
UC Merced
Proceedings of the Annual Meeting of the Cognitive Science 
Society

Title
The Perceiver Architecture is a Functional Global Workspace

Permalink
https://escholarship.org/uc/item/2g55b9xx

Journal
Proceedings of the Annual Meeting of the Cognitive Science Society, 44(44)

Authors
Juliani, Arthur
Kanai, Ryota
Sasai, Shuntaro Sasai

Publication Date
2022
 
Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/2g55b9xx
https://escholarship.org
http://www.cdlib.org/


The Perceiver Architecture is a Functional Global Workspace
Arthur Juliani (arthur juliani@araya.org)

ARAYA Inc., Tokyo, Japan

Ryota Kanai (kanair@araya.org)
ARAYA Inc., Tokyo, Japan

Shuntaro Sasai (sasai shuntaro@araya.org )
ARAYA Inc., Tokyo, Japan

Abstract

Global Workspace Theory (GWT) has become a prominent
functional account of cognitive access in humans and other
primates. In the decades since its proposal, there have been a
number of computational models developed to study the hypo-
thetical dynamics of the global workspace, most of which are
hand-designed to reflect the expectations of the theory. Here
we examine a recently successful general deep learning archi-
tecture, the Perceiver, as a potential theoretical candidate for
the global workspace. We find that despite being developed in
an unrelated context, the Perceiver meets a number of theoreti-
cal requirements of the global workspace. More importantly, it
demonstrates empirical behavior consistent with that expected
by GWT in both attentional control and working memory tasks
drawn from the cognitive science literature. Taken together,
this evidence suggests that the Perceiver and related models
may be a useful tool for studying the global workspace and its
potential realization in both artificial and biological agents.

Keywords: Global Workspace; Neural Networks; Working
Memory; Attentional Control

Introduction
Of the many proposed accounts of cognitive access in hu-
mans and other primates, Global Workspace Theory (GWT)
has enjoyed some of the most lasting influence (Baars, 1988;
Mashour, Roelfsema, Changeux, & Dehaene, 2020). This is
due thanks both to its elaborations over time (Dehaene, Ker-
szberg, & Changeux, 1998a; Dehaene & Changeux, 2005),
as well as the empirical evidence collected which supports
the theory (Dehaene & Changeux, 2011; Van Vugt et al.,
2018). Taken at the highest level, GWT proposes that cog-
nitively accessible information is represented in a network
of sustained activity between brain regions referred to as the
global workspace. This workspace interacts with a set of oth-
erwise independent information processing modules within
the brain, acting as both an information sharing hub as well
as a central processing point.

The idea that cognitive access is mediated via a global
workspace is supported by a variety of neuroscientific evi-
dence (Mashour et al., 2020). Key to the dynamics of the
global workspace are the concepts of ignition and broad-
casting. In ignition, information present within one mod-
ule of the brain is amplified via recurrent processing to the
point of crossing a critical threshold where it then enters the
global workspace. Information sustained within the global
workspace is then broadcast to contextually relevant modules
(Dehaene & Changeux, 2011). Research has demonstrated

that prefrontal cortex activation through an ignition-like event
is required for conscious report of a stimuli, whereas high
level visual cortex activation alone is insufficient (Van Vugt et
al., 2018). Information passing the computational criteria to
cause ignition and broadcasting through the global workspace
is intimately connected to the related concept of attentional
selectivity.

The global workspace is also implicated in tasks requir-
ing the maintenance and manipulation of abstract information
(Baars, 1988). As such, there is a strong connection between
broadcasting in the global workspace context and what is typ-
ically referred to as working memory (Mashour et al., 2020).
In this way, the global workspace serves as a high-level com-
putational description both of cognitive access as well as the
executive functions typically associated with frontal cortex in
mammals. This connection has seen recent empirical sup-
port as well in experimental animal research (Panichello &
Buschman, 2021).

Starting from the initially abstract description of the global
workspace, there have been a number of attempts to de-
velop more concrete computational models of its hypothet-
ical dynamics (Dehaene et al., 1998a; Dehaene, Sergent, &
Changeux, 2003; Whyte & Smith, 2021). Taking the prop-
erties of the global workspace as the starting point, many of
these models have been hand-designed in order to reflect the
desired properties in the model. What has been explored less
often is the possibility that already popular machine learning
architectures may well map onto the theoretical properties of
the global workspace.

One compelling area of research to examine are recent de-
velopments in the field of deep learning, where there have
been a number of advancements driven by novel neural net-
work architectures and training procedures (LeCun, Bengio,
& Hinton, 2015). In particular, recent success has been
driven by the development and application of multi-headed
attention mechanisms, which enable the sequential process-
ing of dynamic units of information (Vaswani et al., 2017). In
this work, we analyze one such recently successful attention-
based deep learning architecture, the Perceiver, as a potential
theoretical candidate for the global workspace. The Perceiver
(Jaegle, Gimeno, et al., 2021), and its more recent instantia-
tion, PerceiverIO (Jaegle, Borgeaud, et al., 2021), consist of a
set of cross-attentional and self-attentional operations which
utilize a shared workspace, and a variable number of input
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Figure 1: Diagram of the Perceiver architecture within the context of GWT. Information from a set of modules are read into
the workspace using a cross-attention mechanism. The contents of the workspace are then maintained and manipulated using a
self-attention mechanism. Finally, the information from the workspace is then read back out to the modules utilizing a second
cross-attention mechanism. This process is repeated at each time-step of computation within a sequential task.

and output modules. Along with achieving impressive em-
pirical performance on a number of challenging tasks within
the machine learning literature, it is also theoretically and
functionally similar to another recently proposed architecture
which takes explicit inspiration from the global workspace
(Goyal et al., 2021). It is this latter connection which moti-
vates our deeper analysis of its connection to GWT.

If we examine the theoretical requirements of the global
workspace, we find that the ability to read and write between
a dynamic set of modules (ignition and broadcasting), the
ability to apply selective attention to that process (attentional
control), and the ability to maintain and manipulate informa-
tion within the workspace over time (working memory) are
all core requirements of any potential computational model.
Despite being developed in an independent context and with
unrelated goals in mind, the Perceiver meets all of the theoret-
ical requirements of the GWT. It support reading and writing
from a dynamic set of modules, utilizes attentional mecha-
nisms at multiple levels of processing, and supports the ro-
bust maintenance and manipulation of information within its
memory storage.

In addition to theoretical considerations, we consider an
empirical evaluation of Perceiver from the perspective of the
expectations of GWT. While Perceiver has been implemented
and validated in a number of large-scale machine learning
problems (Jaegle, Gimeno, et al., 2021), it has not been exam-
ined in this more restrictive domain as a model of cognitive
access. Here specifically, we examine n-back and cue-recall
tasks inspired by the cognitive science literature of attentional
control and working memory (Rosen & Engle, 1997; Kane,
Conway, Miura, & Colflesh, 2007). We find that in all behav-
ioral tasks Perceiver behaves consistently with the expecta-
tions of the GWT, while various ablations of the model fail
at one or more of these tasks, suggesting that both cross-
attention and self-attention are necessary for any valid com-

putational model of the global workspace.
Given both the theoretical alignment as well as the em-

pirical validation, we believe that Perceiver and the related
models such as (Goyal et al., 2021), can serve as potentially
useful new tools to better understand GWT and its poten-
tial realization in both artificial and biological agents. While
this work explores theoretical and behavioral expectations of
these models, we hope that future work can elucidate com-
plementary results with respect to representational properties
and underlying neural dynamics of these models. Of partic-
ular interest would be to analyze the population dynamics of
these networks as they compare to neural data, demonstrat-
ing not only a theoretical and behavioral connection, but a
representational one as well.

Theoretical Comparison
We can derive from the description of the GWT provided by
(Baars, 1988; Dehaene, Kerszberg, & Changeux, 1998b) a
set of criteria by which to judge a candidate neural network
implementation of the theory. Here we consider four specific
abstract computational properties of the GWT and analyze
the extent to which the Perceiver and its potential variants
meet these criteria.

Table 1: Table comparing theoretical properties of different
candidate model architectures.

Criteria FF-ID FF-SA CA-ID CA-SA
Dynamic Modules ✗ ✗ ✓ ✓

Selective Attention ✗ ✗ ✓ ✓

WM (Maintain) ✓ ✓ ✓ ✓

WM (Manipulate) ✗ ✓ ✗ ✓
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Figure 2: Top: Diagram of modules used for behavioral tasks. Each time-step an image is divided into four quadrants, which
are each represented as separate modules to the workspace. Bottom: Diagram of the various behavioral tasks and their variants.
Boxes correspond to images presented to models during a trial. Bottom arrows correspond to expected behavioral outputs from
model.

Global Workspace Properties

The first property we consider is the ability to interact with
a dynamic set of modules. While the neural anatomy of the
brain is largely fixed, what counts as a “module” within the
GWT is dynamically determined based on population activ-
ity across multiple brain regions at a given time. As such,
a neural network model of the global workspace should be
able to take input from an unordered set of modules which
potentially changes over time.

The second property we consider is whether the model has
the capacity for selective attention over the set of modules,
corresponding to so-called ignition and broadcasting. While
there has been some work to dissociate the more general cog-
nitive phenomena of attention from conscious access (Koch
& Tsuchiya, 2007), proponents of GWT suggest that infor-
mation entering the workspace, and thus becoming cogni-
tive available for broadcast can be thought of as a kind of
high-level attention selection process (Mashour et al., 2020).
Within the GWT, attentional gating takes place both during
the read phase of processing where the workspace reads from
the set of modules as well as during the write phase where
information from the global workspace is broadcast to a set

of relevant modules.
The third and fourth properties under consideration are

whether the global workspace possesses the capacity to main-
tain and manipulate information over time. These capaci-
ties can be seen as together being largely consistent with the
concept of working memory, and is distinguished from other
forms of short term memory in that it is amenable to con-
scious manipulation, as well as requires conscious effort to
maintain information in the face of potential distractor infor-
mation competing to enter the workspace.

Candidate Model Architectures
We compare the Perceiver neural network architecture to
three ablation models derived from the Perceiver which have
aspects of the full model removed or altered. We select
these ablated models in order to demonstrate the necessity
of the full architecture in meeting the criteria of the global
workspace.

We begin our analysis with the full Perceiver architec-
ture, which utilizes both cross-attention operations for read-
ing and writing, as well as self-attention operations for re-
current processing. We refer to this model as CA-SA. Each
of the proposed variants modifies one or more of these at-
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Table 2: Table comparing the the various behavioral tasks according to their ability to test for the presence of the global
workspace criteria defined above.

Behavioral Task Dynamic Modules Selective Attention WM (Maintain) WM (Manipulate)
Digit ID ✗ ✗ ✗ ✗

Digit ID (Swap) ✓ ✗ ✗ ✗

Digit ID (Distractor) ✗ ✓ ✗ ✗

N-Back ✗ ✗ ✓ ✗

N-Back (Swap) ✓ ✗ ✓ ✗

N-Back (Distractor) ✗ ✓ ✓ ✗

Cue-Recall ✓ ✓ ✓ ✓

tentional mechanisms. Instead of cross-attention for input
and output, we propose models which utilize a concatena-
tion between modules and the hidden state of the workspace
as input to a multi-layer perceptron. Likewise, output from
the model can be computed using another multi-layer percep-
tron. We refer to this architecture as FF-SA when paired with
a self-attention recurrence. Secondly, we consider replacing
the self-attention recurrence operation with a simple identity
operation between input and output. We refer to this as CA-
ID when paired with cross-attention, and FF-ID when paired
with the simpler read/write operation.

We can first compare these candidate architectures accord-
ing to their capacity to handle dynamic sets of modules. Due
to the requirement of a fixed input space at each time-step,
the FF-ID and FF-SA models are unable to support dynamic
ensembles of modules in either the read or write context. This
is the case both for sets of modules which vary in their size
from time-step to time-step as well as sets of modules which
vary in their order from time-step to time-step. In contrast, the
CA-ID and CA-SA architectures both utilize cross-attention
operations over the set of input and output modules. This
enables support for both dynamically sized and dynamically
ordered sets of modules at each time-step.

We next compare these architectures according to their ca-
pacity to support selective attention over the contents of the
set of modules. The FF-ID and FF-SA models have limited
capacity for selective attention, as it must be the result of
fixed learned weight matrices which are content agnostic. In
contrast, because the CA-ID and CA-SA architectures utilize
cross-attention in the reading and writing process, the con-
tents of each module can be selectively attended to or com-
pletely ignored based on the behavioral needs of the task.

Finally, we compare the capacity of each of these archi-
tectures to support both the maintenance and manipulation of
information in working memory. Considering the FF-ID and
CA-ID models, we find that while information is retained be-
tween time-steps, thus supporting maintenance, there is no
explicit process by which information can be manipulated
over time, a key aspect of working memory. As such, these
models capacity for working memory is only partial. In con-
trast, the FF-SA and CA-SA architecture utilizes an explicit

self-attention mechanism between reading and writing to and
from the set of modules. The result is that these models are
capable of both maintaining and manipulating information
present within the workspace. Table provides a summary of
the various theoretically expected capabilities of each model
architecture. In the following section, we consider the extent
to which the models empirical performance matches these ex-
pectations.

Empirical Comparison
Our theoretical examination suggests that the full Perceiver
architecture (CA-SA) is best suited as a neural network im-
plementation of the global workspace, and that removing or
altering either of its attention mechanisms will reduce this
functionality. In this section, we employ a set of behavioral
tasks to empirically validate this theoretical expectation. The
suite of behavioral tasks was developed to address the four
identified properties of a global workspace: the ability to han-
dle dynamic sets of modules, the ability to selectively admit
information into the workspace, and the ability to maintain
and manipulate that information over time in the workspace.
Concretely, we utilize tasks based on n-back and cue-recall
paradigms drawn from the cognitive science literature (Rosen
& Engle, 1997; Kane et al., 2007).

Methods
We utilize a total of seven different behavioral tasks, based on
modifications of the n-back and cue-recall paradigms. Each
task is separated into a series of learning trials, followed by
a series of test-time trials. The models are trained from data
collected during the learning trials, and evaluated based on
their performance during the test-time trials. Depending on
the task, the nature of the test-time trials may differ in key
aspects from the learning trials. The ability of each model to
adapt to the test-time conditions determines its performance.
Table provides an overview of each of the behavioral tasks,
and which properties of the global workspace they are de-
signed to evaluate.

In the Digit-ID task, a series of randomly selected dig-
its valued between 0 and 9 are presented in a single quad-
rant of the screen in sequential order for the duration of a
trial. The goal of the task is to provide as output the value
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Table 3: Table comparing performance of each of the model architectures on the various behavioral tasks. Each cell presents
the mean and standard deviation of the model in a given task computed over five separate experiments.

Model Digit ID Digit ID (Swap) Digit ID (Dist) N-Back N-Back (Swap) N-Back (Dist) Cue-Recall
FF-ID .97 (.00) .06 (.04) .75 (.12) .94 (.00) .22 (.00) .51 (.11) .03 (.03)
FF-SA .98 (.00) .08 (.03) .83 (.10) .96 (.00) .21 (.01) .32 (0.1) .02 (.00)
CA-ID .98 (.00) .98 (.00) .91 (.05) .87 (.12) .71 (.23) .32 (.01) .56 (.02)
CA-SA .97 (.00) .93 (.03) .74 (.08) .96 (.02) .69 (.26) .72 (.17) .56 (.03)

of the currently-presented digit at each time-step. In Digit-
ID (Swap) the location of the digit presentation is changed
between the learning trials and the test-time trials. In Digit-
ID (Distractor) an additional distractor digit is presented in a
separate quadrant of the screen during test-time that was not
present during training. This additional digit is presented in a
lighter color than the true target digit.

In the N-Back task the same digit presentation as in the
Digit-ID tasks is used, with the exception that the goal is to
output at each time-step the value of the digit presented two
time-steps in the past. For the initial two time-steps a null-
token is expected as the output. In the N-Back (Swap) condi-
tion the position of the digits changes to a separate quadrant
during the test-time trials. In the N-Back (Distractor) task
an additional distractor digit is presented in a separate quad-
rant of the screen during test-time that was not present during
training.

Finally, in the Cue-Recall task, the model is presented with
a series of images for each trial whose contents vary depend-
ing on the time-step of the trial. The first image presented is a
visual symbol denoting the trial type, which can consist of ei-
ther ”SUM,” ”MIN,” or ”MAX.” There is then a blank image
presented, followed by between one and four cues denoted by
a ”+” sign in the four quadrants of the screen. There is then
another blank image followed by a set of digits between 0 and
9 presented in the four quadrants. After a final blank image,
there is then a prompt to provide a behavioral response cor-
responding to the denoted mathematical operation applied to
the set of cued digits. Between the training and testing trials
the set of possible cue combinations is changed. See Figure 2
for a schematic of each of these behavioral tasks.

Given each of the behavioral tasks, the training procedure
for the neural network models is as follows. Each task con-
sists of a sequence of 64x64 images provided to each model.
Each model produces a behavioral output at each time-step,
along with a reconstruction of the image input. In each model,
the image is initially pre-processed by a convolutional neural
network (CNN) (LeCun, Bengio, et al., 1995), and the out-
put of the CNN is split into four separate “visual modules.”
Each visual model also possesses a learned positional encod-
ing (Vaswani et al., 2017). An additional “motor module” is
used to provide a learned encoding for the behavioral output.

All models are trained using gradient descent to minimize
mean-squared error on the image reconstruction as well as the
cross entropy loss of the target behavioral output. All models

utilize hidden layers of size 256, and a representational ca-
pacity of 512 units for the workspace itself. The workspace
capacity is evenly divided between four sub-units. All models
are trained with the same learning rate of 1e−4 and an L2 reg-
ularization loss of 2e−5 using the Adam optimizer (Kingma
& Ba, 2014), and same architecture, with the exception of the
workspace module itself. This results in small but insignif-
icant differences in total parameter sizes between the mod-
els. Each model was trained for a total of ten epochs on the
training set of trials, and evaluated using a separate test set of
trials. We repeated each experiment seven times per model in
order to perform statistical analysis of relative model perfor-
mance.

Results
We begin our analysis with the simplest task requiring none of
the stated properties of the global workspace, Digit-ID. Un-
surprisingly, we find that all four models are able to perform
this task with near-perfect accuracy (Mean > 0.95). With a
validation of the basic functioning of each model, we can ex-
amine model performance according to the four criteria of
interest for a global workspace. We first consider the ability
of the model to maintain information within the workspace,
as evaluated by the N-Back task. Here we find no signifi-
cant differences between the four models (one-way ANOVA
p > 0.05), with all models solving the task with a high level
of accuracy (Mean > 0.85).

We then consider the ability of the model to manage a dy-
namic set of modules, as evaluated by the Digit-ID (Swap)
and N-Back (Swap) tasks. Here find that the models utilizing
cross attention (CA-ID and CA-SA) both significantly outper-
form the models without cross attention (FF-ID and FF-SA)
in both of the tasks (independent t-tests p < 0.01). This result
demonstrates that the cross-attention mechanism provides a
strong inductive bias towards permutation invariance in the
model architectures.

We next consider the third criteria of the global workspace,
the ability to selectively attend to information present in the
set of modules. To examine this, we utilized the Digit-ID
(Distractor) and N-Back (Distractor) tasks. With the Digit-
ID (Distractor) task, we find mixed results. Here the best
performing model, CA-ID, significantly outperforms the CA-
SA and FF-ID models (p < 0.5), but not the FF-SA model
(p = 0.09). In the case of the N-Back (Distractor) task, we
find that the best performing model, CA-SA, outperforms the
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Figure 3: Bar plots displaying mean performance of each model on the various behavioral tasks. Error bars correspond to
standard deviations. Values computed over seven separate experiments.

CA-ID and FF-ID models (p< 0.05), but did not significantly
outperform the FF-SA model (p > 0.05). These results sug-
gest that the presence of self-attention was a significant ad-
vantage in the task, and that cross-attention, when paired with
self-attention provided additional benefit.

The last task we consider, Cue-Recall evaluates all four
global workspace criteria simultaneously. As such, it is the
most comprehensive task of a global workspace like mech-
anism. Here we find that the CA-SA model performs with
greater than 50% accuracy (Mean = 0.56), while also sig-
nificantly outperforming the other three models (independent
t-tests p < 0.01), none of which achieve an accuracy level
above chance. This suggests that both cross-attention and
self-attention are necessary for this task. The full results of
the experiments are presented in Table and Figure 3.

Discussion
In this work we analyzed the properties of the Perceiver archi-
tecture in light of its ability to meet the criteria of the global
workspace, as outlined in (Baars, 1988) and (Dehaene et al.,
1998b). We identified the ability to handle a dynamic set of
modules, the ability to selectively attend to information in
those modules, and the ability to maintain and manipulate in-
formation within the workspace as four key criteria for evalu-
ation. We then compared the Perceiver to three potential vari-
ants derived from specific architectural changes and found
that from both a theoretical and empirical perspective, the full
Perceiver architecture best meets the criteria, thus serving as
a potential model of the global workspace. In particular, we
found that the cross-attention mechanisms for input and out-
put, as well as the self-attention for recurrent processing were
essential to demonstrating behavior which would be expected
from a global workspace. Given Perceiver’s strong empirical
performance on a diverse set of large-scale learning problems

(Jaegle, Borgeaud, et al., 2021), there is perhaps a case to be
made that the general principles behind the global workspace
can indeed support a complex set of reasoning abilities in hu-
mans and machines (Mashour et al., 2020).

Beyond the Perceiver architecture, there are many other
opportunities for modern deep learning architectures which
implements aspects of GWT. The recently proposed global
workspace module from Goyal et al. is architecturally simi-
lar to the Perceiver, and we expect it to display similar ad-
vantages. Indeed, this is perhaps not surprising, given that
the model is explicitly motivated by the global workspace
architecture. Not addressed here is the larger question re-
garding the kind of representational space induced by a
global workspace, a topic recently addressed by (VanRullen
& Kanai, 2021). In the wider field of computer science, there
have also been proposals for first-principles approaches to
global workspace like architectures (Blum & Blum, 2021),
as well as efforts to integrate global workspace models into
larger cognitive architectures (Juliani, Arulkumaran, Sasai,
& Kanai, 2022). One interesting future avenue of research
would be to move beyond behavioral tasks and examine the
learned representations and neural dynamics of the Perceiver
and other candidate neural network architectures. Of partic-
ular interest would be the extent to which these too match
the expectations of the global workspace, and recent neuro-
science work inspired by it (Van Vugt et al., 2018).
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