UC Berkeley Archaeological X-ray Fluorescence Reports

Title

SOURCE PROVENANCE OF OBSIDIAN ARTIFACTS FROM THE CORNER SITE AND DANIELS VALLEY, CABEZA PRIETA WILDLIFE REFUGE, SOUTHWESTERN ARIZONA

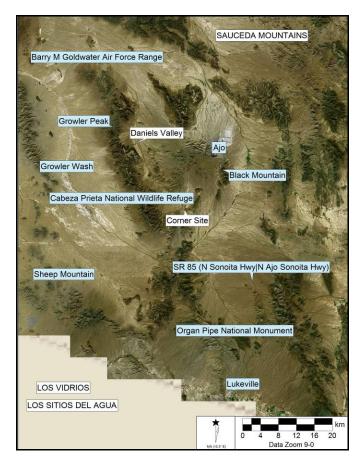
Permalink

https://escholarship.org/uc/item/2g463106

Author

Shackley, M. Steven

Publication Date


2018-11-09

GEOARCHAEOLOGICAL X-RAY FLUORESCENCE SPECTROMETRY LABORATORY 8100 WYOMING BLVD., SUITE M4-158

ALBUQUERQUE, NM 87113 USA

SOURCE PROVENANCE OF OBSIDIAN ARTIFACTS FROM THE CORNER SITE AND DANIELS VALLEY, CABEZA PRIETA WILDLIFE REFUGE, SOUTHWESTERN ARIZONA

Satellite aerial orthophoto of the site locations, relevant obsidian sources (in capitals), and prominent features

by M. Steven Shackley Ph.D., Director Geoarchaeological XRF Laboratory Albuquerque, New Mexico

Report Prepared for U.S. Fish and Wildlife Service Cabeza Prieta National Wildlife Refuge Ajo, Arizona

9 November 2018

Introduction

The 22 obsidian artifacts, and one possible iron meteorite from two sites on Cabeza Prieta Wildlife Refuge, southwestern Arizona were produced from three of the sources previously recovered from sites on the refuge, Los Vidrios, Sonora (40.9%), Los Sitios del Agua (22.7%), and Sauceda Mountains (36.4%; see Shackley 2015, 2016, 2017; Table 1 and Figure 1 here). As in the previous study, the assemblage suggests that the local environment was important, with connections to the north and south apparent (see cover image). The composition of the high iron rock is similar to iron meteorites, although confirmation of this assignment is underway.

Laboratory Sampling, Analysis and Instrumentation

All archaeological and source samples are analyzed whole. The results presented here are quantitative in that they are derived from "filtered" intensity values ratioed to the appropriate x-ray continuum regions through a least squares fitting formula rather than plotting the proportions of the net intensities in a ternary system (McCarthy and Schamber 1981; Schamber 1977). Or more essentially, these data through the analysis of international rock standards, allow for inter-instrument comparison with a predictable degree of certainty (Hampel 1984; Shackley 2011).

Trace Element Analyses

All analyses for this study were conducted on a ThermoScientific *Quant'X* EDXRF spectrometer, located in the Geoarchaeological XRF Laboratory, Albuquerque, New Mexico. It is equipped with a thermoelectrically Peltier cooled solid-state Si(Li) X-ray detector, with a 50 kV, 50 W, ultra-high-flux end window bremsstrahlung, Rh target X-ray tube and a 76 μ m (3 mil) beryllium (Be) window (air cooled), that runs on a power supply operating 4-50 kV/0.02-1.0 mA at 0.02 increments. The spectrometer is equipped with a 200 l min⁻¹ Edwards vacuum pump, allowing for the analysis of lower-atomic-weight elements between sodium (Na) and titanium (Ti). Data acquisition is accomplished with a pulse processor and an analogue-to-digital converter.

Elemental composition is identified with digital filter background removal, least squares empirical peak deconvolution, gross peak intensities and net peak intensities above background.

The analysis for mid Zb condition elements Ti-Nb, Pb, Th, the x-ray tube is operated at 30 kV, using a 0.05 mm (medium) Pd primary beam filter in an air path at 100 seconds livetime to generate x-ray intensity $K\alpha_1$ -line data for elements titanium (Ti), manganese (Mn), iron (as Fe₂O₃^T), cobalt (Co), nickel (Ni), copper, (Cu), zinc, (Zn), gallium (Ga), rubidium (Rb), strontium (Sr), yttrium (Y), zirconium (Zr), niobium (Nb), lead (Pb), and thorium (Th). Not all these elements are reported since their values in many volcanic rocks are very low. Trace element intensities were converted to concentration estimates by employing a quadratic calibration line ratioed to the Compton scatter established for each element from the analysis of international rock standards certified by the National Institute of Standards and Technology (NIST), the US. Geological Survey (USGS), Canadian Centre for Mineral and Energy Technology, and the Centre de Recherches Pétrographiques et Géochimiques in France (Govindaraju 1994). Line fitting is linear (XML) for all elements. Further details concerning the petrological choice of these elements in Southwest obsidians is available in Shackley (1988, 1995, 2005; also Mahood and Stimac 1990; and Hughes and Smith 1993). Nineteen specific pressed powder standards are used for the best fit regression calibration for elements Ti-Nb, Pb, Th, and Ba, include G-2 (basalt), AGV-2 (andesite), GSP-2 (granodiorite), SY-2 (syenite), BHVO-2 (hawaiite), STM-1 (syenite), QLO-1 (quartz latite), RGM-1 (obsidian), W-2 (diabase), BIR-1 (basalt), SDC-1 (mica schist), TLM-1 (tonalite), SCO-1 (shale), NOD-A-1 and NOD-P-1 (manganese) all US Geological Survey standards, NIST-278 (obsidian), U.S. National Institute of Standards and Technology, BE-N (basalt) from the Centre de Recherches Pétrographiques et Géochimiques in France, and JR-1 and JR-2 (obsidian) from the Geological Survey of Japan (Govindaraju 1994).

The data from the WinTrace software were translated directly into Excel for Windows and SPSS (ver. 21) and JMP 12.0.1 software for statistical manipulation. In order to evaluate these quantitative determinations, machine data were compared to measurements of known standards during each run. RGM-1 a USGS obsidian standard was analyzed during each sample run for plutonic rock samples to check machine calibration (Table 1 and Figure 1). MBH Analytical leaded bronze standard 32XLB17 standard was used for the major and minor oxide analysis of the possible iron meteorite sample (Table 3 and Figure 2).

Major and Minor Oxide Analysis of Iron Rock

Analysis of the major oxides of Si, Al, Ca, Fe, K, Mg, Mn, Na, and Ti is performed under the multiple conditions elucidated below. This fundamental parameter analysis (theoretical with standards), while not as accurate as destructive analyses (pressed powder and fusion disks) is usually within a few percent of actual, based on the analysis of USGS RGM-1 obsidian standard (see also Shackley 2011a). The fundamental parameters (theoretical) method is run under conditions commensurate with the elements of interest and calibrated with 11 USGS standards (RGM-1, rhyolite; AGV-2, andesite; BHVO-1, hawaiite; BIR-1, basalt; G-2, granite; GSP-2, granodiorite; BCR-2, basalt; W-2, diabase; QLO-1, quartz latite; STM-1, syenite), and one Japanese Geological Survey rhyolite standard (JR-1). See Lundblad et al. (2011) for another set of conditions and methods for oxide analyses.

CONDITIONS OF FUNDAMENTAL PARAMETER ANALYSIS¹

Low Za (Na, Mg, Al, Si, P)

Voltage	6 kV	Current	Auto ²
Livetime	100 seconds	Counts Limit	0
Filter	No Filter	Atmosphere	Vacuum
Maximum Energy	10 keV	Count Rate	Low

Mid Zb (K, Ca, Ti, V, Cr, Mn, Fe)

	Voltage	32 kV	Current	Auto
	Livetime	100 seconds	Counts Limit	0
	Filter	Pd (0.06 mm)	Atmosphere	Vacuum
	Maximum Energy	40 keV	Count Rate	Medium
Hi	igh Zb (Sn, Sb, Ba	, Ag, Cd)		
	Voltage	50 kV	Current	Auto
	Livetime	100 seconds	Counts Limit	0
	Filter	Cu (0.559 mm)	Atmosphere	Vacuum
	Maximum Energy	40 keV	Count Rate	High
Lo	ow Zb (S, Cl, K, C	a)		
	Voltage	8 kV	Current	Auto

Voltage	8 kV	Current	Auto
Livetime	100 seconds	Counts Limit	0
Filter	Cellulose (0.06 mm)	Atmosphere	Vacuum
Maximum Energy	v 10 keV	Count Rate	Low

¹ Multiple conditions designed to ameliorate peak overlap identified with digital filter background removal, least squares empirical peak deconvolution, gross peak intensities and net peak intensities above background.

² Current is set automatically based on the mass absorption coefficient.

Discussion

As noted above, the vast majority of obsidian artifacts were produced from sources in the local region (northern Sonoran Desert). The direction of the sources, Los Sitios del Agua and Los Vidrios, Sonora to the south, and Sauceda Mountains to the north, indicates a concentration of local source procurement (Tables 1 and 2 and Figure 1; see cover image). All of the Sonoran Desert obsidian sources are generally equal media for tool production in quality and nodule size,

although Los Vidrios can be very brittle in hard hammer percussion, but equal to the others for

pressure work (Martynec et al. 2011; Shackley 2005).

One sample from Daniels Valley is not obsidian, but has the possible morphology and

composition that suggests it could be a meteorite (see http://meteorites.wustl.edu/metcomp/

;Table 3 and Figure 2 here). It is not certain and I have contacted EPS at Washington University

in St. Louis for confirmation.

References Cited

Davis, K.D., T.L. Jackson, M.S. Shackley, T. Teague, and J.H. Hampel

2011 Factors Affecting the Energy-Dispersive X-Ray Fluorescence (EDXRF) Analysis of Archaeological Obsidian. In X-Ray Fluorescence Spectrometry (XRF) in Geoarchaeology, edited by M.S. Shackley, pp. 45-64. Springer, New York.

Govindaraju, K.

1994 1994 Compilation of Working Values and Sample Description for 383 Geostandards. *Geostandards Newsletter* 18 (special issue).

Hampel, Joachim H.

1984 Technical Considerations in X-ray Fluorescence Analysis of Obsidian. In *Obsidian Studies in the Great Basin*, edited by R.E. Hughes, pp. 21-25. Contributions of the University of California Archaeological Research Facility 45. Berkeley.

Hildreth, W.

1981 Gradients in Silicic Magma Chambers: Implications for Lithospheric Magmatism. *Journal* of Geophysical Research 86:10153-10192.

Hughes, Richard E., and Robert L. Smith

1993 Archaeology, Geology, and Geochemistry in Obsidian Provenance Studies. *In Scale on Archaeological and Geoscientific Perspectives*, edited by J.K. Stein and A.R. Linse, pp. 79-91. Geological Society of America Special Paper 283.

Mahood, Gail A., and James A. Stimac

1990 Trace-Element Partitioning in Pantellerites and Trachytes. *Geochemica et Cosmochimica Acta* 54:2257-2276.

Martynec, R.J., R. Davis, and M.S. Shackley

- 2011 The Los Sitios del Agua Obsidian Source (Formerly AZ Unknown A) and Recent Archaeological Investigations along the Rio Sonoyta, Northern Sonora. *Kiva* 76:413-430.
- McCarthy, J.J., and F.H. Schamber
- 1981 Least-Squares Fit with Digital Filter: A Status Report. In *Energy Dispersive X-ray Spectrometry*, edited by K.F.J. Heinrich, D.E. Newbury, R.L. Myklebust, and C.E. Fiori, pp. 273-296. National Bureau of Standards Special Publication 604, Washington, D.C.

Schamber, F.H.

1977 A Modification of the Linear Least-Squares Fitting Method which Provides Continuum Suppression. In *X-ray Fluorescence Analysis of Environmental Samples*, edited by T.G. Dzubay, pp. 241-257. Ann Arbor Science Publishers.

Shackley, M. Steven

- 1988 Sources of Archaeological Obsidian in the Southwest: An Archaeological, Petrological, and Geochemical Study. *American Antiquity* 53(4):752-772.
- 1995 Sources of Archaeological Obsidian in the Greater American Southwest: An Update and Quantitative Analysis. *American Antiquity* 60(3):531-551.
- 2005 Obsidian: Geology and Archaeology in the North American Southwest. University of Arizona Press, Tucson.
- 2011 An Introduction to X-Ray Fluorescence (XRF) Analysis in Archaeology. In *X-Ray Fluorescence Spectrometry (XRF) in Geoarchaeology*, edited by M.S. Shackley, pp. 7-44. Springer, New York.
- 2015 Source Provenance of Obsidian Artifacts from the Cabeza Prieta National Wildlife Refuge, Southwestern Arizona. Report prepared for the Bureau of Land Mangement, Ajo, Arizona.
- 2016 Source Provenance of Obsidian Artifacts from Southwestern Arizona. Report prepared for Cabeza Prieta Wildlife Refuge, U.S. Fish and Wildlife, Ajo, Arizona.
- 2017 Source Provenance of Obsidian Artifacts from the Cabeza Prieta National Wildlife Refuge, Southwestern Arizona. Report prepared for the Bureau of Land Mangement, Ajo, Arizona.

Sample	Site Daniels	Ті	Mn	Fe	Zn	Rb	Sr	Y	Zr	Nb	Ва	Source
1	Valley Daniels	1440	368	10804	48	161	78	33	212	20	1151	Sauceda Mtns, AZ
2	Valley Daniels	1646	418	11935	86	182	81	35	212	22	1117	Sauceda Mtns, AZ Los Sitios del Agua,
3	Valley Daniels	1313	466	25098	188	149	16	85	727	51	76	SON Los Sitios del Agua,
4	Valley Daniels	1296	481	24650	172	152	19	82	729	54	67	SON
5	Valley Daniels	1472	388	10851	72	167	75	31	202	25	1162	Sauceda Mtns, AZ
6	Valley Daniels	1554	410	11214	82	166	76	30	199	24	1117	Sauceda Mtns, AZ
7	Valley Daniels	1508	300	11109	75	161	105	31	182	16	970	Sauceda Mtns, AZ
8	Valley Daniels	1352	329	10154	58	148	72	32	187	17	1011	Sauceda Mtns, AZ
9	Valley Daniels	937	255	13104	113	272	20	71	225	31	14	Los Vidrios, SON Los Sitios del Agua,
11	Valley Daniels	1328	483	23475	154	146	12	80	728	53	92	SON
13	Valley Daniels	4749	11602	2116798	10	94	74	5	27	1	178	not obsidian Los Sitios del Agua,
14	Valley Daniels	1350	450	23423	168	147	18	78	722	54	74	SON
15	Valley Daniels	964	271	12590	124	254	15	69	221	35	0	Los Vidrios, SON
16	Valley Daniels	888	265	13040	122	260	15	66	221	24	25	Los Vidrios, SON
17	Valley Daniels	921	250	12336	133	245	21	66	218	37	17	Los Vidrios, SON
18	Valley Daniels	1548	346	10718	49	162	72	32	205	27	1173	Sauceda Mtns, AZ
21	Valley Daniels	889	259	12273	123	243	17	69	221	33	26	Los Vidrios, SON
22 10	Valley Corner Site	1449 1048	353 293	10235 14256	52 153	150 280	67 16	34 74	191 230	25 35	1056 8	Sauceda Mtns, AZ Los Vidrios, SON

Table 1. Elemental concentrations for the artifacts by site and USGS RGM-1 rhyolite standard.

12	Corner Site Daniels	930	269	12393	122	245	12	73	217	31	39	Los Vidrios, SON
19	Valley	1118	293	14157	196	277	20	68	220	25	0	Los Vidrios, SON Los Sitios del Agua,
20	Corner Site	1274	431	22124	158	141	15	77	690	49	69	SON
23 RGM1-	Corner Site	991	291	14357	155	281	15	73	228	30	0	Los Vidrios, SON
S4 RGM1-		1527	285	13246	42	146	107	25	229	12	815	standard
S4		1645	298	13134	44	143	106	28	219	9	835	standard

				Source		
			Los Sitios del Agua	Los Vidrios	Sauceda Mtns	Total
Site	Corner Site	Count	1	3	0	4
		% within Site	25.0%	75.0%	0.0%	100.0%
		% within Source	20.0%	33.3%	0.0%	18.2%
		% of Total	4.5%	13.6%	0.0%	18.2%
	Daniels Valley	Count	4	6	8	18
		% within Site	22.2%	33.3%	44.4%	100.0%
		% within Source	80.0%	66.7%	100.0%	81.8%
		% of Total	18.2%	27.3%	36.4%	81.8%
Total		Count	5	9	8	22
		% within Site	22.7%	40.9%	36.4%	100.0%
		% within Source	100.0%	100.0%	100.0%	100.0%
		% of Total	22.7%	40.9%	36.4%	100.0%

Table 2. Crosstabulation of obsidian source by site.

Table 3. Major, minor and trace elements for Sample 13, Daniels Valley.

Sample	Na2O	MgO	AI2O3	SiO2	P2O5	K2O	CaO	TiO2	V2O5	Cr2O3	MnO	Fe2O3		
	%	%	%	%	%	%	%	%	%	%	%	%		
13	0.595	1.232	4.135	32.842	0	0.19	0.313	0.049	0	0.018	0.671	59.729		
32XLB17	0	4.988	0.829	0.102	0	0	0	0	0	0	0.353	0.843		
	CI	Co	Ni	Cu	Zn	Ga	Rb	Sr	Y	Zr	Nb	Ва	Pb	Th
	CI ppm	Со ppm	Ni ppm	Си ppm	Zn ppm	Ga ppm	Rb ppm	Sr ppm	Y ppm	Zr ppm	Nb ppm	Ba ppm	Pb ppm	Th ppm
13									Y ppm 5			-		
13 RGM1- S4	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	••	ppm		ppm	ppm	ppm



Figure 1. Ba/Rb bivariate plot of the archaeological obsidian samples. Confidence ellipses at 95%.

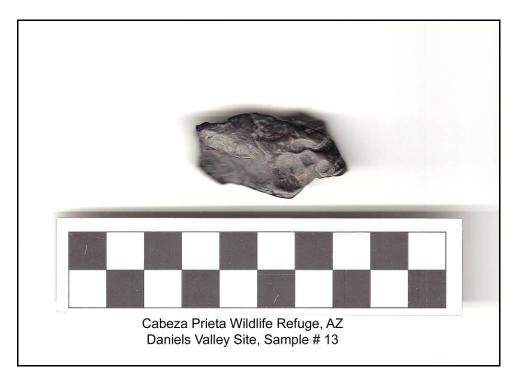


Figure 2. Possible meteorite sample (13) from Daniels Valley