
UC Irvine
ICS Technical Reports

Title
Module interconnection languages : a survey

Permalink
https://escholarship.org/uc/item/2g545684

Authors
Prieto-Diaz, Ruben
Neighbors, James M.

Publication Date
1982

Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/2g545684
https://escholarship.org
http://www.cdlib.org/

MODULE INTERCONNECTION LANGUAGES

A SURVEY

RUBEN PRIETO-DI^
JAMES •MT'NEIGHBORT

August 1982

r/.
-/

65
/i0. ii'9

C' ^

Department of Information and Computer Science
University of California Irvine

Irvine, CA 92717

Copyright (C) 1982 Ruben Prieto-Diaz,James M. Neighbors

This work was supported by the U.S. National Science Foundation under Grant
MCS-81-03718 and by the Consejo Nacional de Ciencia y Tecnologia (CONACyT),
MEXICO.

I

I

I

I

I

19 August 1982 Table of Contents

Table of Contents

1. INTRODUCTION 1

2. MIL GENERAL CONCEPTS AND IDEAS 4

2.1 What MILs Do g
2.2 What MILs Don't Do 7

3. OVERVIEW OF MIL RELATED WORK 9

3.1 Modularization 9
3.2 Modularity by Using Abstract Data Types 11
3.3 Modularity by Using Nonprocedural Descriptions 13
3.4 Tools Supporting Module Interconnection 14

3.4.1 Job Control Languages 14
3.4.2 UNIX 15
3.4.3 PWB 15
3.4.4 CLU 16
3.4.5 PROTEL 16
3.4.6 SARA 17
3.4.7 GANDALF 18

3.5 Other Ideas about Module Interconnection 19

4. DESCRIPTION OF THE EXISTING MILs 22

4.1 DEREMER AND KRON'S MlL75 22
4.1.1 Objectives 23
4.1.2 Basic Concepts 23
4.1.3 Differences from the Other MILs 28
4.1.4 Experience to Date 29

4.2 THOMAS' MIL 29
4.2.1 Objectives 29
4.2.2 Basic Concepts 30
4.2.3 Difference from the Other MILs 33
4.2.4 Experience to Date 34

4.3 COOPRIDER'S MIL 34
4.3.1 Objectives 34
4.3.2 Basic Concepts 35
4.3.3 Differences from the Other MILs 37
4.3.4 Experience to Date 38

4.4 TICHY'S INTERCOL 38
4.4.1 Objectives 38
4.4.2 Basic Concepts 39
4.4.3 Differences from the Other MILs 40
4.4.4 Experience to Date 41

4.5 XEROX MESA 41
4.5.1 Objectives 41
4.5.2 Basic Concepts 42
4.5.3 Differences from the Other MILs 43
4.5.4 Experience to Date 45

19 August 1982 Table of Contents ii

5. CONCLUSION 46

6. FUTURE RESEARCH 48

ACKN0HLBD6HENTS 50

It APPENDIX A — MIL Examples: Parnas' KWIC Index System 51

1.1 KWIC Description in Thomas' MIL 53
1.2 KWIC Description in Cooprider's MIL 54
1.3 KWIC Description in INTERCOL .55

II* APPENDIX B — MIL Syntax 38

11.1 Thomas' MIL Syntax 58
11.2 Cooprider's MIL Syntax 59
11.3 INTERCOL Syntax 60

19 August 1982 List of Figures 111

Figure 1-1
Figure 2-1
Figure 3-1
Figure 4-1
Figure 4-2
Figure 4-3
Figure 4-4
Figure 4-5
Figure 4-6;

Figure 4-7:

Figure 6-1:

List of Figures

Hardware Capacity Growth over Time 1
Example of a MIL Code 5
Some Tools Supporting Module Interconnection 19
Graphic View of MIL Evolution 22
Graphical System Tree for a One-pass Compiler 24
The Module Interconnection Structure 26
Partial Code of a MIL?5 Program 26
Example of Code for Thomas' MIL 32

A Definitions Module and an Implementor in MESA Taken from 42
[Geschke et.al. 77]

A Partial Configuration Description in C/MESA Taken from 43
[Geschke et.al. 77]

General Structure of the KWIC Index System 51

19 August 1982

1. INTRODUCTION

INTRODUCTION

The goal of this paper is to present a survey of the work related to Uodule
Interconnection Languages. (MILs). There exist several languages, software
development tools, and operating systems that support some kind of module
interconnection. We will focus our attention however, on the languages that are
specifically designed to support module interconnection and that are called
Module Interconnection Languages.

It is widely known that the technology of software development lags behind the
hardware technology and that we are currently in a so called state of "software
crisis". The productivity of the software creation process has increased only
3%-8% per year for the last thirty years while the price/performance ratio of
computing hardware has been decreasing about 20% per year. Currently the total
installed processing capacity is increasing at better than 40% per
year [Morrissey 79]. As an example of what this means for just the storage
capacities of a medium-priced computing system consider the table in figure 1-1
which extrapolates these trends.

main

memory

secondary
memory

1972

32

kilobytes

megabytes

1982

3.2

megabytes

500

megabytes

Figure 1-1; Hardware Capacity Growth over Time

1992

320

megabytes

50,000
megabytes

Clearly if these trends continue the organization which purchases a
medium-priced computer will no longer be able to develop software specific to
the organizations needs which takes full advantage of the hardware^ At some
point each organization will encounter the programming-in-the-large problem.

Programming a small software system is an essentially distinct and different
intellectual activity from that of constructing a large system. In a large
system we are mainly concerned with the process of "knitting" system modules
together rather than with the process of programming each module. A MIL can be
considered a design language because it states how the modules of a specific
system fit together to implement the system's function. This is architectural
design information. MILs are not concerned with what the system does
(specification information), what the major parts of the system are and how they
are embedded into the organization (analysis information), or how the individual
modules implement their function (detailed design information).

While the major payoff of using a MIL may seem to be during the system design
phase of the software-lifecycle the actual payoff seems to be during system
integration, evolution and maintenance. This is because the MIL specification of
a system constitutes a written down description of the system design which must

19 August 1982 INTRODUCTION 2

be adhered to before a version of the system may be constructed. A maintenance
programmer cannot violate the system design without explicitly modifying the
system design.

Work in this area can be traced back to the early 1960s when the first large
software systems like OS/36G started to create real headaches not only to their
system programmers but to their system designers and project managers as well.
The basic design principle used then was that of "divide and conquer". Divide
the system into modules by the process of system design. Then program the
modules, validate each module and, assemble all modules to integrate a complete
system. This basic design principle is still the primary design technique used
today.

Modularization was first used as a managerial device to break the work of a
big project up into controllable units, and apparently for this purpose the
details of the division are not very important. In a software system however,
the splitting up is crucial. The connection between modules must be made
explicit in order for the system integration to succeed. Early modularization
methods focussed on execution—time procedural encapsulation mechanisms such as
subroutines and job control languages. Today there are several new development-
time techniques that have contributed to better understand and formalize this
design process. Structured programming, hierarchical design, functional
decomposition, abstract data types and stepwise refinement are some of these
newer techniques. These techniques have improved significantly the software
development life-cycle and have contributed to the birth of the first MILs.

Current research in module interconnection can be observed from three
different but complementary perspectives: The Software Engineering Perspective,
the Formal Models Perspective and, the Artificial Intelligence Perspective. The
basic question in module interconnection is: given a collection of agents
(modules) each of which performs a certain function under certain circumstances,
how can these agents be combined to perform a more complex function?

Researchers in Software Engineering view the problem as a design problem and
approach the problem from the point of view of finding a design notation which
can capture the complete design of a system as stated explicitly by a system
designer. MILs are design notations resulting from this point of view. The
system designer is thought of as "coding" in design notations. A MIL
description of a system is mechanically checked for consistency and completeness
before the system is actually linked together.

Researchers working in Formal Models view interconnection in two ways: as a
structural model of the resource usage of the system during execution and as a
consistency model of the construction of the system. The resource model is
intended to determine the data loading of different parts of the system and to
detect any communications deadlocks which might occur. The SARA system [Estrin
78] has adopted this structural modelling as one of its main goals. A system
consistency model captures the constraints on using different versions or
implementations of individual modules composed of other modules. Given these
formal constraints and the modules which must be implemented, a consistency
model determines a collection of specific versions and implementations of
modules which can be shown to implement the system [Neighbors 80].

19 August 1982 INTRODUCTION 3

For the Artificial Intelligence researcher the interconnection problem
manifests itself as a problem in automatic programming. In this context
"knowledge about programming" or "knowledge about the problem domain" can
represent both constraint and implementation information. The problem becomes
one of using this knowledge base to arrive at a sequence of low—level steps
which implement a high-level specification. This search for an acceptable series
of steps is guided by a description of the problem to be solved (goal), hints
about a series of steps which might suffice for a given goal (plan), and which
plans are potentially useful in different circumstances (frame). The goals,
plans and frames are all a part of the knowledge base. These mechanisms must
make sure that the steps that they link together are compatible and this is the
interconnection problem. The Transformational Implementation system [Balzer,
Goldman &Wile 76] and the Programmer's Apprentice system [Rich, Schrobe &
Waters 79] are two systems which take this approach.

In this survey we will concentrate only on the interconnection problem as seen
from the Software Engineering perspective only. The point of view of the other
two perspectives is very important and deserves a complete in depth study for
each. Since each of these views is dealing with similar interconnection
infomation it is important that a researcher taking one perspective understand
the other perspectives by the information they manipulate and the operations
they provide.

In the first section of this survey the general concepts and ideas that define
a Module Interconnection Language are presented. Here we give a definition of
what MILs are. Th4 second section presents a brief overview of other systems
that support some kind of module interconnection. Many of these systems support
more than just the Software Engineering MIL perspective on module
interconnection. In the third section four of the MILs developed to date will
be described in detail. The MILs are: MIL75 [DeRemer & Kron 76], Thomas' MIL

[Thomas 76], Cooprider's MIL [Cooprider 79], and INTERCOL [Tichy 80]. Each
one of these MILs is covered in sufficient detail to give the reader a basic
understanding of the concepts and ideas behind each one. A description of
MESA [Mitchell, et.al. 79], a software development system which supports module
interconnection, is included to show its similarities and differences with the
MILs. The last section is a general discussion on the future trends of this
area of research.

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

19 August 1982 MIL GENERAL CONCEPTS AND IDEAS 4

2. MIL GENERAL CONCEPTS AND IDEAS

The fundamental concept of Module interconnection L.anguage^ (MILs) is based on
the difference between Programming-in-the-large (PL) and Prograinming-in-the-
small (PS). The primary difference between PL and PS is that "structuring a
large collection of modules to form a system (PL) is an essentially different
intellectual activity from that of constructing the individual modules (PS)"

[DeRemer & Kron 76].

PS is concerned with building programs, with the particular use of loop-
constructs, if-statements, assignment-statements, expressions, arrays, and so
on. PS has been greatly developed to include the new techniques of structured
programming, top-down design, stepwise refinement, and others. Many of the
widely accepted languages (ALGOL, PASCAL, COBOL, etc.) have been designed to
aid programming-in-the-small and have contributed towards making programming a
science [Gries 81]. The system lifecycle phases of detailed design and
implementation primarily use PS notations. These notations focus on how a
particular part (module) of a system performs its function.

PL is concerned with building systems. We would define a system as being a
relatively independent group of programs (modules) which cooperate to implement
a complicated function for the organization in which it is embedded. PL
notations are primarily used in the architectural design phase of system
construction and concentrate on how the system modules cooperate (through calls
and data sharing) and what functions each module provides. A language concerned
with the data and control flow interconnections between a collection of modules
we will refer to as a JLanguage for Programming in the Large (LFL). A MIL is an
LPL with a formal machine-processable syntax (i.e., not natural language or
graphical diagram) which provides a means for the designer of a large system to
represent the overall system structure in a concise, precise, and verifiable
form.

Using these concepts the specification of a complete system must include three
items:

1. A PS (programming language) description of each of the modules in the
system.

2. A PL (MIL resource language) description stating the resources
provided and required by each module in the system.

3. A PL (MIL interconnection language) description of the resource flow
between the modules in the system.

In a MIL description, resources are considered objects that become the
currency of exchange among modules. Resources are any entity that can be named
in a programming language (e.g. variables, constants, procedures, type
definitions, etc.) and which can actually be made available for reference by
another module within a given software system.

I

I

I

I

I

I

I

I

I

I

I

I

I

I

19 August 1982 MIL GENERAL CONCEPTS AND IDEAS 5

All resources are ultimately provided by modules^ thus modules are units that
provide resources and that require some set of resources. The primitive
operations of a MIL describe the flow of resources among modules; they are
provide (which may also be called synthesize or export) and require (which may
also be called inherit or import). Has-access-to is another primitive operation
that helps to provide proper module structure within a system as will be shown
below. A must attribute may also precede the above operators.

The MIL description of a module specifies the resources required and provided
by the module. This module description becomes the interface with other modules
and subsystems and is made up of resource names and the operations which act
upon them. This is design level information describing system structure and the
representations used are quite similar to the design representations used by
software engineering methodologies such as Structured Design [Yourdon &
Constantine 79]. Module descriptions are the actual code of a MIL and are used
when assembling or integrating a software system in order to verify system
integrity.

In order to better illustrate these ideas, it could be said that a module is
analogous to an Ada package with the specification part being the MIL resource
description and the implementation part (body) being the code of the module but
with the difference (among others) that an Ada body is restricted to the Ada
language while the code of modules used in a MIL could be coded in different
programming languages or made up of plain text. ADA does not contain a MIL
interconnection language for describing a hierarchy of package resource
interconnection for a specific system. This function is left to the ADA
environment.

In most of the module interconnection schemes we shall examine the PL
information is in the form of a MIL and the PS information is in the form of a
normal programming language. The packaging of this information differs between
different schemes. At one side of the spectrum a system is defined as a
collection of modules each of which contains MIL and PS information and there is
no central description of the system other than the list of modules which
compose it. At the other end of the spectrum the modules which compose the
system contain only PS information while the central description of the system
contains all the MIL information for each module and the interconnections in the
system. In both cases it makes sense to "compile" the MIL definition of a system
to see if the interfaces between it's constituent parts match. No programming
language (PS level) information is necessary to perform this compilation.

An example of a MIL description of a module is shown below. Note that
declarations such as module, function, and consist-of are also part of the MIL
syntax. Note that the description code for XA and YBC could be written outside
ABC.

19 August 1982 MIL GENERAL CONCEPTS AND IDEAS

module ABC

provides a,b,c
requires x,y
consist-o£ function XA, module YBC

function XA

must-provide a
requires x
has-access-to module Z
real x, integer a

end XA

module YBC

must-provide b,c
requires a,y
real y, integer a,b,c

end YBC

end ABC

Figure 2-1; Example of a MIL Code

2.1 What MILS Do

In this section we will describe the basic functions that a typical MIL should
perform. MILs have evolved rapidly in the last few years and newer MILs include
other functions which will be regarded here as more advanced. The basic
functions are:

1. Describe svstem structure by defining scope of names across modules
and subsystem boundaries and specifying the interconnection between
modules. This is accomplished when writing the description part of
each module and compiling all the descriptions together.

2. Establish static intra—module connections and do static type checking
across module boundaries. Static here refers to compile time while
dynamic would mean at execution time. This function is a consequence
of the first.

3. Provide for different kinds of accessibility to module resources
(e.g. read only, read and write, etc..) and allow modules and/or
subsystems to be written in different programming language or to
consist of text only.

4. Mansgg version control and svstem familv. This is an advanced but
necessary function in developing large systems.

19 August 1982 MIL GENERAL CONCEPTS AND IDEAS 7

Note that a MIL needs only the description of the modules, not their body to
work, thus effectively separating the activity of PL from the activity of PS.

Aside from these basic operations listed above, a MIL usually serves as a
Proiect Management Tool by encouraging structuring before starting to program
the details and as a Support tool for the design process by capturing overall
program structure and being capable of verifying system integrity before design
implementation begins. A MIL could also provide some means of standardizing
communication among members of a programming team and of standard-i zinfy
documentation of system structure. The significant support to these activities
as seen from the Software Engineering perspective, is what makes MILs an
important tool for the software development process.

2.2 What MILs Don't Do

There are some functions that are not considered to belong to the domain of
MILs. These functions were stated by DeRemer and Kron [DeRemer & Kron 76] and
by Thomas [Thomas 76] in order to make a clear distinction between a mtt. and
other tools or languages performing similar functions related to module
interconnection. With this separation of functions the above authors intended to
state the "universe of discourse" of MILs establishing the basis upon which
newer MILs should be built.

The functions a MIL should not attempt are;

1. Loading,: A MIL should leave this function to a "subsystem loading
language" or to other facilities within the software development
environment.

2. Furictiohal Specification: A MIL only shows the static structure of a
software and should not specify the nature of its resources. This
task should be assigned to other subsystems.

3. Tvpe Specification: A MIL is concerned with showing and verifying the
different paths of communication among modules within a software
system by means of named resources. Some of these resources may be
types but the naming of these types is what a MIL looks for, not
their specification. For example, the decision to declare real y in
a program is a design decision that follows a type specification
while real y in a MIL code acts as a type checking statement only.
Embedded Link-edit Instructions; These operations should be left for
another subsystem within the development environment such as the
operating system or a separate command language.

Some integrated software development systems, such as MESA, PWB, ADAPT, and
PROTEL, perform some kind of module interconnection functions (e.g. type
checking across modules, etc.) as well as some of the functions stated above as
not belonging to the domain of MILs. This is why development systems of this
kind are not considered strictly as MILs.

19 August 1982 MIL GENERAL CONCEPTS AND IDEAS 8

The current tendency in MIL development, is to keep the domain of MILs well
defined so that stand-alone MILs can be developed and then integrated as part of
a software development environment such as GANDALF [Haberman, et.al. 81].

Approaches such as C/MESA of the MESA System [Lauer & Satterthwaite 79] and
External Structure of ADAPT [Archibald 81] conform to the current tendency but
are not as general since they are restricted to modules coded in a single
programming language. The MESA system is discussed in section 4.5.

19 August 1982 OVERVIEW OF MIL RELATED WORK 9

3. OVERVIEW OF MIL RELATED WORK

3.1 Modularization

Modularity is_ a well established concept that has been used in engineering
disciplines for many years. Modularization has also been used as a managerial
devise to break the work of a big project up into controllable units. In both
of these approaches, the details of the division have not been very important.
In the design of a software system however, the splitting up is crucial. It
must be done so as to minimize, to order, and to make explicit the connection
between the modules. Moreover, if the aim is a testable and validated system,
system connectivity must be substantially reduced.

There are no rules on how to do this, but some helpful methodological
guidelines have been developed. The keynote behind these guidelines is that of
hierarchical ordering as a technique to control complexity [Newell et.al. 61].

Other technique having hierarchical ordering as its aim is the idea of
"successive abstraction" [Dijkstra 65]. Dijkstra introduces ideas like;

- Divide and conquer approach to characterize top-down design by
presenting the three main stages of structuring:

1. Make a complete specification of the individual parts
2. Verify that the total problem is solved by proper assembly

of the above parts
3. Construct each individual part as specified

The principle of non-interference which pertains to this "dissection"
technique. He points out that:

"The correct working of the whole can be established by
taking, of the parts, into account their exterior
specification only and not the particular of their interior
construction."

Thus

"... the individual parts can be conceived and constructed
independently from one another."

In [Dijkstra 76] Dijkstra presented the idea of modularization and hierarchv in
program design. This idea is presented as the analogy of the pearl string. He

19 August 1982 OVERVIEW OF MIL RELATED WORK 10

suggests that we visualize a program as a string of ordered pearls in which a
larger pearl describes the entire program in terms of concepts or capabilities
implemented in lower-level pearls.

The main idea in these early works is that of separating the behavior of the
program at one level from the details of each of the components thus reducing
the complexity of the programming problem. Each of the subprograms can then be
considered in turn, in isolation from each other and from the program skeleton
in which they are embedded. This is what structured design and structured
programming is all about. The different possibilities of hierarchy and
modularization have been classified as types of counling and cohesion by
Software Engineering [Page-Jones 80].

Some of these ideas go as far back as the concept of mathematical function or
even to earlier times and an exhaustive historical search of these ideas is
beyond the scope of this paper.

Even though the key word "modularization" or "module" did not become widely
used until the early seventies, the original work on structured programming and
hierarchical system decomposition gave birth to the more generalized ideas that
triggered the development of Module Interconnection Languages (MILs) of the late
seventies.

Although structured programming was characterized by techniques like Stepwise
Refinement [Wirth 71] which is also an example of modularization, newer and
more advanced techniques like the use of abstract data types in program design

[Flon 75], the hierarchical ordering of program segments, and the use of
verifiable control structures and operators became more attractive for defining
modules.

Parnas has proposed an alternative way of looking at the problem. He uses
"information hiding" as the criterion for division into modules. In 1972
[Parnas 72a] he began formalizing modularity by uncovering the whole mystique

of modularization, asking questions like: What is a module?, What distinguishes
a good module from a bad one?. How do we go about modularizing a program?,
etc... He introduces the term information hiding which resembles Dijkstra's
principle of non-interference. He illustrates how information hiding is
implemented by contrasting two modularization techniques:

1. The conventional wav; starting from a flow chart and functional
decomposition using formats and table organizations as interfaces.

2. Using information hiding; by defining fairly independent functions
that operate on the data.

"Every module in the 2nd case is characterized by itsi knowledge of a
design decision which it hides from all others. Its interface was chosen
to reveal as little as possible about its inner workings".

19 August 1982 OVERVIEW OF MIL RELATED WORK 11

He demonstrates that the second method is less sensitive to changes in
requirements and/or design than the conventional method. His fundamental
observation here is that a programming task is more manageable if it is
partitioned by common decisions, rather than by specific characteristics such as
control flow.

In an earlier paper [Parnas 72b], Parnas introduced the idea of viewing
programs and designs as a collection of somewhat static and independent objects
rather than sequential decision makers. The idea of being able to completely
specify a whole system out of a collection of modules is based on this approach.

In [Parnas 76] he goes further by demonstrating that module construction
using information hiding is better suited for the development of program
families. He compares his technique against the classical way of building
modules (sequential completion) and shows that later versions of a program
constructed by using the later technique, have performance deficiencies because
they were derived by modifying programs designed to function in a different
environment. Information hiding used as a development technique is characterized
by:

- Precise representation of intermediate stages.

—Postponement of certain decisions while continuing to make progress
towards a complete program.

Stepwise refinement is also characterized by these two ideas but uses instead
incomplete programs as intermediate representations but with completely
specified operators. This technique is better suited for small systems while
Parnas' method although harder to implement works better in large systems.
Modularity thus has evolved from few sparse ideas to a well defined concept and
even to be the base for new software building techniques.

3.2 Modularity by Using Abstract Data Types

Abstract data types have been used to represent modules. Liskov and Zilles
([Liskov &Zilles 74], and [Liskov & Zilles 75]) being one of the earlier
advocates of this idea, proposed the use of abstract data types together with
the discipline of structured programming as a feasible technique to build
correct programs.

Here a programmer is concerned with proving that his program is correct by
writing a program which solves the problem but which runs in an abstract
machine. This top level abstract machine must provide just those data objects
and operations which ideally solve the problem. Most of these data objects and
operations are truly abstract and are not present as primitives in the
programming language being used.

The programmer analyzes the way his program makes use of the abstractions but
not with any details of how those abstractions may be realized. Once satisfied

19 August 1982 OVERVIEW OF MIL RELATED WORK 12

with the correctness of the program, the programmer turns his attention to the
abstraction it uses. Each abstraction represent a new problem, requiring
additional programs for its solution. The new program may also be written to run
on an abstract machine, introducing further abstractions. The original problem
is completely solved when all subsequent abstractions are realized by programs.

A programming language (CLU) was later designed [Liskov et.al. 77] to
implement this methodology by providing constructs that support the use of
abstractions in program design and implementation. A similar language (ALFHARD)

[Wulf 74] was designed mainly to support the construction of structured
programs. Both deal with abstract data types and abstraction building
mechanisms. Both are derived from SIMULA 67 ([Dahl, Myrhaug & Nygaard 70] and

[Birtwistle et.al. 73]). Although CLU and ALPHARD are somewhat similar, they
differ in many important details. For example, what kinds of abstractions can be
defined by each. For brevity only CLU will be described here.

In CLU, programs are developed incrementally, one abstraction at a time. A
distinction is made between an abstraction and a program or module which
implements that abstraction. An abstraction isolates use from implementation:
"An abstraction can be used without knowledge of its implementation and
implemented without knowledge of its use." The CLU library which supports this
methodology, maintains information about abstractions and the CLU modules that
implement them.

For each abstraction there is a description unit which contains all system-
maintained information about that abstraction. The interface specification which
is that information needed to type-check uses of the abstraction is the most
important information of an abstraction contained in a description unit. In
most cases, this information consists of the number and types of parameters,
arguments, and output values plus any constrains on type parameters.

An abstraction is entered in the library by submitting the interface
specification; no implementations are required. A module can be compiled before
any implementations have been provided for the abstraction it uses. During
compilation the external references of a module must be bound to description
units so that type checking can be performed.

The binding is accomplished by constructing an association list, mapping names
to description units, which is passed to the compiler along with the source code
when compiling the module. The mapping in the association list is then stored by
the compiler in the library as part of the module.

The idea of compiling the abstractions with their interface specifications
without any implementations needed is the very same idea of the first MIL

[DeRemer & Kron 76], MIL75. In a MIL, as will be shown later, each module has a
specific separate description of the resources required and produced (Module
Description) which becomes the interface with other modules and subsystems.

The best feature of CLU is its type checking capability across modules, which
is a natural consequence of its objective: to aid the programmer to construct
correct programs.

19 August 1982 OVERVIEW OF MIL RELATED WORK 13

A drawback is its lack of support of system organization. It will be shown
latter that a MIL based on a compiler is not as effective in the control of a
system organization as a MIL based on a data base processor [Cooprider 79], It
could be argued that the CLU library is the equivalent of a data base processor
because it supports incremental program development but can not however, support
version nor system family control because the compiler binds a module
permanently to the abstractions it uses. This is the price of strong type-
checking needed for correct programs. CLU therefore is more of a LPS (Language
for Programming in the Snail) [DeRemer & Kron 76] at a level lower but similar
to MESA [Geschke et.al. 77]than a LPL (Language for Programming in the Large).

3*3 Modularity by Using Nonprocedural Descriptions

Nonprocedural programming languages are used mainly as very high level
languages (VHLL) for system specification or in the first program description in
automatic program generation. From the viewpoint of MILs, there is however, a
nonprocedural programming language (MODEL) that supports module development.

The Module DEscription Language (MODEL), was created by N.S. Prywes [Prywes
77a], [Prywes 77b], and [Prywes et.al. 79] as one of the bottom up building
blocks towards the full automatic generation of programs.

MODEL is a complete system that helps the user by interactive dialogue to
build processable modules. It is non-procedural and uses a data base that
verifies completeness and consistency of the module requirements.

Each module is composed (in any order) of;

-Header (module name, source and target data names and,
references).

-Data Description (file description and inter file pointers).
-Computation Description (interim parameter description, source

set assertions and, target set assertions).

To avoid sequential ordering of data and computations it uses assertions in
data descriptions and in computations. Statically then, completeness is checked
and code for each module can be generated.

The objective here for creating modules, is to be able to generate code for
each module independently. The user enters the specifications of the system to
be constructed in MODEL statements. Syntax is Analyzed and then the non
procedural specification statements are made sequential using a complicated
algorithm based on a precedence matrix and on graph analysis. The sequential
high-level code is then checked for completeness and fed back to the user for
modification of requirements. This cycle is repeated until the user is
satisfied. Finally the high—level sequential code is converted to programming
code.

19 August 1982 OVERVIEW OF MIL RELATED WORK 14

model's contribution to MILs is the concept of non-procedural modules that
provide less coupling among modules and increases the capacity to have reusable
modules. MODEL is excellent for describing modules but it has no provision for
module interconnection.

Sangal, in his. Ph.D. thesis [Sangal 80], introduces a new language (NOPAL)
intended to provide MODEL with a module interconnection capability. Sangal uses
the same approach (as Prywes) to modularity but he introduces the idea of data
abstraction to specify abstract data types and the functions that are allowed to
operate on variables of the data type.

In NOPAL, each of the modules can be specified and processed by the language
processor independently. Communication between modules is by means of abstract
data types. A module represents an abstract data type that can be used by other
modules, thus allowing recursive usage.

NOPAL may be considered as a cross between MODEL and CLU but with even less
capacity of system organization than CLU. Control of module interconnection is
implicit, not explicit as in MILs. NOPAL is also a LPS and cannot handle
different versions or system families. It must be recalled that NOPAL is a tool
designed for automatic program generation just like MODEL, and its capabilities
as a MIL are limited.

3.4 Tools Supporting Module Interconnection

There exists several tools that in one way or another support some sort of
module interconnection mechanisms. In this report, only some of these tools
which are closer to MILs, and widely used will be briefly described.

To describe every tool, system or methodology that supports some kind of
module interconnection is beyond the scope of this paper. Systems like IBM's. JCL
and many interactive command languages that process compile, link, load and
execute commands perform to some degree some kind of module interconnection but,
they do not fit all the requirements for MILs as presented in section two.

3.4.1 Job Control Languages

The use of JCL to bind a system together is a pitfall of system design. With
this scheme the system is written as a group of independent programs, which
exchange information through assignments in the job control language. A disk
file is the easiest method for passing information in most JCLs. There are two
major problems with this scheme.

First, the system is "linked" together each time it is run. The inefficiency
of this action is not the problem but the fact that the integrity of the system
relies upon the JCL linkage is a problem. Evolution or maintenance on the JCL
processor may cause old systems not to execute properly because the details of
the system interconnection are not checked. Maintainers of control languages
know this and thus have a tendency to add features rather than change the
command language. This causes the command language to become very complex.

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

19 August 1982 OVERVIEW OF MIL'RELATED WORK 15

Secondly, the execution time linking of these systems gives rise to a
dangerous style of system evolution, that of building "layers" around an
existing complex system. The layers are preprocessing and postprocessing passes
over the input and output data of a system to modify the systems behavior
without knowing how the system specifically uses the data. These layers are
accompanied by some modification to the constituent programs of the system.
These "filtering" passes are easy to add to a JCL bound system and very hard to
remove. Thus, the effective size of the JCL control increases and the number of
programs involved in the system increases. This increase in the size of the
system aggravates the problem even more. Filtering passes added to the interior
of a system are even harder to deal with.

3.4.2 UNIX

UNIX is by far the most widely used programming environment that can be
classified as a group of programming development tools [Ritchie 79], [Ritchie
&Thomson 74], and [Kernigham &Mashey 81]. The UNIX development environment is
essentially a timeshared operating system with an extensive set of tools. All of
the tools and the underlying operating system were built with a highly
consistent design philosophy that uses a single uniform file format almost
exclusively. This facilitates the use of various tools in conjunction with one
another.

UNIX does not have any explicit commands that support module or program
interconnection, nor any support for type-checking across modules. A designer
can build a complete system out of UNIX commands alone but, program correctness,
parameter passing consistency, and system completeness must be manually
verified. UNIX could be seen as a very sophisticated and interactive JCL which
by its own nature is inappropriate for MIL tasks.

3.4.3 PWB

The PWB (Frogrammer's WorkBench) facility provides limited support for module
interconnection. Based in UNIX, PWB was developed by Bell Labs in 1973
[Dolotta &Mashey 76], [ivie 77], and [Bianchi &Wood 76] to provide tools

and services to ease the load on the application system designer, programmer,
documenter, tester, and development personnel. It is based on the concept that
the facilities needed by program developers bare some difference from those
required by the program users. The facilities supported by the PWB (as of 1979)
are a source control system, a remote job entry system, a document preparation
system, a modification request control system, and drivers that simulate user
conditions for testing.

The PWB source code control system is a file storage system that records the
various versions of a text file; this is accomplished by recording the original
version plus interleaved modification descriptions that can be applied to create
more up-to-date versions. This is the version control mechanism that inspired
some of the system version control techniques used by the new MILs.

19 August 1982 OVERVIEW OF MIL RELATED WORK 16

3.4.4 CLU

CLU [Liskov et.al. 77], although being a language by itself, their support
facilities fall into the category of tools. From this point of view, CLU
provides a better structure for module interconnection than UNIX and PWB. The
CLU system has a. central data base of system information, including the modules
(realizations) and the associated descriptive units and module interfaces. The
entire interconnection scheme of a system can be determined by tracing the
system from the root description unit, determining the set of modules used by
it, and proceeding recursively on each of those modules.

The CLU mechanism permits the definition of multiple versions of modules in
the sense that module definitions can be copied and the associated descriptive
unit modified to include a different resolution of the modules used by that
module. This approach however, is not practical because of the amount of extra
storage required to save redundant information.

A deficiency of CLU is the restriction of the interconnection mechanism to CLU
-style modules which, as mentioned above, permanently binds a module to the
abstraction it uses. This limits its version control capabilities. In CLU the
overall interconnection structure of who knows whom within a collection of
modules is deducible only by examination of the compiler inputs for all modules.

ADAPT (Abstract Design ^d Programming Xranslator), a language resembling CLU
in its essentials but with PL/l-style syntax, has been implemented at IBM
[Archibald 81]. It has proven to be as good a mechanism for describing the

detailed semantics of modules as CLU is but, in contrast with CLU, a MIL has
been added. This MIL extension to ADAPT is called External Structure and has
been reported to be an excellent tool to control overall system design and
decomposition. It is used to control inter-module type-checking during
compilation. It is an automated resource, interacting with the ADAPT compiler.

A system is described in External Structure as a collection of modules and
their allowable interconnections. This approach is very similar to the one
followed by C/MESA of the MESA System. A more detailed description of this
approach is presented in section 4.5.

3.4.5 PROTEL

PROTEL (PRocedure jOriented Type Enforcing Language) is a tool that supports
type checking across modules in a fashion similar to MESA [Cashin, et.al. 81].
PROTEL was implemented in 1975 by Bell-Northern Research of Ottawa, Canada and
has been used extensively since then mainly by its own developers.

This system is based on the compile—link—load paradigm like UNIX but performs
type checking across modules like MESA. To support type checking of inter
section and inter-module references, the compiler performs a process called
embedding which consists of first writing symbolic information to an object file
and then reading that information for all sections visible to the one being
compiled and using it to initialize the compiler symbol table. With the symbol
table so initialized, full compile time checking of all references can take

19 August 1982 OVERVIEW OF MIL RELATED WORK 17

place.

A Library System was added in 1977 to support module interconnection and
system version control but resulted in an environment too involved to be
practical [Cashin} et.al. 81].

Besides having the same disadvantages of MESA, (see section 4.5.3) PROTEL is
very limited in controlling system versions and in supporting system
organization.

3.4.6 SARA

SARA (^stem ^chitect's Apprentice) is a computer-aided system which supports
a structured multi-level requirement driven methodology for the design of
reliable software or hardware digital systems. SARA was designed at UCLA in
1976 ([Estrin 78], [Campos & Estrin 78a], and [Campos & Estrin 78b]) and has
been under continual development since then.

The SARA methodology, based on formal models, supports both a top-down
partitioning procedure (refinement) and a bottom-up composition procedure
(abstraction). It deals mainly with the structure of the record of execution
providing effective means for synthesizing and analyzing a system. To accomplish
this, SARA makes use of a structural model (SLl) and a behavioral model (GMB -
^raph Model of behavior).

The structural model resembles the contour model [Johnston 71] used to
describe the semantics of algorithm execution in block structured processes. The
contour model consists of graphs that represent processes enclosing nested
blocks. The structural model consists also of enclosing contours but in this
case they are used mainly to enforce modularity by providing a better means to
enforce encapsulation. They permit the isolation of parts of the system which
then can be modeled separately. SLl is SARAH'S modeling language designed to
describe the structure of a modular system.

The behavioral model consists of two graphs: a flow-of-control (CG - Control
Graph) and a flow-of-data (DG — Data Graph) together with interrelations
associated with the nodes of the data graph. The CG is a Petri-net of processes
and directed control arcs and the data flow is modeled in the DG through
processors and data sets, where the processors are responsible for the
transformation of the data stored in data sets.

The structure of the record of execution is effectively accomplished by
mapping between the behavioral and structural models. This mapping provides the
SARA tools with means to detect any inconsistency in the design but, it does not
provide any facilities for module interconnection, leaving SARA as a methodology
for system specification and design but not for system implementation.

In 1979 a MIL was added to SARA [Penedo & Berry 79] to deal with the
algorithm structure. This MISC (llodule X^t^^connection ^ecification Capability)
is intended to enhance the power of SARA by providing a smoother path from
modeling to code.

I

19 August 1982 OVERVIEW OF MIL RELATED WORK 18

In this new model a SARA-MISC mapping is obtained in which the SLl-GMB model
identifies the variables and the calls of the code; the MIL model identifies the
type and procedure definitions; and the mapping (SARA-MISC) says which variable
is of what type and which call is of what procedure.

As of 1979 the SARA-MISC methodology was only a model open to many questions
about efficiency, effectiveness, and performance. Work is still being conducted
on its integration into the SARA system.

3.4.7 GANDALF

GANDALF [Haberman, et.al. 81] is a new software development environment to
some extent different from all the conventional tools, such as the ones
described above. It is designed for projects that use the new Ada language and
its current implementation is written in the C language.

It is called an "environment" rather than a "tool" because it integrates
uniformly a set of three development support tools. These tools can cooperate
closely with each other since they are all based on Ada and are generally
knowledgeable about the environment. They operate on a common representation:
the syntax tree representation of the program. These three development support
tools are:

1. A collection of incremental program construction tools

2. A collection of system version description and generation tools, and

3. A collection of project management tools.

The incremental program description tool consists of a syntax directed editor
and a syntax directed dvnamic debueeer. The syntax directed editor is formed by
the pair (program constructor, unparser) as a replacement for the typical triple
(line editor, lexical analyzer, syntax analyzer). This new approach allows the
programmer to write syntactically correct programs the first time around.

The idea of the dynamic debugger is that a user can write his debuging
statements in terms of the source representation of his program instead of in
terms of machine code, memory locations and fast registers. A program can be
built incrementalIv because the program or subprogram being debuged is halted,
corrected, recompiled, linked, and loaded automatically. Execution can then be
continued upon modification.

The System Version Description and Generation Tool is actually a MIL developed
by Cooprider [Cooprider 79] and later by Tichy [Tichy 80]. This MIL addresses
the two basic problems of system composition: module interface control and
system version control (a more detailed description is given in the next
section). It provides a system generation facility based on system descriptions
thus taking over all necessary bookkeeping from programmers or system builders,
qualitative improvement over UNIX, MESA, PROTEL, and SARA.

I 19 August 1982 OVERVIEW OF MIL RELATED WORK 19

Type checking across modules and system boundaries is also provided and
performed independently and/or incrementally thus helping the system builder in
assembling perfectly matched modules.

The purpose of the Project Management facility is to supiport collaboration of
programmers on a, project. It consists of two parts: 1) Software Development
Control (SDC), responsible for coordinating the state of the system, and 2)
Generation and proliferation of documentation.

The former is also responsible for avoiding conflicts of interest among
project programmers; i.e. it will not permit two programmers to alter a source
concurrently. Access rights are automatically checked by the system so that
unauthorized users may not manipulate the project.

The later part is still under development. It is intended to force users to
comment on source object manipulations by prompting programmers for
documentation whenever additions or modifications are made to the system. This
ensures that there is no time when a change is been made to the system state
that is not reflected in the documentation.

In contrast with other systems composed of tools that are used individually
for different tasks, GANDALF provides a well integrated environment that uses
among other tools the latest MIL for module and version control. GANDALF may be
considered as one of the first revolutionary software development environment of
the 80 s. It is built on most of the ideas described in the previous sections.
It uses, for example, the concept of structured programming and stepwise
refinement for construction of modular programs; the ideas of Parnas [Parnas
72a] for module construction using information hiding; the concept of separating
system specification (LPL) from implementation (LPS) [DeRemer & Kron 76];
system version representation by abstract data types; and several other ideas
from previous tools i.e. UNIX, MESA, CLU, etc..

GANDALF in contrast with other new software development environments, has been
implemented and is currently under evaluation.

Figure 3-1 below illustrates graphically the relationship among the tools
described above and their support of some kind of module interconnection.

3*5 Other Ideas about Module Interconnection

Parnas in [Parnas 78] and [Parnas 79] integrates most of his ideas
(information hiding in particular) about modular construction of programs and
proposes a new methodology for better system structure.

This new approach is based on the virtual machine concept by which a system
designer must stop thinking of systems in terms of components that correspond to
steps in the processing. He must find instead, the primitive operations of the
system (specific domain analysis [Neighbors 80]) and build one machine on top
of another. At each step take advantage of the newly defined "primitive
operations" and this step by step approach turns a large problem into a set of
smaller ones. A positive side effect of this methodology is that each element in

19 August 1982 OVERVIEW OF MIL RELATED WORK

Modular Language s

Tools with a High Degree of Support
for Module Interconnection

GANDALF
INTERCOL

PROTEL
C/MESA

Thomas

TWB
MODEL

MESA

UNIX
SIMULA

MULTICS

Modular Languages

Tools with a Low Degree of Support
for Module Interconnection

20

MISC

FORTRAN

PASCAL

Figure 3—1: Some Tools Supporting Module Interconnection

this set of virtual machines is a useful subset of the system and can be reused
somewhere else.

In order for a higher level virtual machine to execute properly, its lower
level virtual machines must have been executed first and so on until reaching
the first level hierarchy. To establish this proper order of execution
priorities, Parnas introduces the uses structure which establishes the relations
among programs using others. This implies that different uses structures can
lead to different systems while using some of the same primitive modules.

This approach could be considered as a MIL in which the virtual machines at
different levels are the modules and the uses structure is the interconnection
specification (interface) among them. This approach however, could be called
vertical interconnection and not horizontal as in the typical MIL, thus leading
to interesting questions about its performance and possibility of being
automated as a regular MIL. Parnas claims that because of the insight required
in constructing virtual machines on top of others, automatization of this
building process would be too restrictive.

A more radical approach to module interconnection is advocated in [Belady &
Le^an 79]. Belady agrees with the idea that "the interface between software
units, at least in any one environment, be standardized and implemented in
hardware." This idea is based in the "Funnel" concept [Lehman 76] and
supported by the advancing mini-computer and micro-processor technologies which

19 August 1982 OVERVIEW OF MIL RELATED WORK 21

tend to overcome the limitations of standard hardware interfaces.

This approach seems to impose an unnecessary constraint on inter-software unit
communication by seriously deteriorating system performance and although Funnels
(Functional Data Channels) can be implemented in microprocessors, it is a
difficult problem to carry such concepts into a software module. The
feasibility of this approach thus, relies on the proper solution to the
specification and interface problem.

19 August 1982 DESCRIPTION OF THE EXISTING MILs 22

4. DESCRIPTION OF THE EXISTING MILs

There are several languages and software development tools that support soine
kind of module interconnection as mentioned in section 2 and 3 above. Some of
the software development tools like PROTEL, could be considered almost as having
a except for failing to meet one or two of the characteristics defined in
section 2 as basic functions of a MIL.

In this section the four stand-alone MILs developed to date and reported in
the literature will be presented; MIL75 [DeRemer &Kron76], Thomas' MIL

[Thomas 76], Cooprider's MIL [Cooprider 79], and INTERCOL [Tichy 79] together
with MESA, a software development system that supports module interconnection in
a fashion similar to a MIL. For each one of these MILs, a brief introduction is
presented followed by the main objectives of the language and the basic concepts
upon which it was built. A short section which presents the main differences of
the described MIL from the others is also included together with a note on the
experience to date. In Appendix A an example is given to illustrate how a group
of modules can be represented in some of the MILs described.

It will be observed below that MILs are one of the products of the "Structured
Programming" school but for programming in the large. Also it will be observed
that each MIL is built on most of the concepts of the previous one and only some
features are added to each. The exception being MESA with similar features but
implemented differently. This idea is illustrated below in figure 4-1.

4.1 DEREMER AND KRON'S MIL75

DeRemer and Kron developed the first Module Interconnection Language [DeRemer
& Kron 76]j MIL75. They established the basic ideas and concepts of module
interconnection by arguing convincingly about the differences between
programming-in-the-small for which typical programming languages are used to
write modules and programming-in-the-large for which a module interconnection
language is required for "knitting" those modules together.

MIL75 is a language for programming-in-the-large (LPL) that gives the systems
designer a tool to design and, to a certain extent, build a complete system out
of modules that do not have to be completely coded and tested, just properly
specified. The designer must specify for each module, the resources provided
and required as well as their type; the details about their internal operations
are not required. MIL75 compiles all these specifications while doing
consistency checking resulting in an accurate recording of the overall solution
structure.

19 August 1982 DESCRIPTION OF THE EXISTING MILs

design techniques

modularity
hi^rarchial
abstraction

ALGOL

stepwise
re£ inement

SIMDLA67

ALGOLS8

in£oniiati>on
hiding

MIL75

Thomas

MESA

JCL/OS MDLTICS UNIX

i97cr 1975

system

famlies

Cooprider

S. --^GANDALF
Tichy

MESA system

C/MESA

UNIX/PWB

1980

Figure 4-1; Graphic View of MIL Evolut
ion

23

SOFTWARE
ENGINEERING

MILS

PROGRAMMING
LANGUAGES

OPERATING
SYSTEMS

4.1.1 Objectives

larffo objective of MIL75 was to provide some means of programming-in-the-
irofpr? <lescribing interconnection among modules. It was intended to serve as
Sresen^ aS '̂vlrTr' helping to provide a means to
Hdr pfSr/ i • structure before starting construction. As aeffect, having a standard, formal, concise and verifiable means of
representing system structure, MIL75 would provide a na^rar mea^r of
sy^e^stricture!'''®®'' ^ programming project and means of documenting

4.1.2 Basic Concepts

MIL75 is based on the concept that any system structure has a graphical

tS^'^eSr^'th inverted tree with nodes being the modules andthe edges their different hierarchical relationships. This graphical
relationship of a system is an implicit prerequisite to use MIL75. The methods
proposed in [Stevens, et.al 74] and in [Yourdon & Constantine 79] for
structured design could be used to obtain the hierarchically decomposed inverted

® required by MIL75, provided some additions
and proiid^d accessibility as well as the resources required

19 August 1982 DESCRIPTION OF THE EXISTING MILs 24

Once a graphical structure for a system is obtained, it is programmed in MIL75
where the code consists of the description of the modules in each node. The code
is compiled to verify system integrity and to enhance reliability. Each "system
description" can be recompiled alone or with any others. When "systems
descriptions" are put together they define a "module interconnection structure".

MIL75 consists of three sets that are required to establish system structure:

Rssource8— Atomic elements which denote abstractions of programming
constructs within_ a program (variables, types, arrays, functions,
etc.) and are available for reference to other modules.

2. Modules- Programming units made up of resources and other programming
constructs that perfora a specified function or task.

3. Systems- Groups of hierarchically organized modules that communicate
via resources to perform more elaborate functions.

MIL75 establishes certain relationships between resources and modules as the
basis to keep system structure, integrity and maintainability within control.
These relationships are based around the inverted tree model described above and
form the minimum set required by MIL75 to be able to do module interconnection.
The relationships are:

1. Defining the scope of definitions of module or subsystem names thus
helping to impose the overall system structure called here the
"system tree". This external scope definition is accomplished by the
systems designer and the description of each node (module or
subsystem) is written in MIL75 code. Thus this relationship is among
modules. Figure 4-2 below shows a system tree for a one-pass
compiler.

The system tree is a rough hierarchical decomposition of the intended
software project where each node (module) should encompass an
intellectually manageable part of the whole problem and may include
more than one program or function. The scope of definitions thus
aids the systems designer in determining the hierarchical levels of
the system tree.

2. The relationship between modules and their provided and derived
resources. This relationship is represented by a "Resource Augmented
Tree" which is a system tree that also indicates the resources
provided and derived for each node pursuing a top-down approach. This
tree shows only the flow of resources from parent to children and up
from children to parent, the later being called "derived resources".
Resources originated in other nodes not being direct ancestors or
successors are not considered "provided" nor "derived" but rather
"accessed" resources as will be shown below.

19 August 1982 DESCRIPTION OF THE EXISTING MILs

compiler

symtble

backup^ mextcha searchx enter

quadgen

Figure 4-2: Graphical System Tree for a One-pass Compiler

uM provided by a node (module) must come from itschildren, that is, a node can only provide resources to its parent if
they have been either deriyed by one of its children or defined
within that node. A module cannot provide resources that have been
acquired from other nodes outside the direct family genealogy. The
systems designer is responsible for including such outside resources
within that node.

3. The relationship among the resources of sibling modules. The
channels for flow of resources among siblings are determined by the
parent. These accessibility channels or links among a set of
siblings may form any directed graph. Access rights are not
transitive and also the children of a node are invisible to its
siblings. This relationship limits resource accessibility to modules
laying at the same hierarchical level.

25

I

I

I

I

I

I

I

I

19 August 1982 DESCRIPTION OF THE EXISTING MILs 26

4. The relationship of accessibility of resources of modules at
different hierarchical levels. On the one hand a child by
default all access rights that have been granted to its parent but a
parent may deny some subset of its access rights to any of its
children. The parent however, must explicitly list all access rights
left to a Vpartially disinherited" child. On the other hand a parent
has access to the resources that it demands from any of its children
but these rights cannot be transmitted to the next level down because
its grandchildren and lower descendants are invisible to the parent.

Accessibility in MIL75 is defined as: "A node has access to a node
a iff either p has sibling-access to n, p inherits access to n, or p
is the parent of n" [DeRemer &Kron 76]. So access to a resource by
a given module is either unrestricted or none at all.

5. The relationship between modules and the origin and usage of
resources. For each module, a MIL75 program must include two
statements:

a. The "stat^ent of origin" listing the resources defined in that
module and,

b. The "statement of usage" listing separately the derived
resources provided by its children, and all other resources,
those obtained through siblings or inherited access.

Establishing relationships 1 through 5 is what MIL75 coding is all
about. A ready-to-compile code must describe the "access augmented
system tree" which is shown as part of Figure 4-3 below.

After these relationships have been established (coded) by the system designer,
the MIL7 5 compiler checks that actual usage of resources by a given module agree
to access rights provided by other modules to those resources and that provided
resources either come from a child or are defined within that module. Passing
that stage, the compiler then establishes the usage links which are direct
channels where resources will flow. A usage link is illustrated as follows: if
a module m has access to a resource provided by a module £. then a usage link is
established to point to m from p. In other words, it is solving indirect
references by direct links which in short corresponds to binding (at compile
time). This binding is what establishes the "module interconnection structure"
shown in Figure 4—3. For this example the access augmented system tree mentioned
above is identical to the module interconnection structure of Fig. 4-3 except
for the usage links.

In short, a complete MIL75 program consists of a series of statements
expressing the different relationships (1,...,5 between resources and modules of
a structured (nodal) representation of a system. The partial code of the MIL75
program for the module interconnection structure shown above is given in Fig.
4-4 to illustrate the above discussion.

I

I

I

I

I

I

I

I

I

I

19 August 1982 DESCRIPTION OF THE EXISTING MILs

^ompilen

symtble

backup j(nextchar searchK enter etrievei /

verify

— System Tree
Accessibility

^T^^Provided Resources

Used Resources

quadgen

Figure 4-3; The Module Interconnection Structure

27

19 August 1982 DESCRIPTION OF THE EXISTING MILs 28

system compile
author John Smith

date 2/25/82
provides compiler
consists of

root module .
originates compiler

subsystem scan
must provide scanner
has access to symtble
consists of ,

root module

originates scanner
uses derived

Figure 4-4: Partial Code of a MIL75 Program

4.1.3 Differences from the Other MILs

Before an attempt is made to point out the differences between MIL75 and the
other MILs we must recall that MIL75 was the first MIL and that most of its
characteristics were original and innovative at its time. Later MILs improved
MIL75 ideas, added new ones, and indicated some of the disadvantages of MIL75.

The highlights of MIL73 are:

1. First case of a compiler used for a LPL.

2. Parents control sibling access thus providing an effective tool to do
design based on virtual machines. Hierarchical levels on the
structured model are effectively separated.

3. The scope of control in the design is facilitated by parents making
resources available (by default) to offsprings and side effects are
minimized by not allowing resources to bubble-up unless specified

Mll'75 is oriented around a structured (oriented tree) representation of a
system thus shifting somehow some of the work back to the systems designer. The
MIL compiler takes (in MIL75 code) the complete description of the system where
design decisions like proper abstraction, functional decomposition, and
modularization have already been made by the systems designer. Furthermore the
systems designer must establish the accessibility and provision of resources
among modules.

The main contribution of MIL75 to the field of software systeims design is in
providing the designer with some means of detecting wrong design decisions

19 August 1982 DESCRIPTION OF THE EXISTING MILs 29

before construction begins* If the MIL75 compiler detects en errorj It may be an
BTTOT reflecting a bad modularization of the system or simply an Inconsistency
on the flow of resources. In the later case, the fix Is relatively easy and
requires the recompllatlon of one or few modules and/or subsystems while In the
former case a recompllatlon of the complete system may be required.

The major drawback of MIL75 Is Its rigidity caused by Its attachment to the
Inverted tree structure. Thomas (next section), tried to overcome this
deficiency by designing his MIL around a more flexible structure. Another
deficiency In MIL75 Is Its lack of support for the "specification of the
function of the modules". DeRemer and Kron also mention the capability a MIL
should have to support modules programmed In distinct languages but they do not
show such capability for MIL75. Last but not least, MIL75 could be seen as an
Isolated tool used only to show how a MIL should work but was not Integrated
Into a software development environment. Thomas Instead tried to establish the
mechanisms to Integrate his MIL Into a programming system. This Integration Is
required, as Cooprlder [Cooprlder 79] and Tlchy [Tlchy 80] later did. In order
to use and evaluate their MILS.

4.1.4 Experience to Date

MIL75 was Implemented In an academic environment to test the concepts of
module Interconnection but was never used In a production environment nor
Integrated Into a software development system.

4.2 THOMAS' MIL

Thomas developed a module Interconnection notation and discussed a possible
module Interconnection processor [Thomas 76]. He proposes a formal model based
on the compile—>blnd/link paradigm that allows for flexible bindings and also
provides the notation to Incorporate his MIL Into a programming system. Besides
the flexible binding scheme which Is his main contribution to MILs, Thomas
presents through his formal model the basis for practical MIL Implementations.

4.2.1 Objectives

The objective In Thomas thesis Is to propose a MIL that would be a complement
to CLU/ALPHARD—like languages and that would Incorporate new Ideas for the
future development of MILs. His MIL Is designed to meet many of the
characteristics of CLU and ALPHARD. Thomas' MIL Is Intended to be used for
specifying structural models of software systems as well as for documenting
module Interconnection structures.

Thomas also proposes a flexible binding scheme for the Interconnection of the
modules and the Incorporation of the MIL Into a programming system or
environment. The objectives of these propositions are:

1. The ability to express the mutual support of modules explicitly by

19 August 1982 DESCRIPTION OF THE EXISTING MILs 30

combining sets of modules together in a fashion similar to how CLU
and ALFHARD use their language extensions to support higher level
language constructs.

2. To allow the systems designer certain control over the distribution
of information.

3. To provide the capacity for arbitrary graph structures of
accessibility relationships and at the same time control the spread
of this accessibility.

4. To realistically support modularity and facilitate the reuse of
already developed subsystems through the support of a structured
library of predefined modules.

As has been shown above, objectives 1 and 2 above were partially fulfilled by
MIL75 while 3 and 4 are the iimovations contributed to MILs by Thomas.

4.2.2 Basic Concepts

Th^as MIL is based on the idea that module interconnection should be
flexible and not constrained to a particular system structure as in MIL75. He
advocates the "compiling and static type-checking before binding/linking" schema
as illustrated below:

checking

compiling

I
->l

I
->l

I
binding/1inking

and claims to obtain more flexibility, less recompilation, and moderate cost
because of the composition of binding and linking into a single phase.

This scheme allows as he claims, a software system to be represented (in MIL
code) as a "finite directed graph G with no simple cycles and where S is a start
no^ in G and all nodes in G are reachable from S". This graph definition is the
same as the inverted tree representation of a software system used by MIL75 with
the addition of cycles. Thomas proves that static checking will not be affected
by the addition of the cycles but that binding may become an intractable problem
in some cases. His proof is based in the fact that binding requires for each
node besides a name, a directory of the resources (required and provided) for
each context upon which that node may be used by other modules. This list of

19 August 1982 DESCRIPTION OF THE EXISTING MILs 31

directories may be infinite if partially recursive functions are present
(cycles). Expensive dynamic linkage must be used for these cases instead. Of
course Thomas obtains interconnection flexibility by going from a pure oriented
tree structure of a system to an oriented tree with cycles at the price of
sometimes not being able to do the binding.

From the MIL?5 point of view, this binding operation is what the MIL?5
compiler does when transforming the "access augmented system tree" to the
"module interconnection structure". The advantage in Thomas' MIL is however, to
allow more freedom to the systems designer to concentrate in doing good
modularization in the terms proposed by Parnas [Parnas ?2a] (i.e. information
hiding) and delegate some of the structuring to the MIL processor. This
approach also allows as mentioned before, the effective use of a structured
library for module reusability. A drawback however, is that its flexibility is
still very limited.

A MIL from Thomas viewpoint should be called an "Environment Establishment
Language" because it specifies the bindings of names to modules which provide
those names (resources). According to him, an environment is a set of names
accessible for use in a program where this set of names characterize a virtual
machine. In MIL?5 terms this "environment" is called the "module description".

He advocates a static binding scheme similar to ALGOL and other structured
LPSs but avoiding some of their deficiencies like: automatic inheritance,
implicit and fixed accessibility, forcing a variable (resource) upwards to a
common area to increment its accessibility, etc. An argument he uses against
dynamic binding besides cost is the advantage of having static type—checking.

The "universe of discourse" of Thomas' MIL is names which are mainly of four
classes: Resources, Modules, Nodes, and Subsystems.

- Resources are the class of names within a module which can actually be
made available for reference.

- Modules are units of source code (may be written in different
programming languages) providing and requiring resources. This MIL
allows for two kind of modules: procedures and clusters. Procedure
modules provide a single name used to reference the module as a whole
(e.g. function call). Cluster modules provide both a name for the
whole module and (optionally) a set of entry points (e.g. data
abstraction like in stack$pop).

The definitions of resources and modules are almost identical to the
ones given in MIL?5.

- Nodes are descriptive units (in MIL code) that establish environments
for the modules by binding resource names to modules. Nodes are the
basic entity for programming in the large just as a module description
is in MIL?5. So a node specifies the set of modules attached to it
and the interconnection between the node and other nodes of the
system.

19 August 1982 DESCRIPTION OF THE EXISTING MILs 32

In MIL?5 each module has a "node" or each node belongs to a module, in
Thomas' MIL a node may encompass or "describe" more than one module.

There are four main operations a node can apply on resources to form
the MIL code:

1. Synthesize- specifies a set of resources provided by a module.

2. Inherit- specifies a set of resources required by a node

3. Generate-Locally- specifies which modules are attached to the
node being defined.

These operators are equivalent to provide, has-access-to, and
consist-of of MIL?5 respectively.

4. Has-successor- determines the set of nodes that provide
resources to this node or in MIL?5 terms, the successors are the
children of a node that generate "derived" resources to their
parent.

~ Subsystems are graphs (directed) of nodes and the edges connecting
them with one node (the "distinguished node") providing a
characterization of the subsystem i.e. indicates resources provided
and required for the whole subsystem. Only this set of resources
should be known to the user and nothing of the internal structure of
the subsystem. A subsystem is stored in a library structure and can
be referenced in a MIL program as if it was a single node.

This concept of subsystem is to make explicit what MIL?5 implicitly
uses for system design based on layers of virtual machines.

The concrete syntax for this MIL is presented in Appendix B. The figure below
shows a piece of code for this MIL to illustrate the use of the names defined
above and how they describe a structure. In Appendix A a complete example is
presented.

If a user were to design a software system using Thomas' MIL as a development
tool, he/she should follow a structured design methodology to obtain an oriented
tree structure of the system just like the "system tree" of MIL?5 is obtained.
Then he/she would define the nodes in MIL constructs by carefully analyzing
which modules could be encapsulated in a subsystem so that a node structure is
obtained which describes the whole system structure in a LPL. This is analogous
to the "packaging" activity of structured design [Page-Jones 80], This is a more
flexible way to build the rigid "resource augmented" and "access augmented"
system trees of MIL?5.

During the formation of the node structure, static type checking would be
performed by the MIL processor so that at the end resource flow consistency

19 August 1982 DESCRIPTION OF THE EXISTING MILs 33

node compile
synthesizes proc compiler
has successors scan, parse, symtble, postfix

successor scan

synthesizes proc scanner
must inherit proc symbol table

successor parse

synthesizes proc parser
must inherit proc scanner

proc postfix
successor symtbl

must synthesize cluster sytable with ops enter, retrieve
generates locally proc lookup using search

successor postfix
synthesizes proc postfixgen

proc quadruplesgen
must inherit proc symbol table

Figure 4-5; Example of Code for Thomas' MIL

would be verified.

The next step, in contrast with MIL75, would be to code the individual modules
and compile each one separately. Finally, the MIL processor would be called to
do the binding and perform the required module interconnections, that is to
change all indirect references to direct connections. The MIL75 compiler instead
establishes the "usage links" (bindings) at a LPL level without need for module
coding.

4.2.3 Difference from the Other MILs

As seen in the above description, Thomas' MIL performs the module
interconnection after module compilation thus allowing more flexibility to the
designer at the type-check stage but at the same time forcing the complete
termination of the system (coding) before interconnection can be performed. The
pay-off is during maintenance when individual modules can be added without
requiring full recompilation of the system as MIL75 would sometimes require.
This pay-off will be incremented if the MIL were integrated into a system
development environment as Thomas proposes. Thomas' MIL is restricted in two
ways: 1) by using CLU-like resources and constructs and 2) by bounding the
interconnection to the compile/link paradigm. Cooprider and Tichy succeed in
freeing their MILs from these restrictions and in integrating their MILs in
working systems development environments as will be shown below.

19 August 1982 DESCRIPTION OF THE EXISTING MILs 34

4.2.4 Experience to Date

Thomas work is only a discussion of a possible MIL processor and it was never
implemented. It is however a valuable work that established certain ideas for
future MILs.

4.3 COOPRIDER'S MIL

Cooprider expands the basic ideas of the previous MILs to introduce a version
control facility and a software construction facility [Cooprider 79]. The
former facility recognizes the different instantiations (versions) of an
interconnection network and knows how they are hierarchically integrated while
the later facility is capable of constructing a complete software system from a
functional description of the construction process. Resources and source files
are combined according to construction rules, explicitly specified by the
designer, to create the objects that form a software system.

His major contribution to MILs is to discard the use of a compiler and to use
instead a data base processor (similar to the system described in [Bratman &
Court 75]) supporting an interactive system construction environment.

4.3.1 Objectives

The objective in Cooprider s work [Cooprider 79] is to propose a system that
to some extent, would bridge the gap between software design and software
construction. He develops a representation for software systems that integrates
a MIL, a version control facility and a software construction facility. His
emphasis is on the later two facilities but succeeds in adding some innovations
to the work of DeRemer [DeRemer & Kron 76] and Thomas [Thomas 76].

From the MILs point of view, Cooprider's work could be considered to be a MIL
extended to support version control and system construction by adding new
primitive operations like, among others, version and acquire. By extending the
domain of operations of this MIL, Cooprider presents convincing arguments that
justify the use of a central data base processor against the use of a compiler
as previously suggested in the earlier MILs.

The goal of Cooprider s extended MIL is to effectively represent:

- Subsystems that provide and require resources.

- Versions of subsystems that share the interconnection structure.

- The resources that may be needed for the construction of any subsystem
version.

- The construction rules that operate on the concrete system components.

- The execution of a construction program.

19 August 1982 DESCRIPTION OF THE EXISTING MILs ^5

4.3.2 Basic Concepts

There are three levels of notation in this MIL. The highest, most abstract
level defines the interconnection between subsystems or modules. The
intermediate level describes instantiations of system versions conforming to
those interconnection structures. And the lowest, most concrete level describes
actual system construction operations.

-The Interconnection System

The abstract portion of the subsystem interconnection notation corresponds to
the one used in the previous MILs. The subsystem or module is the basic building
block; resources are the currency of exchange among subsystems. Subsystems may
enclose other subsystems. Resources must be named explicitly and can be "extra
linguistic", that is, they are hot necessarily made of programming constructs
alone but may be composed of plain text or even, graphic information. All these
characteristics have been defined in the previous two sections and their
definition applies the same in this MIL. Appendix B (section II.2) shows the
interconnection syntax of this MIL.

There are three interconnection mechanisms in this MIL:

1. Nesting— The provider can be nested directly within a requirer. This
mechanism is similar to the flow of resources from children to parent
in the resource augmented tree of MIL75.

2. Explicit Reference— The provider can be named by an external clause
in the requirer. This case is analogous to the accessibility channels
for resources among sibling modules of MIL75.

3. Environment Definition— The provider can be named by a subsystem that
encloses the requiring subsystem. This mechanism is the same
environment described in Thomas' MIL and similar to the flow of
resources from parent to children in the resource augmented tree of
MIL75.

The KWIC [Parnas 72a] example of Appendix A (section 1.2) illustrates these
three mechanisms and the use of the interconnection syntax.

-The Construction System

This lowest, most concrete level of notation is presented before the
intermediate level in order to convey better understanding of the whole
language. The syntax of the construction process is presented in Appendix B

Class AUTHOR

leto-Diaz, E-uben
List Price

Date
Ordered 6ff

/f <2,
Date
Rec'd.>

•j-

iL y

Dealer

No. of
Copies

2
Order
No.

TITLE

MODULE IHTERCOIIMECTION LANGUAGES;
A SURVEY.

Edition or Series

(Calif. Univ. Irvine.

^^cMSiandePby uaiir., 1982.

Ek. Hr. from Serials

HANDLING

Volumes

Dept. of Infonnation
, M^aceComputer Sci. Tech. ; 189) year
Irvine ; Dept. of Info. & Computer Sci.,
l^^commgndePhv Calif, Fund Charged Cost

1 copy-star
I copy- archives

0-cui

0-pf

19 August 1982 DESCRIPTION OF THE EXISTING MILs 36

(section II.2). The objective here is to specify the process by which a system
is constructed, concrete objects, rules, and processors are required for the
construction to take place. A rule shows how a concrete object is constructed, a
concrete object is a generalized file (source, object or executable code) and a
processor is any program that produces a concrete object (compiler, assembler,
text processor, etc..). A source file is always the original concrete object in
a chain of construction rules.

There are three operators used in the construction system:

1. file- Used to point to a specific file name indicated by a path (full
directory path) enclosed in "< >" brackets. This path may be empty
thus showing the file name only.

2. acquire- converts a resource from another subsystem into a concrete
object.

3. deferred- retrieves all objects that have been implicitly associated
with the parameter object. This operator is used when separately
compiled subroutine bodies are linked and their external procedure
declarations made effective.

The example below illustrates the use of the above operators.

Example

concrete object filel = FOR(file(<DIR-name:MAIN>))
concrete object COMM = FOR(acquire(COMMON-BLK))
concrete object file2 = FOR(file(source-SORT))
concrete object fileS = MERGE(file(inputl),file(input2))
concrete object execMAIN = LINK(filel, file2, fileS, COMM,

deferred(file2))

The Version Control Svstem

The^ objective of this system is to make different system versions share the
same interconnection structure so that duplication of identical information is
prevented and modification sites are centralized. This approach is better than
copying system descriptions that would require modifications to each copy for
any small alteration performed to a component subsystem.

The syntax for this system is illustrated in Appendix B (section II.2). It
consists of two parts: the realization section and the version section. The
realization section contains all the information pertinent to the tangible form
of a subsystem while a version is an instantiation of a subsystem or a group of
such instantiations. There are several combinations of the syntactic constructs

19 August 1982 DESCRIPTION OF THE EXISTING MILs 37

that can be used to describe a subsystem realization. The example below shows a
subsystem with several versions.

Example

subsystem HASH provides HasbFunction
realization
version Quick

version Fortran resources £ile(<FortranQuickHasb>)end Fortran
version Pascal resources £ile(<PascalQuickHasb>)end Pascal
version Algol resources £ile(<AlgolQuickHasb>)end Algol

end Quick
version Careful

version Fortran resources £ile(<FortranCarefulHasb>)endFortran
version Pascal resources £ile(<PascalCarefulHasb>)end Pascal
version Algol resources £ile(<AlgolCarefulHasb>)end Algol

end Careful

end HASH

In contrast with the two previous MILs, the language developed by Cooprider
could be seen as an extended MIL that also supports system construction not only
system design. If a user were to design and construct a software system using
this MIL as a development tool, be/sbe would follow a similar process as if
using MIL?5 or Thomas'' MIL, that is, follow a structured design methodology,
specify each module and their hierarchical interconnections and represent this
module (subsystem) structure in MIL syntax. This process would be, in contrast
with the previous MILs, carried on interactively with the aid of a data base
where systeim integrity would be verified.

With this tool construction information could also be specified and verified
during the design phase so that the end product would be not only a structured
system design but also a structured description of what steps to follow to
obtain such a system. Module coding could be done separately and/or in parallel
with the whole system design.

The largest gain in using Cooprider's system would be by far, during the
evolution of the software product throughout its entire operational life.

4.3.3 Differences from the Other MILs

It is difficult to compare Cooprider's MIL against the previous two because of
its language extensions. The module interconnection part of this tool could be
considered as a synthesis of both, MIL?5 and Thomas' MIL. That is, most of their
advantages were integrated in this MIL such as flexibility in the
interconnection structure, easy syntax and notation, and static binding. The
flow of resources however, has similar restrictions as in MIL75 but not as
stringent. A subsystem here only provides and requires resources in a way

19 August 1982 DESCRIPTION OF THE EXISTING MILs 38

similar to scope rules in structured programming languages while in a module in
MIL?5, derived and accessed resources must also be specified, depending if they
flow among parent-offspring or among siblings respectively. This reduction in
the complexity of resource flow is due to the use of a data base processor
instead of a compiler. This is the major contribution of this MIL. The data
base processor is also a key factor for the implementation of the construction
and version control systems.

A drawback of the construction mechanism is that the data base has no
knowledge of the nature of the various versions. Therefore the realization
description requires excessive detail and the designer must give explicit
construction rules for all components and configurations as well as program all
the modification policies by hand. Moreover the data base processor does not
support control for concurrent actions (i.e. two programmers modifying the same
file at the same time.)

4.3.4 Experience to Date

Several parts of this system have been implemented. The implemented
components were tested in a laboratory environment with a specific and small
test case: A software support for a scan line graphics printer. They have not
been proved in a real production environment. There is no report of a consistent
version of the system as proposed but many of the ideas and some of the
components have been used in the development of the System Generator Facility of
the GANDALF System [Haberman, et.al. 81].

4.4 TICHY'S INTERCOL

INTERCOL was developed by Tichy in 1979 [Tichy 79] and [Tichy 80]. In
addition to the features of Cooprider's MIL, INTERCOL supports asynchronous
compilation of modules and/or subsystems, and control of system families.
INTERCOL is intended to be an integrated software development and maintenance
environment that supports communication and cooperation among programmers.
GANDALF has integrated INTERCOL as its tool for system version description and
generation.

4.4.1 Objectives

The goal of Tichy's work is to provide a programming environment that insures
the consistency of a programmed system at the module interconnection level.
Although this goal is what has driven the previous work in this area (as seen
above), he succeeds in extending, improving and integrating the original ideas.
His focus is mainly on the Ada language. At the software development
environment level he envisions three objectives:

1. A Module Interconnection Language (INTERCOL) capable of representing
multiple versions and configurations written in multiple programming
languages.

19 August 1982 DESCRIPTION OF THE EXISTING MILs 39

2. An Interface Control System that automatically verifies interface
consistency among separately developed software components. This
facility should supervise interface changes by updating the affected
components, alerting the programmers, and preventing the use of
inconsistent components.

3. A Version Control System similar to the one proposed by Cooprider
[Cooprider 79] but with the advantage that in this case the system

determines which version of which component should be combined to
form a particular version of a particular configuration instead of
relying on a detailed set of construction commands issued by the
designer as in Cooprider's MIL. This subsystem should also be
capable of handling compilation, recompilation, and integration.

The INTERCOL processor and the two systems described should be integrated into a
single environment.

At the MIL level, he aims at several innovations of the notation used by the
earlier MILs. With the new features he expects to expand the language so that
the interface and version control system instructions can be programmed using
the same notation. The new or extended notation pertains to: multiple versions,
multiple configurations, multiple programming languages, and support for
software development control.

4.4.2 Basic Concepts

A description in INTERCOL is a sequence of module and system families followed
by a set of compositions. A member of a module family is a version of a module,
and a member of a svstem family is a version of a system. The former may be one
of a set of different module implementations for different environments or in
different languages, or may be one of a set of different module revisions. or
can also be a derived version. The later may be a member of a set of different
system configurations or of a different derived composition.

Each one of the above families has an interface. An interface consists of
programmed entities called resources. A resource in INTERCOL has the same
meaning as a resource in the previous MILs; they are the units of flow among
modules and/or among systems. All members of a particular module or system
family use the same interface so that free substitution of family members can
occur. This is the main reason, in contrast with previous MILs, that INTERCOL
makes every interface explicit.

INTERCOL interacts with a nvimber of different programming languages by means
of a resource-specification sublanguage. Resources are constructs in a specific
programming language that are implemented and used in the modules. Thus a
mapping from resource specification sublanguage is installation dependent, but
the language must be statically typed. The sublanguage used by Tichy in his work
is a subset of the Ada language.

A resource declaration in INTERCOL may consist of a compact representation or

19 August 1982 DESCRIPTION OF THE EXISTING MILs 40

a specification or both. A compact representation is an abbreviated list of
resources and their attributes (type, access, etc.) and a specification is a
specific list of resources written in the resource specification sublanguage.
The syntax of a resource declaration (see Appendix B, section II.3) is more
powerful and allows for more degree of preciseness than the syntax used for
resources in the previous MILs but at the same time demands more attention of
the designer in order to make a correct specification.

A module family has an interface consisting of a list of providod and required
resources and contains one or more implementations. Each implementation may
exist in several revisions which are the entities or files that contain the
actual programs. The syntax for module families can also be seen in Appendix B
(section II.3). Different programming languages can be used for different
realizations. Each realization may have several revisions, where a revision is
the result of programming the initial revisicta or editing an existing one.
Derived versions constitute a second dimension of variation of realizations. A
subimplementation is intended to give a name to a subset of an existing
realization by fixing the revision with an extension. This reduces the
cardinality of the family.

A system family contains zero or more module and system families and zero or
more compositions. A composition gives a name to a. combination of elements that
are the names of previously declared building blocks in the same or enclosing
system families. See Appendix B (section II.3) for the system family syntax.

To show how the concepts just described combine into an INTERCOL program, an
example is provided in Appendix A (section 1.3) where Parnas' KWIC Index System
described in INTERCOL is presented.

The construction process of a software system followed by a user of INTERCOL
would be almost identical to the process described for a user of Cooprider's
MIL. INTERCOL however, is imbedded in a "Software Development Control Facility"
(SDCF) which is organized as an interactive system that controls a software
development data base. SDCF moreover, allows for separate and incremental
(asynchronous) compilation of modules, and independent type checking thus
significantly reducing development costs.

The advantage of using Tichy's SDCF over the previous MILs is at the level of
controling the evolutionary process of a software system. The approach of system
design by "evolving prototypes" would be the ideal approach to use with this
SDCF.

4.4.3 Differences from the Other MILs

The most significant contributions of INTERCOL and Tichy's SDCF to MILs are;

1. Allows a structured specification and control of families of systems
which enclose families of modules.

2. Allows separate and asynchronous compilations of modules and

19 August 1982 DESCRIPTION OF THE EXISTING MILs 41

independent type checking.

3. Includes an interface control system that automatically manages the
consistency of the interconnection among module and system families.

4. Includes a. version control system that supervise the addition of new
versions.

4»4t4 Experience to Date

Tichy's SDCF is operational at the prototype level in a PDP 11/40 system under
UNIX and has been integrated into the GANDALF System [Haberman, et.al. 81] as
the System Version Description facility. There has been no reports of the SDCF
being used in a real software development project. As of 1981 GANDALF had not
yet been used in a software production environment. There is no test data of
Tichy's work to evaluate its performance and effectiveness, all that has been
proved is that it is feasible.

4.3 XEROX MESA

In contrast with the MILs described in the previous sections, MESA is both a
programming language and a software development system, and it is currently
being used in a production environment. It supports program modularity as the
basis for incremental program development and provides complete type checking
for subsystems to be developed separately and safely bound together.

MESA was developed at XEROX during 1975, [Geschke et.al. 77] and [Mitchell,
et.al. 79] and is successfully being used in the design, specification and
implementation of a number of systems. In particular, the experience of using
MESA for the development of a operating system is reported in [Lauer &
Satterthwaite 79] and [Horsley & Lynch 79].

C/MESA, a configuration language developed in 1978, describes the organization
of a system and controls the scope of interfaces. C/MESA has many of the
attributes of a MIL as described in section 2 and is used in the MESA system to
specify how separately compiled modules are to be bound together to form
conf ieurat ions.

4.5.1 Objectives

The designers of MESA were interested in creating a language to be used for
the production of real system software "right now". MESA thus was not intended
to be a MIL but a programming language capable of supporting program modularity
in ways that permitted subsystems to be developed separately and bound together
with complete type safety.

The language it uses is similar to Pascal or Algol 68 and with a global
structure similar to that of Simula. It has its own syntax and some new ideas.
MESA by itself would be a strongly typed LPS supporting separate compilation but

19 August 1982 DESCRIPTION OF THE EXISTING MILs 42

with the addition of C/MESA which provides separate configuration descriptions,
it became a very powerful and practical MIL.

From the MILs point of view, MESA and C/MESA form a well integrated set of
tools analogous to GANDALF but covering only the design and implementation
aspect of the complete life-cycle of a software system. The MESA System,
although intended to be used in a production environment, succeeds in
implementing some of the ideas originated in MIL75 and parallels some of the
ideas of Cooprider and Tichy on version control but at a less general level.

The goal of C/MESA (the MIL extension of MESA) is to allow the user to
represent a complete system in a hierarchy of configuration descriptions. In
MIL75 terms, C/MESA has all the syntactic constructs to represent a system tree.

4.5.2 Basic Concepts

Systems built in MESA are collection of modules of two kinds: defim'tiona and
programs. A definitions module defines the interface to an abstraction by
declaring shared types and constants and by naming procedures available to other
modules. Program modules are pieces of source text similar to Algol procedure
declarations or Simula class definitions. Abstractions are implemented by some
of the program modules called implementors.

A module declaration in MESA defines a data structure consisting of a
collection of variables and a set of procedures that operate on those variables.
This concept of a module is more restricted than that used by the MILs described
above because at the level of module definition MESA is a programming language
only.

Modules communicate with each other via interfaces. A module may import an
interface, in which case it may "use" facilities defined in the interface and
implemented in other modules. The importer is called a client of the interface.
A module may also export an interface, in which case it makes its own facilities
available (provides) to other modules as defined by that interface. Such a
module is called imnlementor.

An interface consists of a sequence of declarations defined by a definitions
module and can be partitioned into two parts: a static part and a dynfltnir part.
The first declares types and constants to be shared between client and
implementor and the second defines the operations available to clients importing
the interface. Only the names and types of operations are specified in the
interface, not their implementations. Figure 4-6 below illustrates a
definitions module and one of its implementors.

Modules and interfaces are compiled separately. The compiler reads each of the
imported modules and obtains all of the information necessary to compile the
importing module. No knowledge about any implementors of the interfaces is
required, but the compiler checks the types and parameters of all references to
an interface. The compiler ensures that the types in the exporter (implementor)
are completely compatible with the types expected by the importer of the
interface.

19 August 1982 DESCRIPTION OF THE EXISTING MILs 43

AbstractioniDEFINITIONS =
BEGIN

• • • • .

it:TYPE=....;rt;TYPE=....;
• • • • .

piPROCEDURE;
pt:PROCEDURE[it] RETURNS[rt];
• • • •

END

Implementer:PROGRAM IMPLEMENTING Abstraction =
BEGIN

OPEN Abstraction;
x:INTEGER;
• • • •

p:PUBLIC PROCEDURE = <code for p>;
pi:PUBLIC PROCEDURE[i:INTEGER] = <code for pl>;
• • • •

pi:PUBLIC PROCEDURE[x:it] RETURNS[y;rt] = <code for pi>;
• • • •

END

Figure 4-6; A Definitions Module and an Implementor in MESA Taken from
[Geschke et.al. n\

The MESA binder collects exported interface records which have been identified
with a unique name by the compiler, and assigns their values to their
corresponding interface records of the importers. This unique name is what
allows the binder to check that each interface is used in the same version by
every importer and exporter. The binder uses the configuration description
program (coded in C/MESA) to bind modules together to form configurations.
Figure 4-7 below shows the partial code for a system configuration. In this
example. A, B, C,... are the interfaces and U, V, W,... are the modules that
import/export them as indicated by the special comment characters (—).

4.5.3 Differences from the Other MILs

As it can be observed by the reader, the definitions modules of MESA are
equivalent to the declarative statements of any of the MILs described above and
the separate C/MESA code is equivalent to a MIL program without the declarative
statements. For example, a definitions module in MESA has statements analogous
to provides, originates, and consist of from MIL75 and to synthesizes, inherit,
and has successors from Thomas' MIL. Such statements in MESA however, are not
explicit as in the MILs but rather implicit as observed in the example of figure
4.6.

I

I

I

I

I

I

I

I

I

19 August 1982 DESCRIPTION OF THE EXISTING MILs 44

Configl:CONFIGURATION
IMPORTS A

EXPORTS B =

BEGIN

U; —imports A,C
V; —exports B,C

END.

Config2;CONFIGURATION
IMPORTS B =

BEGIN

W; —imports B, Exports C
X; —imports B,C

END.

Conf ig3:CONFIGURATION
IMPORTS A =

BEGIN

Configl;
Config2;

END.

Figure 4-7: A Partial Configuration Description in C/MESA Taken from
[Geschke et.al. 77]

The separate C/MESA code as illustrated by the example of figure 4.7,
explicitly uses IMPORTS and EXPORTS predicates to define resource flow but does
not give an explicit view of the resources imported and exported by each of the
component modules. Such declarations are implicit in each module and the C/MESA
programmer must make such declarations visible with comments.

This approach to module interconnection is different from the approach
advocated by the MILs described above. The module interconnection facility
offered by the MESA System is a combination of an implicit declaration of
resource flow by each module and an explicit configuration description. In
contrast, the other MILs propose a separate module description and system
configuration coding where all resource flow is explicit.

In contrast with the other MILs, MESA is a widely used and tested facility
within XEROX where a substantial amount of experience on its use has been
accumulated.

Another difference is that MESA modules for example, are restricted to the
MESA language thus inhibiting the use of modules written in different
programming languages. In MESA a small change to one or few interfaces may
trigger a recompilation of an entire system and the configuration description
language does not allow versions of systems that vary in their specification nor
provides a design level description of interconnections. These disadvantages

V ft eaa on aa^AAik a la ^ a a-a • ik«si» ft» a ft ®^

19 August 1982 DESCRIPTION OF THE EXISTING MILs 45

sre the result of MESA not intended to be a MIL but rather a program development
tool capable of aiding the development process of medium size projects.

4.5.4 Experience to Date

Experience on the use of MESA has been reported in [Geschke et.al. 77],
[Lauer &Satterthwaite 79], and [Horsley &Lynch 79], The MESA System has been

used successfully in the development of an operating system amounting to about
25 thousand lines of MESA code. Several hundred thousand lines of stable MESA
code had been written by the end of 1978 by just a group of users at XEROX.
C/MESA has also been used as a specification language prior to system
implementation.

19 August 1982 CONCLUSION 46

5. CONCLUSION

After taking the reader through this long and detailed description of module
interconnection languages and of software development systems that support some
kind of module interconnection, it would be worthwhile to mention at least their
main contributions to the partial solution of the present "software crisis".

MILs and their related processors represent a set of tools which primarily aid
the software engineer during the architectural design, evolution and maintenance
phases of the system life-cycle. A secondary purpose of MILs is to serve as a
goal for systems analysis and a constraint for systems implementation. To be
effective, a MIL must be integrated into a software development system or
facility where the MIL description of a system is checked every time a change to
that system is made.

Within this range of effectiveness of the MILs, the main contributions are:

1. MILs provide a means to represent the architectural design of a
software system in a separate machine checkable language. Design and
construction information is successfully integrated at the
programming-in-the-large leyel. These notations should be of interest
to researchers in automatic programming and program generation since
they are developing mechanisms to manipulate this information.

2. MILs can prohibit programmers from changing the system architectural
design during evolution and maintenance without an explicit change in
the architectural design as represented by the MIL.

3. A generalization of the construction process can be represented by a
MIL and organized around a unified data base.

4. A consequence of (1) is a substantial improvement of the maintenance
stage. A system can be revised, modified and type checked at the MIL
level before attempting any changes to the code. Such capability has
been successfully implemented in GANDALF.

These contributions although significant, are only a small step towards the
solution of the software crisis. On the other hand, some of the main limitations
of MILs can also be listed.

1. The contribution of MILs to the design stage is mainly in checking
design completeness not in performing the design. The design must be
carried out by means of the present methodologies or techniques.

2. A MIL becomes an effective tool only in very large systems. The
amount of effort required to use a MIL along with the development of
a system is very large and it pays-off only if maintenance is
extensive.

19 August 1982 CONCLUSION 47

3. MILs do not provide any means for the user to determine which of the
already constructed modules can be used when designing a new system.
This problem of course was not intended to be solved by MILs, but
seems to be a very attractive feature to have considering the
information contained in a MIL description of a system.

As the reader may be able to observe, MILs are very effective but limited
tools to aid during the software life-cycle. A system must be evaluated,
analyzed, and designed first by means of current methods and techniques. Once a
system structure is determined, it may be coded in a MIL to be checked and
verified for completeness and inconsistencies. A separate MIL code must be
maintained during implementation and then used for high level maintenance during
system operation and enhancement.

The main concepts of MILs could be listed as:

1. The idea of a separate language to describe system design.

2. To be able to perfonn static type-checking at an intermodule level of
description.

3. To consolidate design and construction process (module assembly) in a
single description.

4. Capability to control different versions and families of a system.

A question naturally comes to mind: To what extent could the main ideas and
concepts of MILs be used to improve other stages of the software life-cycle?

19 August 1982 FUTURE RESEARCH 48

6. FUTURE RESEARCH

Some of the main concepts of MILs could be used as driving ideas in other
areas of current research in computer science in general and in software
engineering in particular.

The idea in MILs of a separate language to describe system structure could be
extended to study the problem of representing system specifications. A "module
specification language" could be proposed together with a study of what methods
we must develop for encoding general specifications and how could we match
requirement specifications with provision specifications. Among the issues to
be addressed with this proposition are compatibility, upward compatibility,
functional equivalence, minimal satisfaction, uniformity, and type [Cooprider
79]. Reusability is also an important issue directly related to this matching
scheme.

Reusability, as proposed by Freeman [Freeman 80] and Neighbors [Neighbors
80], should seldom deal with executable code and primarily use non-executable
work products from system analysis and design. A research question is then how
could a MIL be expanded or augmented to include information about availability
of resources and modules? At present, MILs provide a description of system
structure and resource flow among modules (system components) but more
information is needed to indicate the specifications of such modules and
resources. How much information is needed to be able to decide whether this or
that module will satisfy the proposed design requirements?.

Program generation techniques is an area where some MIL concepts have been
used. MODEL [Prywes 77b] and NOPAL [Sangal 80] are two non~procedural
languages used for automatic generation of computer programs that support module
description and provide limited module interconnection. There is however, a
need of extensive research in this area. The way MILs consolidate design and
construction processes in a single description for example, could provide some
insight into the question of encoding the methods by which information from a
problem is encoded in programs.

There are further research questions that relate both, the reusability problem
and the automatic program generation problem. The following question touches
the very concept of reusability. To what extent is it practical to reuse
components that can be easily generated by automatic programming systems?. Maybe
it would be more practical to reuse construction processes as represented in
MILs than to reuse design specifications (the first being a high level
executable code, the second a non-executable work product). To reuse a
construction process would be however, more attractive than reusing a design
specification.

Another area that deserves research was proposed by Tichy [Tichy 80]. He
suggests the study of techniques to implement automatic retesting after changes
to insure that an error that has been found previously, has not been
re-introduced.

A common symptom of large and successful systems is massive change over a long
period of time. These changes occur along three lines: evolution (system

19 August 1982 FUTURE RESEARCH 49

functional change), maintenance (system error correction), and hardware/software
changes (configurations) supported by the system. Each of these changes
provides an index into a "version space" for a particular system. The MILs of
Cooprider [Cdoprider 79] and Tichy [Tichy 80] started to examine the problem
of version control but much more work is needed. The problem of which changes a
new version of a system along some dimension inherits from the other dimensions
remains unsolved.

In conclusion, having examined most of the existing MILs, some Of the software
development tools that support module interconnection, and their significant
contributions to improving the state of the art in software engineering
technology we find out that there is still a long way to go before a major
breakthrough in the manufacture of software is achieved. Every major
breakthrough in technology however, has been attained through small steps.

I

I

I

I

I

I

I

I

I

I

I

19 August 1982 ACKNOWLEDGMENTS 50

ACKNOWLEDGMENTS

We are deeply indebted to Peter Freeman for his untiring support and
encouragement and for his valuable comments while reading the first drafts of
this work. We also wish to thank Ruben's wife Hayd^e for her editorial
assistance.

19 August 198APPENDIX A — MIL Examples: Parnas' KWIC Index System 51

appendix a — MIL Examples: Parnas' KWIC Index System

In order to better illustrate the use of the MILs described in this report,
the KWIC Index Production System as described in [Parnas 72a] is presented in
three different MILs. The first section of this appendix shows the KWIC example
as represented in Thomas'̂ MIL, This particular example was taken from Thomas"
Ph.D. Thesis [Thomas 76]. The example from the second section was taken from
Cooprider's Ph.D. Thesis [Cooprider 79] and the last illustration from Tichy's
Ph.D. Thesis [Tichy 80].

The KWIC (Key Word Iji Context) index system accepts an ordered set of lines,
each line is an ordered set of words and each word is an ordered set of
characters. Any line may be "circularly shifted" by repeatedly removing the
first word and appending it at the end of the line. The KWIC index system
outputs a listing of all circular shifts of all lines in alphabetical order.
The figure below shows the general structure of the KWIC system as proposed by
Parnas [Parnas 72a].

I

I

I

I

I

I

I

I

19 August 198APPENDIX A— MIL Examples: Parnas' KWIC Index Syst
em

INPUT

K W I c

Master Control

Line Storage

Symbo! -Table

OUTPUT

Circular-Shifts

Figure 6-1: General Structure of the KWIC Index System

52

I 19 August 198APPENDIX A — MIL Examples: Parnas' KWIC Index System 53

I.l KWIC Description in Thomas' MIL

node Main

synthesizes proc KWIC
generates locally proc KWIC using MC

proc input_error_handler using lEH
has successors Input, Alphabetizer, Output

successor Input
must synthesize proc input_lines
inherits proc input_error_handler

successor Alphabetizer
must synthesize proc alph

proc ith

successor Output
must synthesize proc output_lines
inherits proc ith

node Input
synthesizes proc input_lines
must inherit proc input_error_handler
generates locally proc input_lines using IL

proc storage_error_handler using SEHl
has successors Line_storage

successor Line_storage
must synthesize cluster line with ops setchar
inherits proc storage_error_handler

node Alphabetizer
synthesizes proc alph

proc ith
generates locally proc alph using ALPH

proc ith using ITH
has successors Circular-shifts

successor Circular_shifts
must synthesize proc cssetup
cluster shifted_lines with ops eschar, words

node Output
synthesizes proc output_lines
must inherit proc ith
generates locally proc output_lines using OL
has successors Circular_shifts

successor Circular_shifts
must synthesizes cluster shifted_lines

with ops eschar, words

I

I

I

I

1

I

I

I

19 August 1981PPENDIX A — MIL Examples: Parnas' KWIC Index System 54

node Circular shifts

synthesizes cluster shifted_lines with ops eschar, words
proc cssetup

generates locally cluster shifted_lines using SL
proc cssetup using SETUP
proc storage_error_handler using SEH2

has successors line_storage

successor line_storage
must synthesize cluster line with ops char, words, setchar
inherits proc storage_error_handler

node line_storage
synthesizes cluster line with ops char, words, setchar,

deline, delwrd
must inherit proc storage_error_handler
generates locally cluster line using LS
has successors Symbol_table

successor Symbol_table
must synthesize cluster sym_tab

node Symbol_table
synthesizes cluster sym_tab
generates locally cluster sym_tab using ST

1*2 KHIC Description in Cooprider^'s MIL

subsystem KWIC provides Kwic requires InputLine, Alph, Ith,
OutputLine

subsystem INPUT provides InputLine
requires Line, InputErrorHandler external LS, lEH
realization...end INPUT

subsystem LS provides Line
requires StorageErrorHandler external SEH
realization...end LS

subsystem ALPH provides Alph, Ith
requires CsSetup, ShiftedLines externalCS
realization...end ALPH

subsystem CS provides CsSetup, ShiftedLines
requires Line external LS
realization...end CS

subsystem OUTPUT provides OutputLine
requires ShiftedLines, Ith external Alph, CS

19 August 1982PPENDIX A — MIL Examples: Parnas' KWIC Index System 55

realization...end OUTPUT

subsystem lEH provides InputErrorHandler
realization...end lEH

subsystem SEE provides StorageErrorHandler
realization...end SEE

realization...end KWIC

1.3 KWIC Description in INTERCOL

—KWIC accepts a set of input lines (titles) and outputs a listing
—of all circular shifts of all input lines in alphabetical order
—(A KWIC index)

module LINE-STORAGE

LINE-STORAGE manages the storage of lines (titles).
It hides the storage and retrieval technique,

provide package Line is
constant MaxLine, MaxWord, MaxChar:INTEGER;
type LineN is range 1..MaxLine;
type WordN is range 1..MaxWord;
type CharN is range 1..MaxChar;
readonly Lines:LineN;
function Words (Ln:LineN) return LineN;
procedure PutChar (LnrLineN, Wn:WordN, CnrCharN, C:CEARACTER);
function GetChar (LniLineN, Wn:WordN, CniCharN) return

CEARACTER;
procedure DelLine (LniLineN);
procedure DelWord (LniLineN, WniWordN);

end Line;
require exception Storage-Error-Eandler;

implementation
Core.ada —stores lines in core
SAM.for —stores lines in sequential files
ISAM.for —stores lines in index sequential files

end LINE STORAGE

module CIRCULAR-SEIFTS

CIRCULAR-SEIFTS generates the circular shifts of the lines
require Line.{MaxLine, MaxWord, MaxChar, LineN, WordN, CharN,
Lines, Words, GetChar}

f

provide package Shifted-Lines is
type ShiftN is range 1..MaxLine*MaxWord;
readonly CsLinesiShiftN;

19 August 1981PPENDIX A — MIL Examples: Parnas' KWIC Index System 56

function CsWords(Shift:ShiftN) return WordN;
procedure CsSetup;
function CsGetChar (ShiftiShiftN, Wn:WordN, Cn:CharN)

return CHARACTER;
end Shifted-Lines;

implementation
Comp.ada —recomputes the shifted lines
Index.bss —generates an index
Tree.to —uses tree search

end CIRCULAR-SHIFTS

system KWIC
provide KWIC

module MC

—Main module; acts as a driver for the others,
provide procedure Kwic;

exception Input-Error-Handler;
require Input-Lines, Alph, Output-Lines

end MC

module INPUT

INPUT is the only module to know the input format.
—Reads from the input, but calls other modules to store the lines,

provide procedure Input Lines;
exception Storage-Error-Handler;

require Input-Error-Handler, Line

implementation

Term, ada —input from terminal
File.ada —input from file

end INPUT

system INDEXGEN
—Generates the circular shifts and stores them
provide Alph, Ith, Shifted-Lines.{ShiftN, CsLines, CsWords,

CsGetChar}
require Line

module ALPHABETIZER
—Performs the sorting
provide procedure Alph;

procedure Ith (irShiftN) return ShiftN;
require Shifted-Lines

I

I

19 August 198APPENDIX A — MIL Examples: Parnas' KWIC Index System 57

implementation
Comp.ada —recomputes alphabetization
Core.ada —stores sort in core
SAM.for —stores sort on seq. file
ISAM,for —stores sort on index seq. file

end ALPHABETIZER

composition INDEX = {ALPHABETIZER, CIRCULAR-SHIFTS}
composition INDEXl = {ALPHABETIZER.Core, CIRCULAR-SHIFTS.Comp)
composition INDEX2 = {ALPHABETIZER.SAM, CIRCULAR-SHIFTS.tree)
composition INDEX3 = {ALPHABETIZER.ISAM, CIRCULAR-SHIFTS.index}

end INDEXGEN

module OUTPUT

—Prints the KWIC—index; determines the output format,
provide procedure Output-Lines;
require Ith, Shifted-Lines

implementation
Term.ada —Output to terminal
File.ada —Output to file

end OUTPUT

composition KWIC = {MC, INPUT, LINE-STORAGE, INDEXGEN, OUTPUT}

composition KWICsmall = {MC, INPUT.Term, LINE-STORAGE.Core,
INDEXGEN.INDEXl, OUTPUT.Term}

composition KWICbig = {MC, INPUT.File, LINE-STORAGE.ISAM,
INDEXGEN.INDEX3, OUTPUT.FILE}

end KWIC

I

I

I

I

I

I

I

I

I

I

I

I

19 August 1982 APPENDIX B — MIL Syntax

II> APPENDIX B ~~ MIL Syntax

II.1 Thomas' MIL Syntax

(1) <MIL_segment>::=node <node_name> {<synthesizes_part>}
{<mu8t_inheri t_par t >}{<carr ier_for_par t >}
{<generates_locally_part>}{<successor_def_part>}

(2) <synthesizes part>;;=iynth®sizei <resource_desc_list>

(3) <must_inherit_part>::=miu8t inherit <re8ource_desc_list>

(4) <carrier_for part>::=carrier for <re8ource_de8c_li8t>

(5) <generate8_locally_part>::=generate8 locally <re8 binding li8t>

^re8_binding list^:5—^re8_binding>I<re8_bindng><re8_binding list^

(7) <re8_binding>;:=<re80urce_de8c> using ^odule_name>

(8) <8ucce88or_def_part>;;=ha8 successors <8ucc desig li8t>

(9) <8ucc desig list^i !='<8ucc_de8ig>|<8ucc_de8ig>,<8ucc_de8ig li8t>

(10) <8ucc de8ig>::=<node_name>I<8ub8y8_name>

(11) <8ucce88or_8pec_li8t>::=<8ucce88or_8pec> I
<8ucce8sor_8pec> <8ucce8sor_spec_li8t>

^successor ^8pec>::=successor <8ucc_de8ig>{<mu8t synthesize part>}
{<inherits_part>}

(13) ^ust_synthesize_part>: :^ust syntehsize <resource_desc_list>

(14) <inherits_part>:;=inherits <resource_desc_list>

(15) <resource_desc_list>::=<resource_desc> I
<resource_desc> <resource_desc_list>

(16) <resource_desc>::=<procedure_desc>|<cluster_desc>

(17) <procedure_desc>::=proc <identifier>

(18) <cluster_desc>;:=clu8ter <identifier>
{with ops <operation_list>}

(19) ^operation list^::=<identifier>I<identifier>,<operation_list>

58

I

I

I

I

I

I

I

I

I

19 August 1982 APPENDIX B — MIL Syntax 59

II.2 Cooprider^B MIL Syntax

Subsystem Interconnection and Version Syntax

(1) <subsystem>::=8ub8y8tem<name><connections><realization>
end<name>

(2) <connection8>;:=[<provlist>][<reqlist>][<envlist>][<extrnlist>]
(3) <provlist>::=provide8<rsrc-name>{,<rsrc-name>}
(4) <reqlist>::=require8 <rsrc-name>f,<rsrc-name>}
(5) <envlist>::=eiwironment<rsrc-name>{,<rsrc-name>)
(6) <extrnlist>::=external<sub8-name>{,<subs-name}

(7) <realization>::=realization<sellist><objlist>{<version>}
(8) <sellist>:;=8elect<subs-name>=<ver-name>{,<subs-name>=<ver-name>}
(9) <objlist>::=concrete object<name>=<rule>{,<name>=<rule>}

(10) <version>:;=ver8ion<name>[<sellist>][<objlist>][<vclists>]
end<name>

(11) <vclists>::={<ver8ion>>{<8ubsystem>}I[<cmps>][<rsrcs>][<dfrd>]
{<subsystem>}

(12) <cmps>: ;=coniponent<object>{,<object>}
(13) <rsrcs>::=re8ource8<object>{,<object>}
(14) <dfrd>::=deferred<object>{,<object>}

Construction Process Syntax

(15) <rule>::=<spec-rule>|<proc-rule>
(16) <spec-rule>::=file(<path>)lacquire(<rsrc-name>)I

de£erred(<object>)
(17) <proc-rule>::=<proc-name>(<object>{,<object>:})

[with<string>]
(18) <object>::=<conc-name>|<rule>

NAMES;

(19) <name>::=subsystem name
(20) <rsrc-name>::=resource name
(21) <subs-name>::=name of a nested subsystem I

name of an external subsystem
(22) <yer-name>::=version name
(23) <proc—name>;:=procedure name
(24) <path>::=file name I file and directory path name
(25) <conc—name>::=name of a concrete object

19 August 1982 APPENDIX B — MIL Syntax 60

II.3 INTERCOL Syntax

(1) <INTERC0L-de8cription> :;= [<default-language>]{<option-declaration>}
^<building-block>|,}{compo8ition{<composition>|,}}(2) <building-block> <system-family>|<niodule-family>

(3) <sy8tem-famiiy> ::= 8y8teni<identifier> interface
<INTERCOL-description>
end [<identifier>]

(4) <compo8ition> ;:= <identifier> = <configuration>
(5) <configuration> :;= {{<element>|,}}[<exten8ion>]|<element>
(6) •<eleinent> ::= ^identif ier>[<selection>] [<exten8ion>]
(7) <selection> :<impleinentation-8election>I<compo8ition-8election>
(8) <implementation-selection> :;= .<identifier>[.<language>]
(9) <compo8ition-8election> :;= [.<identifier>] [<refinement>]
(10) <refinement> ::= [.]({<element>|,})
(11) <module-family> :module<identifier> interface [<default-

language>]{<option-declaration>}
{implementation {<implementation|,}}
end [identifier]

(12) <implementation> ::= <program-family>1<subimplementation>
(13) <program-family> ::= <identifier> [.<language>] [<exten8ion>]
(14) <8ubimplementation> ::= <identifier> = <program-family>
(15) <interface> ;:= <provide-clau8e><require-clau8e> I

[<require-clau8e>][<provide-clau8e>]
(16) <provide-clau8e> provide <re8ource-li8t>
(17) <require-clau8e> ::= require <re80urce-li8t>
(18) <re8ource-li8t> ::= {<re8ource8>I,}
(19) <resource8> ::= <re8ource-declaration>|8ee <character-8tring>
(20) <re8ource-declaration> ;:= <compact-repre8entation>I<8pecification>
(21) <compact-representation> ::= <single-resource> {.<8ingle-resource>}

[aubresources]
(22) <8ingle-re8ource> ::= [aet] [#] <designator>
(23) <de8ignator> ::= <identifier>I<character-8tring>
(24) <subre8ource8> :;= [.] {<re8ource-li8t>}
(25) <option-declaration> ::= option {<alternative>|,}
(26) <alternative> ;:= <identifier> [.{[any]{,I<alternative>}}]
(27) <exten8ion> ::= {:<8elector>}
(28) <8elector> ;:= <date>|<switch>
(29) <date> ::= [<|>] '^number>Inew [.<number>]
(30) <switch> ::= <identifier> {.<identifier>}
(31) <default-language> ::= language <language>
(32) <language> ;;= <identifier>

Syntax of. the Resource-Specification Sublanguage

The sublanguage is a part of Ada. Only the top-level productions and the ones
that were modified are included. For additional information see the Ada manual.

I

I

I

I

I

I

I

I

I

I

I

I

I

I

19 August 1982 APPENDIX B — MIL Syntax

(1) <specification> :;= <object-declaration>I<type-declaration>|<subtype-
declaration> | <private-type-declaration> I<subprograiii-declaration> I

<̂entry-declaration>I<module-declaration>I<exception-declaration>
(2) <object-declaration> ::= <object-nature><identifier-list>:<type>;
(3) <object-nature> variable 1 readonly I constant
(4) <identifier-list> ;:= <identifier> {,<identifier>}
(5) <type> <type-definition>|<type-inark>[<constraint>]
(6) <type-declaration> ::= type<identifier>[i8<type-definition>];
(7) <subtype-declaration> :;= 8Ubtype<identifier>i8<type-mark>

[<constraint>];
(8) <private-type-declaration> ;:= [restricted] type <identifier>

is private [<type-definition>];
(9) <subprogram-declaration> ;:= <subprogram-specification>;I<subprogram-

nature><designator> i8<generic-instantiation>;
(10) <subprogram-specification> ::= [inlineI<generic-clause>]

<subprogram-nature><designator> [<formal-part>]
[return <typemark> [<constraint>]]

(11) <entry-declaration> ::= entry <identifier> [(<discrete-range>)]
[<formal-part>];

(12) <module-declaration> ::= <module-specification> I <module-nataure>
<identifier>[(<discrete-range>)]i8<generic-instantiation>;

(13) <module-specification> ::= [<generic-clause>]<module-nature>
<identifier>[(<discrete-range>)] [is

{<specification>}{<representation-specification>}
end [<identifier>]];

(14) <exception-declaration> exception <identifier-list>;

61

I

19 August 1982 52

REFERENCES

[Archibald 81]
Archibald, J.L.
The External Structure; Experience with an Automated Module

Interconnection Language.
The Journal of Systems and Software. 2(2):147-157, June, 1981.

[Balzer, Goldman & Wile 76]
Balzer, R.M., Goldman, N.M., and Wile, D.
On the Transformational Implementation Approach to Programming.
In Proceedings of. the Second Intl. Conference on Software

Engineering, pages 337-344. IEEE, 1976.

[Balzer 73]
Balzer, R.M.
A Global View of Automatic Programming.
In Proceedings £f. the Third Joint Conference on Artificial

Intelligence, pages 494-499. SRI International, aug, 1973.

Balzer, R.M., and Goldman, N.
Principles of Good Software.Specification and their Implications

for Specification Language.
In Proceedings of. the Specifications of Reliable Software

Conference, pages 58-67. IEEE Press, 1979.

[Belady & Lehman 79]
Belady, L.A. and Lehman, M.M.
The Characteristics of Large Systems.
In Wegner, P., editor. Research Directions in Software

Technology, chapter 1, pages 106-131. The Massachusetts
Institute Technology Press, Cambridge, Mass., 1979.

[Bianchi & Wood 76]
Bianchi, M.H. and Wood, J.L.
A User,s Viewpoint on the Programmer's Workbench.
In Proceedings of. the Second Intl. Conference on Software

Engineering , pages 193-199. IEEE, October, 1976.

[Birtwistle et.al. 73]
Birtwistle, G.M., Dahl, 0-J., Myhrhaug, B., and Nygaard, K.
Simula BEGIN.

Petrocelli/Charter, 1973.

[Bratman & Court 75]
Bratman, H., and Court, T.
The Software Factory.
IEEE Computer. 8(5):28-37, May, 1975.

[Balzer 79]

19 August 1982 g3

[Campos & Estrin 78a]
Campos, I.M., and Estrin, G.
SARA Aided Design of Software for Concurrent Systems.
In Proceedings of the National Computer Conference. AFIPS Press,

1978.

[Campos & Estrin 78b]
Campos, I.M., and Estrin, G.
Concurrent Software System Design Supported by SARA at the Age of

One.

In Proceedings of. the Third Int1. Conference on Software
Engineering, pages 230-242. IEEE Press, Atlanta, Georgia,

' USA, May, 197 8.

[Cashin, et.al. 81]
Cashin, P.M., Joliat, M.L., Kamel, R.F., and Lasker, D.M.
Experience with a Modular Typed Language: PROTEL.
In Proceedings of. the Fifth Intl. Conference on Software

Engineering. pages 136—143. IEEE, San Diego, California,
March, 1981.

[Cooprider 79]
Cooprider, L.W.
The Representation of Famlies of Software Systems.
PhD thesis, Carnegie—Mellon University, Computer Science

Department, April, 1979.
CMU-CS-79-116.

[Dahl, Myrhaug & Nygaard 70]
Dahl, 0.J., Myrhaug, B. and Nygaard, K.
The SIMULA 67 Co™"on Base Language.
Technical Report S-22, Norweigan Computing Center, 1970.

[DeRemer & Kron 76]
DeRemer, F., and Kron, H.
Programming-in-the-Large Versus Programming-in-the-Small.
IEEE Transactions On Software Engineering. June, 1976.
This paper was presented at the International Conference on

Reliable Software, Los Angeles, California, April 1975.

[Dijkstra 65]
Dijkstra, E.
Programming Considered as a Human Activity.
In Proceedings of the 1965 IFIP Congress, pages 213-217. North

Holland Publishing Co., Amsterdam, The Netherlands, 1965.

19 August 1982

[Dijkstra 76]

64

[Estrin 78]

[Flon 75]

[Freeman 80]

Dijkstra, E.
Structured Programming.
In Software Engineerine. Concents and TechnigiiPs. Litton

Educational Publishing, Inc., 1976.
Originally appeared in a report on a conference sponsored by the

NATO Science Committee, Rome, Italy, October 1969.

[Dolotta & Mashey 76]
Dolotta, T.A. and Mashey, J.R.
An Introduction to the Programmer's Workbench.
In Proceedings of the Second Intl. Conference on Software

Engineering, pages 164-168. IEEE, October, 1976.

Estrin, 6.
A Methodology for Design of Digital Systems - Supported by SARA

at the Age of One.
In Proceedings of. tjig. National Computer Conference. AFIPS Press,

197 8.

Vo. 47.

Flon, L.
Program Design With Abstract Data Types.
Technical Report, Carnegie-Mellon University, Computer Science

Department, 1975.

Freeman, P.
Reusable Software Engineering: A Statement of Long-Range Research

Obiectives.

Technical Report TR 159, University of California, Irvine,
November, 1980.

[Geschke et.al. 77]
Geschke, C.M., Morris, J.H., and Satterthwaite, E.H.
Early Experience with MESA.
Communications of the ACM. 20(8):540-552, August, 1977.

[Gries 81]
Gries, D.
Texts and Monographs fn Computer Science. ; The Science of

PrngramTrn'Tip;.
Springer Verlag, New York, 1981.

[Haberman, et.al. 76]
Haberman, A.N., Flon, L., and Cooprider, L.W.
Modularization and Hierarchy in a Family of Operating Systems.
Communications of the ACM. 19(5):266-272, May, 1976.

19 August 1982 65

[Haberman, et.al. 81]
Haberman, N., Perry, D., Feiler, P., Medina-Mora, R., Notkin, D.,
Kaiser, G., and Denny, B.
A Compend i ntn of Gandalf Dnrntnontation.
Carnegie-Mellon University, Pittsburg, Pennsylvania, 1981.

[Hammer 77]
Hammer, M., Howe, W., Kruskal, V., and Wladawsky, I.
A Very High Level Programming Language for Data Processing

Applications.
Communications of the ACM. 20(11):832-840, November, 1977.

[Horsley & Lynch 79]
Horsley, T.R. and Lynch, W.C.
Pilot: A Software Engineering Case Study.
In Proceedings of. the Fourth Intl. Conference on Software

Engineering, pages 94-99. IEEE Press, Munich, Germany,
September, 1979.

[Ivie 77]
Ivie, E.L.
The Programmer's Workbench - A Machine for Software Development.
Communications of the ACM. 20(10):746-753, October, 1977.

Johnston, J.
The Contour Model of Block Structured Processes.
In SIGPLAN Notices-Proc. Svmn. Data Structures and Prog.

Languages, pages 55-82. ACM, 1971.

[Kernigham & Mashey 81]
Kernigham, B.W., and Mashey, J.R.
The Unix Programming Environment.
IEEE Computer Magazine. 14(4):12-24, April, 1981.

[Lauer & Satterthwaite 79]
Lauer, H.C,, and Satterthwaite, E.H.
The Impact of MESA on System Design.
In Proceedings af. the Fourth Intl. Conference on Software

Engineering , pages 174-182. IEEE, Munich, Germany,
September, 1979.

[Johnston 71]

[Lehman 76]
Lehman, M.M.
Funnel- a Functional Data Channel.
IBM Technical Disclosure Bulletin. 1976.
Also Imperial College CCD Report 77/17, July 1977.

19 August 1982 66

[Liskov & Zilles 74]
Liskov, B.H., and Zilles, S.N.
Programming With Abstract Data Types.
In Proceedings the ACM SIGPLAN Notices Conference on Very High

Level Languages, pages 50-59. SIGPLAN Notices , April, 1974.
Vol. 9, No. 4.

[Liskov & Zilles 75]
Liskov, B.H. and Zilles, S.N.
Specification Techniques for Data Abstractions.
IEEE Transactions On Software Engineering. SE-1:7-19, 1975.

[Liskov et.al. 77]
Liskov, B., Snyder, A., Atkinson, R., and Shaffrt, C.
Abstraction Mechanisms in CLU.
Communications of the ACM. 20(8):564-574, August, 1977.

[Mitchell, et.al. 79]
Mitchell, J.G., Maybury, W., and Sweet, R.E.
Mesa Language Manual.

Technical Report CSL-79-3, Xerox Corp., Palo Alto Research
Center, April, 1979.

[Morrissey 79]
Morrissey, J.H., and Wu, L.S.-Y.
Software Engineering ... An Economic Perspective.
I^ Vrvggedjngg the Fourth Intl. Conference on Software

Engineering, pages 412-422. IEEE, 1979.

[Neighbors 80]
Neighbors, J.M.
Software Construction Using Components.
PhD thesis. University of California, Irvine, 1980.
ICS Technical Report 160.

[Newell et.al. 61]
Newell, A., Tonge, F.M., Feigenbaum, E.A., Green, B.F., Mealy,
G.H.

Information Processing Language-V Manual
Second edition. The RAND Corp., Englewood Cliffs, N.J., 1961.
printed by Prentice-Hall, Inc.

[Page-Jones 80]
Page-Jones, M.
The Practical Guide to Structured Systems Design.
Yourdon Press, 1980.

[Parnas 72a]
Parnas, D.L.
On the Criteria to be Used in Decomposing Systems into Modules.
Communications of the ACM. 15(12):1053-1058, December, 1972.

I

I

I

I

19 August 1982

[Parnas 72b]

[Parnas 76]

[Parnas 78]

[Parnas 79]

Parnas, D.L.
A Technique for Software Module Specification With Examples.
Communications of the ACM. 15(5):330-36, May, 1972.

Parnas, D.L.
On the Design and Development of Program Families.
IEEE Transactions On Software Engineering. SE-2(l):l-9, March,

1976.

Parnas, D.L.
Designing Software for Ease of Extension and Contraction.
In Proceedings Qf_ the Third Intl. Conference on Software

Engineering, pages 264-277. IEEE Press, March, 1978.

67

Parnas, D.L.
Designing Software for Ease of Extension and Contraction.
IEEE Transactions On Software Engineering. SE-5(2):128-138,

March, 197 9.

[Penedo & Berry 79]
Penedo, M.H., and Berry, D.M.
The Use of a Module Interconnection Language in the SARA System

Design Methodology.
In Proceedings of_ the Fourth Intl. Conference on Software

Engineering, pages 294-307. IEEE Press, 1979.

[Prywes et.al. 79]
Prywes, N.S., Pnueli, A., and Shastry, S.
Use of a Nonprocedural Specification Language and Associated

Program Generator in Software Development.
ACM Transactions fin Programming Languages and Svstems.

1(2):196-217, October, 1979.

[Prywes 77a]

[Prywes 77b]

Prywes, N.S.
Automatic Generation of Computer Programs.

PlOCgfidipgs of the National Computer Conference, pages
679-689. AFIPS Press, 1977.

Prywes, N.S.
Automatic Generation of Computer Programs.
In Advances in Computers. Academic Press, 1977,

19 August 1982 68

[Rich, Schrobe & Waters 79]
Rich, C., Schrobe, H.E., and Waters, R.C.
Overview of the Programmer's Apprentice.
In Proceedings of. the Sixth Joint Conference on Artificial

Intel1ieence. pages 827-828. Stanford Computer Science Dept.,
- 1979.

[Ritchie & Thomson 74]
Ritchie, D.M. and Thompson, K.
The UNIX Time-Sharing System.
Communications of the ACM. 17(7):365-375, July, 1974.

[Ritchie 79]

[Sangal 80]

[Thomas 76]

[Tichy 79]

[Tichy 80]

Ritchie, D.M.
The Evolution of the UNIX Time-Sharing System.
In Procceedines of. the Symposium on Language Design and

Programming Methodology. ACM SIGPLAN, Sydney, Australia,
1979.

Sangal, R.
Modularity in Non-Procedural Languages Through Abstract Data

Types.

PhD thesis. The Moore School of Electrical Engineering,
University of Pennsylvania, August, 1980.

[Stevens, et.al 74]
Stevens, W.P., Meyers, G.J., and Constantine, L.L.
Structured Design.
IBM Systems Journal. 1974.

Thomas, J.W.
Module Interconnect ion in Programming Systems Supportiny

Abstraction.

PhD thesis. University of Utah, June, 1976.

Tichy, W.F.
Software Development Control Based on Module Interconnection.
In Proceedings af. the Fourth Intl. Conference on Software

Engineering, pages 29-41. IEEE Press, September, 1979.

Tichy, W.F.
Software Development Control Based on System Structure

Description.

PhD thesis, Carnegie-Mellon University, Computer Science
Department, January, 1980.

I

I

I
Wulf, W.A.I ALPHARD; a. Language ifi. Support Structured Programs.
Technical Report, Carnegie-Mellon University, Computer Science

Department, April, 1974.

H [Yourdon &Constantine 79]
Yourdon, E. and Constantine, L.L.• Structured Design: Fundamentals of a. Dicipline of Computer

Program and Svstems Design.
PTPTlf" 1 1 1 - T?.no 1 OTJrtn/l

I

I

I

I

I

I

I

I

I

I

I

I

I

19 August 1982 69

[Wirth 71]
Wirth, N.
Program Development by Stepwise Refinement.
Communications of the ACM. 14(4):221-27, April, 1971.

[Wulf 74]

Prentice-Hall, Englewood Cliffs, N.J., 1979.

I

II

I

8

8

8

8

8

8

1

i

8

8

8

8

8

8

8

8

