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Abstract

OpenTimer Interface for LGraph

by

Rohan Prakash Ganpati

In today’s world, the acceleration in taping out ASIC and FPGA chips is

majorly limited by the productivity in its development. While there are digital design

tools that are exceptionally good, there is a huge gap in the interaction between these

tools, resulting in overheads causing delays in the development cycle.

LGraph is an open-source database that represents digital design from any

stage of the design flow in a unified format. It supports inputs in several hardware

description languages. Tightly integrated with several open-source EDA tools, LGraph

aims to provide live results for synthesis and simulation for small changes in the design.

My contribution includes the integration of OpenTimer, an open-source tool

that performs timing analysis pre and post place and route. Presently it is possible

to receive feedback on timing for a design represented as an lgraph. With further

development, our research group looks forward to obtaining live feedback for timing

analysis.
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Chapter 1

Introduction

Don’t listen to the naysayers.

Arnold Schwarzenegger

Current hardware design techniques lack productivity due to various reasons

in the Application Specific Integrated Circuit (ASIC) and Field Programmable Gate

Arrays (FPGA) design flow. Some of the top reasons are the time it takes to complete

its process and the lack of a unified format to represent processes throughout the design

flow.

In most cases, the changes made to the designs are small, yet, it takes a

considerable amount of time for any process in the design flow such as simulation,

synthesis, place and route, etc. In real world, this means that if a small portion of the

code is modified in the front-end, it takes several hours for this modification to reach

the back-end and several more for them to fix it. This only gets worse as the project

approaches its deadlines.
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LiveSynth [9] and SMatch [10] are incremental techniques that reduce the time

for synthesis to the extent that it feels like the changes made to the design are reflected

instantly. Inspired by these techniques, LGraph [11] was created with a notion to serve

as the LLVM for hardware design. It is a unified open-source format that represents

digital design from several processes throughout the digital design flow. LGraph aims

to provide a live hardware development feel to its community. Any change made at a

certain process will be reflected instantaneously to all its dependent processes that it

has effects on. This would drastically enhance productivity in the workflow and help

alleviate the problems discussed above.

While designing a chip, performance is one of the major parameters that are

important for the designers. Static Timing Analysis (STA) is one of the several methods

used to verify performance of a design. STA is performed post synthesis and post place

and route. STA performed after place and route is more important because it contains

parasitic information from the RC networks.

Typically, when a chip is designed, the specifications are first discussed. Then,

the RTL design and verification environments are developed and simulated. Later, this

design is synthesized and STA is performed to evaluate the performance. Then, this

design is placed and routed and STA is performed again. Now, if there is a small

change in the design, it would have a severe impact as it has to go through all these

processes all over again. These are some of the reasons that cause delay and develop

difficult scenarios during the development process. Thus enhancing its productivity is

an important area of research.
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OpenTimer [4], is an open-source high-performance static timing analysis tool

with incremental timing capabilities. It is designed with fast and accurate algorithms

to produce results at high speed. OpenTimer provides support for performing STA for

a particular design in a possible stage of the design flow, when integrated with LGraph.

However, integrating OpenTimer and LGraph possessed three main challenges.

The first challenge was understanding the internals of LGraph. Since LGraph is being

actively developed, there is not much documentation for it which makes the development

a tedious task. An exhaustive study and debugging of the source code was required to

overcome this challenge.

The second challenge was comprehending the internals of OpenTimer. Since

the internals of OpenTimer and LGraph are completely different, an analysis of the

source code was required to understand its internals and further inspection was per-

formed to analyze its performance when using its C++ API to create circuits on the

fly.

The third challenge was integrating OpenTimer with LGraph. Since Open-

Timer supports a different input file format as opposed to LGraph’s representation, it

causes compatibility issues. This was overcome by translating an lgraph to a format

that OpenTimer supports. The translation was achieved by using OpenTimer’s C++

API where creating 1000 cells takes 0.2s. Since LGraph aims to provide live feedback

for small changes to a digital design, this overhead is negligible.

This dissertation discusses the integration of LGraph and OpenTimer. Chapter

2 gives a background on LGraph focussing its internals and interface with an illustrative
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example. Chapter 3 provides a background on OpenTimer emphasizing its internals and

interface with a suitable example. Chapter 4 describes the integration of LGraph and

OpenTimer describing its internals and interface with a descriptive example. Finally,

Chapter 5 delivers the conclusion of this thesis along with the future work.
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Chapter 2

LGraph

Knowing is not enough, we must

apply. Willing is not enough, we must

do.

Bruce Lee

This chapter introduces LGraph - a graph optimized for live synthesis and

simulation. In order to integrate LGraph and OpenTimer, it is necessary to understand

LGraph’s internals which are its database organization, structure, node types, iterators

and shell interface which is discussed with an example. The database, structure and

node types provide a high-level idea on the internals of LGraph while the iterators

are used for efficient traversals on an lgraph 1. The shell interface is used to perform

transformations on the lgraph which is discussed later.
1LGraph refers to the infrastructure and lgraph refers to the unified format that represents digital

design
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2.1 Introduction

Different phases of the VLSI design flow use different formats to represent

a design. The common convention is to use Verilog, Berkeley Logic Interchange For-

mat (BLIF) during logic synthesis, Library Exchange Format (LEF)/ Design Exchange

Format (DEF) during physical design, Liberty for timing analysis and Graphic Data

System (GDS) for layout.

LGraph [11] is an open-source database for digital design in different phases

of the VLSI design flow. LGraph can be thought of as a LLVM for hardware design.

It can interface with various Hardware Description Languages (HDLs) such as Verilog,

Pyrope and other formats such as LEF/DEF, Liberty. It also interfaces with ABC for

logic synthesis and OpenTimer for static timing analysis.

LGraph features a shell interface - lgshell which allows users to use it as an

extendable toolset. Additionally, LGraph features an API through which the internal

data structure can be manipulated.

2.2 Related Work

Synopsys Milkyway [12] is a library that supports Synopsys’ EDA tools from

synthesis through place and route until sign-off. Synopsys’ tools such as the Design

Compiler, PrimeTime can read and write in the Milkyway format but it is a proprietary

format and isn’t ideal for academic research.

OpenAccess is an open format that supports interoperability among EDA tools.
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It has an application programming interface and supports authorization for interoper-

ability between multiple EDA vendors. However, there are some legal restrictions in

using it which its limits usage.

FIRRTL [7] is an open source format but it is based on Scala and thus has a

steep learning curve for new users. RSyn [2] and Ophidian [3] are open-source formats

but they target only physical design. These formats are also task-specific and not the

best option for integration.

Yosys [15] is a framework for RTL synthesis which uses RTLIL as an interrep-

resentable format. Yosys supports synthesizable Verilog as an input and converts it to

BLIF and similar formats but LGraph has much smaller read and write times compared

with RSYn and Yosys.

2.3 Internals

2.3.1 Database

The LGraph database is based on two concepts - memory maps and struct of

array. They are used for fast persistence and to exploit memory locality respectively.

The database contains modules and target technologies grouped as graph libraries and

tech libraries respectively. The graph library contains the modules which represent the

design and the tech library contains the associated technology related to the design.

Figure 2.1 represents the LGraph database.

The representation in the database can be used to represent the basics of any

7



lgraph database

graph_library

half_adder

full_adder

add4

1 AND2_X1
  pins: ...
  timing: ...
  phys: ...
2 XOR2_X1
  pins: ...
  timing: ...
  phys: ...

tech_library

...

full_adder

-
-
-
-
-
-

nodes

-
-
-
-
-
-

delay placement

-
-
-
-
-

-
-
-
-
-
-

inst_id

instance_char_arrayios_char_array

...

...

inst_char_array*

Figure 2.1: LGraph’s [11] database organization

format in the design flow. However, users can modify it to best suit their application

while maintaining the rudimentary set of tables that LGraph requires.

2.3.2 Structure

LGraph uses a bidirectional graph as few of the operations require forward

traversals and others require backward traversals. The data structure is designed with

an intent to satisfy synthesis graph requirements. The size of the nodes are 64 bytes in

order to extract the best out of cache locality.

The major elements of LGraph are node, node pin, and edges. The node

represents a logic gate, the node pin represents the pin in the logic gate, and the edges

connect a pair of node pins. When traversing between a source and destination, the

inputs and outputs pertaining to that graph are called as graph IOs.

Figure 2.2 shows a LGraph representation of a regular graph. The boxes/

circles are nodes, the numericals outside them are node pins and the lines connecting

them are edges.
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(a) Graph (b) LGraph Representation

Figure 2.2: LGraph’s internal data structure

2.3.3 Types

The LGraph types are enums that are classified into several categories based on

ranges. The first category is allocated for LGraph types, the second category is allocated

for subgraph types used for design hierarchy representation, the third category are used

for constants, and the last category are used for standard cell technology mapping. Few

of the LGraph types are represented in Table 2.1.

2.3.4 Iterators

LGraph may represent a complete hierarchical design, a particular module

of that design or even a portion of the design between a specified input and output.

Iterating between these points are very crucial and needs to be done efficiently. LGraph

supports two types of iterators viz. node iterators and edge iterators to perform these

operations.
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Table 2.1: Various LGraph node types
NodeType Functionality

Not Op logical negation of inputs
And Op logical AND
Or Op logical OR
Xor Op logical XOR
Join Op the {} operator in Verilog
Pick Op the [] operator in Verilog

LessThan Op LessThan comparator
GreaterThan Op GreaterThan comparator

LessEqualThan Op LessEqualThan comparator
GreaterEqualThan Op GreaterEqualThan comparator

Equals Op arithmetic functions equals comparator
Mux Op generic multiplexers

ShiftRight Op shift input right by a given number of bits
ShiftLeft Op shift input left by a given number of bits
GraphIO Op keyword input, output and inout in Verilog
SubGraph Op instantiation of another module
TechMap Op Coarse-Grained elaborated standard cell types
U32Const Op constant in Verilog
StrConst Op 4 state variables in Verilog

2.3.4.1 Node Iterators

The fast iterator is used for unordered but very fast traversal, the forward

iterator is used for forward propagation from each input/constant, and the backward

iterator is used for backward propagation from each output. Figure 2.3 shows the node

iterators in LGraph.

1 for ( auto nid : g . f a s t ( ) ) { }
2 for ( auto nid : g . forward ( ) ) { }
3 for ( auto nid : g . backward ( ) ) { }

Figure 2.3: Node iterators in LGraph
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2.3.4.2 Edge Iterators

The inp edges iterator is used to iterate over input edges and the out edges is

used to iterate over output edges. Figure 2.4 shows the edge iterators in LGraph.

1 for ( auto& edge : node . inp edge s ( ) ) { }
2 for ( auto& edge : node . out edges ( ) ) { }

Figure 2.4: Edge iterators in LGraph

2.4 Interface

LGraph features an interactive shell - lgshell to support the Pass and InOu

transformations. The lgshell commands can be grouped into passes, InOu’s and lgraph

operations. Few of these commands are mentioned in Table 2.2.

Table 2.2: Commonly used lgshell commands
Commands Functionality

inou.graphviz export lgraph to graphviz dot format
inou.yosys.fromlg write Verilog using yosys from lgraph

inou.yosys.tolg read Verilog using yosys to lgraph
pass.dce optimize an lgraph with a dce, gen mapped

pass.sample counts number of nodes in an lgraph
pass.opentimer timing analysis on lgraph
lgraph.create create a new lgraph
lgraph.open open an lgraph if it exists
lgraph.stats print the stats from the passed graphs

Figure 2.5 depicts a Verilog file which is fed as an input to LGraph. Transfor-

mations can be performed on this file and converted to several different formats.

The Verilog file can be converted to an lgraph by using the first command in

11



1 module s imple add (
2 input [ 7 : 0 ] a ,
3 input [ 7 : 0 ] b ,
4 output signed [ 7 : 0 ] h
5 ) ;
6
7 signed wire [ 7 : 0 ] as = a ;
8 signed wire [ 7 : 0 ] bs = b ;
9

10 wire [ 7 : 0 ] f = as + bs ;
11 a s s i g n h = as + bs − as ;
12
13 endmodule

Figure 2.5: Sample Verilog code for addition

Figure 2.6. This transformation is an InOu and is performed by interfacing with yosys.

1 inou . yosys . t o l g f i l e s : path/ to / f i l e / f i l ename . v
2 lgraph . open name : f i l ename |> inou . graphviz

Figure 2.6: lgshell commands to convert a Verilog file to an lgraph and represent it in
DOT format

This lgraph can be converted to a DOT format by using the second command

in Figure 2.6. This transformation is also an InOu and is performed by interfacing with

Graphviz. Figure 2.7 shows the graphviz representation of the Verilog code in Figure

2.6.

Several passes can be performed on the lgraph converted from the Verilog file.

Static timing analysis can be performed on this lgraph or it can be converted to another

format such as Pyrope, Chisel etc.

The commands shown in Figure 2.8 convert the lgraph (converted from the

Verilog file) back to a netlist. This transformation is also an InOu and is performed by

12



Figure 2.7: Graphviz representation of the simple add lgraph

1 inou . yosys . t o l g f i l e s : path/ to / f i l e / f i l ename . v
2 lgraph . open name : f i l ename |> inou . yosys . f romlg

Figure 2.8: lgshell commands to convert a Verilog file to an lgraph and the lgraph back
to Verilog

interfacing with Yosys. The converted Verilog netlist is represented in Figure 2.9.

1 module s imple add (a , b , h) ;
2 input [ 7 : 0 ] a ;
3 input [ 7 : 0 ] b ;
4 output [ 7 : 0 ] h ;
5 wire [ 7 : 0 ] l g 0 ;
6 wire [ 7 : 0 ] l g 1 ;
7 a s s i g n l g 0 = $s igned ( a ) + $s igned (b) ;
8 a s s i g n l g 1 = l g 0 − a ;
9 a s s i g n h = l g 1 ;

10 endmodule

Figure 2.9: Verilog netlist converted from the simple add lgraph by LGraph

13



2.5 Conclusion

In this chapter, the key features of LGraph including its organization, struc-

ture, types were discussed. An example using its application programming interface

and shell interface were also shown.

Some of the top features of LGraph include its multi-language support and

interoperability between the entire VLSI deisgn flow from RTL to layout in a very fast

manner.

Future work includes building a custom timing analysis engine and a placement

& routing tool for LGraph, and integrating a SAT solver for verifying transformations

done with LGraph.
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Chapter 3

OpenTimer

If everything seems under control,

you’re not going fast enough.

Mario Andretti

This chapter introduces OpenTimer - an open-source high-performance timing

analysis tool for VLSI synthesis. In order to integrate LGraph and OpenTimer, it is

important to understand OpenTimer’s internals which are its design philosophy, tool

configuration, C++ API and shell interface which is discussed with an example. The

design philosophy provides a high-level description on the software architecture, the tool

configuration talks about the file formats supported, the C++ API and shell interface

are two ways through which OpenTimer can be used to query timing information.
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3.1 Introduction

Static Timing Analysis (STA) is an essential process in the Electronic Design

Automation (EDA) flow. Given a clock frequency, STA is used to simulate the expected

timing of a design and check for possible timing violations.

OpenTimer [4] is an open-source high-performance timing analysis tool for

VLSI systems. Some of the its key features include parallel incremental timing, Common

Path Pessimism Removal (CPPR), block-based and path-based timing analysis. The

tool accepts industry standard input file formats.

OpenTimer features a user-friendly Application Programming Interface (API)

and an interactive shell to query timing realted information. The tool can be integrated

to other projects and supports multiple ways for the integration.

3.2 Related Work

Synopsys PrimeTime [13] is an industry leading sign-off solution for timing.

Its major features are core static timing analysis and multi-scenario analysis. Cadence

Tempus [1] is another industry leading sign-off solution for the same. Some of its major

features are integration with other tools in its flow and with the cloud. Both these tools

are proprietary and their subprocesses are obscured. Therefore, they aren’t ideal for

open-source research.

iitRACE [8] is an academic incremental timing analysis tool with clock pes-

simism removal. Its primary focus is to be memory efficient. iTimerC [6] is another

16



academic incremental timing with CPPR analysis. Both these tools are good but Open-

Timer outperforms them in terms of accuracy and speed.

OpenSTA [5] is a static timing analysis tool from parallax software that re-

cently went open source. It is a relatively newer release and certainly a tool to be on

the active lookout for.

3.3 Internals

3.3.1 Overview

OpenTimer is divided into three phases as shown in Figure 3.1. In the first

phase, it performs a parallel read of the input files. In the second phase, it performs

parallel timing analysis based on the input files. In the final phase, timing information

can be queried from the shell or the API.

Figure 3.1: Program flow of OpenTimer

Since optimization transforms have the capacity to change designs, it could
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potentially affect timing information. To avoid this problem, the pipeline task scheduler

used in OpenTimer 1.0 was upgraded to a parallel incremental timing engine using Cpp-

Taskflow in OpenTimer 2.0 which was based on C++17.

The improvement of performance from OpenTimer 1.0 to OpenTimer 2.0 is

majorly based on replacing OpenMP based parallelization using Cpp-Taskflow. Cpp-

Taskflow is an efficient parallel programming library for complex task dependencies.

3.3.2 Input Files

OpenTimer complies with industry-standard format for input files which in-

clude a Verilog netlist, liberty, Standard Parasitic Exchange Format (SPEF), and a

Synopsys Design Constraint (SDC) file.

3.3.2.1 Liberty (.lib) file

OpenTimer requires two liberty files that contains the cells and their associated

timing information such as delay, capacitance etc. One of them would depict the early

characteristics and the other would depict the late. In either case, these cells have to

be ones that are available to the design.

3.3.2.2 Verilog Netlist (.v) file

OpenTimer requires a Verilog netlist file that contains gate level description

of the circuit design. These cells should correspond to a cell from the liberty file.

At the moment, OpenTimer does not support hierarchy in the design but is in active
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development to accomodate it.

3.3.2.3 Standard Parasitic Exchange Format (.spef) file

OpenTimer reuires a SPEF file that contains the parasitics of a group of nets

in the form of a RC network. This includes internal nodes and wire resistances between

them.

3.3.2.4 Synopsys Design Constraint (.sdc) file

OpenTimer requires a SDC file that contains timing conditions of a design in

a tcl-based format. This includes the design intent as well as constraints for further

processes in the design flow. At the moment, OpenTimer supports a limited number of

commands but is in active development to accommodate more.

3.3.3 API Categories

OpenTimer’s design philosophy reveals its parallel incremental timing features.

They are distinguished into three groups viz. builder, action, and accessor based on its

performance and usability as mentioned in Table 3.1.

Table 3.1: OpenTimer’s API Categories
Type Description

Builder create lazy tasks to build an analysis framework
Action carry out builder operations to update the timing

Accessors inspect the timer without changing any internal data structures

• Builder: When a set of builder operations are called, OpenTimer creates a task

execution plan (TEP) by adding these operations to a lineage graph. The graph
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takes care of maintaining its status based on action operations and is performed

with the help of Cpp-Taskflow by creating dependency graphs. Some of the com-

mon builder operations include read celllib, insert gate, set slew etc.

• Action: When an action operation is performed, the TEP is materialized and

executed. The dependency graph updates timing including forward and backward

propogations in parallel. After the action call is completed, the lineage graph is up-

dated with timing. Some of the common action operations include update timing,

report timing, report slack etc.

• Accessor: Accessor operations provide the ability to output timing related infor-

mation. This can also allow the user to check on the status of the timer. These

operations can be graphically visualized using tools like GraphViz. Some of the

common accessor operations include dump timer, dump slack, dump net load etc.

3.4 Interface

3.4.1 Built-In Shell

OpenTimer features an interactive shell for timing analysis. These shell com-

mands are grouped to a builder, action or accessor operation. Some of the most common

shell commands under builder include reading input files and connectivity based oper-

ations; under action include updating and reporting timing related information; under

accessor include dumping timing related information on the shell.

The sample circuit consists of five cells - NAND1 gate that has 2 input signals
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Figure 3.2: Sample circuit to illustrate the usage of the OpenTimer shell

connecting to NOR1 gate. The NOR1 gate connects to a DFF and receives input back

from the DFF. The DFF is connected to a NOT1 gate which is in turn connected to a

NOT2 gate.

The configuration file depicted in Figure 3.3 inputs a sample liberty file that

contains the timing related information of the cells used in the design, a sample Verilog

file that describes the circuit as shown in Figure 3.2, and a sample SDC file that contains

more timing information about the specific design constraints. It enables common path

pessimism removal. Upon completion of these operations, it dumps the taskflow graph,

reports the most critical path and dumps the current timing graph.

1 r e a d c e l l l i b sample . l i b
2 r e a d V e r i l o g sample . v
3 read sdc sample . sdc
4 cppr −enable
5 dump taskflow
6 r epo r t t im ing num paths 1
7 dump graph

Figure 3.3: Configuration file to illustrate the usage of the OpenTimer shell

The configuration file for OpenTimer represented in Figure 3.3 when executed

in the OpenTimer shell, generates an output, depicted in Figure 3.4. This output file

reports the timing for the most critical path in the design. It lists the start point, end
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point, delays, time, direction and type for each instances. It also mentions the slack for

the design.

The configuration file can be fed to the shell or each of the commands can be

individually fed in to the shell. An alternate is to use the API which is demonstrated

in the next subsection.

1 Sta r tpo in t : inp1
2 Endpoint : f 1 :D
3 Ana lys i s type : min
4 −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
5 Type Delay Time Dir Desc r ip t i on
6 −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
7 port 0 .000 0 .000 f a l l inp1
8 pin 0 .000 0 .000 f a l l u1 :A (NAND2X1)
9 pin 2 .786 2 .786 r i s e u1 :Y (NAND2X1)

10 pin 0 .000 2 .786 r i s e u4 :A (NOR2X1)
11 pin 0 .181 2 .967 f a l l u4 :Y (NOR2X1)
12 pin 0 .000 2 .967 f a l l f 1 :D (DFFNEGX1)
13 a r r i v a l 2 .967 data a r r i v a l time
14
15 r e l a t e d pin 25 .000 25 .000 f a l l f 1 :CLK (DFFNEGX1)
16 c o n s t r a i n t 1 .518 26 .518 l i b r a r y h o l d f a l l i n g
17 r equ i r ed 26 .518 data r equ i r ed time
18 −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
19 s l a c k −23.551 VIOLATED

Figure 3.4: Critical path reported by OpenTimer for the discussed sample circuit and
configuration file

3.4.2 C++ API

OpenTimer features a number of methods for timing analysis. Similar to

the shell, they are grouped to a builder, action, or accessor operation. Some of the

most common API methods under builder include insertion, deletion of a net, gate,

connection, disconnection of a pin; under action include updating and reporting timing
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Table 3.2: Commonly used OpenTimer API methods
Type Form Description

insert gate builder inserts a gate (instance) to the design
insert net builder inserts an empty net to the design

connect pin builder connects a pin to a net
report at action reports the arrival time at a pin

report slew action reports the transition time at a pin
report rat action reports the required arrival time at a pin

dump graph accessor dumps the timing graph to an output stream
dump taskflow accessor dumps the lineage graph to an output stream

dump timer accessor dumps the statistics of the design

information; under accessor include dumping timing realted information. Table 3.2

shows few commonly used OpenTimer API methods.

The code snippet shown in Figure 3.5 is an example usage of OpenTimer’s

C++ API. It deletes NOT1 gate in Figure 3.2 and replaces it with an AND gate. The

timer class under namespace ot is the entry point for the API in which the core methods

for timing analysis are present.

The cell library, Verilog netlist and its SDC file are first read. Then, the

required gates and nets are inserted in the design. Later, appropriate pin connections

and disconnections are performed. Finally, the critical path is displayed.

3.5 Conclusion

In this chapter, the key features of OpenTimer, including its design philosophy,

tool configuration were discussed. An example usage of its application programming

interface and shell interface are also shown.

Some of the top features of OpenTimer include its non-conventional parallel
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1 ot : : Timer t imer ;
2
3 t imer . r e a d c e l l l i b ( ” s a m p l e s t d c e l l s . l i b ” , ot : : MIN)
4 . r e a d c e l l l i b ( ” s a m p l e s t d c e l l s . l i b ” , ot : :MAX)
5 . r e a d V e r i l o g ( ” sample . v” )
6 . r ead sdc ( ” sample . sdc ” ) ;
7
8 t imer . i n s e r t g a t e ( ”SAMPLE GATE 1” , ”AND X1” )
9 . i n s e r t n e t ( ”SAMPLE NET 1 ” )

10 . d i s c o n n e c t p i n ( ”INV X1” )
11 . connect p in ( ”SAMPLE GATE 1” , ”SAMPLE NET 1” )
12 . connect p in ( ”AND X1” , ”SAMPLE NET 1 ” )
13 . connect p in ( ”SAMPLE GATE 1” , ”DFF X1” ) ;
14
15 auto c r i t i c a l p a t h = timer . r epo r t t im ing (1 ) ;
16
17 std : : cout << c r i t i c a l p a t h << ’ \n ’ ;

Figure 3.5: Sample C++ code to illustrate OpenTimer’s API method

incremental timing analysis engine with Cpp-Taskflow and Common Path Pessimism

Removal.

Results from the TAU competition prove that OpenTimer is the fastest open-

source timing analysis tool compared to its peer academic timing analysis tools that

have similar features [4].

Future work includes expanding the SPEF parser to include more features in

parasitic extraction, expanding the Verilog parser to include hierarchical designs, and

later supporting behavioural Verilog.
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Chapter 4

Integration

Risk is the price you pay for

opportunity.

Tom Selleck

This chapter focusses on the integration between LGraph and OpenTimer.

To understand the transformation of the internals from a format that is represented

by LGraph to a format that is supported by OpenTimer, the integration process is

discussed with an example using the lgshell.

4.1 Introduction

LGraph’s vision is to support interoperability in the VLSI design flow from

RTL to layout. Hugely motivated by LiveSynth [9], LGraph targets to achieve it by

producing results in a few seconds.

OpenTimer is one of the several open-source EDA tools integrated with LGraph
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that performs STA. This integration is effective as it is an one-stop tool that can be

used to perform STA post synthesis and post place and route. It is also envisioned to

provide live STA feedback when a design is written in an HDL supported by LGraph.

A major challenge in this integration was that the internals of OpenTimer

and LGraph are completely different. This was overcome by the OpenTimer pass that

performed translation for effective communication between both softwares.

The OpenTimer pass traverses lgraphs, constructs equivalent circuits on the

fly, computes timing information and annotates it to the lgraph. With LGraph’s goal of

providing blazing-fast results and its requirement in performing timing analysis, Open-

Timer proved to be compatible for integration while benchmarking it.

Table 4.1: Benchmark test for a Ripple Carry Adder using OpenTimer’s API method
Circuit Cells Time

Ripple Carry Adder using Full Adder cells
1,000 00.278s
10,000 01.499s
100,000 15.981s

A Ripple Carry Adder was constructed (on-the fly) using OpenTimer’s API

methods with 1,000, 10,000, and 100,000 full adder cells. Table 4.1 shows the speed of

performing this task using OpenTimer’s API methods.

The integration process shown in Figure 4.1 is described as follows:

• The input files required for OpenTimer are read in one or more options via LGraph.

• Then the lgraph 1 present in the database is targeted, traversed and an equivalent

circuit is built using OpenTimer’s builder API functions.
1This lgraph could be in any stage of the design flow.
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Figure 4.1: Integration flow between LGraph and OpenTimer including other Passes
and InOu’s

• Later, the timing information is computed using this circuit based on the user’s

option.

• Finally the delay is annotated back to the lgraph.

4.2 Internals

4.2.1 Reading Files

OpenTimer requires two liberty files for associating cells to a cell library’s

timing information, a SDC file for tcl-based input describing its timing conditions and

a SPEF file that contains parasitic information of the nets in a RC network. It also

requires a Verilog netlist but that is provided as an lgraph which is discussed later in

this chapter.

The process for reading files is described in Algorithm 1. There are 3 inputs

that are required from the user - a liberty file, a SDC file and a SPEF file. The liberty

can be two individual files that contain early and late characteristics or a single file
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Algorithm 1 read file
1: procedure read file(.lib, .lib max, .lib min, .SDC, .SPEF)
2: if len(.lib max)==0 && len(.lib min)==0 then
3: timer.read celllib(.lib);
4: else
5: timer.read celllib(.lib max,ot::MAX);
6: timer.read celllib(.lib min,ot::MIN);
7: end if
8: parse.sdc(.SDC);
9: timer.read spef(.SPEF);

10: end procedure

which contains both.

The liberty and SPEF files are read through OpenTimer’s API methods read celllib

and read spef respectively. The SDC files are passed to another method which parses

it.

4.2.2 SDC Parser

OpenTimer uses a SDC parser from Synopsys’s TAP-in tools [14] which makes

it partially unportable. Since it is anyways limited to a set of commands such as

create clock, set input delay, set output delay, set input transition, and set load, it is

reasonable to have a custom SDC parser. Algorithm 2 describes the procedure for

parsing a SDC file.

The .SDC file is input from the user and is parsed line by line to check for tcl

commands supported by OpenTimer. When such commands are found, the equivalent

OpenTimer API methods are used to translate and execute them.

The create clock method creates a clock given its name and period. The set at,
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Algorithm 2 parse SDC
1: procedure parse SDC(.SDC)
2: while line gets next line in the file do
3: if line contains create clock then
4: name ← clock name
5: period ← clock period
6: timer.create clock(name, period);
7: else if line contains option then
8: option ← set input delay or set input transition or set output delay
9: name ← input name or output name

10: min max ← MIN or MAX
11: rise fall ← RISE or FALL
12: delay ← input delay or output delay
13: timer.option(name, ot::MIN/MAX, ot:RISE/FALL, delay);
14: end if
15: end while
16: end procedure

set rat and set slew methods set the input delay, output delay, and input transition delay

respectively. Apart from the name of the input or output, these commands require extra

information about its delay to indicate if it is a min/max and rise/fall.

4.2.3 Building Circuit

Once the input files required for OpenTimer are loaded, an equivalent circuit

is constructed from a lgraph. The steps required to perform this task is described in

Algorithm 3.

The graph is traversed using a node iterator and the cell name and instance

names are stored. These are used to create cells mapped to its cell library. The in-

sert gate method is used to perform this operation.

Next, the edge iterator is used to iterate the output edges of each nodes and
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Algorithm 3 build circuit
1: procedure build circuit(LGraph *g)
2: for const auto &nid : g→ forward() do
3: cell name ← name of cell
4: instance name ← name of cell instance
5: timer.insert gate(cell name, instance name);
6: for const auto &edge : node.out edges() do
7: net name ← name of net
8: nodepin name ← name of nodepin
9: timer.insert net(net name);

10: if edge is graph input then
11: timer.insert primary input(net name);
12: else if edge is graph output then
13: timer.insert primary output(net name);
14: end if
15: timer.connect pin(cell name:nodepin name, net name);
16: end for
17: end for
18: end procedure

the net names and the node pin names are stored. The insert net method is used to

create these wires. While traversing, the primary inputs and outputs are separately

stored and the insert primary input, insert primary output methods are used to create

primary inputs and outputs.

Finally, the connect pin method is used to connect the node pins of the corre-

sponding node to the net connected to it.

4.2.4 Computing Timing

Upon building the circuit, timing information can be queried by the user as de-

scribed in Algorithm 4. Inputs from the user are typically optional but include printing

the critical path or the circuit related information or dumping the graph information.
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The timer is first updated to maintain the latest information about the circuit. This is

done by using the timer.update timing() from OpenTimer’s API.

Algorithm 4 compute timing
1: procedure compute timing(user input, num)
2: timer.update timing();
3: if user input is report timing then
4: path equals timer.report timing(num);
5: for size t i=0; i<path.size(); ++i do
6: print path[i];
7: end for
8: else if user input is dump graph then
9: timer.dump graph();

10: else
11: path equals timer.report timing(1);
12: print path[0];
13: end if
14: end procedure

By default, the method prints the most critical path. Otherwise, it prints the

top n critical paths input by the user. In both these cases, timer.report timing is the

API method used from OpenTimer for performing the action.

In general, the critical path is calculated between the primary inputs and

the primary outputs. However, critical path between two given points can be calculated

when these points are mentioned as the source and destination when the pass is executed.

The default option would be to consider the graph’s input and output nodes or in Verilog

convention, the input and output of the top module, as the primary inputs and outputs.

The timing graph can be dumped for debugging, which is a very useful feature.

This can be invoked by the user and in turn uses timer.dump graph API method to

execute this task.
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4.2.5 Annotating Delay

Once the circuit is built, the timing information is updated and annotated back

to the nodes in LGraph as described in Algorithm 5. This requires no user inputs and

does not vary based on user inputs required for computing timing information. This

traverses OpenTimer’s internal data structure and updates the delay fields in LGraph’s

database.

Algorithm 5 annotate delay
1: procedure annotate delays(LGraph *g)
2: timer.update timing();
3: for const auto &nid : g→ forward() do
4: cell name ← name of cell
5: instance name ← name of cell instance
6: for const auto &edge : node.out edges() do
7: net name ← name of net
8: nodepin name ← name of nodepin
9: delay ← max(delay(nodepin name));

10: end for
11: end for
12: end procedure

Similar to computing the timing information, while annotating delay back to

LGraph, the timer is first updated to maintain the latest information about the circuit.

This is done by using the timer.update timing() from OpenTimer’s API.

The graph is traversed using a node iterator and the cell name and instance

names are collected. For every cell, the edge iterator is used to iterate the output edges

of each nodes and the max of all delays from each edge is stored in the LGraph database

as shown in Figure 4.2.

The database represents the basic information required for any format in the
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lgraph database

graph_library

half_adder

full_adder

add4

1 AND2_X1
  pins: ...
  timing: ...
  phys: ...
2 XOR2_X1
  pins: ...
  timing: ...
  phys: ...

tech_library

...

full_adder

nodes delay placement

-
-
-
-
-

-
-
-
-
-
-

inst_id

instance_char_arrayios_char_array

...

...

inst_char_array*n1
e1: 23.6
e2: 2.03
e3: 4.06
n2
e1: 22.3
e2: 2.55

Figure 4.2: LGraph’s database organization after computing timing information and
storing them in its nodes.

design flow. This pass would modify the database and update it with timing related

information such as the delay for each cell. This information can now be used by other

timing dependent passes such as place and route etc.

4.3 Interface

The lgshell can be used to query timing related information using the Open-

Timer pass supported by LGraph. This interface is explained using an example where

a Verilog netlist is converted to an lgraph, represented in a DOT format and is queried

using the lgshell for various timing information.

Figure 4.3 shows a Verilog netlist that contains 3 primary inputs, 1 primary

output, 5 cells, and 8 nets. These cells are instantiated from a cell library and the same

cell library should be provided to LGraph and OpenTimer for proper synchronization.

The Verilog netlist is converted to a lgraph using the Yosys pass. A cell library

is provided while doing the same and it is done with a full techmap option to preserve
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1 module sample (
2 inp1 ,
3 inp2 ,
4 tau2015 c lk ,
5 out
6 ) ;
7
8 // S t a r t PIs
9 input inp1 ;

10 input inp2 ;
11 input tau2015 c lk ;
12
13 // S t a r t POs
14 output out ;
15
16 // S t a r t wires
17 wire n1 ;
18 wire n2 ;
19 wire n3 ;
20 wire n4 ;
21 wire inp1 ;
22 wire inp2 ;
23 wire tau2015 c lk ;
24 wire out ;
25
26 // S t a r t c e l l s
27 NAND2X1 u1 ( .A( inp1 ) , .B( inp2 ) , .Y( n1 ) ) ;
28 DFFNEGX1 f1 ( .D( n2 ) , .CLK( tau2015 c lk ) , .Q( n3 ) ) ;
29 INVX1 u2 ( .A( n3 ) , .Y( n4 ) ) ;
30 INVX2 u3 ( .A( n4 ) , .Y( out ) ) ;
31 NOR2X1 u4 ( .A( n1 ) , .B( n3 ) , .Y( n2 ) ) ;
32
33 endmodule

Figure 4.3: Sample Verilog netlist to illustrate an example of the OpenTimer integration
with LGraph

the cell names and its instance names in the lgraph for performing timing analysis.

Figure 4.4 shows the commands to perform this operation.

The tech-mapped version of the DOT format of the Verilog netlist described in

Figure 4.3 is depicted in Figure 4.5. There are different types of nodes such as graphio,

blackbox, strconst.
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1 lgraph> inou . yosys . t o l g f i l e s : sample . v techmap : f u l l l i b : sample . l i b
2 lgraph> l g raph . open name : sample |> inou . graphviz

Figure 4.4: lgshell commands to convert the example Verilog netlist to an lgraph and
represent it in DOT format

Lgraph preserves the tech-mapped cells in terms of a blackbox that retains

information such as the name of the cell, name of the instance, name of the nodepin,

name of the net connected to the nodepin.

The graphio’s are of two types input graphio and output graphio. These de-

scribe the primary input and the primary output of the circuit which are the entry and

exit points for timing analysis.

Figure 4.5: Graphviz representation of the lgraph converted from the sample Verilog
netlist
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The default option while using the OpenTimer pass when provided with a

lgraph, a liberty file and a SDC file is to report the critical path. Figure 4.6 describes

the commands required to convert a Verilog netlist to a tech-mapped lgraph and later

make the OpenTimer pass report the critical path.

1 inou . yosys . t o l g f i l e s : sample . v techmap : f u l l l i b : sample . l i b
2 lgraph . open name : sample |> pass . opentimer l i b : sample . l i b sdc : sample . sdc
3
4 Sta r tpo in t : inp1
5 Endpoint : f 1 :D
6 Ana lys i s type : min
7 −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
8 Type Delay Time Dir Desc r ip t i on
9 −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

10 port 0 .000 0 .000 f a l l inp1
11 pin 0 .000 0 .000 f a l l u1 :A (NAND2X1)
12 pin 2 .786 2 .786 r i s e u1 :Y (NAND2X1)
13 pin 0 .000 2 .786 r i s e u4 :A (NOR2X1)
14 pin 0 .181 2 .967 f a l l u4 :Y (NOR2X1)
15 pin 0 .000 2 .967 f a l l f 1 :D (DFFNEGX1)
16 a r r i v a l 2 .967 data a r r i v a l time
17
18 r e l a t e d pin 25 .000 25 .000 f a l l f 1 :CLK (DFFNEGX1)
19 c o n s t r a i n t 1 .518 26 .518 l i b r a r y h o l d f a l l i n g
20 r equ i r ed 26 .518 data r equ i r ed time
21 −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
22 s l a c k −23.551 VIOLATED

Figure 4.6: Critical path reported by LGraph for the sample Verilog netlist

Another option while using the OpenTimer pass is to report circuit infor-

mation. Figure 4.7 describes the commands required to convert a Verilog netlist to

a tech-mapped lgraph and later make the OpenTimer pass display important circuit

information to the user.

Figure 4.8 describes the commands required to display the timing graph in a

DOT format. Tools such as Graphviz can be used to view this DOT file as mentioned
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1 lgraph> inou . yosys . t o l g f i l e s : sample . v techmap : f u l l l i b e r t y : sample . l i b
2 process module \ sample
3 lgraph . open name : sample |> pass . opentimer l i b : o s u 0 1 8 s t d c e l l s . l i b
4 Number o f ga te s 5
5 Number o f primary inputs 3
6 Number o f primary outputs 1
7 Number o f p ins 17
8 Number o f net s 8

Figure 4.7: Circuit information reported by LGraph for the sample Verilog netlist

in Figure 4.9. This is a very convenient feature as it allows the user to understand the

critical path in a much more intuitive manner.

1 inou . yosys . t o l g f i l e s : sample . v techmap : f u l l l i b : sample . l i b
2 lgraph . open name : sample |> pass . opentimer l i b : sample . l i b

Figure 4.8: lgshell commands to represent the timing graph of the sample Verilog netlist
in DOT format

Figure 4.9: Graphviz representation of the sample Verilog netlist’s timing graph
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4.4 Conclusion

In this chapter, the key features of the integration were discussed along with

the algorithms used in its implementation. An example of the integration is illustrated

using the lgshell interface.

This integration required no modification of the OpenTimer source code, and

it only added around 500 lines of code to the LGraph code base. However, this was

achieved in a separate pass without modifying the LGraph’s source code. The newly

added pass also has test files in OpenTimer’s pass directory to inspect the functionality

when the pass’s source code is modified to adapt future implementation.

Some of the features of the integration include its ability to read files required

for OpenTimer, parse SDC files, build equivalent circuits from lgraphs, compute timing

information to find its critical path and annotate cell delays on the lgraph based on it.

This is also achieved with negligible overhead in performance.

Future work includes integrating other open source timing analysis tools such

as OpenSTA and creating lgtiming - a pass that would allow the user to select the

required timing tool to compute timing information.
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Chapter 5

Conclusion and Future Work

When you reach the end of what you

should know, you will be at the

beginning of what you should sense.

Kahlil Gibran

In this thesis, the internals and interface of LGraph was initially explained with

the help of its lgshell. It was shown how LGraph functions as a LLVM for hardware

designs.

Next, OpenTimer was introduced and its internals and interface was explained

with the help of its ot-shell. It was shown why OpenTimer was chosen as the preferred

tool for STA integration with LGraph.

Finally, the integration of OpenTimer and LGraph was described and its in-

ternals and interface were explained using an example. Some of the ideas that evolved

over this phase were the development of a custom STA tool tailor made for LGraph’s
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purposes.

OpenTimer is actively maintained and its future inclusions such as hierarchical

support for Verilog files must be maintained by the pass. There are also other alter-

natives for timing analysis such as OpenSTA. These tools should be integrated into

LGraph. A unified pass should be made to accommodate these tools under a single

umbrella called lgtiming.

All the timing analysis tools have common input file format. A pass can

be created to load the input files to save them in LGraph’s database. This storage

information can be saved as json formats and fed as inputs to these timing analysis

tools.

When the SDC file is parsed, it is very important to differentiate the regular

inputs from the clock. This might be as trivial as recognizing it from the name of the

clock or as complicated as differentiating between the clock and the clock enable in the

case of a clock gated circuit. It is interesting to have a pass, mark the clocks that

performs this task.

This creates a platform to improve productivity in performing timing analysis

and when aligned with LGraph’s future goals, leads to new venues such as obtaining

live timing feedback as and when the RTL is written.
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