
UC Merced
Proceedings of the Annual Meeting of the Cognitive Science 
Society

Title
Cognitive reflection and Normality Identities: two new benchmarks for models of 
probability judgments

Permalink
https://escholarship.org/uc/item/2g41k2fs

Journal
Proceedings of the Annual Meeting of the Cognitive Science Society, 46(0)

Authors
Huang, Jiaqi
Busemeyer, Jerome
Ebelt, Zo
et al.

Publication Date
2024
 
Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/2g41k2fs
https://escholarship.org/uc/item/2g41k2fs#author
https://escholarship.org
http://www.cdlib.org/


Cognitive reflection and Normality Identities: two new benchmarks for models of
probability judgments

Jiaqi Huang (huangajq@iu.edu)1, Jerome Busemeyer (jbusemey@indiana.edu)1

& Zo Ebelt (Zo.Ebelt@city.ac.uk)2, & Emmanuel M. Pothos (emmanuel.pothos.1@city.ac.uk)2

1 Department of Cognitive Science, Indiana University, 1001 E. 10th Street, Bloomington, IN 47405 USA,
2 Department of Psychology, City, University of London, 32-38 Whiskin Street, London, EC1R 0JD, United Kingdom

Abstract

We propose two novel benchmarks for assessing models of
probability judgments: the impact of Cognitive Reflection Test
(CRT) on probability judgment expressions and 16 “normal-
ity identities” expected to sum to 1 under classical probabil-
ity theory. We compared three models on these benchmarks
– the Probability Plus Noise Model (PPN), the Bayesian Sam-
pler (BS), and the Quantum Sequential Sampler (QSS) – using
the largest dataset to date for probability judgments. Our re-
sults reveal that higher CRT scores are associated with fewer
probabilistic fallacies and identity violations, a trend most ac-
curately captured by the QSS, although we also identified QSS
limitations. Regarding the normality identities, the QSS out-
performed the PPN and the BS, which had difficulty with both
the average values of the normality identities and their depen-
dence on CRT scores. Additionally, we uncovered a unique “1
crossing” effect for normality identities N8 and N11, an effect
PPN and BS cannot capture.

Keywords: probability judgment, probabilistic fallacies, sam-
pling, cognitive reflection

Introduction
Research on probabilistic reasoning has consistently driven
theoretical innovation (Oaksford & Chater, 2007; Griffiths et
al., 2010; Sanborn et al., 2013), and produced some of the
most evocative empirical findings in psychology, including
the conjunction fallacy (Tversky & Kahneman, 1983), and
the unpacking effect (Tversky & Koehler, 1994). In the last
15 years, the focus of research has shifted from analyzing
specific probabilistic fallacies to computational models that
offer extensive explanations for a broad range of known fal-
lacies (Costello & Watts, 2014; Zhu et al., 2020; Huang et
al., 2023; Huang, 2023). The increasing sophistication of
these models necessitates novel approaches for model com-
parisons; merely evaluating models based on traditional fal-
lacies invariably proves insufficient. In this work, we propose
two innovative benchmarks to investigate models of proba-
bilistic fallacies, utilizing a recently compiled dataset of prob-
ability judgments in the context of the 2020 US Presidential
election, which we will call the ’elections dataset’ (Huang et
al., 2023). Our analysis indicates that none of the currently
established models are completely adequate, though the three
models exhibit varying levels of success.

The first benchmark examines how accurately each model
predicts the relationship between individual characteristics in
reasoning and probabilistic fallacies. Kahneman (2011) pop-
ularized the concept of two systems of reasoning: System 1,

which is intuitive, prone to errors, and reflexive; and Sys-
tem 2, which is more deliberate, analytical, and reflective.
This “two system theory” is widely supported in the litera-
ture (Kahneman, 2002; Fernbach & Sloman, 2009; Elqayam
& Evans, 2013). Individual differences in the preference for
System 1 versus System 2 reasoning in judgment are rea-
sonably well-documented (Kahneman, 2011), with the cog-
nitive reflection test (CRT) (Toplak et al., 2011, 2014) being
a widely used measure. CRT involves three arithmetic ques-
tions, with a higher CRT score (higher accuracy) suggesting
stronger tendency to use System 2 over System 1 reasoning.
Despite ongoing debate regarding its construct validity and
the criticism that it is overused in online studies (Welsh et al.,
2013; Pennycook et al., 2016; Campitelli & Gerrans, 2014),
CRT remains one of the most reliable tools for assessing indi-
vidual differences in “two-system reasoning” (Stagnaro et al.,
2018; Bialek & Pennycook, 2018). Prior research has estab-
lished significant links between CRT scores and various key
probabilistic fallacies. For example, Huang et al. (2023) re-
ported a significant anti-correlation between conjunction and
disjunction fallacy rates and CRT scores. Similar results for
other fallacies, such as question order effects and subadditiv-
ity effects, have also been reported in Yearsley & Trueblood
(2018) and Trueblood et al. (2017). Motivated by these find-
ings, our study further explores the dependency of previously
unexplored probabilistic fallacies on CRT scores, such as vi-
olations of binary complementarity (Epping & Busemeyer,
2023) and violations of probability identities (see just below)
first reported in Costello & Watts (2014). This exploration
presents a significant, untapped modeling opportunity: can
current models accurately capture the relationship between
CRT scores and the emergence of these fallacies?

Our second innovation involves proposing a novel set of
probability identities for evaluating computational models of
probability judgments. Initially introduced by Costello &
Watts (2014) and expanded in their 2016 work, probability
identities are combinations of probabilities that should, ac-
cording to classical theory, equal zero. While their study
highlighted how certain probability combinations can cancel
each other out (e.g., Z1 shows that P(A)+P(B)−P(A∩B) =
P(A∪B)), Costello and Watts’ identities did not involve tests
that conformed to specific values that uphold normality (e.g.,
P(A)+P(B)−P(A∩B) = 1−P(¬A∩¬B)). We therefore ex-
tend the set of probability identities to include those that ex-
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Name Normality Identity (= 1) PPN QSS

N1 P(A)+P(¬A|B)P(B)+P(¬A|¬B)P(¬B) 1 ≈ 1+ k+ Z11
N2 P(A|B)P(B)+P(A|¬B)P(¬B)+P(¬A|B)P(B)+P(¬A|¬B)P(¬B) 1 ≈ 1+ k+2∗Z11
N3 P(A∧B)+P(A∧¬B)+P(¬A∧B)+P(¬A∧¬B) ≈ 1+2(d +∆d) ≈ 1+ k+2∗Z5
N4 P(A|B)P(B)+P(A∧¬B)+P(¬A∧B)+P(¬A∧¬B) ≈ N3 −0.5∗d ≈ N3 − Z15
N5 P(A|B)P(B)+P(¬A|B)P(B)+P(A∧¬B)+P(¬A∧¬B) ≈ N3 −d ≈ N3 − 2*Z15
N6 P(A|B)P(B)+P(B|¬A)P(¬A)+P(A∧¬B)+P(¬A∧¬B) ≈ N5 ≈ N5
N7 P(A∧B)+P(A|¬B)P(¬B)+P(¬A|B)P(B)+P(¬A|¬B)P(¬B) ≈ N5 −0.5∗d ≈ N5 − Z15
N8 P(A∨B)+P(¬A|¬B)P(¬B) ≈ 1−0.5∗d ≈ 1+ k− Z15
N9 P(A)+P(B)−P(A∧B)+P(¬A∧¬B) 1 ≈ 1+ k+ Z1
N10 P(A)+P(B)−P(A|B)P(B)+P(¬A∧¬B) ≈ 1+0.5∗d ≈ N9 − Z15
N11 P(A)+P(B)−P(A∧B)+P(¬A|¬B)P(¬B) ≈ 1−0.5∗d ≈ N9 + Z15
N12 P(A)+P(B)−P(A|B)P(B)+P(¬A|¬B)P(¬B) 1 ≈ 1+ k+ Z1
N13 P(A|B)P(B)+P(A|¬B)P(¬B)+P(B)−P(A∧B)+P(¬A∧¬B) 1 ≈ 1+ k+ Z1 + Z11
N14 P(A|B)P(B)+P(A|¬B)P(¬B)+P(B)−P(A|B)P(B)+P(¬A∧¬B) ≈ 1+0.5∗d ≈ N13 + Z15
N15 P(A|B)P(B)+P(A|¬B)P(¬B)+P(B)−P(A∧B)+P(¬A|¬B)P(¬B) ≈ 1−0.5∗d ≈ N13 - Z15
N16 P(A|B)P(B)+P(A|¬B)P(¬B)+P(B)−P(A|B)P(B)+P(¬A|¬B)P(¬B) 1 ≈ 1+ k+ Z1 + Z11

Table 1: The 16 normality identities that should sum to 1 according to classical probability theory. The PPN column shows the
estimated predictions of the probability plus noise model and the QSS column shows that of the Quantum Sequential Sampler.
Predictions of Bayesian Sampler would be slightly different regarding the conditionals but mostly similar to that of PPN (Zhu
et al., 2020). Note in these two columns, N stands for the predicted values of the normality identities and Z stands for the
predicted values of the probability identities in Zhu et al. (2020) of the two models. In the PPN column, d ∈ [0,1] is the
cognitive noise parameter. In the QSS column, k stands for the predicted magnitude of violation of binary complementarity:
k = J(A)QSS +J(¬A)QSS −1. Event A in the table can be any arbitrary event in the probability space (e.g. in the election dataset
A can be either Biden wins or Trump wins).

plicitly test adherence to the normalization principle in proba-
bility judgments, which we referred to be the ’normality iden-
tities’ (see Table 1). We will evaluate how well probability
models predict these identities. Moreover, we will investigate
whether CRT scores can lend further insight about model per-
formance, in terms of the extent of normality identity viola-
tions for participants with different CRT scores.

Models of Probability Judgments
We first introduce several recent and influential models of
probability judgments. In later sections, we will evaluate
the effectiveness of these models in predicting the two novel
benchmarks. Note that we only focus on models capable
of offering a comprehensive explanation for a wide range of
probabilistic fallacies, rather than those limited to addressing
only one or two fallacies, e.g. averaging models (Abelson et
al., 1987; Yates & Carlson, 1986).

First, we consider the probability plus noise model (PPN)
(Costello & Watts, 2014, 2016a, 2017). This model as-
serts that while subjective probabilities adhere to Kol-
mogorov’s probability principles, they are not directly acces-
sible. Rather, they serve as the basis for a noisy sampling pro-
cess that yields the observed probability judgments. Specifi-
cally, the average probability judgment J(A)PPN for arbitrary
event A is given by:

J(A)PPN = dP(A)+(1−d)(1−P(A)), (1)

where d ∈ [0,1] is the chance that people miscount event A
as ¬A due to cognitive noise and P(A) denotes the subjec-
tive probability of A. To explain phenomena such as conjunc-
tion and disjunction fallacies in mean judgments, Costello &

Watts (2017) proposed that error propagation amplifies the
probability of miscounting to d +∆d (with ∆d < d) for such
judgments. Regarding conditional events A|B, Costello &
Watts (2016a) introduced a separate formula.

Another model employing the idea that probability judg-
ments stem from a noisy sampling process is the Bayesian
Sampler model (BS) (Zhu et al., 2023, 2020). But, in con-
trast to the PPN, the BS posits that fallacies emerge from
a Bayesian prior influencing probability judgments. Zhu et
al. (2020) proposed a formula indicating that for arbitrary
event A, the averaged judgment J(A)BS under a symmetric
beta prior Beta(β,β) is given by:

J(A)BS =
NP(A)+β

N +2β
, (2)

where N denotes the sample size of the noisy sampling pro-
cess and P(A) the subjective probability. For conditional
events, Zhu et al. (2020) do not introduce a distinct formula
like in PPN, rather use the same formula as for the marginals
in Equation 2. To address conjunction and disjunction fal-
lacies, Zhu et al. (2020) propose the use of reduced sample
size N′ ≤ N for conjunctions and disjunctions, assuming that
such judgments are computationally more expensive. BS was
recently modified to produce autocorrelated samples, differ-
ent from its original design of generating independent ones
(Zhu et al., 2023). Nonetheless, this autocorrelated version of
BS provides predictions that align with those of the original
model concerning the new benchmarks we introduce.

In addition to models that utilize cognitive noise to ex-
plain probabilistic fallacies, there exist models that ques-
tion whether subjective probabilities adhere to Kolmogorov
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Figure 1: Representative probability identities (Z1, Z2, Z5, Z7, Z9, Z11) in relation to CRT scores. The black lines represent
the averaged empirical data over all participants in each CRT group and the markers indicate the averaged predictions of the
models. The dashed line illustrates the normative expected values for these identities.

principles. A notable instance is a family of models based
on quantum probability theory (Pothos & Busemeyer, 2009;
Busemeyer et al., 2011). These models assert that various
probabilistic fallacies, which appear to contradict classical
principles, actually conform to the axioms of quantum proba-
bility. However, a significant issue with quantum probability
models is their inability to account for violations of certain
probability identities (Costello & Watts, 2016b). This chal-
lenge has recently been addressed by the Quantum Sequential
Sampler (QSS) model (Huang et al., 2023), which combines
quantum probabilities with noise. Unlike the noisy sampling
approaches of PPN and BS, QSS employs a Markov process
to formulate probability judgments. Notably, this Markov
process is characterized as a constant force process, where its
drift and diffusion parameters are contingent upon the quan-
tum subjective probabilities. Due to the inherent stochastic
behavior of the model near its boundaries, it is impractical to
derive definitive predictive formulas. For more details, Huang
et al. (2023) provides a comprehensive examination of the
model’s construction.

Dataset
We summarize several key aspects of the dataset in Huang
et al. (2023). First, Huang et al. (2023) recruited 1451 (908
male) participants just before the US Presidential election in
2020. Due to failures in attention tests, incomplete responses,
and other technical issues, the final dataset comprised 1162
participants (730 male). This dataset is, to our knowledge,
the largest of its kind for probability judgment research.

During the experiment, each participant took part in a sin-

gle 25-minute session, providing responses to 78 probabil-
ity judgments. These judgments evaluated the probability
of Trump and Biden winning the popular vote in various
states, treating Trump as the negation of Biden. The set of 78
questions encompassed all potential probability questions (in-
cluding all marginal, conditional, conjunction, and disjunc-
tion probabilities) concerning the Biden vs. Trump scenario
across a triplet of states. The study incorporated two different
state triplets for this assessment (Triplet 1: Ohio, Missouri,
Michigan; Triplet 2: Georgia, Montana, Nevada). To provide
an example, a representative probability question for Triplet 1
could be, “What is the probability that Trump will win Ohio
and Biden will win Missouri?”. For each probability ques-
tion, participants indicated their response using a slider of
integers from 0 to 100, marked at multiples of 5s. The slider
was initially positioned at 50, with the exact numerical values
displayed to the slider’s left for clarity. Additionally, proba-
bility judgments were always blocked by type (e.g., marginals
were shown together). At the end of the experiment, partici-
pants performed the cognitive reflection test. There were 386
participants with a CRT score of 0, 199 participants with a
CRT score of 1, 297 participants with a CRT score of 2, and
280 with a CRT score of 3.

BS and QSS were fitted to this dataset through the max-
imum likelihood method (detailed in Huang et al. (2023)).
Given that PPN employs a binomial likelihood distribution,
which can not be applied with the maximum likelihood
method, we fit it using the sum of square error approach, fol-
lowing Costello & Watts (2014).
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Binary Complementarities
Binary complementarity, a principle stating that the probabil-
ities of complementary events must sum to 1 (e.g., P(A) +
P(¬A) = 1), is a cornerstone of support theory (Tversky &
Koehler, 1994) and has received extensive backing in lit-
erature (Wallsten et al., 1993, 1997). However, instances
where binary complementarity is not upheld do occur ocas-
sionally (Macchi et al., 1999; Windschitl, 2000; Epping &
Busemeyer, 2023). BS and PPN are required to conform
to binary complementarity for averaged judgments. More
strongly, in these two models, for any event E ⊆¬A, the con-
dition P(A) +P(E) ≤ 1 must hold. A notable discovery in
Huang et al. (2023) is that binary complementarity does not
consistently hold in averaged judgments. This finding is par-
ticularly striking when considering that marginal probabili-
ties are presented adjacently within the same block. Accord-
ing to Huang et al. (2023), this discrepancy may arise from
the replacement of the complementary event ”not Biden” with
”Trump,” potentially leading to subadditivity effects that ex-
ceed 1 (Tversky & Koehler, 1994). Theoretically, only QSS
can account for this observed violation of binary complemen-
tarity in averaged judgments.

Figure 2: P(A)+P(¬A) as a function of the CRT score. Both
predicted and empirical values of P(A) + P(¬A) are com-
puted from averaging the magnitudes of all complementary
pairs across participants sharing the same CRT score.

Figure 2 displays the empirical and predicted values of
P(A) + P(¬A)1 in relation to the participants’ CRT score.
Empirically, as expected, P(A) + P(¬A) trends downwards
towards 1 (or 100 in the figure, since probability judgments
in Huang et al. (2023) are integers) as CRT scores increase.
This is plausibly because individuals inclined towards analyt-
ical and mathematical reasoning (higher CRT score) are less
likely to err in relation to binary complementarity, compared
to those who rely more on intuitive judgment (lower CRT
score). Statistically, this downward trend is quantified by a

1Here and after, event A symbolizes any arbitrary event in the
probability space, and it can be either marginal, conditional, con-
junction, or disjunction.

slope of -8.4925 (calculated across all data points within each
CRT group, not just their means), with a highly significant
p-value < 10−16. To further validate the significance of this
trend, Tukey’s range test was applied to the CRT groups, re-
vealing that in all comparisons, the p-value remained consis-
tently below 10−16. The QSS model closely aligns with this
trend with a significant slope (p-value < 10−16) of -6.6237.
In contrast, other models, due to their theoretical constraints,
fail to capture this effect.

Probability Identities
Costello & Watts (2014, 2016) introduced 18 probability
identities as benchmarks for evaluating computational mod-
els of probabilistic fallacies. Table 1 in Zhu et al. (2020)
summarizes these identities. According to Kolmogorov rules,
these identities are expected to be zero, but empirically, this
may not always be the case. Our current study aims to in-
vestigate whether these identities exhibit any correlation with
CRT scores. Given space constraints, we concentrate on iden-
tities Z1, Z5, Z7, Z9, Z10, and Z15, with their relationships to
CRT scores depicted in Figure 1. Plots and analyses for the
remaining identities can be found in our Github Repository
(available after anonymous review).

Violations of Z5 and Z7 are of significant interest, as PPN
predicts that Z7 should be approximately twice as large as Z5
(similarly for Z8 and Z6), a prediction that is empirically con-
firmed (Costello & Watts, 2014). This finding is replicated in
Huang et al. (2023). However, when it comes to explaining
the substantial magnitude of violations observed in Huang et
al. (2023), both PPN and BS encounter difficulties, resulting
in a sum of square error significantly higher than that of QSS
for both identities across all CRT groups. Despite this, Fig-
ure 1 shows that all three models generally exhibit a trend of
decreasing average violations for Z5 and Z7 as CRT scores
increase, aligning with the empirical trends. To confirm this
empirical decreasing trend for Z5 and Z7, a linear regression
model with CRT as the independent variable was fitted to all
data across each CRT group for both Z5 and Z7. The re-
sulting slopes are -9.0466 for Z5 and -18.2085 for Z7, with p
values < 10−16 for both. These trends are further validated by
Tukey’s range test, which shows significant differences across
all comparisons for both identities, with p values consistently
below 10−16. The slopes again reveal that Z5 is about half
the magnitude of Z7 across all CRT groups. All three mod-
els exhibit significant negative slopes for both Z5 and Z7 (p
values < 10−16) with slopes for Z5 being approximately half
that of Z7, effectively reflecting the empirical trend. Similar
outcomes are also observed for Z6 and Z8.

The identities Z10 to Z13 are of particular importance as
they highlight scenarios where the PPN fails to accommodate
deviations from zero, a phenomenon that has been reported
in both Zhu et al. (2020) and Huang et al. (2023). While BS
theoretically allows for individual-level violations of these
identities, when it was applied to the elections dataset, the
average prediction yields zero across participants. A clear
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Figure 3: The upper bar plot shows the averaged value of normality identities for empirical data and model predictions over all
participants for the Michigan and Ohio pair. The lower plots show representative normality identities (N3, N7, N8) in relation
to CRT scores. The bars in the upper plot represents the averaged empirical values. The lower plots use the same setup as those
in Figure 1.

trend of averaged empirical deviations from zero in relation
to CRT scores is observed for these identities, with more sub-
stantial deviations at lower CRT scores (as illustrated by Z10
in Figure 1, with Z11 to Z13 displaying similar trends). Us-
ing linear regression with the same setup as previously, we
determined that the slopes for Z10 to Z13 (all near -6.6) are
statistically significant, each with p values < 10−16. Tukey’s
range test reinforces this result, indicating significant differ-
ences across all comparisons. QSS adeptly reflects this trend,
showing slopes for Z10 to Z13 (all around -6.1) that are sig-
nificant, each with p values < 10−16. However, as expected,
BS and PPN do not exhibit slopes significantly different from
0 for Z10 to Z13, with corresponding p values nearing 1.

There are also identities that, on average, do not ex-
hibit empirical violations and remain consistent across CRT
groups. Z2 and Z9 are examples of such identities, as illus-
trated in Figure 1. Linear regression analysis indicates that
neither the models nor the data predict a significant nonzero
slope for these identities, with p values all close to 1. The
stability of these identities were confirmed by Tukey’s range
test, which also yields p values near 1 for all comparisons.
This consistency is noteworthy, considering that participants
made each judgment independently, unaware of the expected
values for these identities. The stability of these identities
around zero, regardless of CRT score, confirms the invari-
ances of Bayes’ rules (Z9) and additivity properties (Z2) re-
ported in Costello & Watts (2018). It further underscores that

such invariances are not solely the result of deliberate mathe-
matical thinking: even participants prone to fast and intuitive
responses, as indicated by a CRT score of 0, adhere to these
identities.

Finally, while QSS surpasses PPN and BS in most identi-
ties, it underperforms in one specific case: Z1. As depicted
in Figure 1, both PPN and BS accurately reflect the empiri-
cal trend that averaged Z1 remains stable across CRT groups
around zero. In contrast, QSS exhibits a statistically signifi-
cant positive trend for Z1 as a function of CRT group, with a
slope of 0.91352 and a p value < 10−16. This shortcoming in
QSS’s performance can likely be attributed to its ’more likely
first’ assumption, where in conjunctions the more probable
predicate is processed first. Due to this assumption, the in-
terference terms from the conjunction and disjunction do not
cancel out each other, resulting in an overestimation of Z1.
Our finding about Z1 suggests that there is room for refining
the probabilistic calculus within the QSS model.

Normality Identities
Building upon the probability identities introduced in
Costello & Watts (2014, 2016a), we develop a new set of 16
identities, termed ”normality identities.” These identities, as
per classical probability theory, should always sum to 1. Ta-
ble 1 summarizes these normality identities, along with the
corresponding approximate predictions from PPN and QSS.
Normality identities can be derived from binary complemen-
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tarity violations (denoted as v) and probability identities, but
violations of either do not automatically imply a violation of
normality identities. For instance, when Z15 equals v, N8
can still meet classical expectations of being 1, despite non-
zero values of Z15 and v, similar to noise cancellations in
Costello and Watts’ identities. On the other hand, violations
of normality identities also don’t necessarily indicate viola-
tions in both binary complementarity and probability iden-
tities: for instance, N1 may deviate from 1 with either v
or Z11 being zero (but not both). Moreover, even without
binary complementarity violations, normality identities can
help elucidate the connection between different probability
identities, like N4 highlighting the connection between Z5
and Z11. Nonetheless, the focus of the current paper is to
evaluate model predictions regarding these identities and their
correlation with CRT scores, rather than to extensively ana-
lyze the interplay between various identities, a task reserved
for future research.

The upper panel in Figure 3 presents the averaged empir-
ical values of the normality identities alongside the models’
average predictions over all participants. It is evident that the
means of all 16 normality identities differ from 1 (or a rating
of 100) in the election dataset. One-sample t tests confirm
this deviation from a rating of 100 for all normality identities,
with all p values < 10−16. A closer examination of the figure
also reveals that QSS consistently outperforms both PPN and
BS across all 16 normality identities. This superior perfor-
mance is partly attributed to the theoretical limitations of BS
and PPN, which are constrained to not exceed 1 for particu-
lar identities: for N9 and N12, both models are theoretically
expected to predict empirical means of 1.

A more pronounced issue arises for PPN and BS con-
cerning the correlation between normality identities and CRT
scores. Using linear regression as in the previous section,
we observe that all normality identities exhibit a significant
negative slope against CRT scores, with all p values < 10−16.
However, for many identities, including those where PPN and
BS can theoretically predict deviations from 1, the two mod-
els either fail to show a significant negative slope or present
one much less steep than that of the empirical data (e.g. N3,
N7, N8 in Figure 3). In the case of N3, although PPN and
BS predict significant negative slopes, their magnitudes (-
10.77326 and -6.47037, respectively) are substantially lower
than the empirical data’s slope of -26.60998. Conversely,
QSS’s prediction of -23.16711 is closely aligned with this
empirical trend. Similarly, for N7, while the data shows
a slope of -22.82394, PPN and BS predict much smoother
slopes (-2.693315 and -1.617592, respectively), in contrast to
QSS’s estimate of -20.51246, which more accurately reflects
the empirical tendency.

More critically, for N8 (and similarly for N11), PPN and
BS predict a significant positive slope, in contrast to the sig-
nificant negative slope observed in both the empirical data
and the QSS predictions. The reason for this issue lies in the
prediction from these models that N8 and N11 should be ap-

proximately 1−Z15. Given that Z15 is empirically shown to
have a positive value, these models must predict that N8 and
N11 are mostly below 1. As CRT scores increase, N8 and
N11 are predicted to approach their normative expectation of
1, leading PPN and BS to predict a positive slope. This qual-
itative mismatch between actual trends of N8 and N11 with
CRT scores and the predictions by PPN and BS models un-
derscores potential areas for their improvement.

An intriguing aspect of N8 and N11 are their “1 crossing”
effect: the mean values of N8 and N11 continue to decrease
below a rating of 100 as CRT score increases (as illustrated in
Figure 3). This decreasing trend that persists below 100, ro-
bustly supported by regression analysis, stands in stark con-
trast to the patterns observed for all other identities, including
those in Costello & Watts (2014, 2016b), where higher CRT
scores typically correlate with values aligning more closely
with normative expectations. An important implication of the
“1 crossing” effect is that probabilistic fallacies are likely in-
fluenced by factors beyond just cognitive noise, as lower cog-
nitive noise is generally associated with more normative re-
sponses. Why QSS can capture this trend and the underlying
mechanisms inducing this effect remain open questions for
future exploration.

General Discussion

We’ve introduced two new benchmarks for evaluating proba-
bility judgment models: the impact of CRT scores on proba-
bility judgment expressions, and normality identities, which
complement existing probability identities from Costello and
Watts (2014, 2016). Assessing three models – Probability
Plus Noise (PPN), Bayesian Sampler (BS), and Quantum Se-
quential Sampler (QSS) – we found a decrease in violations
with higher CRT scores, best captured by QSS. In terms
of normality identities, QSS also outperforms PPN and BS,
which fail to accurately capture the way these identities cor-
relate with CRT scores. This is especially notable for N8 and
N11, where PPN and BS demonstrates a correlation opposite
to that of the empirical data.

We briefly mention three future directions to pursue. First,
although CRT score is a valuable measure of individual dif-
ferences, its relationship to cognitive noise might be only par-
tially diagnostic. A more diagnostic indicator of cognitive
noise is cognitive load, which quantifies the mental resources
required to process information in working memory. In up-
coming experiments, one can investigate how cognitive load
correlates with probabilistic fallacies and probability judg-
ment expressions in a manner similar to our analyses for CRT
scores. Secondly, the notable ”1 crossing” effect seen in N8
and N11 merits further investigation. This phenomenon sug-
gests that there are underlying processes identified by CRT
that encompass more than just cognitive noise and straightfor-
ward mathematical reasoning. Finally, the two novel bench-
marks proposed can also be applied to other dataset besides
the current one, including those with repeated measurements.
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