand,

Uintah scales to much larger domain sizes with MPI+threads since MPI+threads dramati-

cally reduces the copies of global data on a node [74]. But the performance of Uintah with

MPI+threads is slower because the hypre library performs slower with MPI+threads than

with MPI everywhere. Hence, although ARCHES needs MPI+threads to scale, it suffers
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Figure 5.3: MPI everywhere vs. MPI+threads in Uintah.

from a loss in performance compared with MPI everywhere. In this work, we address the

MPI+threads challenges in hypre so that ARCHES can achieve both high scalability and

high productivity with MPI+threads.

The older version of hypre performed 3–8× worse than MPI everywhere, but recent ef-

forts by Sahasrabudhe et al. [91] analyze the synchronization overheads of OpenMP in

hypre and redesign the library so that multiple threads are able to call hypre in paral-

lel with their respective patches. The threads asynchronously process their own patches

inside hypre, similar to the way MPI processes process their patches in parallel in MPI

everywhere. Unlike MPI everywhere, however, threads bypass MPI and directly use

shared memory for intranode communication. Such restructuring eliminates all thread-

synchronization overheads and all single-thread sections that previously existed in the

hypre library. In this current version of hypre, each thread naturally conducts its own

MPI communication in parallel with other threads (i.e., MPI THREAD MULTIPLE).

hypre’s communication pattern is that of a 3D 27-point stencil. Although the communi-

cation of each thread is logically parallel in this pattern, hypre still performs slower with

MPI+threads than with MPI everywhere because of a higher MPI time (see Figure 5.4).

hypre spends more time in MPI with MPI+threads because it does not expose its logically

109



MPI+Threads

MPI Everywhere

0 4 8 12 16 20 24 28
Time per timestep (s)

Type
Total
MPI

8 nodes x 64 cores per node; 1 patch per core; KNL OFI/OPA

Figure 5.4: Higher MPI time in MPI+threads hypre.

parallel communication to the MPI library in a way that works for the existing MPI-3.1

standard. The MPI messages of all threads use the same MPI communicator, subjecting

them to MPI’s ordering constraints, such as the non-overtaking order.

hypre refrains from using multiple communicators because, at high thread counts, the

number of communicators required for expressing all of the available independent com-

munication can easily surpass the limited number of hardware contexts on the network

(e.g., by over 5× with 64 threads on Intel OPA; described in the next subsection). Thus,

even though hypre could expose parallelism with communicators, it would not practi-

cally achieve dedicated communication channels since the underlying network resources

are limited.

hypre instead encodes the thread IDs of the sending and receiver threads into the MPI

tag of the communication to differentiate operations targeting different threads on the

destination process. However, the MPI library cannot exploit this encoded parallelism

information in the tags because of the possibility of wildcards on receive operations. Even

though hypre does not use any wildcards, the current MPI-3.1 standard does not provide

any mechanisms for applications such as hypre to inform the MPI library that they do not

use wildcards.
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Since the MPI library does not observe any logically parallel communication in hypre,

it funnels the communication from all threads through a single communication channel,

serializing all of the otherwise theoretically independent MPI operations. Even though

the current version of hypre addresses many challenges of MPI+threads programming,

the critical challenge of eliminating the communication bottleneck remains to be ad-

dressed. Successfully addressing this challenge by exposing logically parallel commu-

nication would unlock the true performance potential of MPI+threads for Uintah.

Unlocking Uintah and hypre with Logically Parallel Communication

We first evaluate the different mechanisms of exposing logical parallelism in hypre on

Bebop’s KNL OFI/OPA cluster. hypre decomposes its domain in a cubical fashion and

distributes its 3D patches between cores statically for both MPI+threads and MPI every-

where parallelism.

User-visible endpoints. We can express maximal communication independence with

user-visible endpoints by creating as many endpoints as there are threads. Each thread

uses its local endpoint to issue operations, and it communicates with the remote thread

using the rank of the target endpoint. On a KNL node with 1 MPI process and 64 threads,

64 endpoints per node exist. Since the underlying OPA network features 160 hardware

contexts, user-visible endpoints do not exhaust the network resources.

Communicators. Expressing the communication parallelism within the confines of the

existing MPI-3.1 standard is theoretically possible using communicators. However, the

communicator-based approach is complex for a 27-point 3D stencil because of MPI’s

matching constraints—both the sender and receiver thread must use the same commu-

nicator. To express parallelism with this constraint, we need as many communicators as

there are threads simultaneously participating in MPI communication for each direction.
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If we consider [x, y, z] to be a vector representing the cubic arrangement of threads in an

MPI process, the least number of communicators we need to express all of the available

logical communication parallelism is 2xy+2yz+2xz+8(xy+yz+xz−1)+4(xz+yz−z)+

4(xy+yz−y)+4(xy+xz−x). The first three terms represent the directions perpendicular

to the 6 faces, the fourth term represents the 8 corner diagonals, and the last three terms

represent the edge diagonals. For a KNL node with [4, 4, 4] threads, we need at least 808

communicators. Since the number of network hardware contexts on OPA is limited to

160, the MPI library is forced to funnel the communication from independent commu-

nicators through the same network channels. For our evaluation, we use a round-robin

policy to assign VCIs to communicators.

Tags with hints. A less complex way to expose logical parallelism using existing MPI

mechanisms is to leverage the parallelism information that hypre already encodes in its

MPI tags to differentiate matching information for messages targeting different threads

on the same target process (described in the previous subsection). What prevents MPI

libraries from mapping tags to distinct VCIs is the possibility of wildcards on receive op-

erations. Since hypre does not use wildcard communication, however, we can use the

new Info hints in the draft MPI-4.0 standard to convey this information to the MPI library

so that the library can exploit the parallelism information in the tags while mapping op-

erations to VCIs. We create a new communicator that requests as many VCIs as there

are threads, and we inform the MPI library, through the hints described in Section 5.2.3,

which bits of the tag encode information about logically parallel communication. With

a one-to-one mapping between thread IDs and the underlying VCIs, this approach uses

VCIs in a manner similar to that of user-visible endpoints.

Figure 5.5 compares the performance of the different mechanisms of expressing logically

parallel communication on 8 KNL nodes with 1 patch per core. Communicators perform

better than the original (all threads use the same communicator) version of MPI+threads
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Figure 5.7: Uintah with logically parallel communication.

but do not perform the best because of conflicts on VCIs that are mapped to multiple

communicators. Tags (with hints), on the other hand, efficiently use VCIs and perform as

well as the upper bound set by user-visible endpoints. This upper bound is faster than

not only the original version of MPI+threads, but also MPI everywhere. The latter is due

to the lack of intranode MPI communication which results in over 70% lesser volume of

MPI communication in MPI+threads as we can see in Figure 5.6.

Using the best-performing mechanism of expressing logical communication parallelism
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(e.g., tags with hints), we evaluate the impact of dissolving hypre’s communication bot-

tleneck on Uintah’s overall performance. The weak-scaling study with 1 patch per core

in Figure 5.7 shows that MPI+threads with logically parallel communication performs,

on average, 2.23× faster than the original version and 1.82× faster than MPI everywhere

(when MPI everywhere is able to run). Thus, exposing logically parallel communication

enables Uintah to achieve the best of both worlds: high scalability and high productivity.

Figure 5.7 also shows that logically parallel communication improves the weak-scaling

parallel efficiency of hypre, but not that of Uintah, indicating that the next bottleneck in

improving Uintah’s parallel performance is RMCRT.

5.3.2 WOMBAT

Modern radio telescopes have provided us with new observations about the cosmological

behaviors in the Universe. Given the complexity of the physical mechanisms involved in

galactic interactions, interpreting these new observations is a challenging task. The Cos-

moPlasmas project, a partnership between academic institutions and HPE Cray, aims to

better understand these new telescopic observations through numerical simulations that

are designed to scale and run efficiently on modern high-performance computing sys-

tems [18]. The project participants have developed a new numerical framework, WOM-

BAT, that is geared to handle cosmological structure formation on the many-core archi-

tectures of exascale computing.

WOMBAT is a grid-based magnetohydrodynamic (MHD) code that simulates astrophys-

ical phenomena to study the dynamics of highly conductive ionized astrophysical plas-

mas [72]. While numerous codes exist for astrophysical fluid simulations, they have not

been adopted to run on the architectures of upcoming exascale machines. The primary

guiding principle of WOMBAT, on the other hand, was to design an MHD code environ-
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Figure 5.8: MPI everywhere vs. MPI+threads WOMBAT.

ment that scales well with high numbers of cores. It uses the MPI+threads programming

model over MPI everywhere for many reasons: less expensive dynamic load balancing of

computational tasks, a more symmetric workload between multithreaded processes, and

more efficient use of the processor’s shared resources. For example, Figure 5.8 shows that

WOMBAT runs out of memory with MPI everywhere for large patch sizes but is able to

run with MPI+threads because of the lesser amount of duplicated halo data.

Challenges

Threads in WOMBAT retrieve the boundary data for the patches of an MPI process in

parallel (i.e., MPI THREAD MULTIPLE). Each thread first packs the boundary data of its

local patch into a communication mailbox and signals readiness of this data to the cor-

responding MPI rank using an MPI Put operation. A thread from the neighboring MPI

rank then fetches the boundary data into its local mailbox using an MPI Get operation.

After unpacking the data into the patch’s boundary zone, the thread signals the comple-

tion of its retrieval of the boundary data to the source MPI rank using another MPI Put

operation.

The communication of each thread in WOMBAT is independent, but WOMBAT does
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not explicitly express any of the available logical parallelism in its multithreaded MPI

communication—all operations use a single window. Although the current MPI standard

does not maintain ordering constraints for nonatomic RMA operations such as MPI Put

and MPI Get, the parallel execution of such operations is at the mercy of the MPI library.

Due to the conservative approaches in existing MPI libraries, WOMBAT spends more

time in MPI with MPI+threads than with MPI everywhere (see Figure 5.9). Even if the

MPI library optimizes for multithreaded RMA communication, without any communica-

tion parallelism information from the application the MPI library is forced to use some

flavor of hashing to funnel communication from threads to the limited underlying net-

work channels. As is the case with any hashing, collisions hurt performance. Hence, to

eliminate the communication bottleneck in MPI+threads, WOMBAT needs to efficiently

expose the logical parallelism in its multithreaded communication.

Unlocking WOMBAT with Logically Parallel Communication

Since the parallel operations of WOMBAT are logically independent, one can eliminate

the communication bottleneck by explicitly exposing the logically parallel communica-

tion to a fast MPI+threads library.
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User-visible endpoints. To expose logical parallelism with user-visible endpoints, we

create as many endpoints as there are threads. Each thread uses a dedicated endpoint to

issue its RMA operations. In this way, we can expose maximal communication indepen-

dence between threads.

Windows. With existing MPI mechanisms, we can express communication parallelism

by creating as many windows as there are threads. Similar to user-visible endpoints, each

thread uses its own window to issue RMA operations.

We evaluated the publicly available version of WOMBAT [21] on 27 nodes of the HPC3

cluster (Skylake UCX/IB) with a workload at the strong-scaling limit (1 patch per core).

Since the nodes consist of 2 sockets with 20 cores each, we used a process per socket

with 20 threads per process for MPI+threads. We first studied the communication perfor-

mance differences of the different mechanisms of exposing logical parallelism. Figure 5.10

shows that utilizing network parallelism in MPI+threads reduces the time spent in MPI

communication by over 90%, whether through user-visible endpoints or windows. Once

the communication bottleneck in MPI+threads is eliminated, the communication time of

MPI+threads is less than that in MPI everywhere because of the lesser amount of intran-
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ode MPI communication in MPI+threads. Figure 5.11 shows that the number of MPI Put

operations in MPI+threads is 50% lesser than that in MPI everywhere. Similarly, we mea-

sured the MPI Get operations to be 36.15% lesser in MPI+threads.

Figure 5.12 shows that the reduction in MPI time with logically parallel communication

boosts the overall scientific throughput of MPI+threads, especially for smaller patch sizes.

Where MPI everywhere is able to run, however, MPI+threads with exposed communica-

tion parallelism is still slower. For example, for a patch size of 323, MPI+threads with log-

ical communication parallelism performs 13.09% faster than the original version, but per-

forms 7.21% slower than MPI everywhere. This analysis indicates that other challenges

posed by the MPI+threads programming model remain to be addressed in WOMBAT.

Even though WOMBAT maintains a single OpenMP parallel region, the current structure

of the code requires bulk synchronization between threads on a node at certain points in

the simulation. For example, when the patch size is 323, we measured the average time

spent in executing and waiting in OpenMP barriers to be 5.07% of the total time per it-

eration. Removing the barriers is not a trivial task and requires restructuring the code

such that each thread can operate asynchronously throughout the single OpenMP par-

allel region. Once the next iteration of WOMBAT addresses the core issue of exposing

logical communication parallelism in addition to the other challenges of MPI+threads

programming, it can achieve a higher scientific throughput than it currently does with

MPI+threads while reaping the scaling benefits that its MPI+threads version exhibits over

MPI everywhere [72].

5.3.3 Legion

In modern heterogeneous computing environments, the cost of data movement dictates

the overall computational efficiency of an application. Hence, to achieve high perfor-
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Figure 5.12: Scientific throughput of WOMBAT with logically parallel communication.

mance, application developers need to allocate and move data efficiently, in addition to

expressing parallelism. More important, they need to do so for every new architecture the

application needs to run on. The penalty of not doing so is very poor performance. Le-

gion, a data-centric parallel programming system, reduces this programming burden on

domain scientists [33]. It is targeted for writing portable high-performance applications

to run on distributed heterogeneous architectures. Given its advantages of automated

data movement mechanisms and user-controlled mapping to architectures, Legion has

become a prominent programming model for HPC applications.

The low-level runtime providing portability to the Legion system is Realm [99]. The

Realm interface provides primitives that can be implemented on a wide range of tech-

nologies including a variety of high-performance interconnects and GPUs. Since Legion

applications describe dependencies between operations, Realm is able to exploit oppor-

tunities to overlap operations in scenarios that are too difficult for the domain scientists to

express by themselves and thus obtain higher performance. Realm uses an event-based

system to dynamically represent the control graph of a parallel program described by the

Legion runtime. Such an event-based system allows Realm to flexibly execute strategic

mappers of different architectures as well.
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Challenges

The Realm runtime is multithreaded and is implemented by using Pthreads. The intern-

ode communication of this multithreaded runtime has been designed around GASNet’s

active messages [105]. Active messages from the multiple task threads of a node contain

a command, a payload, or both (for small payloads) for the target node, which, upon

receiving the message, processes the payload through a corresponding handler. Recent

efforts from Argonne National Laboratory implement an MPI module for Realm’s intern-

ode communication. These efforts are in line with Legion’s mission of portability and

high performance since MPI, compared with GASNet, is more widely supported and

researched to obtain high performance on HPC systems. The MPI backend implements

Realm’s active-message-style communication using MPI’s point-to-point operations. Like

the GASNet backend, it maintains a single polling thread on each node to process the in-

coming messages from other nodes. While there can be multiple task threads initiating

active messages (i.e., MPI THREAD MULTIPLE), the bottleneck in communication perfor-

mance is the single receiving polling thread. More important, communication is a major

constituent of Legion applications especially at the limits of strong scaling [33, 98].

Since the communication of each parallel thread is independent, in theory each thread’s

operations could funnel through a distinct network context. However, the current MPI

backend does not expose the available parallelism. All threads issue their operations on

MPI COMM WORLD. Fully exposing the logically parallel communication, however, is not

possible with the existing MPI semantics. Although the task threads can send messages

through distinct communicators, the receiving polling thread cannot use its own com-

municator. The matching semantics of MPI force the polling thread to iterate over the

communicators to check for all incoming messages. Thus, on a single node, the polling

thread uses the same communicators as those of the task threads. Such usage of com-

municators does not express all of the available logical parallelism in Legion’s internode
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Figure 5.13: Limiting existing MPI semantics compared to user-visible endpoints for the
communication pattern in Legion applications.

communication. In order to unlock the performance potential of Legion applications, it is

important that the polling thread does not contend with other threads and that it gets its

own dedicated communication channel to the network.

Unlocking Legion with Logically Parallel Communication

Without exposed communication parallelism, the single polling thread contends with the

task threads even though their operations are logically independent. The ideal situation

would be one where the polling thread is always available to receive events from the task

threads of remote nodes. We can achieve this ideal by exposing the logical communication

parallelism to a fast MPI+threads library.

User-visible endpoints. With the flexible interface of user-visible endpoints, we can fully

expose communication independence by using distinct endpoints for the polling and task

threads. Since each endpoint is directly addressable, the task threads can issue their op-

erations on distinct local endpoints (e.g., based on their thread IDs) and target the remote

endpoint of the polling thread.
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Communicators. On the other hand, as we can see in Figure 5.13, we cannot achieve the

ideal exposure of logical communication parallelism using the existing MPI standard be-

cause of the matching semantics of communicators. The communicator-based approach,

however, is still better than the original version. In addition to the operations from task

threads being independent, the likelihood of the polling thread contending with a task

thread is less with multiple communicators. When all threads use MPI COMM WORLD, the

operations of the polling thread face contention if any of the task threads are simultane-

ously issuing an operation. With multiple communicators, however, the polling thread’s

contention during the processing of events on a communicator is dependent only on a

single task thread—the one issuing operations on that communicator.

Tags with hints. To eliminate any possibility of contention with the polling thread us-

ing existing MPI mechanisms, we can leverage the flexibility in Realm’s communication

requirements and express communication parallelism through tags. Even though the

polling thread uses wildcards to process an event from any node, the order of matching

does not matter. In other words, Realm does not rely on MPI’s non-overtaking order. The

draft MPI-4.0 standard allows us to convey this information to the MPI library through

hints. With this information conveyed, we can expose the communication parallelism be-

tween task threads by encoding, for example, their thread IDs into the MPI operations.

More important, if we inform the MPI library (through hints) that a single polling thread

issues only receive operations and that the task threads issue only send operations, the

MPI library can funnel all receive operations through a dedicated VCI that is separate

from the multiple VCIs used for the send operations from different task threads. The MPI

library would ensure that all send operations target the dedicated receiving VCI on the

the target node. In this way, we can achieve maximum communication independence

similarly to user-visible endpoints with existing MPI mechanisms.

We evaluated the different mechanisms of expressing communication parallelism in Le-
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Figure 5.15: Circuit simulation performance with logically parallel communication.

gion’s MPI backend for the Circuit simulation application [33] on Bebop’s Broadwell

OFI/OPA cluster. Figure 5.14 shows the time taken by the polling thread on the critical

path to process incoming events for the different mechanisms of exposing communication

parallelism. This time does not include the time for polling; rather, it includes the time

taken after a successful poll (receiving the payload, executing the event handler, posting

a replacement receive, etc.). We observe that all mechanisms enable the polling thread

to process events faster than the original version, which does not expose communication

independence. Among the existing MPI mechanisms, however, tags outperform commu-

nicators because, with tags, the polling thread does not contend with any other thread. In

this way, tags with hints achieve the upper bound set by user-visible endpoints.
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Figure 5.15 shows the overall performance of the Circuit simulation with workloads at the

strong-scaling limit (1 piece per node with 2 nodes per piece and 4 wires per piece). Once

we are able to expose all of the available logical communication parallelism by funneling

the operations of Realm’s polling and task threads through distinct communication chan-

nels, Figure 5.15 shows that we can improve the Circuit simulation performance by 2.62×

on average. We would like to note that the problem of poor weak-scaling efficiency in

both versions is orthogonal to the problem of exposing the communication independence

between the threads. This work addresses the latter problem.

5.4 Concluding Remarks

By exposing the communication independence between the threads of an application

through logically parallel communication, we eliminate the multithreaded communication

performance bottlenecks present in today’s applications that have been designed to run

on the modern many-core processors. We do so by leveraging the new opportunities of

using existing MPI mechanisms that will soon (2021) be available in MPI-4.0, the next

iteration of the MPI standard. With MPI-4.0, existing MPI mechanisms perform as well

as the upper bound set by user-visible endpoints. Communication-intensive applications

realize a significant boost (over 2×) in their overall performance when the MPI library

maps the application’s logically parallel communication to the underlying network par-

allelism. We emphasize, however, that the benefits of exposing logical communication

parallelism are most visible when the application has maximized the independence be-

tween threads for both computation and communication. Eliminating the contention be-

tween threads for communication operations shows that other algorithmic and threading

challenges (e.g., mitigating thread-synchronization overheads) are the next critical bot-

tlenecks in MPI+threads applications. We encourage domain experts to address these
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challenges in their MPI+threads codes to achieve both higher scalability and higher pro-

ductivity over the traditional MPI everywhere model.
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Chapter 6

If Not MPI Endpoints, How About MPI

Rankpoints?

Chapter 5 shows that the benefits of exposing logically parallel communication in

MPI+threads application goes beyond the utilization of the underlying network par-

allelism. By dissolving the multithreaded communication performance bottleneck,

logically parallel communication helps applications maximize the benefits of the

MPI+threads programming model over their traditional MPI everywhere versions. A key

observation in our application studies is that existing MPI mechanisms expose the same

level of logically parallel communication as does the flexible interface of user-visible end-

points. If the performances of both approaches are the same, which approach should the

supercomputing community then pursue? Presumably, the solution that does not intru-

sively change the standard through new APIs would be the preferred choice.

However, during our collaborations with domain scientists for application case stud-

ies, we learned that expressing logical parallelism in some MPI+threads applications, in

particular those that use point-to-point communication, through communicators is quite
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complex. The complexity hurts not just the productivity of the application developer

but also the MPI library’s mapping to network parallelism, thereby hurting performance.

One way to combat this complexity is to relax MPI semantics through hints which would

allow users to express parallelism through other mechanisms such as ranks and tags (the

way the draft MPI-4.0 standard is doing). Such a solution, however, does not uniformly

apply to all types of MPI communication (e.g., collectives). For the same application,

expressing parallelism through user-visible endpoints is much more straightforward be-

cause of the flexibility of its design (each endpoint is directly addressable) and familiarity

of domain scientists to program with MPI ranks (each endpoint takes on the semantics of

a rank).

The productivity concern with user-visible endpoints is that it introduces a new concept

through new APIs to the user. Presumably, this concern does not hold with MPI-3.1 since

users are already aware of communicators and windows. However, our discussions with

domain scientists demonstrate that MPI users do not intuitively associate existing MPI

objects as a means of expressing parallelism. For example, users have historically viewed

communicators as groups of processes. That it can double up as a means to express log-

ical parallelism is a corollary of the definition of a communicator. Hence, the concern of

enforcing new concepts on users holds for MPI-3.1 too.

Like with the success of any technology, the answer to the posed question lies within the

end users, the domain scientists. In this chapter, we compare the strengths and limitations

of the designs of each approach with respect to their applicability to MPI’s point-to-point,

RMA, and collective communication. We summarize the opinions, thoughts and con-

cerns that we have gathered from our collaborations with several domain scientists who

represent different types of MPI+threads applications.

127



6.1 Design Comparison of Mechanisms

In this section, we compare how the designs of the different mechanisms of expressing

logical communication parallelism compare against each other with respect to two key

metrics: ease of use (which measures the productivity of domain scientists), and applica-

bility to different MPI operations (which measures the scope of the designs).

6.1.1 Point-to-Point Operations

Design 1: Communicators for Logically Parallel Communication

Communicators are one way to express logically parallel communication for point-to-

point operations in both the existing MPI-3.1 standard and the upcoming MPI-4.0 stan-

dard. They explicitly denote parallelism between operations to the MPI library since

operations using different communicators cannot match with each other. During our

interactions with application developers from University of Utah (stencil communica-

tion in Uintah [91] and hypre [29]), Maison de la Simulation (stencil communication in

Smilei [42]), Pacific Northwest National Laboratory (graph communication in Vite [49]),

and University of California, Irvine (stencil communication in Pencil [102]) we discover

that the matching semantics of communicators make expressing parallelism a challenging

task.

Concern: Exposing logical communication parallelism with communicators is a night-

mare!

Deriving the mathematical relationships of mapping communicators to threads while en-

suring both the sending and receiving thread use the same communicator is not straight-
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Figure 6.1: Ideal communicator usage for a 2D 9-point stencil. Each box represents a
process with 9 threads. Each thread has 1 patch. Each color-shape combination represents
a communicator. Numbers represent thread IDs.

forward. The complexity only increases with the increase in dimensionality. Additionally,

the constraint of using the least possible number of communicators adds to this complex-

ity. This constraint is an important one since the number of network hardware contexts

is limited (see Chapter 3). By creating more communicators than there are available net-

work resources, multiple communicators would collide on the same network resource

and lead to serialization of communication underneath even with exposed logically par-

allel communication.

Exposing parallelism with communicators is cumbersome. Consider a static (communi-

cation pattern of each thread is fixed) 2D 9-point stencil for example. Figure 6.1 shows the

ideal communicator usage—minimum number of communicators with all of the available

parallelism exposed—for such a communication pattern. Each color-shape combination

for a line represents a distinct communicator. For a given direction of communication, we

have as many communicators as there are communicating threads on the edge (a plane
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in 3D) since the operations of the threads are logically independent. The threads on a

corner, however, use a single communicator for all directions since their operations for

the different directions occur serially. Furthermore, the mapping of communicators to

threads is not the same on each process. For example, thread 7 of the bottom-left process

in Figure 6.1 must use a communicator for its north-south communication that is different

from the communicator that thread 7 on the top-left rank uses for the same north-south

direction. This difference in communicators prevent threads 1 and thread 7 on a process

from using the same communicator and serializing their communication. In other words,

given a map of communicators for the threads of a given process, the map for other pro-

cesses can be derived by mirroring the map along the change in cartesian coordinates of

the process. Doing so with a logical relation that is programmable was a hard task for the

multiple application developers that we collaborated with.

Exposing parallelism with communicators is not intuitive. To elaborate on this point,

we will use the stencil communication pattern as an example. The intuitive approaches

that multiple application developers (those of Uintah, Smilei and Pencil) initially thought

of using did not expose all of the available parallelism. In the 2D example, their intuition

was to create as many communicators as there are threads and then use communicator i

for thread i’s send operations and communicator j for thread i’s receive operations where

j is the thread id of the remote thread that thread i is receiving from. While such a com-

municator usage is correct, it exposes only half of the available parallelism. The commu-

nication of adjacent threads on an edge in Figure 6.1 occur in parallel but the operations

of threads on opposite edges use the same communicator. For example, in Figure 6.1,

thread 1’s send operation uses communicator 1, which thread 7 also uses for its receive

operations.

Mismatch in expected mapping to the underlying network parallelism. Even if the do-

main scientist achieves the ideal communicator usage, the number of communicators re-
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quired can be much higher than the number of underlying network resources. As we saw

with the hypre library in Section 5.3.1, the ideal number of communicators required was

over 5× that of the number of network hardware resources. The domain scientist is ex-

pressing all of the available logical communication parallelism and expects each commu-

nicator to map to a distinct network resource, but the observed performance benefit may

not be as expected because of contention on the limited number of network resources.

Furthermore, we learned that domain scientists typically do not think of communicators

as a means to express logically parallel communication. They have historically viewed

them as groups of processes or as a means to isolate matching of messages. That it can

double up as a means to express parallelism happens to be a corollary of the definition of

a communicator. The multiple purposes of a communicator can lead to a mismatch in ex-

pected mapping to the underlying network parallelism. For example, an application can

create a set of communicators for the purposes of grouping different processes together

and later use communicators to express parallelism. The MPI library underneath can-

not differentiate between the two and could end up allocating the underlying network

resources to the communicators used for grouping different sets of processes, leaving

lesser network resources to map to for logical-parallelism-oriented communicators. MPI

libraries, however, can prevent such mismatch in expected mapping by introducing hints

that allows an application to inform the library when it is creating communicators for

the purposes of expressing logically parallel communication. But such hints would be

implementation-specific.

Limiting semantics for irregular and dynamic communication patterns. The match-

ing semantics of communicators can sometimes prevent the user from exposing all of the

available parallelism in an application (e.g., the communication pattern of Legion applica-

tions in Section 5.3.3). The root cause of this limitation is that communicators constraint

the task of expressing parallelism with matching semantics. So, if an application is to

express parallelism with communicators it must ensure that the sending and receiving
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threads use the same communicator. This matching constraint can be limiting for appli-

cations with dynamic communication patterns such as those of graph and adaptive mesh

refinement applications where the communication neighborhood of a thread can change

over time, and for applications with irregular communication patterns where threads are

forced to use the same communicator.

While using separate communicators for logically parallel communication explicitly in-

forms the MPI library which operations are independent, doing so can be a hard task

for the domain scientist. The discussion above indicates that communicators do not uni-

formly apply to all operations; in some communication patterns, they prevent the user

from exposing the available logical parallelism. Where they are able to theoretically ex-

press parallelism, however, a steep learning curve exists.

Design 2: Tags and Ranks for Logically Parallel Communication with MPI-4.0

Through the use of new Info hints that have been voted into the draft MPI-4.0 standard,

domain scientists can use tags and ranks instead of communicators to express logically

parallel point-to-point communication for applications that do not use certain MPI se-

mantics.

Existing MPI+threads applications that use MPI THREAD MULTIPLE typically already en-

code thread IDs into the tags of parallel MPI operations to distinguish operations that

target different threads on the same target process, indicating that domain scientists intu-

itively think of tags as a means of expressing logical parallelism. The approach of using

tags would be the one that requires the least amount of changes to existing applications.

The changes would only be in the form of creating a new communicator with Info hints

that relax the appropriate MPI semantics not needed by the application.

Intricate use of tags. Depending on the MPI implementation, using tags can be more
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flexible than communicators. Even though tags have the same matching constraints that

communicators have, tags can provide more information that what communicators do.

For example, for the MPICH implementation that features multiple virtual communica-

tion interfaces (VCIs), users can encode both the local VCI information and the remote

VCI information into a tag, which provides all the flexibility that is needed for multi-VCI

communication. However, ensuring that such information in the tags maps optimally to

the underlying VCIs requires the domain scientist to intricately use Info hints to negotiate

with the MPI library which bits of the tag space represent what kind of information, and,

more important, how (e.g., hash function) the library should use the information. Con-

sider the hypre application that encodes the IDs of the sending and receiving threads into

the tag along with other application-related information. If the MPI library does not know

which bits of the tag encode communication parallelism information, then an application

is at the mercy of how the MPI library hashes the tags into the multiple VCIs allocated

to the communicator. Achieving the best mapping to VCIs requires hypre to inform the

MPI library which bits encode the sender’s thread ID, which bits encode the receiver’s

thread ID, and how to map the bits to the underlying VCIs. For send operations, the MPI

library can then use the sender-thread-bits to map to a VCI on the host process and the

receiver-thread-bits to decide which VCI to target on the remote process. Such a use of

tags requires Info hints that would be specific to an MPI implementation.

Limited by existing use of tags. Existing applications typically already use MPI tags

for application-related information. Since the number of bits in an MPI tag are limited,

depending on how many bits an existing application is already using, the app may or

may not be able to encode further parallelism information into this tag. Encoding paral-

lelism information into a lesser than ideal number of bits would not expose the maximum

amount of logical parallelism. We would like to note that we have not yet encountered

an application where such a problem exists.
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Design 3: User-Visible Endpoints

User-visible endpoints provide a flexible interface to control multithreaded point-to-point

communication. They allow the user to explicitly specify which local endpoint (through

the communicator handle) to use to issue an operation on and which remote endpoint

(through the rank of the endpoint) the operation needs to target. Endpoints combat the

various concerns that are associated with exposing communication parallelism with com-

municators and tags.

Endpoints are intuitive. Given their flexible interface, endpoints are an easier alterna-

tive to express parallelism even for communication patterns such as a 3D 27-point stencil.

They are more intuitive to use than communicators because application developers are

already familiar with the semantics of traditional MPI ranks. By creating as many end-

points there are as threads, application developers express communication parallelism

by simply communicating between endpoints as they would do for MPI ranks in MPI

everywhere programming.

(Almost) No mismatch in expected mapping to network parallelism. Since the concept

of endpoints is different from that of communicators, application developers can continue

to think of communicators as groups of processes or as a means of isolating matching of

messages. By creating a communicator with endpoints, they inform the MPI library that

the new communicator being created is for the purposes of exposing logical parallelism,

just like the approach of using hints with communicators. Hence, the possibility of a

mismatch in expected mapping is significantly lesser with user-visible endpoints than

with existing MPI mechanisms. The potential for a mismatch in expected mapping is not

completely eliminated with user-visible endpoints because domain scientists could cre-

ate more endpoints than the number of underlying network resources. In such a scenario,

some of the distinct endpoints would contend on the underlying network resources. Al-
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though we have not come across an application that would result in such a scenario, even

if an application’s communication pattern requires more endpoints than the number of

network resources, the problem would hold with other designs as well since endpoints

reflect the upper bound with respect to expressing the available parallelism.

Endpoints separate matching and parallelism information. Unlike existing MPI mech-

anisms, user-visible endpoints separate the task of expressing parallelism between oper-

ations from the task of matching operations. Thus, using endpoints is straightforward

for irregular communication patterns, such as those of Legion applications, since it de-

couples parallelism information from matching information, allowing users to flexibly

express parallelism within a communicator. Similarly, user-visible endpoints do not re-

define the purposes of existing MPI mechanisms such as tags. Hence, if an application is

already using a large portion of MPI tags, it does not need to worry about compromising

its use of tags for the purposes of expressing parallelism unlike the case with tag-based

communication parallelism. Furthermore, the endpoints mechanism provides the MPI

library with all the information needed to optimally map to the underlying network re-

sources unlike the tag-based mechanism which requires the application to inform the MPI

library about the specific tag bits that encode logical parallelism information.

The concern with user-visible endpoints is that it introduces new concepts to the user.

But using existing MPI mechanisms overload the definitions of existing concepts such as

communicators and tags, requiring domain scientists to be aware of the concept of VCIs.

Hence, the concern of introducing new concepts with user-visible endpoints also holds

for existing MPI mechanisms. Unlike existing MPI mechanisms which require intricate

negotiation with the MPI library, user-visible endpoints provide a flexible, straightfor-

ward interface for domain scientist to express parallelism in a way that they are already

familiar with.
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6.1.2 RMA Operations

Existing MPI mechanisms (windows) are sufficient to explicitly expose logically paral-

lel communication in cases involving non-atomic operations (e.g., MPI Get), but are not

sufficient for cases that use atomic operations (e.g., MPI Accumulate). Unlike point-to-

point operations where the concerns with existing MPI mechanisms include both com-

plexity of use and limiting semantics, the concerns with existing MPI mechanisms for

RMA operations are only those of limiting semantics. Given the one-sided nature of RMA

operations with no matching semantics, existing MPI mechanisms and user-visible end-

points are equally straightforward to use.

Limiting semantics of existing MPI mechanisms for atomic operations. The approach

of using existing MPI mechanisms to expose logical parallelism constraints the paral-

lelism information with the atomicity semantics of a window. This constraint limits the

domain scientist from being able to explicitly expose logically parallel atomic operations

in a single window even when the application does not need the atomic operations to be

ordered. Consider the communication pattern of NWChem’s block-sparse matrix mul-

tiplication (see Section 4.6.3). The MPI Accumulate operations in a multithreaded pro-

cess are forced to use a single window to maintain atomicity. Even though the parallel

MPI Accumulate operations are logically independent, the domain scientist has no way

to expose this parallelism. The best they can do is to hint the relaxation of MPI’s ordering

constraint and rely on the MPI library to issue operations in parallel. Without additional

information from the application, however, any of the automatic mapping policies of the

MPI library will suffer from collisions, preventing the user from achieving the optimal

parallel issue of operations.

With user-visible endpoints, on the other hand, the application can use multiple end-

points within a single window and expose logically parallel communication while simul-
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taneously maintaining atomicity. User-visible endpoints decouple the task of exposing

parallelism from the purposes (e.g., atomicity) of existing MPI mechanisms.

A concern about user-visible endpoints that came up during our collaboration with de-

velopers of WOMBAT [72] is the misconception about endpoints being direct handles to

network resources.

Concern: Endpoints is a way for the MPI library to dump its job on the end user a.k.a.

domain scientist. I don’t know how many network endpoints there are. So, how

many should I create?

This concern holds not just for RMA operations but also for point-to-point operations. It is

based on the preconceived notion that endpoints are handles to network resources. More

important, we learned through our collaborations that such a concern is commonplace in

the MPI community. One explanation for this concern is that it stems from the usage of the

term ”endpoints,” which is typically associated with ”network endpoints”. The fact that

user-visible endpoints were introduced for the purposes of utilizing network parallelism

is likely to have furthered the misunderstanding about user-visible endpoints.

User-visible endpoints are not handles to network resources, rather they are a means for

an application to flexibly express logical parallelism. This task of expressing communi-

cation parallelism is separate from the task of the MPI library to map the exposed paral-

lelism with user-visible endpoints to the underlying parallel network resources. To an-

swer the question posed in the concern, applications should create as many endpoints as

there are streams of logically parallel communication. The MPI library can then funnel

the streams of logically parallel communication on distinct network hardware contexts

depending upon the availability of network resources.
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6.1.3 Collectives

The existing MPI semantics do not allow multiple threads to participate in the collective

of a single communicator. So, with a single multithreaded process per node, applications

may partition collective data of a process across threads and issue parallel collectives on

the different segments of the data using a distinct communicator for each thread.

Concern: Does that mean I need to handle the intranode portion of a collective?

Depending upon the nature of the destination buffer of a collective, users may need to

perform the intranode portion of the collective, as we see in Figure 6.2. For example,

if the count of the destination buffer of an allreduce operation is 1, then the application

needs to perform a reduction step after all threads have completed the internode part of

the allreduce. With user-visible endpoints, however, the domain scientist need not think

of a collective as two steps. Endpoints allow threads to participate in the collective of the

same communicator through different endpoints. The MPI library will then conduct both

the internode and intranode part of a collective before returning from the operation.

Although a performance comparison between the two approaches remains to be investi-

gated, from a design perspective, the user-visible endpoints interface is better because it

does not force the user to manually handle the intranode portion of an MPI collective.

Figure 6.2: Existing mechanisms vs. user-visible endpoints for collective communication.
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6.1.4 Portability

As we saw in Section 6.1.1, achieving the same level of control and flexibility of the user-

visible endpoints interface with existing MPI mechanisms requires a careful use of Info

hints. Since the concept of a VCI is not part of the MPI standard, it is likely that different

MPI implementations will support communicator and tag-based mechanisms of exposing

parallelism in different ways. The Info hints to control the allocation of and mapping to

internal communication channels will be specific to an MPI implementation.

Concern: To ensure portability of my code, I will need to learn about the hints available

for each MPI implementation I want to use.

Since HPC application developers are geared towards performance-oriented codes, they

are expected to adopt Info hints to optimally expose logically parallel communication to

an MPI implementation. Hence, existing MPI mechanisms can result in reduced portabil-

ity of codes which is highly undesirable.

The user-visible endpoints effort, on the other hand, encourages standardizing the con-

cept of endpoints through new APIs. With a standardized interface that provides all the

information that an MPI library needs to optimally map logically parallel communica-

tion to the underlying network parallelism, applications would be portable across MPI

implementations.

6.2 Concluding Remarks

Table 6.1 shows a summary of the options available for applications with existing MPI

mechanisms and user-visible endpoints for the different types of MPI communication.
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Table 6.1: Summary of design choices to expose logically parallel communication.

Operation Existing MPI mechanisms User-Visible Endpoints
Point-to-point Communicators or tags Endpoints

RMA Window(s) Endpoints

Collective Communicators +
user-driven intra-node collective Endpoints

We note that the user has to be aware of a multitude of options when exposing paral-

lelism through existing MPI mechanisms, and that they need to know which mechanisms

become available through hints that relax different semantics. These multitude of options

indicate a steep learning curve even with existing MPI mechanisms. With user-visible

endpoints, on the other hand, users need to be aware of only one option: endpoints,

which apply uniformly to all types of MPI communication.

The only concern that we came across with user-visible endpoints was a misunderstand-

ing among domain experts about what endpoints represent. One of the reasons for this

has been that the MPI Endpoints proposal contains terminology that is oriented towards

the community of MPI library developers. But since the ultimate goal of the proposal is to

aid the domain scientist to express logically parallel communication, it is imperative that

the proposal be user-facing. Hence, to resonate better with domain experts, we propose a

new name to rebrand1 the proposal: MPI Rankpoints since it emphasizes the fact that users

can create multiple MPI ranks within a process. The goal is to change the current mindset

of domain scientists and reinforce the understanding that rankpoints are not handles to

network resources, rather they are a flexible, straightforward means of expressing paral-

lelism that promotes portability of applications. It does require 2 new API extensions but

it avoids the bleak consequences of using existing MPI mechanisms which may result in

non-portable applications written by misguided domain scientists.

1Rebranding techniques have proven to be successful on many occasions (e.g., Android, Airbnb, etc.).

140



Chapter 7

Concluding Remarks

7.1 Summary

This dissertation uniquely bridges two ends of the HPC software stack—application de-

velopers and MPI library developers—to achieve a common goal: exascalable commu-

nication with MPI+threads application. We summarize the main contributions of this

dissertation below.

Low-level communication studies. We study the factors governing the communication

performance of a system in Chapter 2 where we present a detailed breakdown of an Arm-

based server and share measurement methodology so that researchers and engineers can

investigate the bottlenecks in the communication performance of the systems of their in-

terest. In Chapter 3 we studied the communication capabilities of modern network hard-

ware with respect to multithreaded communication. Through a resource-sharing analysis,

we learned that a multithreaded environment can achieve the same performance as that

of a multiprocess environment but just using a third of the resources.
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Fast middleware. Using the lessons from our low-level studies, in Chapter 4, we de-

veloped a fast MPI+threads library that is capable of mapping logically parallel commu-

nication to the underlying network parallelism. This work is the first to achieve scaling

communication throughput similar to that of MPI everywhere for both point-to-point and

RMA operations without sacrificing correctness for performance within the bounds of the

existing MPI-3.1 standard.

Unlocking MPI+threads applications while listening to domain scientists. Using the

fast MPI+threads library, in Chapter 5, we showcase how domain scientists can dissolve

the multithreaded communication bottlenecks in their applications by exposing logically

parallel communication. MPI+threads applications can now perform upto 2× faster than

the traditional MPI everywhere applications, a feat that significantly boosts scientific pro-

ductivity and breaks the decade-long trend of applications observing slower performance

with MPI+threads. With our work, applications can achieve both the scaling benefits of

MPI+threads and a higher performance over MPI everywhere. While we compare the

performance differences of the different mechanisms of exposing communication paral-

lelism, we also compare the designs of the different mechanisms from a usability per-

spective. In Chapter 6, we argue that user-visible endpoints are a flexible, intuitive and

straightforward interface that promotes the development of portable applications com-

pared to existing MPI mechanisms.

7.2 Future directions

All the upcoming US exascale supercomputers—El Capitan, Frontier, and Aurora—will

feature multiple GPUs per node. The research in this dissertation is a critical precur-

sor for heterogeneous computing environments where the preferred programming model

of choice is MPI+threads+GPU—MPI+threads to efficiently program modern processors
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and GPU programming model (e.g., CUDA) to utilize the acceleration capabilities of

GPUs. In such applications, one way to drive GPU-to-GPU communication would be

through a distinct thread per GPU. Modern GPU-based distributed applications, how-

ever, use multiple processes to drive the multiple GPUs on the node [70, 63, 69, 28] be-

cause the communication performance of MPI+threads has been dismal hitherto. By dis-

solving the multithreaded communication bottleneck, our work opens up the potential

for applications to be both efficient and performant with the ideal MPI+threads+GPU

programming model.

7.2.1 Studying different ways of GPU-to-GPU communication

GPU-to-GPU communication can be driven either by the processor or by the GPU it-

self. In the case of processor-driven communication, either distinct processes or distinct

threads would be driving communication at boundaries of GPU kernel execution. Given

the research in this dissertation, multiple threads would be able to drive the communica-

tion of multiple GPUs as fast as multiple processes do. However, scaling communication

performance with threads driving GPUs remains to be demonstrated; the state of the art

uses a distinct process to drive each GPU [70, 63, 69, 28].

GPU-initiated communication prevents the need for waiting for the GPU kernel to fin-

ish executing before the dedicated CPU core initiates the communication of the GPU-

computed data [53, 81]. One of the key challenges for such an approach, however, is the

slow serial throughput of the GPU threads. The slow serial execution can limit the injec-

tion rate of messages into the network. Given the massive parallelism available on a GPU,

however, it remains to be seen at what amount of parallelism can the aggregate through-

put from GPU-initiated communication outperform the CPU-driven communication at

the kernel
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7.2.2 Logically parallel communication for deep learning

The primary influencer of modern accelerator-based architectures has been distributed

deep learning [85]. As is the case with scientific applications, distributed deep learning

also suffers from communication bottlenecks at the limits of strong scaling. Communi-

cating gradients in deep learning is a major bottleneck for DNN training at scale [104,

65]. Furthermore, the algorithms for distributed deep learning are continuously evolv-

ing. These include synchronous allreduce-style algorithms and asynchronous parameter-

server-style algorithms. The impact of utilizing network parallelism for distributed deep

learning workloads in the different kinds of algorithms remains to be investigated. Such a

work requires studying the infrastructures of distributed deep learning frameworks such

as Horovod [92] and PyTorch [77] that use MPI backends.

7.2.3 User-friendly abstractions to use existing MPI mechanisms

In Chapter 5, we learned that existing MPI mechanisms perform as well as the upper-

bound set by user-visible endpoints. But, in Chapter 6, we learned that domain scientists

are concerned about the complexity and portability issues when using existing MPI mech-

anisms to express logical communication parallelism. One way to combat the usability

concerns of existing MPI mechanisms would be through an abstraction layer that allows

applications to express parallelism in a manner that domain scientists are familiar with.

The abstraction layer would then internally use existing MPI mechanisms along with

hints specific to an MPI implementation to optimally expose the communication paral-

lelism information to the MPI library. Designing such an abstraction layer is challenging

since the designs of the abstraction would need to generally apply to any arbitrary com-

munication pattern.
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Appendix A

User Access Region in Mellanox

Network Adapters

The User Access Region (UAR) is part of a mlx5 NIC’s address space and consists of

UAR pages. Different pages allow the multiple processes and threads to get isolated,

protected, and independent direct access to the NIC. The UAR pages are mapped into the

application’s userspace during CTX creation, allowing the user to bypass the kernel and

directly write to the NIC.

A mlx5 UAR page is 4 KB, and each UAR consists of four uUARs (micro UARs). Only the

first two are used for user operations; we refer to them as data-path uUARs. The last two

are used by the hardware for executing priority control tasks [4]. Each uUAR consists of

two equally sized buffers that are written to alternatively [9]. The first eight bytes of a

buffer constitute the DoorBell register [9]. Atomically writing eight bytes to this register

rings the DoorBell.
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Figure A.1: 4 KB mlx5 UAR page. The last two uUARs are used by the NIC.

155



Appendix B

Mellanox’s QP-to-uUAR Mapping Policy

When the Verbs user creates a CTX, the mlx5 driver statically allocates a discrete number

of UARs. By default, it allocates 8 UARs and 16 data-path uUARs. When the user creates

QPs, the mlx5 ib kernel module assigns a uUAR to each QP. To guide this assignment,

mlx5 categorizes the statically allocated uUARs into different categories: the zeroth uUAR

as high latency, a subset as low latency, and the remaining as medium latency. By default,

mlx5 categorizes four uUARs (uUAR12-15) as low latency. Users can change this default

using environment variables that allow them to control the total number of statically allo-

cated uUARs (MLX5 TOTAL UUARS) and categorize a subset of them (up to a maximum

of all but one) to be low-latency uUARs (MLX5 NUM LOW LAT UUARS).

Low-latency uUARs are called so because only one QP is assigned to such a uUAR; thus

the lock on the uUAR is disabled. The medium-latency uUARs may be assigned to mul-

tiple QPs, and locks are needed to write to them. The high-latency uUAR can also be

assigned to multiple QPs but it allows only atomic DoorBells and no BlueFlame writes.

Hence, it is not protected by a lock.

Figure B.1 portrays mlx5’s uUAR-to-QP assignment policy for an example CTX contain-
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ing six static uUARs of which two are low latency (uUAR4-5). Within a CTX, the QPs are

first assigned to the low-latency uUARs (QP0 and QP1). Once all the low-latency uUARs

are exhausted, the driver maps the next QPs to the medium-latency uUARs in a round-

robin fashion (QP2–QP6). The high-latency uUAR is assigned to QPs only when the user

declares the maximum allowed number of uUARs to be low latency, in which case (not

shown) all the QPs after those assigned to the low-latency uUARs will map to the zeroth

uUAR.

The mlx5 driver will dynamically allocate a new UAR page if the user creates a thread

domain (TD). Every even TD will allocate a new UAR page; every even-odd pair of TDs

will map to the separate uUARs on the same UAR page, as we can see for the three TDs

in Figure B.1. All the QPs in a TD will map to the uUAR associated with the TD; and

since the user guarantees that all the QPs assigned to a TD will be accessed only from one

thread, mlx5 disables the lock on the TD’s uUAR. The maximum number of dynamically

allocated UARs allowed per CTX in mlx5 is 512.

Figure B.1: Assigning seven QPs and three TDs to uUARs of a CTX containing six static
uUARs, of which two are low-latency uUARs (blue). The high-latency uUAR is in grey,
the medium-latency ones are in yellow, and the dynamically allocated ones are in red.
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