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Abstract

Background—Exome sequencing is a promising tool for gene mapping in Mendelian disorders. 

We utilized this technique in an attempt to identify novel genes underlying monogenic 

dyslipidemias.

Methods and Results—We performed exome sequencing on 213 selected family members 

from 41 kindreds with suspected Mendelian inheritance of extreme levels of low-density 

lipoprotein (LDL) cholesterol (after candidate gene sequencing excluded known genetic causes for 

high LDL cholesterol families) or high-density lipoprotein (HDL) cholesterol. We used standard 

analytic approaches to identify candidate variants and also assigned a polygenic score to each 

individual in order to account for their burden of common genetic variants known to influence 

lipid levels. In nine families, we identified likely pathogenic variants in known lipid genes 

(ABCA1, APOB, APOE, LDLR, LIPA, and PCSK9); however, we were unable to identify obvious 

genetic etiologies in the remaining 32 families despite follow-up analyses. We identified three 

factors that limited novel gene discovery: (1) imperfect sequencing coverage across the exome hid 

potentially causal variants; (2) large numbers of shared rare alleles within families obfuscated 

causal variant identification; and (3) individuals from 15% of families carried a significant burden 

of common lipid-related alleles, suggesting complex inheritance can masquerade as monogenic 

disease.

Conclusions—We identified the genetic basis of disease in nine of 41 families; however, none 

of these represented novel gene discoveries. Our results highlight the promise and limitations of 

exome sequencing as a discovery technique in suspected monogenic dyslipidemias. Considering 

the confounders identified may inform the design of future exome sequencing studies.

Keywords

genetics; human; DNA sequencing; Exome sequencing; lipids; Mendelian Genetics
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Introduction

“Exome” sequencing refers to the use of next generation sequencing (NGS) technology1 to 

sequence all protein-coding regions of the genome. This approach has emerged as a 

promising tool for gene discovery in families with suspected monogenic disorders2 with 

some reports suggesting a success rate in excess of 50%3. Identifying the genetic basis 

underlying monogenic forms of dyslipidemia has revealed insights into human biology4 and 

spurred the development of novel therapeutics5. In an attempt to map novel dyslipidemia 

genes, we performed exome sequencing on 213 selected family members from 41 kindreds 

with suspected Mendelian inheritance of extreme levels of low-density lipoprotein 

cholesterol (LDL-C) or high-density lipoprotein cholesterol (HDL-C). To enrich for novel 

gene discoveries, we excluded probands from high LDL-C families that had mutations in 

genes known to cause monogenic hypercholesterolemia.

Methods

Subject Recruitment

Forty-one families of European ancestry with suspected Mendelian inheritance of extreme 

LDL-C or HDL-C levels were recruited from eight different centers across North America 

and Europe. The pedigrees of these 41 families are shown in Supplementary Figure 1. 

Families A1–A9 were recruited as part of the French National Research Network on 

Hypercholesterolemia that includes clinicians from 11 different cities in France. Probands 

were selected if they met the following criteria: total and LDL-C levels above the 95th 

percentile when compared with a sex- and age-matched French population6, triglyceride 

level below 1.5 mmol/L, and presumed autosomal dominant transmission of 

hypercholesterolemia in the family. Family A10 was recruited from the Preventive 

Cardiology/Lipid Clinic of the McGill University Health Centre. Affected individuals had 

LDL-C concentration exceeding the 95th percentile for age- and gender-matched subjects, a 

plasma triglyceride concentration less than 1.0 mmol/L, and no known secondary causes of 

hypercholesterolemia. Families A11–A14 were recruited from the Lipid Clinic at the 

Academic Medical Center, University of Amsterdam, the Netherlands based on a clinical 

diagnosis of familial hypercholesterolemia in the proband. LDL-C levels exceeding the 95th 

percentile when adjusted for age and gender defined affected family members. Families 

A15–A20 were recruited from the Lipid Clinic of the University Hospital of Palermo. The 

Simon-Broome Register criteria were used to clinically diagnose heterozygous autosomal 

dominant hypercholesterolemia after excluding secondary hypercholesterolemia. In family 

A20, a pathogenic mutation in LDLR (c.2390-1G/A) was discovered previously but 

displayed incomplete penetrance (Supplementary Figure 1; A20, individuals shaded in 

black) and was not present in the individual with the highest level of LDL-C (the proband 

III:1 did not carry the LDLR mutation and had LDL-C = 455 mg/dL in addition to a history 

of myocardial infarction at the age of 35). Two other subjects (Supplementary Figure 1; 

A20, individuals shaded in blue) also showed high LDL-C and did not have the LDLR 

mutation. Based on a review of the pedigrees (Supplementary Figure 1) an autosomal 

dominant mode of inheritance was presumed for Families A1–A20 with the exception of 

A13 in which an autosomal recessive mode of inheritance was presumed.

Stitziel et al. Page 3

Circ Cardiovasc Genet. Author manuscript; available in PMC 2015 April 22.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Families B1 and B2 were recruited from the University Hospital of Palermo and Modena-

Reggio Emilia. Families B3–B12 were recruited from the Washington University Lipid 

Research Clinic. Affected individuals in these families were identified due to an LDL-C 

level corresponding to the bottom 5th percentile when adjusted for age, ethnicity, and 

gender. The proband (subject III:A) in family B13 was referred to the MGH Lipid 

Metabolism Unit due to a LDL-C value of 25 mg/dL. She was noted to have 4 family 

members with LDL-C values less than 47 mg/dL. An autosomal recessive mode of 

inheritance was presumed for family B1 while an autosomal dominant mode of inheritance 

was presumed for B2–B13 based on the pedigrees (Supplementary Figure 1).

Family C1 was recruited as part of the Genomic Resource in Arteriosclerosis and Metabolic 

Disease at the Cardiovascular Research Institute of the University of California, San 

Francisco. The clinical diagnosis of familial hypoalphalipoproteinemia was based on levels 

of HDL-C below the 5th percentile for five individuals, and below the 10th percentile for 

one individual, when adjusted for age, sex, and the known inverse relationship between TG 

and HDL-C. Family C2 was recruited from the Preventive Cardiology/Lipid Clinic of the 

McGill University Health Centre. Families C3 and C4 were recruited from the outpatient 

clinic for Vascular Medicine at the Academic Medical Center, University of Amsterdam, the 

Netherlands. Affected individuals from families C2–C4 had HDL-C concentration below the 

5th percentile for age- and gender-matched subjects, a plasma triglyceride concentration less 

than 1 mmol/L, and no known secondary causes of hypoalphalipoproteinemia. An autosomal 

dominant mode of inheritance was presumed for families C1–C4 based on the pedigrees 

(Supplementary Figure 1).

The probands in families D1 and D2 were ascertained from a general patient population in 

the center of The Netherlands and were selected based on having HDL-C levels above the 

99th percentile after adjusting for age and gender7. Family members with HDL-C levels 

above the 95th percentile for age- and gender-matched subjects were considered affected. 

Families D3 and D4 were recruited at the Perelman School of Medicine at the University of 

Pennsylvania as part of a study enrolling individuals with HDL-C levels above the 75th 

percentile for age-, race-, and gender-matched subjects. Spouses and blood relatives of 

affected individuals were also recruited. An autosomal dominant mode of inheritance was 

presumed for families D1–D4 based on the pedigrees (Supplementary Figure 1).

Causal mutations in LDLR, APOB, and PCSK9 were excluded in the probands of families 

A1–A20 as previously described8, 9. In addition, causal mutations in LDLRAP1 were 

excluded in the proband from family A13 in which an autosomal recessive mode of 

inheritance was presumed. Candidate gene sequencing was not performed in the other 

families.

Replication in Japanese Families

The families shown in Supplementary Figure 6 (Families A-D) were recruited from 

Kanazawa University Hospital in Kanazawa, Japan. The probands in Families A, C, and D 

were identified due to high LDL-C values and tendinous xanthomas. An off-treatment LDL-

C value was not available for the proband in Family B; her LDL-C value was normal, 

however she was on intensive lipid-lowering therapy and was noted to have tendinous 

Stitziel et al. Page 4

Circ Cardiovasc Genet. Author manuscript; available in PMC 2015 April 22.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



xanthomas. Affected relatives in Families A-D had LDL-C values exceeding 200mg/dL. An 

autosomal dominant mode of inheritance was presumed for all four families based on the 

pedigrees (Supplementary Figure 6). All individuals in Families A-D were of self-described 

Japanese ancestry.

Exome Sequencing

Subsets of samples from each family were selected for exome sequencing based on DNA 

availability, presence of informed consent allowing for genetic studies, and prioritization of 

phenotypic extremes. These selected samples underwent exome sequencing at the Broad 

Institute. The IRB at the Broad Institute and all participating sites approved the study 

protocols and all individuals who were selected for sequencing provided informed consent. 

Randomly sheared genomic DNA was used as input for library construction and in-solution 

hybrid selection to enrich for exomic DNA as previously described10. In all samples except 

seven, 33Mb of genomic sequence was defined as the “exome” and targeted using the 

Whole Exome Agilent 1.1 plus boosters preparation kit (Agilent Technologies, Santa Clara, 

CA, USA). The remaining seven samples underwent hybrid selection using a prior version 

of the Agilent whole exome preparation kit that targeted 28.6 Mb of genomic sequence. 

Exome-enriched DNA for each sample was then sequenced on an Illumina GA-II sequencer 

using 75-base pair paired-end reads. Samples were sequenced with a goal of achieving at 

least 20-fold coverage in at least 80% of targeted bases. Samples with less than 80% of 

targeted bases covered by ≥ 20 sequencing reads were not used for the primary analysis.

The Burroughs-Wheeler Alignment algorithm11 was used to map raw sequence reads to the 

human reference sequence (UCSC build HG19). The Genome Analysis Toolkit (GATK 

version 2)12 and SAMtools13 were used to locally realign reads, recalibrate individual base 

qualities, and flag duplicate sequencing reads for removal. The GATK UnifiedGenotyper 

(UG) was then used to identify single nucleotide variants and small insertions and deletions 

in the exome target definition specific for each sample along with up to 50 flanking intronic 

bases. The UG was used in multisample mode and samples were grouped into three batches 

keeping related samples together when possible. The GATK Variant Score Recalibration 

tool was used to update the quality score of the identified variants and SnpEff14 was used to 

predict the functional consequences of each variant. The population allele frequency of each 

variant was estimated using the National Heart Lung and Blood Institute’s Exome 

Sequencing Project (ESP) Exome Variant Server (http://evs.gs.washington.edu/EVS).

Analysis of Exome Sequencing Data

To exclude genetic variation unlikely to be causal for the extreme phenotype in the affected 

individuals from the families, we employed a heuristic analytical process commonly used in 

the analysis of exome sequencing studies15. Starting with the total number of variants shared 

by individuals from the family, we excluded variation that did not fit the expected pattern of 

inheritance based on examining the pedigree. Next, we excluded common genetic variation, 

defined as ≥ 1% frequency in the population (given the extreme excess of very rare alleles in 

the human population16, the exact choice of this threshold – i.e. 1% or 0.01% – has little 

practical impact since most rare alleles within families are well below this threshold). On the 

assumption that a specific causal variant could not be responsible for both high and low lipid 
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levels, we excluded variation present in the affected individuals of the opposite extreme. 

Finally, we excluded silent and non-genic variation as most Mendelian syndromes are 

caused by coding or splice site mutations that alter the protein sequence17. The remaining 

single nucleotide variants and short insertions or deletions were considered candidates. 

When possible, from this list of candidates we attempted to identify variants demonstrating 

co-segregation with the phenotype in the extended kindred. We considered candidate 

mutations as causal if (1) the mutation was identified in prior publications as causal for the 

same phenotype; (2) if the mutation was novel but in a gene known to cause the phenotype 

and functionally similar to causal mutations in that gene (i.e. a novel nonsense mutation 

occurring in a gene in which other nonsense mutations have been shown to be causal), or (3) 

if the mutation was novel and occurred in a novel gene but demonstrated co-segregation 

with the phenotype in the extended kindred. The 95% confidence intervals (CI) surrounding 

the success estimates were estimated from the binomial distribution.

Polygenic score analysis

To determine the likelihood that polygenic inheritance could explain the extreme lipid 

phenotype in some families, individuals with sufficient DNA (n=130) were genotyped on 

the Illumina HumanExome Beadchip v1.0 according to the manufacturer’s recommended 

protocol. This genotyping array includes the SNPs reported in the Global Lipids Genetic 

Consortium (GLGC) meta-analysis of genome-wide association studies of plasma lipid 

levels18. Of the 102 SNPs reported in GLGC Table 1, we successfully genotyped 87 SNPs 

plus 4 proxies (r2 > 0.9 with the GLGC SNP). Using all 91 SNPs (all SNPs were used for 

each lipid trait since some of the SNPs are associated with more than one lipid fraction), we 

built baseline polygenic models for the LDL-C and HDL-C phenotypes in 9,134 subjects not 

taking lipid-lowering medications from the Ottawa Heart Study19, PROCARDIS20 and the 

Malmo Diet and Cancer Study21 to obtain estimated regression coefficients. Next, we used 

the estimated coefficients to obtain a predicted lipid level for each individual in our study 

based on these 91 SNPs. This predicted lipid level was the population mean plus the sum of 

the individual’s observed genotypes weighted by the estimated coefficients. We calculated a 

residualized phenotype for each individual by subtracting the observed lipid level from the 

predicted lipid level based on the common SNPs. The observed lipid levels were either 

obtained off treatment or adjusted for lipid-lowering treatment by dividing the observed 

value by 0.7. Externally standardized residuals were created to assess the statistical 

significance of each individual’s residualized phenotype. We used a threshold of ≤ 0.01 (a 

Bonferroni correction for the average number of individuals sequenced in each family) to 

define a significant residualized score.

Results

We performed exome sequencing on 213 selected individuals from the 41 families with 

suspected monogenic inheritance of extreme lipid levels, with a median of 4 individuals 

selected per kindred. On average, the mean coverage of targeted bases for each individual 

was 103. We identified an average of 12,544 nonsynonymous single nucleotide variants and 

802 insertion/deletions per individual. Within each kindred, we used standard approaches to 

identify candidate variants15 (Supplementary Figure 2). In five families (12%), we identified 
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likely pathogenic variants (Table 1) in genes previously proven to cause monogenic 

dyslipidemias (“known lipid genes”, Supplementary Table 1). We also identified the genetic 

etiology in three families after follow-up analysis of their candidate variants (Supplementary 

Figure 1, Families A126, A1030, and A1327) and one after considering the effect of common 

genetic variants (described below), bringing the total to nine (22%; 95% CI [9.3%,34.7%]) 

(see Table 1 and Supplementary Table 2 for details).

In the remaining 32 families however, the number of candidate variants ranged from 0–287, 

without obvious genetic etiologies despite follow-up analyses. We sought to understand 

potential reasons for the lack of novel gene discovery and identified three main confounders: 

1) an inability to identify potentially causal variants due to imperfect sequencing coverage; 

2) an inability to identify the causal variant among hundreds of shared variants within 

families; and 3) an inability to identify the effect of complex genetics using exome 

sequencing.

To successfully discover a causal variant, the variant must first be identified. We find that 

despite high average coverage across the exome (on average 89% of targeted bases are 

covered with ≥ 20 reads; see Figure 1A), a small but substantial portion of the exome is 

poorly covered across all affected individuals. Across the known lipid genes we find 

affected individuals have, on average, 3.7% of targeted bases covered with ≤ 10 sequencing 

reads (Figure 1a), a sequencing depth that provides 99% confidence of observing a rare 

allele at least twice. At these positions there is a chance we would fail to identify a variant in 

the affected individual with shallow sequencing coverage and these positions would then be 

removed from consideration under the assumption of complete penetrance without 

phenocopies.

Family A1 (Supplementary Figure 1) illustrates this problem. In this family, affected 

individuals were identified to harbor a pathogenic APOE deletion26. Initially, the pathogenic 

deletion (p.Leu167del) was only identified in two of three affected individuals using exome 

sequencing and was thus removed from further consideration. When orthogonal methods 

(linkage analysis and sequencing under linked peaks) identified p.Leu167del as a candidate, 

we performed Sanger sequencing to confirm the presence of the deletion in all affected 

individuals. This mutation occurs in the last exon of APOE which is difficult to capture and 

sequence with NGS31 and has the lowest coverage and highest GC content of the known 

lipid genes (Supplementary Tables 3 and 4). The individual in Family A1 initially 

misclassified by NGS only had one sequencing read at that position of the genome. Across 

the remainder of the exome, we find affected individuals have, on average, 6.4% of targeted 

bases covered with ≤10 sequencing reads (Figure 1a). This effect appears to be independent 

of overall sequencing depth (Supplemental Figure 3) suggesting it cannot be solved simply 

by sequencing to deeper overall coverage. It has been previously suggested that exome 

sequencing fails to identify the genetic basis of some strongly inherited conditions due to 

causal non-coding mutations32; another explanation could be that the causal variant is 

present in the coding region but hitherto unidentified.

Second, we find a confounding effect from the many rare alleles within families that also 

segregate with the phenotype by chance. This is highlighted by examining the total number 
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of candidate variants even in families harboring pathogenic variants in a known lipid gene. 

In these families, between 2–346 additional variants remain candidates at the end of the 

analysis and would be considered potentially causal if a pathogenic variant had not been 

identified. This is similar to the number of variants remaining in families without known 

genetic causes (range 0–287; see Figure 1b), highlighting the vast amount of very rare 

variation “private” to families that segregates with the disease phenotype merely by chance.

Third, we also find that the effect of complex genetics in families with suspected monogenic 

dyslipidemias can be substantial. Both LDL-C and HDL-C levels are influenced by multiple 

common genetic loci18; we18 and others33 have previously demonstrated that polygenic 

inheritance may be sufficient to explain extreme lipid phenotypes. To address this possibility 

in the families sequenced in the present study, we genotyped a set of common genetic 

variants robustly associated with lipid traits in genome-wide association studies18. Using 

these common variants, we created a polygenic score and calculated a residualized 

phenotypic z-score, effectively assigning a level of statistical significance to each 

individual’s lipid level after correcting for that individual’s burden of common lipid-related 

alleles (Supplementary Figure 4).

As a proof-of-principle, we find highly significant scores for individuals from families A9 

and B2, in which pathogenic PCSK9 and APOB mutations, respectively, perfectly segregate 

with disease status, indicating that common genetic factors are not sufficient to explain the 

phenotype in these families (Supplementary Table 5). In contrast, of the families without a 

readily apparent genetic answer, we find six (15% of all families) where either all affected 

individuals have non-significant scores or only one affected individual retains a significant 

score, suggesting that the burden of common alleles is sufficient to largely explain the 

extreme phenotype in these families (Supplementary Table 6 and Supplementary Figure 5).

We also find this approach can help refine phenotypic definitions within families. In Family 

A7, an initial analysis using clinically-defined affection status (Figure 2a) yielded 17 

candidate variants; additional analyses were unable to identify a causal variant from this list. 

Using the polygenic score, we found individuals III-1 and III-2 had LDL-C levels that were 

largely explained by a burden of common variants whereas individuals II-3 and III-5 had 

highly significant residualized scores (Supplementary Table 7). An analysis using these 

updated phenotypes identified a candidate variant in LDLR (p.E228K, also known as FH 

Modena, previously shown to be pathogenic28) that was subsequently confirmed to perfectly 

segregate with extreme LDL-C levels in the extended kindred (Figure 2b).

We attempted to extend these findings to a non-European population and found similar 

results in families of Japanese descent with extreme LDL-C levels (Supplementary Figure 

6). In this analysis a pathogenic variant in LDLR was found in one family (Supplementary 

Table 8) while there was no clear molecular etiology in the remaining three, resulting in a 

25% success rate. We found similar levels of imperfect sequence coverage and numbers of 

rare variants segregating within the family (Supplementary Table 9) compared to the 

families of European descent.
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Discussion

The present study summarizes our experience using exome sequencing to map novel genes 

in families with a suspected Mendelian dyslipdemia. After sequencing the exome in 213 

individuals across 41 kindreds, we find this technique identifies a likely causal variant in 

22% of cases. Three of these families harbor causal mutations in known lipid genes that 

were excluded by candidate sequencing prior to entry into this study, reconfirming previous 

results that candidate gene sequencing can fail to identify causal mutations in candidate 

genes that are subsequently identified via NGS34. Notably, we did not identify any novel 

monogenic dyslipidemia genes. From the remainder of the families in our study, we identify 

evidence of polygenic inheritance in 15%. We are, however, currently unable to define the 

genetic basis in the remaining 63% of families (Figure 3).

Several conclusions emerge from these results. First, from this empiric evaluation, we find 

the yield of exome sequencing as a tool for novel gene mapping to be modest. Multiple 

reports detailing the success of this technique have been published since 20092; however, 

these reports may be susceptible to the well-known bias to publish positive results. Overall, 

we are unaware of reports detailing the overall success rate of exome sequencing. Our study 

highlights the “real-world” challenges in using this technique for mapping novel genes in 

Mendelian disorders and appears to reflect the collective experience in monogenic 

dyslipidemias as evidenced by the current literature. We are unaware of a Mendelian 

dyslipidemia gene other than ANGPTL335 that has been identified using exome sequencing.

Second, we identified several technical issues that have not been previously highlighted that 

adversely impacted our ability to discover novel genes. An underlying assumption when 

mapping genes with NGS is that all potentially causal variants will be identified. Our study 

reveals some of the limitations of exome sequencing which may be useful to address in 

future design of research or clinical sequencing studies.

Third, we find a substantial concerted effect of common lipid-related alleles that appears to 

result in extreme phenotypes in some individuals and families. A similar effect has been 

shown previously for samples drawn from the extremes of the population distribution of 

plasma lipids18 and in a significant proportion of mutation-negative probands who 

underwent clinical genetic testing for familial hypercholesterolemia33. While only 

approximately 10% of the total phenotypic variance in lipid traits is explained by the 

common variants genotyped in our study18, by removing this variance we were able to 

create a more refined phenotype and enrich for genetic factors not present in the set of 

common variants. We show that incorporating this information may inform genetic mapping 

as we have demonstrated above in Family A7.

Our study has several limitations. Exome sequencing has limited reliability to identify large 

structural variants and while we did consider small insertions and deletions, this technique is 

less reliable in identifying these compared with single nucleotide substitutions. Reliable 

incorporation of these forms of genetic variation might identify additional candidates36. We 

also did not consider genome-wide linkage data due to the small size of the pedigrees and 

incorporating such information has the potential to reduce the number of candidates37. From 
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a technical perspective, it is possible that other exome capture reagents or sequencing 

platforms (including longer reads) may result in more complete coverage. Finally, it is 

important to note this experience may not necessarily generalize to other phenotypes. For 

example, one might expect the yield to be higher for studying extreme syndromic 

phenotypes less susceptible to the influences of polygenic inheritance and environmental 

factors.

Addressing the three problematic areas outlined above has the potential to improve the 

success of gene mapping. Whole genome sequencing (WGS) could be used to remove the 

bias of target definition and hybrid selection inherent in exome sequencing, although we 

recognize certain portions of the genome will remain recalcitrant to NGS technology38. The 

process for identifying causal rare alleles within families can be improved as larger 

population-based sequencing studies are performed and as better high-throughput functional 

assays are developed. Sequencing more distantly related relatives can decrease the total 

number of shared alleles; however, investigators typically resort to exome sequencing in 

small pedigrees for which linkage analysis has been intractable. Finally, as we identify 

additional alleles contributing to complex phenotypic traits, we can use these findings to 

inform family-based genetic studies by both selecting families without significant polygenic 

inheritance and refining phenotypic definitions within families.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. Selected metrics from exome sequencing analysis
(a) Percent targeted bases across the exome definition supported by ≤ 20 sequencing reads 

(Red) or ≤ 10 sequencing reads (Blue) or across genes previously identified to cause 

monogenic dyslipidemia supported by ≤ 10 sequencing reads (Green). (b) Number of 

candidate variants after analysis for families with a suspected pathogenic variant in a gene 

known to cause monogenic dyslipidemia (orange) compared with families without known 

cause (brown). P refers to the p-value from the Kolmogorov–Smirnov test in testing for 

differences between the distributions.
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Figure 2. Pedigree of Family A7, demonstrating the utility of refining phenotypes based on 
burden of common alleles
(A) Initial pedigree defining affected individuals (shaded) by LDL-C level adjusted for age 

and gender. (B) Updated pedigree based on residualized phenotype score (see text) where 

individuals III-1 and III-2 are classified as unaffected. LDLR p.E228K carrier status is 

indicated with + (heterozygous) or - (wild type). The superscript (a) indicates the LDL-C 

level was obtained while the individual was on lipid-lowering medication therapy.
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Figure 3. Discovery rates from exome sequencing
The distribution of final discovery status for the 41 families with suspected monogenic 

dyslipidemias that underwent exome sequencing is shown with approximate percentages.
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