
UC Irvine
UC Irvine Previously Published Works

Title
Weighted hurdle regression method for joint modeling of cardiovascular events likelihood 
and rate in the US dialysis population.

Permalink
https://escholarship.org/uc/item/2g4212vt

Journal
Statistics in Medicine, 33(25)

Authors
Sentürk, Damla
Dalrymple, Lorien
Mu, Yi
et al.

Publication Date
2014-11-10

DOI
10.1002/sim.6232
 
Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/2g4212vt
https://escholarship.org/uc/item/2g4212vt#author
https://escholarship.org
http://www.cdlib.org/


Weighted Hurdle Regression Method for Joint Modeling of
Cardiovascular Events Likelihood and Rate in the U.S. Dialysis
Population

Damla Şentürka, Lorien S. Dalrympleb, Yi Muc, and Danh V. Nguyend,e,*,†

aDepartment of Biostatistics, University of California, Los Angeles, California 90095, U.S.A.

bDivision of Nephrology, Department of Medicine, University of California, Sacramento, California
95817, U.S.A.

cDivision of Biostatistics, Department of Public Health Sciences, University of California, Davis,
California 95616, U.S.A.

dDepartment of Medicine, UC Irvine School of Medicine, Orange, CA 92868-3298, U.S.A.

eInstitute for Clinical and Translational Science, University of California, Irvine, California
92687-1385, U.S.A.

SUMMARY

We propose a new weighted hurdle regression method for modeling count data, with particular

interest in modeling cardiovascular events in patients on dialysis. Cardiovascular disease remains

one of the leading causes of hospitalization and death in this population. Our aim is to jointly

model the relationship/association between covariates and (a) the probability of cardiovascular

events, a binary process and (b) the rate of events once the realization is positive - when the

‘hurdle’ is crossed - using a zero-truncated Poisson distribution. When the observation period or

follow-up time, from the start of dialysis, varies among individuals the estimated probability of

positive cardiovascular events during the study period will be biased. Furthermore, when the

model contains covariates, then the estimated relationship between the covariates and the

probability of cardiovascular events will also be biased. These challenges are addressed with the

proposed weighted hurdle regression method. Estimation for the weighted hurdle regression model

is a weighted likelihood approach, where standard maximum likelihood estimation can be utilized.

The method is illustrated with data from the United States Renal Data System. Simulation studies

show the ability of proposed method to successfully adjust for differential follow-up times and

incorporate the effects of covariates in the weighting.
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1 Introduction

As of 2010, end-stage renal disease (ESRD) affected more than 570,000 adults in the United

States. Of these, more than 400,000 were on dialysis, a life-sustaining treatment [1]. Annual

mortality for patients on maintenance dialysis is approximately 20–25% with overall 5-year

survival lower than most malignancies [1]. ESRD is associated with accelerated mortality,

and cardiovascular (CV) disease is the leading cause of death, accounting for nearly half of

all deaths [1]. Furthermore, CV disease and infection remain the leading causes of

hospitalization and death in these patients [1]. Prior studies have shown an increased risk of

CV events following infections in the general population [2] based on the United Kingdom

General Practice Research Database [3] and similarly in the U.S. dialysis population using

the United States Renal Data System (USRDS) database [4] – [7]. Mechanistically,

infections may have acute effects on the vascular endothelium and may contribute to a

chronic sub-clinical inflammatory state that influences atherogenesis and/or progression of

atherosclerosis. To date, studies have not examined the association between patient-level

risk factors, including infection, jointly with (a) the likelihood of CV events and (b) the

subsequent occurrence (rate) of CV events. Thus, factors associated with (a) or (b) or both

are not clear.

Therefore, in this study, we propose a joint model to examine factors associated with CV

likelihood (CV “onset”) and subsequent CV occurrence (CV “recurrence/progression”).

More specifically, we propose a new weighted hurdle regression method for zero-inflated

count data to jointly model the association between (a) the likelihood/probability of

cardiovascular events, such as myocardial infarction or stroke, during a fixed study period

(e.g., five years from the start of dialysis) and (b) the rate of cardiovascular events as a

function of individual covariates, including infection-related hospitalization, demographics

and comorbidities among other factors. More specifically, we consider a hurdle regression

model, which simultaneously models the binary process (presence or absence of

cardiovascular events) and a zero-truncated count process for the positive cardiovascular

event counts. The standard hurdle model/distribution for the number of cardiovascular

events for person i, denoted Yi, under equal follow-up time for all individuals is

(1)

where πi = Pr(Yi > 0) and distribution of the positive counts is taken to be a zero-truncated

Poisson distribution with rate λi in (1). Both πi and λi may depend on covariates as detailed

in Section 2. The underlying motivation for this model is based on our conceptualization that

each patient on dialysis has an individual-specific probability of having a cardiovascular

event; thus, a binomial probability model governs the binary outcome process of having no

or positive cardiovascular events. Once the realization is positive - the ‘hurdle’ is crossed -

the conditional distribution of positive counts of cardiovascular events is modeled as a zero-

truncated distribution, such as a zero-truncated Poisson for yi > 0 as in (1). This hurdle

model conceptualization, in addition to allowing each individual to potentially have of one

or more events, will also account for excess zeros. Excess zeros are common in count data,
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as exhibited by our data (Vuong’s test for zero-inflation [8]: test statistic −47.22, p < 0.0001,

indicating significant zero-inflation).

However, when the observation period or follow-up time varies among individuals, ignoring

the differential follow-up times will result in biased estimates for the probability of positive

cardiovascular events (i.e., the binary outcome) in the standard hurdle model (1). The

variable follow-up times for the positive count process is handled naturally through an offset

term, as is typically done in log-linear Poisson regression. Our proposed weighted hurdle

regression model addresses the variable follow-up time for the binary process by

incorporating a weight function w(ti), where ti is the follow-up duration for individual i, w(ti)

is increasing in ti and w(ti) = 1 if an individual’s follow-up period is complete (e.g., s/he was

followed for five years from the start of dialysis). This weighting accounts for the simple

fact that the likelihood of observing a first cardiovascular event after the start of the study is

higher for individuals who are followed up for longer periods of time, all other things being

equal. When the binary process of the model does not depend on covariates, then w(ti) can

be estimated nonparametrically, based on the Kaplan-Meier estimate [9] of the time to the

(first) cardiovascular event distribution. This weighting approach to adjust for the variable

follow-up time without covariates is based on the works of [10, 11] who considered

weighting in the zero-inflated Poisson (ZIP) model for the recurrence of adenomas, which

were based on similar ideas from [12, 13].

When the binary process depends on covariates, in addition to variable individual follow-up

times, we develop a weight function w(ti, zi) that depends on covariate values for individual

i, denoted zi, to model the association between the likelihood of cardiovascular events and

individual covariates, including demographics and comorbidities. The weight function w(ti,

zi), incorporating both follow-up time and covariates, can be estimated semiparametrically

based on the Cox regression model [14] or parametrically, for instance.

We note that the standard hurdle model (1) appears to have been developed independently

by Mullahy [15] in economics applications, King [16] in political science applications for

international relations, and Heilbron [17, 18] for the U.S. National AIDS Behavioral Study

data. It accounts for excess zero counts, and in this sense, is similar to the ZIP model

originally developed for modeling counts of defective components in manufacturing

processes by Lambert [19]. However, the ZIP model formulation assumes that there are two

subpopulations, one producing standard counts including zero counts (e.g., via a standard

Poisson distribution) and a second subpopulation that produces only zeros. In the

manufacturing process application, the second subpopulation can be conceptualized to

represent a perfect manufacturing state that produces only perfect components. Similarly, in

modeling counts of a behavior (e.g, smoking frequency or sexual behavior) a subpopulation

of complete abstainers can be conceptualized that produces additional zero counts. For our

application to cardiovascular events (outcome), we choose to develop a weighted hurdle

model because it is more biologically plausible that the likelihood of a cardiovascular event

depends on an individual’s complex underlying genetic propensity, co-existing illnesses

(e.g., diabetes, hypertension), habits (e.g., tobacco use), body composition, among other

factors.
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This paper is organized as follows. We develop the weighted hurdle regression model in

Section 2, where we formulate the aforementioned weight functions, with and without

covariates, to account for variable individual follow-up times. In Section 3, the proposed

method is illustrated using data from the USRDS with an application to modeling counts of

cardiovascular events. Simulation studies illustrating the efficacy of the proposed method

are summarized in Section 4 and we conclude with a brief discussion in Section 5, where we

outline implementation of the proposed method in standard statistical softwares.

2 Weighted Hurdle Regression Model

For simplicity, we first consider incorporating the duration of follow-up in estimating the

probability of positive counts of cardiovascular events through a weight function of time-to-

event that does not depend on covariates. As introduced earlier, let ti denote the follow-up

time for individual i and let the study period length of interest be τ. For example, we

consider τ = 5 years from the initiation of dialysis for our cohort, since the median patient

survival is approximately 3 years. To incorporate variable follow-up time, we consider an

increasing weight function w(ti), with 0 < w(ti) ≤ 1, where w(ti) = 1 indicates that the

individual’s follow-up period is complete, i.e., ti = τ. This weighting accounts for the

increased likelihood of observing a first cardiovascular event after the start of the study for

individuals who are followed up for longer periods of time. Further, let  be the true

number of cardiovascular events during the full follow-up period of interest (length τ) and Yi

be the observed number of cardiovascular events during the actual follow-up period. To fix

notations, consider the simplified case where the probability of positive cardiovascular

events during this period does not depend on individual covariate characteristics:

, for all i. The probability of no cardiovascular events at time ti, Pr(Yi = 0;

ti), is defined as 1 — F(ti), where F(ti) is the distribution function for the time to the first

cardiovascular event. We assume that the probability of observing positive cardiovascular

events at time ti is . The weighted hurdle model at

time ti, accounting for variable follow-up ti, is

(2)

where the Poisson rate λi = λ(xi) depends on q1 covariates xi. The weight function of time-

to-event w(ti) is defined to be

(3)

where S(ti) denotes the survival distribution function. The weight function in (3) does not

depend on covariates. Therefore, the weights can be evaluated using the nonparametric

Kaplan-Meier survival curve estimate, Ŝ(ti), based on the time to first cardiovascular event.

That is, ŵ(ti) = (1 — Ŝ(ti))/(1 — Ŝ(τ)).

In more realistic applications, the probability of positive cardiovascular events during the

study period of interest will depend on individual covariate characteristics. Thus, we need to
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model , where the q2 covariates zi that affect the binary process may

be chosen to be different from the q1 covariates xi that affect the Poisson rates (λi) generally.

Therefore, we assume a more general model that incorporates variable follow-up time and

covariate effects for the binary process; specifically,

. Consequently, the more general

weighted hurdle model at time ti, accounting for both variable follow-up ti and covariates (zi

and xi), is

(4)

where the binomial probability πi now depends on the q2 covariates zi, πi = π(zi), and the

Poisson rate is λi = λ(xi). Choices for the link functions to relate the covariates zi and xi to

the binomial probabilities (πi) and Poisson rates (λi), respectively, are needed. For this we

consider the common logit and log link functions for binary and count outcomes,

respectively:

(5)

although other choices of link functions are possible.

Naturally, the weight function (3) generalizes to accommodate the covariates zi in the binary

process as

(6)

where the survival distribution function S(ti; zi) now depends on individual covariates.

Depending on the specific model for S(ti; zi) or equivalently F(ti; zi), traditional flexible

parametric and semiparametric survival analysis techniques can be utilized to evaluate the

weight function w(ti, zi). For this, denote the survival function estimate by Ŝ(ti; zi); then the

plug-in estimate of the weight function is w(ti, zi) with ŵ(ti, zi) = (1 — Ŝ(ti; zi))/(1 — Ŝ(τ;

zi)). To more concretely illustrate the computation, consider the popular semiparametric Cox

regression for estimating the survival function which depends on individual covariates. In

this case, , where ξ̂ and Ŝ0(ti) are the parameter and baseline survival

function estimates from the Cox regression model fit with covariates zi and using the time to

first cardiovascular event (or the time at the end of follow-up if censored), respectively. We

note that generally the coefficients ξ, which are estimated by ξ̂, are a function of the

parameters of interest, namely 7 for the binomial part of hurdle model: . This

is further discussed in the Appendix section. As mentioned above, other approaches to

estimate survival, including parametric models, may be used to estimate the survival

function; the proposed weighting framework for adjustment does not depend on the Cox

model estimate of survival or its assumptions.
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Thus, the weighted hurdle regression model, defined by (4)–(6), relates (a) the covariates zi

to the probability of positive cardiovascular events during the study period of length τ and

(b) the covariates xi to the cardiovascular event rate (given positive cardiovascular events),

with both binary and count processes accounting for variable follow-up time ti. Maximum

likelihood estimates of the model parameters (γ, β) can be based on the weighted hurdle

likelihood for n subjects from the distribution function (4). Thus, the weighted hurdle

likelihood is

(7)

where δi = yi > 0) and E) is the indicator function for event E. The weighted hurdle log-

likelihood l(γ,β) ≡ log L(γ,β) factors: l(γ,β) = l(γ)l(β), with

where . Thus, the MLE for γ and

β can be obtained by separately maximizing l(γ) and l(β), respectively. Additionally, it can

be seen that the weights only impact the estimation of β. In (7) the weights, w(ti, zi), are

replaced by estimates based on the data as described above. For this reason, and since the

weights are estimated in practice, we estimate the weights based on a subset of the data and

the remainder of the dataset is retained for estimation of γ in the binomial part of the model.

For example, in the data analysis, data for 20% of the subjects were used to estimate the

weight function, while data on the remaining 80% of the subjects were used for estimation

of γ. We note that although the estimates γ̂ will target the true parameters γ (without splitting

the data), this approach will ensure that inference (e.g., confidence interval coverage) will be

correct as well. Implementation using standard software, including SAS and R, are described

in the Appendix.

We note that the ideas proposed here directly generalize to other link functions; more

generally,  for (5). Furthermore, one may also choose to model

the positive count via another zero-truncated discrete distribution for (4). Conceptually, little

will be gained from presenting the proposed weighted hurdle regression model in more

general notations; therefore, we simply define the proposed weighted hurdle regression

model through equation (4)–equation (6).

3 Application to Cardiovascular Events in Patients on Dialysis

To illustrate the proposed weighted hurdle regression method, we use data from the United

States Renal Data System (USRDS), which collects data on nearly all (> 95%) patients with

end-stage renal disease in the U.S. The USRDS is a national database that collects and

maintains standard analytic files, including data on inpatient hospitalizations submitted to

Medicare, patient demographics, dialysis modality, comorbidities and laboratory measures

at the start of dialysis. We used USRDS data with follow-up through December 31, 2009.
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The defined population included patients aged 18 or older who newly initiated dialysis

between January 1, 2000 and December 31, 2007 without a prior history of renal transplant.

Furthermore, patients were eligible for inclusion if (a) they survived the first 90 days of

dialysis and did not recover renal function or receive a kidney transplant during this interval,

(b) had Medicare as the primary payer on day 91 of dialysis, and (c) were receiving

hemodialysis or peritoneal dialysis on day 91 of dialysis. Thus, the observation period began

on day 91 of dialysis. The follow-up period for an individual ended at the time of kidney

transplantation, renal function recovery, death, study end on December 31, 2009 or five

years after the start of dialysis. For this analysis, the study period of interest was τ = 5 years

from the start of dialysis; this captured the follow-up lengths of most patients on dialysis.

Furthermore, the median survival in this cohort is about 3 years.

The outcome variable was the count of the number of cardiovascular events, defined as

myocardial infarction (MI), unstable angina, stroke, or transient ischemic attack (TIA),

determined from primary discharge diagnosis and based on the International Classification

of Disease, 9th Revision, Clinical Modification (ICD-9-CM) codes. The modeling objective,

as described by equations (4)–(6), is to estimate the relationship/association of covariates

with (a) the probability of positive cardiovascular events (binary/binomial process) during

the five (τ) year-period after the start of dialysis and (b) the rate of cardiovascular events,

conditioned on positive cardiovascular events. Covariates of interest include infection-

related hospitalization rate during follow-up (per person-year), demographic variables (age,

race, sex and ethnicity), comorbidities (congestive heart failure, coronary heart disease,

cerebrovascular disease, peripheral vascular disease, hypertension, diabetes, chronic

obstructive pulmonary disease and cancer), inability to ambulate or transfer, tobacco use,

body mass index (BMI = kg/m2) and MDRD eGFR (estimated glomerular filtration rate

based on the Modification of Diet in Renal Disease (MDRD) equation from the National

Kidney Foundation [20]). We restrict our analysis to cases where infection-related

hospitalization rate is no more than 12 per person-year during follow-up, which represents

99.4% of the data. Similar to cardiovascular events, an infection-related hospitalization was

ascertained based on the principal discharge diagnosis and based on CD-9-CM

classification.

The final analysis cohort consists of n = 434, 547 subjects. Table 1 summarizes the

covariates used for the weighted hurdle regression for the analysis cohort. The average

follow-up time was 2.43 years (standard deviation [SD] 1.66), showing that most patients

were not followed for the full τ = 5 years from the start of dialysis and, hence, the need to

account for variable follow-up time. With respect to infection-related hospitalization rate

(mean 0.65 per person-year, SD 1.29) during the study period, 50.55% of individuals have

no infection. The remaining 30.09, 10.72, 3.82, 1.83 and 2.98% of individuals have

infection-related hospitalization rate in the range of (0, 1], (1, 2], (2, 3], (3, 4] and (4, 12] per

person/year, respectively.

The result of the weighted hurdle regression model fit is summarized in Table 2 using the

same covariates for the binomial and Poisson process (i.e., zi = xi). The estimates for the

binomial component of the weighted hurdle model are provided in Table 2(A) along with

95% confidence intervals (CIs). Older patients and higher infection rate are associated with
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an increased likelihood of positive cardiovascular events during the five-year study period,

with 2.6% higher odds per year increase in age and 30.7% higher odds with each additional

infection-related hospitalization per person-year. Male sex is associated with a lower odds

(odds ratio [OR] 0.830, 95% CI 0.811–0.849) as is Hispanic ethnicity. Also, race ‘black’ and

race ‘other’ have lower odds compared to race ‘white’. We observe a slight negative BMI-

positive cardiovascular events risk association (OR 0.987), similar to other studies

examining BMI and mortality in the hemodialysis population (e.g., [21]). Patients with

congestive heart failure, coronary heart disease, cerebrovascular disease, peripheral vascular

disease, hypertension and diabetes have a higher likelihood of cardiovascular events. The

largest increased odds of cardiovascular events were about 51%, 43% and 33% associated

with diabetes, cerebrovascular disease and coronary heart disease, respectively.

Conditioned on observing positive cardiovascular events, estimates of the relative rates

(RRs) of cardiovascular events for the zero-truncated Poisson model are presented in Table

2(B). Infection-related hospitalization rate is also positively associated with increased

cardiovascular event rates (RR 1.146, 95% CI 1.124–1.169) and males have lower rates

relative to females (RR 0.926, 95% CI 0.90 – 0.953). Diabetes, cerebrovascular disease and

coronary heart disease are significantly associated with higher rates of cardiovascular

events, similar to their effects on the probability of positive cardiovascular events from the

binomial component of the model. However, conditioned on positive cardiovascular events,

the relative rates of cardiovascular events are no longer associated with race, ethnicity,

congestive heart failure, hypertension and tobacco use. (For the interested reader, results

from an unweighted, biased, analysis are presented as supplemental materials available at

http://www1.icts.uci.edu/dnguyen/suppl_wthurdle.html.)

We note that a general issue for consideration modeling count data is overdispersion - that

is, the variance exceeds the mean. In such cases, a negative binomial (NB) model can be

used to account for overdispersion, where the zero-truncated Poisson part in (4) by the zero-

truncated NB distribution. For our data, we also fitted a NB hurdle model. The estimated

dispersion parameter from the NB model fit is extremely small (log(dispersion) = −9.68, SE

13.25, z = −0.73, p = 0.4654) and does not indicate overdispersion. Not surprising, in this

case, the conclusions/interpretations of parameter estimates and their significance from the

Poisson hurdle and NB hurdle remain the same. (The estimates from the two model fits are

nearly identical [results not shown]).

Finally, we note that, as described in Section 2, estimation of the weight function was based

on a random selection of 20% of the subjects and using Cox regression. The remaining 80%

of the data were used for estimation of model parameters of interest, γ. We considered

sensitivity analyses that varied the amount of data used for estimating the weights; the

results suggest that the conclusions summarized in this section above remain the same

(results not shown). This issue is examined more systematically in Section 4.3, where we

varied the amount of data used to estimate the weight function under small to moderate

sample size settings.
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4 Simulation Studies

In this section, we report on simulation studies, with simulated data similar to the USRDS

data described above. The main objective is to assess the efficacy of the proposed weighted

hurdle regression model, through the weighting function w(ti, zi), to target the true

regression coefficients γ; hence, correctly estimating the true probabilities of positive

cardiovascular events, πi = π(zi) in the binary process model, . The Poisson

model parameters β account for variable follow-up time ti directly through the rate λi with

offset log(ti); therefore, we expect β̂ to target β correctly. The weights are pertinent to the

assessment of whether γ̂ properly targets γ in the binary process. In what follows we also

include comparisons to no weighting (i.e., ignoring differential follow-up time in the

binomial model).

4.1 Estimation

In this Monte Carlo simulation study, we considered a combination of discrete and

continuous covariates that mimic the corresponding covariates in the USRDS data. More

specifically, we considered simulated data with covariates similar to the observed data in

USRDS for sex (Sex), age at the start of dialysis (Age), body mass index (BMI) and MDRD

eGFR (eGFR). For n subjects, we generated 54% males through Sex ~ Bin(n, 0.54), and

gender-specific age at the start of dialysis using skewed normal (SN) distributions [22]:

Age|male ~ SN(ζ m, ωm, αm) and Age|female ~ SN(ζf, ωf, αf) with location, scale and

shape parameters ζm = 82.34, ωm = 23.95, αm = −4.92, respectively; similarly, for females ζf

= 82.02, ωm = 22.65, αm = −4.39. Figure 1 shows the SN fits to the observed skewed-left

ages of patients. To induce a slight negative correlation of about −0.15 between BMI and

Age in the observed data, BMI was generated from a Gamma regression model with identity

link: BMIi ~ Gamma(si, a) with mean depending on Agei, si = (34 − 0.08 Agei)/a, where a =

14.33 is the Gamma shape parameter. Finally, eGFR was generated from a Gamma(2.82,

3.74) distribution. The above parameters used to generate the covariate data (Sex, BMI,

Age, eGFR) were based on the observed data. Figure 1 summarizes the simulated

covariates along with the observed data. Denote the collection of the covariates for subject i

by zi.

Next, the time-to-event (“first cardiovascular event”) for each subject was obtained from a

distribution function . The follow-up time (censoring) distribution is denoted by

G(ti) and is independent of event times. We considered two time-to-event distributions,

Weibull and exponential. For the Weibull distributed time-to-event,

, where  depends on the covariates zi with

coefficient vector γ̂, θE is a baseline parameter, and νE is the Weibull shape parameter. For

the exponential time-to-event, , where similarly 

and θE is the baseline rate parameter for the exponential distribution (i.e., Weibull with

shape parameter νE = 1). This setup allowed for examining the performance of the proposed

weighted hurdle regression model under both constant (exponential) and non-constant

(Weibull) hazards for time-to-event. For the follow-up time distribution G(ti), we also

considered Weibull (with scale θC and shape νC) and exponential (with rate θC)

Şentürk et al. Page 9

Stat Med. Author manuscript; available in PMC 2014 November 09.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



distributions. We selected the “baseline” parameters for  and G(ti) as (θE, νE) = (0.1,

1.5) and (θC, νC) = (0.3, 1.5), respectively, for the Weibull case. For the case of exponential

distribution we take θE = 1/3 and θC = 1/2. These parameters were chosen so that the

percentage of the observed times of first event  that occur prior to the follow-up time (ti)

is about 15%, i.e., , similar to the USRDS data analysis in Section 3.

Finally, the events count Yi is simulated according to the hurdle distribution. That is, if the

event time is greater than the follow-up time  then Yi = 0 since we would not be able

to observe the event, where ti is taken to be min{ti, τ} to ensure that data collection stops at

the end of follow-up time or the end of the study period of length τ = 5. Otherwise, if 

then the number of events, Yi, is simulated from a zero-truncated Poisson distribution with

mean λi ti, where . For simplicity, and without loss of generality, we take xi =

zi. Throughout, all simulation studies consist of 1,000 simulated datasets/replications.

The simulation study results are provided in Table 3, where a summary of the maximum

likelihood estimates for the weighted hurdle regression model over 1,000 simulated datasets,

with n = 6,000 8,000 and 10,000, are provided. The true coefficients of interest are γT =

(−2.0, −0.25, −0.03, 0.05, −0.05) and βT = (−4.0, −0.12, −0.05, 0.07, −0.10). Similar to the

data analysis, the estimated weights used in the likelihood (7) are based on the fitted Cox

regression using 20% of the data (0.2 × n) for the binomial model and the remaining 80%

are used for estimating γ. The results from Table 3 show that the estimates γ̂ target the true

parameters γ for the binomial/logit model, ; and, as expected, the Poisson

parameters are correctly targeted as well. These results hold similarly for both non-constant

hazard (Weibull distribution; Table 3(A)) and constant hazard (exponential distribution;

Table 3(B)). Also, as expected, variation in the parameter estimates decreases with

increasing sample size.

As a baseline comparison, we provide in Table 4 the corresponding simulation studies

ignoring the differential follow-up time in the binomial fit (i.e., without weighting). These

results show that although the variance is decreasing with sample size, the estimation bias of

γ̂ remains without weighting. Clearly, ignoring differential follow-up time in the binomial

model is not an option since the estimated probability of events during the study period will

be biased.

4.2 Confidence Interval Coverage

As described in Section 2 and implemented in the data analysis, we split data for estimation

of the weights and γ separately for the binomial fit. For instance, in the data analysis we

used 20% of the subjects for estimating the weights, while data on the remaining 80% of the

subjects were used for estimation of γ. As noted in Section 2, although the estimates γ̂ will

target the true parameters γ without splitting the data, this approach will ensure that

inference procedures, such as confidence interval coverage will be valid. Thus, we

performed simulation studies in this section to examine 95% confidence interval coverage;

the results are summarized in Table 5. First, we note the coverages for the Poisson model of

the positive counts for the (A) proposed weighted hurdle model accounting variable follow-
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up time, and (B) hurdle model without weighting (ignoring variable follow-up time) are near

the target of 95%. However, for the binomial part of the model, only the proposed weighted

hurdle model accounting for variable follow-up time provide adequate coverage, as expected

due to the severe bias.

4.3 Small-Moderate Sample Sizes and Sensitivity to Amount of Data Used to Estimate the
Weight Function

In this section we detail simulation studies to further examine the following issues: (a) the

performance of the proposed method under small to moderate sample size and (b) the

sensitivity to the amount of data used to estimate the weight function. To properly examine

these issues, one must keep in mind the effective sample size in the context of censored data,

such as for estimation of the Cox regression model; this is the number of events (uncensored

observations). Under similar simulation design settings as described above, we consider a

nominal sample size of n = 600, 800 and 1000 and the overall rate of censored observations

is 75%. We varied the percentage of data used for estimation from 20%, 30%, 40% to 50%

of the nominal sample size n. Thus, with respect to the estimation of the weight function

(using Cox regression), the corresponding effective sample sizes, denoted ne, are ne = 30,

45, 60, and 75 for n = 600. Similarly, the effective sample sizes are ne = (40, 60, 80, 100)

and ne = (50, 75, 100, 125) corresponding to n = 800 and n = 1000, respectively. These

settings were designed to push our proposed method to the breaking point in order to

provide practical guidance on the aforementioned issues (a) and (b). The results are

summarized in Table 6. First, not surprisingly, the proposed method still performs well (still

targets the true parameters well) for small to moderate sample sizes and for a wide range of

the amount of data used to estimate the weight function (20% to 50%) compared to no

weighting. However, there is a small tradeoff with respect to bias reduction (and variance)

when one allocates too much data (e.g., 40%, 50%) for estimating the weight function. For

example, at 20% (n = 800, ne = 40) compared to 50% (n = 800, ne = 100) of data allocated

for estimating the weight function, the resulting parameter estimates are γ̂ = (−2.147,

−0.247, −0.031,0.053, −0.052) compared to γ̂ = (−2.192, −0.248, −0.032,0.054, −0.054); γ =

(−2.0, −0.25, −0.03,0.05, −0.05). Thus, there is less reduction in bias, albeit very small,

when too much data is allocated to weight estimation (e.g., 50%). Also, the variation in γ̂ is

slightly higher for 50% allocation, as expected, since the overall sample size available for

estimation in the hurdle model is reduced accordingly (see Table 6). Thus, overall, for small

to moderate sample size settings, it is preferable to allocate 20%–30% of the data for

estimating the weight function (as compared to allocating excessively large amount of data,

e.g., 40% – 50%). This strategy, of course, must be balanced with the basic requirement in

terms of the “minimal” number of events (ne) needed to fit a Cox regression model. For

example, consider the case of 20% of n = 600 samples allocated for weight function

estimation. This is inadequate, because ne is only 30 events (on average) which si extremely

small for fitting a Cox model with 4 covariates (i.e., only 7–8 events per covariates);

therefore, estimation of the weight function is not feasible (not stable). Thus, one must

necessarily increase the amount of data for this purpose; in this case, 30% of the data

provides adequate estimation of the weight function (see Table 6, n = 600 case). This

suggests a simple practical strategy for small to moderate sample size settings: start with

20% – 30% of the data allocated for weight function estimation and ensure that this also is
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adequate data for the fitting the Cox model, which one can use a (minimum) rule of thumb

of 10 events per covariates [23, 24]. For example, at 30% data allocation when n = 600 with

ne = 45 and 4 covariates in the simulation study, this is about 11 events per covariates on

average.

5 Discussion

In this work, we proposed a simple and effective weighting method to handle variable

follow-up time when simultaneously modeling the association between covariates and (a)

the binomial probability of positive events (y > 0) during a fixed study period and (b) the

rate of events conditioned on observing positive events, using a zero-truncated distribution

(such as a zero-truncated Poisson distribution). The proposed weight functions incorporate

individual follow-up time and covariate effects. They can be estimated using standard

censored regression analysis, such as Cox regression analysis. The weights can then be used

to fit the weighted hurdle regression model. As described in more detail in the Appendix,

coefficient estimates obtained via maximizing the weighted hurdle likelihood can be

implemented in optimization routines using readily available softwares, such as SAS PROC

NLMIXED and the R function optim().

We developed and implemented several simulation studies with the dependency structure

among the covariates that were similar to the real USRDS data. The results show that the

weighted hurdle regression estimates target the true covariate effects under variable follow-

up time. In illustrating the proposed weighted hurdle regression method with the USRDS

data, we identified factors (such as infection and diabetes) associated jointly with an

increase in the likelihood of positive cardiovascular events as well as the rate of

cardiovascular events, conditioned on having positive cardiovascular events. Likewise, the

method also allowed for modeling simultaneously factors that differentially affect the

binomial and Poisson processes. For example, congestive heart failure and tobacco use were

strongly associated with the binomial probability of positive cardiovascular events, but these

same factors were no longer associated with the subsequent rate of cardiovascular events

from the Poisson process. Thus, conditioned on positive cardiovascular events, these two

factors were not associated with the rate of cardiovascular events. In conclusion, the

proposed regression method is relatively straight-forward to implement with existing

software, accommodates variable follow-up time in modeling count data via joint models for

binary and positive count processes, and can flexibly model covariate effects in both

processes.

Finally, as we discussed at the end of sections 2 and 3, other discrete distributions may be

used instead of the Poisson model. For example, a weighted NB hurdle may be used for data

with overdispersion. However, there is a need to develop and study formal testing

procedures to compare model fits, particularly, for weighted hurdle models. This is currently

an open problem.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Appendix

Weighted Hurdle Regression Implementation

Most standard software, including SAS and R, can be used to obtain the estimates γ̂ and β̂.

The simple steps are as follows. First, survival regression analysis can be used to obtain

ŵ(ti, zi) as described in Section 2. Depending on the model choice (e.g., parametric, semi-

parametric etc.), standard software can be used to obtain the weights; e.g, using SAS PROC

PHREG or PROC LIFEREG or R functions coxph () and survfit()). Then the above log-

likelihoods following equation (7) can be maximized in standard optimization routines. For

example, we have used and tested SAS PROC NLMIXED and R general-purpose optimization

function optim(). Our R codes for the proposed weighted hurdle models are available at

http://www1.icts.uci.edu/dnguyen/suppl_wthurdle.html.

Relationship Between γ and ξ

As described in Section 2, the proposed weighted hurdle regression method accounts for

variable follow-up time that depends on covariates through the model

. Thus, the probability of positive counts

during the study period is related to the distribution of time-to-event. More precisely, since

the weights w(ti, zi), given by equation (6), depend on ξ and  depends on γ,

their relationship can be determined. For example, with Weibull(θi, νE) distributed time-to-

event (see Section 4.1), , where . Thus, from the

logistic model , we have that ξ = (ZTZ)−1ZTa, where aT = (a1,…,an),

 and Z is the n × (q2 + 1) matrix of covariate data.

Similar calculations can be made for a given distribution function of time-to-event F(·). We

note that the choice of the link function does not influence the estimate of ξ in practice.
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Figure 1.
Simulated data (solid) and real data (dotted) for simulation study.
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Table 1

Summary of follow-up time and covariates in the weighted hurdle regression model for n = 434,547 subjects.

Provided are mean and standard deviation [SD] for continuous variables (Age, BMI, eGFR, Infection rate) and

count and percent for categorical variables.

Variable Group Mean or Count SD or Percent

Follow–up time (years) - 2.43 1.66

Age (at dialysis) - 65.75 14.81

BMI - 27.91 7.52

eGFR - 10.32 5.40

Infection rate (per person/year) - 0.64 1.28

Sex Male 234125 53.88

Race Black 125756 28.94

Race Other 28321 6.52

Ethnicity Non-Hispanic 380669 87.60

Congestive heart failure Yes 152822 35.17

Coronary heart disease Yes 122552 28.20

Cerebrovascular disease Yes 45567 10.49

Peripheral vascular disease Yes 69113 15.90

Hypertension Yes 374089 86.09

Diabetes Yes 252578 58.12

Chronic obstructive pulmonary disea se Yes 39307 9.05

Tobacco use Yes 24944 5.74

Cancer Yes 28875 6.64

Inability to ambulate or transfer Yes 22088 5.08
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