Title
AASE-II OBSERVATIONS OF TRACE CARBON SPECIES DISTRIBUTIONS IN THE MID TO UPPER TROPOSPHERE

Permalink
https://escholarship.org/uc/item/2q55w6qh

Journal
GEOPHYSICAL RESEARCH LETTERS, 20(22)

ISSN
0094-8276

Authors
ANDERSON, BE
COLLINS, JE
SACHSE, GW
et al.

Publication Date
1993-11-19

DOI
10.1029/93GL01693

License
https://creativecommons.org/licenses/by/4.0/ 4.0

Peer reviewed
AASE-II OBSERVATIONS OF TRACE CARBON SPECIES DISTRIBUTIONS IN THE MID TO UPPER TROPOSPHERE

B. E. Anderson1, J. E. Collins2, G. W. Sachse1, G. W. Whiting3, D. R. Blake4, F. S. Rowland4

Abstract. We report tropospheric (altitudes > 5 km) observations of CO2, CO, CH4, and light hydrocarbons (C2 - C4) over the latitude range from 90°N to 23°S recorded onboard the NASA DC-8 aircraft during the winter 1992 Second Airborne Antarctic Stratospheric Expedition (AASE-II). Mixing ratios for these species exhibited significant north-south gradients with maximum values in subpolar and arctic regions and minima over the southern tropics. At latitudes > 40°N, the mixing ratios of most species increased significantly over the course of the 3-month measurement period. Also at high northern latitudes, the variations of all relatively long-lived reactive carbon species were linearly correlated with fluctuations of CO2 with CO, CH4, C2H6, C2H2, C3H8, and n-C4H10 exhibiting average enhancement ratios in terms of ppbv(X)/ppmv(CO2) of 13.8, 8.4, 0.21, 0.075, 0.085, and 0.037, respectively.

Introduction

Carbon dioxide and reactive trace carbon gases play important roles in regulating global tropospheric composition and climate [i.e., Logan, 1981; Liu et al., 1987]. As examples, the oxidation of CO is a major global-scale sink for OH [i.e., Logan, 1981]; CO2 and CH4 are noted greenhouse gases; and non-methane hydrocarbons (NMHCs) are potentially significant sources of atmospheric CO [Logan, 1981] and tend to dominate OH radical chemistry in regions close to their emission sources [Liu et al., 1987]. Because of their varying reactivity and widely distributed sources and sinks, background tropospheric mixing ratios of these species, including CO2, vary considerably with latitude, season, and altitude [i.e., Novelli et al., 1992; Blake and Rowland, 1986; Singh et al., 1988; Blake et al., 1992; 1993]. Mixing ratios generally decrease with increasing altitude near source regions [Singh et al., 1988; Blake et al., 1992] and, except for CO2 in summer, are greater over continental regions than ocean surfaces [Singh et al., 1988]. Recent studies suggest that the carbon species with combustion-related origins exhibit maximum values in the lower troposphere over the northern mid to polar latitudes during winter [Blake and Rowland, 1986; Steele et al., 1987; Novelli et al., 1992] owing to a greater abundance of anthropogenic sources in the northern midlatitudes, a greater consumption of fossil fuels in winter, and the reduced efficiency of tropospheric removal processes at this time of year.

During AASE-II, in situ CO2, CO, CH4, and NMHC measurements were obtained onboard the NASA DC-8 aircraft within the mid to upper troposphere over large spatial regions (23°S to 90°N) during the time period from January through March 1992. Because most previous measurements of these species have been obtained at fixed surface sites [i.e., Novelli et al., 1992], aboard ships [i.e., Singh et al., 1988], or from aircraft within the lower troposphere [i.e., Blake et al., 1992], these data significantly augment the data base for detailing the distributions and secular trends of the more abundant carbon species. The following text describes the observed latitudinal distributions of CO2, CO, CH4, and C2-C4 hydrocarbons in the mid to upper troposphere (altitudes above 5 km) and temporal trends observed over the 3-month experiment period. The relationships (correlations) between the reactive carbon species are also examined. The reader is referred to Anderson et al. [this issue] for an overview of the AASE-II mission.

Experimental

The NASA DC-8 was deployed each month from January to March 1992 to underfly regions of the polar vortex. A minimum of five flights were conducted during these monthly deployments including transits from San Jose, California, to Anchorage, Alaska; Anchorage to Stavanger, Norway; Stavanger to Bangor, Maine; and Bangor to San Jose. In addition, survey flights were conducted during January and February to Tahiti (from San Jose) and Puerto Rico (from Bangor), respectively, to investigate the spatial distribution and atmospheric effects of Pinatubo aerosols. Individual flights were 10 to 12 hrs in duration and included sampling both within the troposphere and lower stratosphere (to 12 km altitude).

Trace carbon species were measured aboard the DC-8 using (1) a differential absorption tunable diode laser (TDL) system for CO and CH4 [Sachse et al., 1991]; (2) a broadband, nondispersive infrared absorption sensor for CO2; and (3) grab sample collection followed by laboratory analyses using gas chromatographic techniques for NMHCs [Blake et al., 1992; 1993]. The TDL instrument was composed of a 20-m folded path White Cell and individual, cryogenically cooled tunable diode laser/infrared detector pairs for each species of interest. The system provided measurement precisions (2 sigma) of 2% for CO and 7 ppbv (0.5%) for CH4; the system time constant, determined by the White Cell flushing rate, was 5 to 10 s.

A modified Licor model 6252 nondispersive infrared monitor was used to determine CO2 mixing ratios. This dual cell instrument achieves high precision by measuring the differential absorption between sample air and a calibrated reference gas. The system was operated at constant pressure (225 Torr) and had a precision of 0.05 ppmv (1 sigma) and accuracy of 0.3 ppmv; the system response time (determined by sample flow rate) was 5 to 10 s.

The TDL and CO2 instruments shared a sampling system consisting of a 0.5-cm diameter, window-mounted sample inlet; Mg(ClO4)2 filter for removing water vapor; and a compressor for increasing sample pressures to above 225 Torr. Calibration was performed at 15-min intervals by introducing NOAA/CMDL standard reference gases to flow upstream of the drying filter. Data were recorded at 1-s intervals and archived as 5-s averages.

Blake et al. [1992; 1993] describe the general procedures used for collecting grab samples and their subsequent analysis for hydrocarbon species. In brief, a metal bellows pump was used to fill and pressurize to 3 atm a series of evacuated, 2-liter stainless steel canisters with ambient air extracted from a window mounted inlet. Samples were collected at 5- to 10-min intervals during level flight and at about 2-min intervals during vertical profiles; in general, 72 samples were collected per
(e.g., mixing ratios were generally independent of altitude within the mid to upper troposphere). Next, stratospheric data were eliminated by rejecting points with corresponding N2O values < 309 ppbv (the observed N2O average within the lower troposphere minus 1 standard deviation). The effects of stratospheric intrusions were reduced by excluding all points with corresponding O3 values > 90 ppbv. Finally, measurements from any fresh pollution plumes (as judged by enhancements in short-lived hydrocarbon values) were also deleted. The final tropospheric data set includes over 1600, 1-min averaged CO2, CH4, and CO observations and about 260 individual hydrocarbon grab sample measurements; the geographic area represented by this data set is shown in Figure 1.

Figure 2 shows the observed tropospheric distributions of carbon dioxide (CO2), methane (CH4), carbon monoxide (CO), and the straight chain hydrocarbons, ethane (C2H6), propane (C3H8), and n-butane (n-C4H10) as a function of latitude. Table 1 gives averages and statistics for these species plus ethene (C2H4) and ethyne (C2H2) in four discrete latitude bands representing the southern tropical (< 0°S), northern subtropical (10°N-30°N), northern subpolar (40°N-60°N), and arctic (>70°N) air mass regions. The various latitude/air mass groupings above 40°N have approximately the same contributions of data from the various monthly flight series except for the 50°-60°N latitude bin of Figure 2. January measurements

Fig. 2. Plots illustrating the distribution of selected carbon species as a function of latitude. On these types of graphs, median values are represented by the horizontal lines, the upper and lower inner quartiles (75th and 25th percentiles) are enclosed by the boxes, and the vertical lines extend over the data range, or in the case of widely outlying points, to 1.5 times the corresponding inner quartile distance.

Results and Discussion

TABLE 1. Tropospheric mixing ratios and statistics for selected trace gas species over discrete latitude bands. The CO2, CH4, and CO data are from one minute averages whereas the non-methane hydrocarbon data are from individual grab samples. Hyphens appear where values are below detection limits.

<table>
<thead>
<tr>
<th>Latitude Range</th>
<th>Species</th>
<th>N</th>
<th>Average</th>
<th>Median</th>
<th>(\sigma)</th>
</tr>
</thead>
<tbody>
<tr>
<td>70°N to CO (ppmv)</td>
<td>358</td>
<td>357.7</td>
<td>357.8</td>
<td>1.6</td>
<td></td>
</tr>
<tr>
<td>to CO (ppbv)</td>
<td>370</td>
<td>134.2</td>
<td>136.2</td>
<td>21.3</td>
<td></td>
</tr>
<tr>
<td>90°N to CH4 (ppmv)</td>
<td>370</td>
<td>1764</td>
<td>1763</td>
<td>16.5</td>
<td></td>
</tr>
<tr>
<td>to CH4 (ppbv)</td>
<td>66</td>
<td>1565</td>
<td>1580</td>
<td>402</td>
<td></td>
</tr>
<tr>
<td>40°N to CO (ppmv)</td>
<td>455</td>
<td>357.5</td>
<td>357.5</td>
<td>1.2</td>
<td></td>
</tr>
<tr>
<td>to CO (ppbv)</td>
<td>467</td>
<td>130.8</td>
<td>128.1</td>
<td>19.8</td>
<td></td>
</tr>
<tr>
<td>60°N to CH4 (ppmv)</td>
<td>466</td>
<td>1761</td>
<td>1758</td>
<td>14.6</td>
<td></td>
</tr>
<tr>
<td>to CH4 (ppbv)</td>
<td>63</td>
<td>1598</td>
<td>1547</td>
<td>725</td>
<td></td>
</tr>
</tbody>
</table>

Fig. 1. Map showing the DC-8 tropospheric sampling locations (hashed regions).
positive correlations of CH₄ with CO and CO₂ at northern latitudes (see Table 2). Hansen et al. [1989] also reported positive correlations between CH₄ and combustion tracers during winter and suggested that the enhanced levels of CH₄ seen in the arctic during pollution events arise from anthropogenic activities.

The light hydrocarbons, because of their reactivity, exhibited much more pronounced inter-hemispheric gradients than the monocarbon trace species. In going from the Equator to the Arctic, C₂H₄ decreased a factor of 4 whereas C₂H₆ dropped by more than a factor of 25. The shorter-lived species (e.g., C₂H₂ and C₂H₆), while present in significant amounts at high northern latitudes, were generally at or below detection limits near the Equator and south. These differences are consistent with previous measurements [i.e., Blake and Rowland, 1986; Singh et al., 1988] and were driven both by the dominating source strength of the northern midlatitudes and the enhanced rates of destruction in the tropics and subtropics associated with the abundant sunlight and moisture.

Indeed, our observations (Figure 2 and Table 1) suggest mixing ratios for most species were comparable, if not larger, in the arctic (70°N to 90°N) than at mid-northern latitudes (40°N to 60°N). This is apparently not caused by temporal sampling biases or the fact that a larger fraction of the arctic (40°N to 60°N) was observed. However, to confirm the lack of altitude bias, we examined data from narrow height intervals and still found equivalent or larger values in the arctic. For example, CO mixing ratios between 6- and 7-km altitude were 152.7±14.6 (± 1 sigma) above 70°N as opposed to 141.7±14.5 between 30°N and 40°N. This latitude band roughly corresponds to the mean wintertime continental position of the polar jet stream which separates the polar and midlatitude air masses [Barrie, 1986]. When in this position, the jet lies south of many large urban and industrialized areas in North America, Europe, and Asia, which results in polar air masses becoming highly polluted. Moreover, northward transport of midlatitude emissions is generally thought to cause the annual "Arctic Haze" phenomena [Barrie, 1986].

In terms of individual species, Figure 2 indicates that CO₂ increased about 1% between the Equator and North Pole. The wintertime northern hemisphere CO₂ concentration gradient is caused by both vertical transport and horizontal advection. CO₂ increased about 1% over the course of the winter at mid to high northern latitudes (>40°N). Carbon dioxide, for example, increased about 2.5 ppmv between the January and March flight series which is consistent with its reported late winter/early spring maximum in arctic regions.

As noted above and illustrated in Table 3, the mixing ratios of all species were observed to increase over the course of the winter at mid to high northern latitudes (>40°N). Carbon dioxide, for example, increased about 2.5 ppmv between the January and March flight series which is consistent with its reported late winter/early spring maximum in arctic regions.

TABLE 3. Temporal changes in species mixing ratios between the January and March flight series for measurements within the 40N to 90N latitude region.

<table>
<thead>
<tr>
<th>Species</th>
<th>N</th>
<th>Average</th>
<th>Median</th>
<th>σ</th>
<th>Lower Quartile</th>
<th>Upper Quartile</th>
</tr>
</thead>
<tbody>
<tr>
<td>January</td>
<td>CO₂ (ppmv)</td>
<td>406</td>
<td>356.4</td>
<td>356.2</td>
<td>0.7</td>
<td>355.9</td>
</tr>
<tr>
<td></td>
<td>CO (ppbv)</td>
<td>406</td>
<td>115.3</td>
<td>114.1</td>
<td>1.16</td>
<td>106.1</td>
</tr>
<tr>
<td></td>
<td>CH₄ (ppmv)</td>
<td>406</td>
<td>1756</td>
<td>1751</td>
<td>14.1</td>
<td>1746</td>
</tr>
<tr>
<td></td>
<td>C₂H₆ (ppmv)</td>
<td>38</td>
<td>1201</td>
<td>1127</td>
<td>246</td>
<td>1020</td>
</tr>
<tr>
<td></td>
<td>C₂H₄ (ppmv)</td>
<td>38</td>
<td>31</td>
<td>19</td>
<td>44</td>
<td>15</td>
</tr>
<tr>
<td></td>
<td>C₂H₂ (ppmv)</td>
<td>38</td>
<td>253</td>
<td>226</td>
<td>90</td>
<td>186</td>
</tr>
<tr>
<td></td>
<td>C₃H₄ (ppmv)</td>
<td>38</td>
<td>316</td>
<td>269</td>
<td>151</td>
<td>214</td>
</tr>
<tr>
<td></td>
<td>n-C₄H₁₀ (ppmv)</td>
<td>38</td>
<td>87</td>
<td>59</td>
<td>70</td>
<td>37</td>
</tr>
<tr>
<td>March</td>
<td>CO₂ (ppmv)</td>
<td>196</td>
<td>358.9</td>
<td>358.8</td>
<td>0.9</td>
<td>358.3</td>
</tr>
<tr>
<td></td>
<td>CO (ppbv)</td>
<td>213</td>
<td>152.1</td>
<td>152.4</td>
<td>13.8</td>
<td>141.4</td>
</tr>
<tr>
<td></td>
<td>CH₄ (ppmv)</td>
<td>212</td>
<td>1767</td>
<td>1765</td>
<td>15</td>
<td>1757</td>
</tr>
<tr>
<td></td>
<td>C₂H₆ (ppmv)</td>
<td>79</td>
<td>1529</td>
<td>1494</td>
<td>279</td>
<td>1346</td>
</tr>
<tr>
<td></td>
<td>C₂H₄ (ppmv)</td>
<td>79</td>
<td>38</td>
<td>24</td>
<td>39</td>
<td>15</td>
</tr>
<tr>
<td></td>
<td>C₂H₂ (ppmv)</td>
<td>79</td>
<td>393</td>
<td>380</td>
<td>113</td>
<td>324</td>
</tr>
<tr>
<td></td>
<td>C₃H₄ (ppmv)</td>
<td>79</td>
<td>377</td>
<td>339</td>
<td>173</td>
<td>246</td>
</tr>
<tr>
<td></td>
<td>n-C₄H₁₀ (ppmv)</td>
<td>79</td>
<td>106</td>
<td>85</td>
<td>81</td>
<td>44</td>
</tr>
</tbody>
</table>
Carbon monoxide also apparently accumulated over the winter at the northern latitudes, increasing by about 30% over the 66-day experiment period. Methane values rose by about 13 ppbv which is comparable to its current globally averaged annual increase. The light hydrocarbons also exhibited substantial temporal increases, consistent with their reported late winter/early spring seasonal maxima [e.g., Blake and Rowland, 1986].

The late winter carbon species mixing ratios above 40°N were also greatly enhanced relative to comparable summertime measurements. For example, our March CO values (Table 3) were about 50% larger than those reported by Talbot et al. [1993] for summertime polar air masses over Canada and Alaska. In addition, the March C₂H₆ and C₃H₈ mixing ratios (see also Table 3) are 2 and 4 times greater, respectively, than those measured by Blake et al. [1993] within summertime background air over Canada. In fact, the March hydrocarbon concentrations in Table 3 are more comparable to values recorded within relatively fresh biomass burning emissions than to summertime background measurements. For example, the March C₂H₆, C₃H₈, and C₄H₁₀ values are similar to the peak mixing ratios of 1573 pptv, 444 pptv, and 262 pptv, respectively, observed by Blake et al. [1993] in a prominent, 12- to 18-hour old smoke plume over central Canada.

The high positive correlations of Table 2 suggest common causes for the northern latitude wintertime concentration enhancements. The longer-lived species--CO₂, CO, CH₄, and C₂H₆--tend to be well correlated which implies that their enhancements arise from combustion processes (industrial or biomass). The more reactive species--C₃H₈ and n-C₄H₁₀--are extremely well correlated with each other and with C₂H₆ of the group referenced above, which reflects not only their combustion-related sources but similar atmospheric residence times. The enhancement ratios (e.g., regression slopes shown in Table 2) for the reactive species relative to CO₂ vary from 13.7 ppbv(CO)/ppmv(CO₂) down to 0.037 ppbv(n-C₄H₁₀)/ppmv(CO₂); the CH₄/CO₂ enhancement ratio, 8.4 ppbv/ppmv, is within the range reported by Conway and Steele [1989] for winter/spring air masses over North America. More detailed analyses of CO₂, CH₄, and CO concentrations (data not shown) from March soundings over the North Pole indicate an even stronger correlation between CO₂ and CH₄ (r=0.99) along with CO₂ and CO (r=0.99). Similar high positive correlations between CH₄ and combustion tracers have been observed in Arctic Haze [i.e., Conway and Steele, 1989] where tracer and trajectory analyses [Lowenthal and Rahn, 1985; Hansen et al., 1989] indicate long-range transport of combustion products from Eurasia, in particular from the former U.S.S.R., significantly contributed to the observed trace carbon enhancements.

Conclusion

The AASE-II observations substantially enhance the available base of information on the latitudinal distributions of CO₂ and reactive trace carbon distributions in the mid to upper troposphere. Specific results indicate that concentrations are much greater and more variable over the mid to high northern latitudes than within the tropics or sub tropics. This reflects both the seasonally reduced rates of photolysis destruction and the greater abundance of biogenic and anthropogenic sources in northern regions. Concentrations within polar and arctic air were also observed to increase between the January and March flight series implying that, because of the reduced efficiency of removal processes, pollutants tend to accumulate in these air masses over the course of the winter. Finally, the fluctuations of most species over mid to high northern latitudes were correlated with those of CO₂ and CO which suggests their enhancements may be caused by combustion-related sources.

References

B. E. Anderson, Mail Stop 483, NASA/Langley Research Center, Hampton, VA 23681.
D. R. Blake, Department of Chemistry, University of California-Irvine, Irvine CA 92717.
J. C. Collins, Mail Stop 468, NASA/Langley Research Center, Hampton VA 23681.
F. S. Rowland, Department of Chemistry, University of California-Irvine, Irvine CA 92717.
G. W. Sachse, Mail Stop 468, NASA/Langley Research Center, Hampton VA 23681.

Received: March 5, 1993; accepted: June 11, 1993