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ABSTRACT OF THE DISSERTATION

Accelerating Data Movement at Different Granularities in Datacenters

by

Shu-Ting Wang

Doctor of Philosophy in Computer Science
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Professor Steven Swanson, Chair

The dissertation investigates redundant communication between servers for large-scale

web and cache requests and redundant data movement between accelerators for compute-intensive

applications. Redundancy is an impending and critical issue for data centers designed for

hardware accelerators and disaggregated resources. The dissertation makes the following three

contributions to address this. The first contribution of the dissertation is Daronpon. Daronpon

dynamically load-balances and reroutes large-scale requests of web and cache applications on a

microsecond timescale. Daronpon prevents these requests, stranded on busy servers with network

congestion and long queuing delays, from being processed. Daronpon shows improvement in

various service time characterizations of different applications. The second contribution of the
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dissertation is Fianchetto. Fianchetto acts as a compute-enabled bypass for inter-accelerator

communication. Fianchetto accelerates the data restructuring needed between accelerators and

saves the data movement between accelerators and CPUs for compute-intensive applications.

Fianchetto shows improvement in a series of benchmarks involving different application domains.

The third contribution of the dissertation is Aurelia. Aurelia leverages the emerging interconnect

of CXL to investigate the design of a scalable fabric for accelerators and fabric-attached memory

expansion. Aurelia improves routing and transport based on the current specification of CXL and

shows performance improvement on machine learning and key-value store applications.
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Chapter 1

Introduction

Modern datacenters are warehouse-scale computers [BCH13]. These warehouse-scale

computers serve as the foundation of cloud computing, e.g. IaaS, SaaS, and serverless. They

host commodity servers equipped with many general-purpose CPU cores. The servers are

interconnected with 100 Gbps or faster network connections. They are clustered into fleets for

different functions. For example, one serve the web requests, another one serve as data storage,

and the other one serve as an in-memory cache for frequently accessed objects. Communication

and data movement between servers are frequent and demonstrate diverse patterns depending on

the mix of traffic from different functions [NFG+, KDH+15, HBB+18, azu].

Moreover, hardware accelerators are introduced into the datacenters for compute-intensive

applications because of the effective end of Dennard scaling [DGR+74] and the dark silicon

phenomenon [EBA+11, HFFA11]. These accelerators include GPUs, TPUs, video codec acceler-

ators, and other accelerators deployed in the production datacenters nowadays [JYP+17, RSC+21,

KDH+15, awsb, awsa]. The introduction of these accelerators demonstrates a monumental shift

towards a heterogeneous hardware landscape beyond a massive number of homogenous CPU

cores. The accelerators accelerate specific compute-intensive workloads, such as video encoding

and decoding, scientific computation, and large-scale machine learning applications. They are
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integrated with the system and operate on data moved from the host memory and return the results

to it. Thus, efficient data movement ensures that these dedicated accelerators are well-utilized.

In addition to the heterogeneous hardware landscape, resource disaggregation aims at

efficient resource provision in the datacenters. Resource disaggregation allocates resources, such

as CPU cores, memory capacity, and storage capacity, located on different physical machines in

a logically unified manner [SHCZ18, ABAL+20, MC20, RSAB20, ZWL+22, LMC+22]. The

rationale behind disaggregation is to satisfy users with diverse requests for different resources.

Disaggregation, while aiming at efficient provision of resources, exposes the communication

and data movement between CPU and memory/devices through a network fabric connecting the

resources [CIP+21, Sha23, MWD+23, LBN+23, WW23]. The externalized communication and

data movement motivate the need for a scalable network fabric to serve a resource-disaggregated

datacenter.

The current datacenters demonstrate diverse communication and data movement patterns

on different scales with their corresponding applications. We are, in particular, interested in the

data movement of the following scenarios:

1. RPC communication for web and cache applications. The data movement is on the scale of

a few packets to a few MBs in total size.

2. Compute-intensive applications with the use of non cache-coherent accelerators. The data

movement is with chunks of data on the scale of up to 100s of MBs.

3. Key-value store on disaggregated memory modules. The data movement operates on

cacheline granularity to KBs in total size.

In short, we hypothesize that the conventional design of control and data plane demonstrating in-

efficient communication and redundant data movement between servers for large scale web/cache

requests and between accelerators for compute-intensive applications. We argue that this ineffi-

ciency is an impending and critical issue for datacenters designed for hardware accelerators and

disaggregated resources. This thesis proposes to intelligently redirect the communication and

2



data movement to bypass congestion and reduce redundant movement with a minimal addition of

control logic.
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Chapter 2

Daronpon: Datacenter Load Balancing

Across Racks

To improve both performance and fault tolerance, datacenter applications are provisioned

to scale horizontally, with replicated instances frequently spread across multiple racks of servers.

These replicas must be carefully managed to meet strict service-level objectives (SLOs) for

both throughput and latency [BMPR17, DB]. These requirements have birthed an architectural

paradigm of highly replicated microservices that can (nearly) arbitrarily fan out to deliver ever-

higher throughput, and whose functionality is scoped to provide microsecond-timescale responses

with low latency even in the tail.

Realizing this design pattern in practice poses multiple engineering challenges, however.

Microsecond-timescale services must be resilient to low-level system and network perturbations

and short-lived congestion events to achieve consistent performance [ZLZK]. These events arise

within the operating system, runtime, and application software as well as due to network-level

incast events, where many clients send to a common destination server, causing in-network

buffering and substantial queuing delays [NFG+13]. Moreover, the potential impact of these

so-called “microbursts” increases with network bandwidth. Large bursts can lead to packet drops

4



and necessitate end-to-end retransmissions.

Experience shows that a responsive and effective load-balancing strategy is key to manag-

ing overall service latency. Given the ultra-low service times of many modern datacenter services,

end-to-end approaches driven by the clients and servers themselves are unlikely to meet demands,

as many component services (i.e., computation) times are smaller than datacenter-wide network

latencies. Instead, we focus on in-network load balancing techniques carried out by network

switches or middle boxes—often generally referred to as dispatchers. Recent work has shown the

benefits of load balancing with a server rack, for example R2P2 [KPG+] and Racksched [ZKC+].

These approaches take into account server load balancing, building upon prior approaches to

core scheduling in individual servers [BPP+16, KCH+19, OFB+19, WCB]. Further, Vargaftik

et al. [VKO20] show that, for the multiple-dispatcher environments that we target, a stable and

highly efficient load balancing approach is possible through a carefully controlled exchange of

status updates between servers and dispatchers.

We present Daronpon, an inter-rack load balancer targeting services with round-trip time

dominating the overall response time and service time on microsecond timescales. Daronpon

periodically exchanges service-load information between dispatchers, either through explicit

gossip messages or piggybacked onto redirected application requests. We employ a logarithmic

threshold approach to minimize the network overhead of state-exchange messages while ensuring

that application requests are forwarded to replicas with good performance. Our system decreases

the 99th-percentile tail latency by up to a factor of two over random replica selection across a

variety of workloads, enables scaling across heterogeneous server configurations, and provides

performance gains for service times as low as two microseconds. 1

1Services are assumed to be replicated throughout Chapter 2, thus replica and services are used interchangeable.
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2.1 Background

Modern datacenter applications are replicated [roc21, Mem21, Mon21] to provide fault

tolerance, scalability and flexible response to load fluctuations. Often, individual application

components are replicated on the order of three times for fault tolerance. In the case of sharding

for scalability, however, the number of replicas can be many orders of magnitude higher and even

grow dynamically [fac20, AMH+, KXH+] as needed to service demand.

2.1.1 Datacenter load balancing

Traditional application or layer-4 load balancers operate across the set of back-end services

and maintain connection consistency for long-lived flows. They are generally implemented in

software using commodity servers [BTY+, EYC+, OAVR, PBY+], although some have explored

using switches with hardware support [GLH+, MZK+]. While effective at responding to end-

host-driven load imbalances, they are ill-positioned to address transient variations in service

times.

Conversely, conventional layer-3 load-balancing techniques focus on dispersing traffic

load in the network, and do not address server imbalance. For example, equal-cost multi-path

routing (ECMP) load balances flows using a hash of their 5-tuple. ECMP is widely deployed due

to the benefits it gains from average-case statistical multiplexing. It is well known, however, to

cause load imbalance due to hash collisions and when links fail. A variety of improvements to

ECMP have been proposed, many using the concept of flowlets [AED+, KGH+, KHK+, VPA+]:

a group of packets within the same flow separated from others by a large enough time interval.

Other schemes load balance per packet [GYG+, KVHD, ZZB+]. Each of these in-network

techniques are complementary to our work, as they load balance exclusively based on the state of

the network and not the end-host applications.
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2.1.2 Microsecond timescales

Despite practitioners’ attempts to spread demand evenly across both servers and network

fabrics [RZB+], a certain degree of variability is inevitable. Indeed, as links speeds of 100

and 400-Gbps become the norm, hosts and switches can experience significant traffic bursts

over short periods of time. These bursts, while lasting only a few microseconds, can cause

congestion, lead to increased jitter, and result in packet drops [ZLZK]. As a concrete example, a

switch with 64 MB of packet memory will overflow in 1.9 ms at 100 Gbps [tof20] under incast

scenarios. While these events originate in the network, the effect of that queuing cascades at the

application. Congestion impacts performance directly as batches of requests are delivered in very

short time periods. Existing end-to-end techniques struggle to react to microbursts effectively as

the durations of the microbursts are shorter than the network RTT which bounds the response

time of any end-host approach.

Daronpon targets microsecond-timescale services which do not involve long-lived connec-

tions. (We support any request/response service on top of a connection-less transport or one with

migration ability [KIB, LRW+].) Techniques for dispatching such microsecond-duration requests

within an end-host operating system have been explored recently [BPP+16, KCH+19, MdKA+19,

OFB+19, PKB]. These end-host-based approaches use load-aware schedulers to direct requests to

CPU cores and to quickly rebalance those allocations. Extensions to these techniques demonstrate

similar scheduling performance at the scope of a entire server racks [KPG+, ZKC+]. These

efforts make use of programmable switches to track end-host load at the rate of millions of

requests per second [tof20]. Both R2P2 [KPG+] and Racksched [ZKC+] are confined to services

which operate entirely within a single rack due to a single control point within the ToR switch.

This limits the applicability of these schemes for the majority of replicated applications which are

distributed throughout the datacenter.

Researchers have also explored explicitly integrating different replication techniques with

programmable switching hardware to avoid RTT delays, including chain replication [JLZ+],

7



Raft [KB], and Paxos [LMS+]. In-network replication techniques have also been proposed to

alleviate read/write conflicts [ZBL+19] and contention [LNM+]. Daronpon operates under the

assumption that replicas are interchangeable for all requests; our techniques could be extended to

support any of these protocols, however Daronpon would require protocol-specific information to

operate.

2.2 Challenges

Theoretically, optimal load balancing is attainable with centralized algorithms [Win77]

that maintain full knowledge of the global instantaneous system load. A proven-optimal algorithm,

join-the-shortest-queue (JSQ), ensures requests experience minimal queuing delay. Unfortunately,

centralization prevents cross-rack sharding and scale-out designs. In contrast, fully decentralized

approaches (e.g. client-based power-of-two designs [Mit01]) either require network-wide message

round trips to measure load or rely on out-of-date information from previous response. As the

service time of requests approaches that of an RTT, both approaches provides little benefit on

acquiring more up-to-date information. Further, these approaches struggle to react quickly to

congestion given these long network-wide round-trips. Load-balancing decisions made with

information which has aged by at least an RTT cannot react to microburst events which occur on

sub-RTT timescales.

2.2.1 Microsecond load balancing at scale

An ideal solution for microsecond load balancing at scale will therefore be decentralized

to avoid bottlenecks, designed to reduce probing overheads, and designed to react nearly instan-

taneously to bursts. Vargaftik et al. [VKO20] demonstrated theoretically that distributed load

balancing for datacenter scale is possible. Their proposal, LSQ, has many desirable properties

such as a bounded measurement difference between true server load and the load observed by a
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load balancer, which receives load updates as messages using a variety of mechanisms [VKO20].

We investigated via simulation an implementation of LSQ in which we placed LSQ load

balancers on core routers within a fat tree network. Using core switches satisfies LSQ’s theoretical

assumptions with regard to how each load balancer sees sever load by forcing all packets through

the core of the network to ensure that every request is visible. In this core-switch realization of

LSQ, we find some practical limitations. The first of which is its (lack of) response to microbursts.

When requests target the same server, the available bandwidth on the egress port of that server’s

associated top-of-rack (ToR) switch is stressed, leading to drops [ZLZK]. These bursts occur due

to lack of coordination between core routers; they can be prevented by making load-balancing

decisions at the ToR instead.

Hence, we propose to load balance on leaf ToRs directly. This alteration has a variety

of implications on LSQ’s theoretical approach. First, LSQ has approximate knowledge of all

server queues. By moving our load balancer to ToRs we lose instantaneous knowledge of remote

queues but gain up-to-date load information for all the servers of a rack beneath a ToR. While

this updated knowledge gives us tremendous insight into the state of that single rack as shown in

R2P2 and Racksched [KPG+, ZKC+], it leaves the dispatchers unaware to the load of services

running on remote racks. A key challenge in this work is designing a ToR-based load-balancing

approach for datacenter scale by maintaining accurate estimations of the load of other servers at

remote ToRs in the absence of periodic updates.

2.2.2 Load knowledge

At datacenter scale, any centralized load balancer is proned to be a performance bottleneck.

This is true not only in terms of traffic, but also in terms of the per-application state that the

load balancer needs to track. In the absence of centralized knowledge, load information must

be distributed among load balancers. While the potential benefit of making decisions locally

with even out-of-date information is substantial, the hazards of load balancing in ignorance are
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documented in the literature [Dah00, Mit00]. The question of how to efficiently disseminate

timely state information in practice remains open.

Updates issued periodically between load balancers leads to a predictable overhead in

terms of bandwidth and number of messages, but admits (potentially unbounded) errors in the

estimates at remote load balancers. Assuming that events arrive with a Poisson or exponential

distribution, many events can occur between load information message exchanges. Alternatively,

state updates could be disseminated in relation to the request rate, with updates being issued for

every request or perhaps some fraction of the total number of requests. This too suffers as the

number of messages issued during bursts of requests can cause an increase in update traffic at

the worst possible time. The choice of how to disseminate load in a way that provides up-to-date

information in a non-obstructive way is crucial to Daronpon’s design.

2.2.3 Stale information

The following experiments show that the frequency at which load is updated has a

significant effect on the quality of the decisions. However, there is a trade-off in terms of traffic

overheads to keeping information up to date. As the number of services increases, so too does the

number of messages needed to keep the information fresh.

Given imperfect, or stale, information about remote servers, the question becomes: when

is redirecting requests a good course of action? We submit that given reasonably predictable, but

potentially erratic, request patterns, the correct course of action is to act conservatively when

conditions are manageable, and to react quickly and decisively when request loads spike, i.e.,

in microburst scenarios. These constraints dictate a compromise between inflating traffic and

making sub-optimal decisions with poor information.
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2.2.4 Information traffic reduction

Determining how often and when to send load information requires careful consideration.

If an update were to be propagated for every request, that would be ideal from a decisions making

perspective, but the overall number of messages sent could inflate by the total replication factor

(2× or 3× in many cases). Such overheads are unacceptable for systems with requests in the

thousands or millions of requests per second as the cost of the information quickly surmounts the

goodput traffic. A key challenge in designing a distributed in-network load balancer approach is

to identify the most critical information to send which ideally only produces a small overhead in

terms of state exchange messages.

Network operators generally want predictable behavior within their networks. Given

that distributed load balancing requires information to be spread, it raises the risk of adding

unpredictability to the network, specifically in terms of overhead. An ideal load-balancing

strategy would spread information efficiently while allowing operators to set an overhead budget

in terms of bandwidth or messages which would correlate to a comparable increase in performance.

Predictability is highly important in heterogeneous systems where multiple applications require

guarantees about their apportioned network share.

2.2.5 Heterogeneous rack configurations

At datacenter scale the configuration for any application may vary wildly. Individual

service replicas may be co-located with resource-hungry applications. Due to configuration

differences applications might have varying processing powers. Many applications are placed

in VMs which execute on differently powered hardware. Indeed, in the datacenter there is no

guarantee that any set of replicas is equally provisioned. Therefore, any load-balancing strategy

must take into account this heterogeneity and apportion requests in response to the real processing

rate.

11



2.3 Daronpon design

The Daronpon design resides within the ToR at each rack and is designed to track server

load by counting the number of outstanding requests for each service running on that rack.

Figure 2.1 illustrates the role that ToRs play in our load balancing scheme. When a request arrives

at a ToR it makes a load balancing decision. It either Admits the request, or it Redirects it to

another replica. Requests are redirected in FIFO without specific priority. The choice to either

admit or redirect is subject to the local load the service is currently experiencing under the ToR

(as understood by Daronpon), and an estimation of the load each replica has on remote ToRs.

A ToR can only directly keep an up-to-date counter for the services running in its rack. To

make good load balancing decisions, fresh knowledge, and more importantly knowledge of bursty

behavior, is necessary. Determining the mechanisms for disseminating this load information is

non-trivial.

We designed and tested a variety of different options for disseminating load information

in simulation and on an Amazon Web Services (AWS) testbed. One design gossiped load

information periodically based on wall clock time, and another gossiped on a per-request basis.

Our results in simulation and on our test setup demonstrate that both of these techniques require

extremely high overheads in terms of messages sent. For example, our best results with periodic

message exchanges required updates polled every 25us. This resulted in over a 2x overhead

in terms of messages. Most of the information spread in this case was redundant, and does

not aid in mitigating bursts. Further, it adds congestion to the network, which reduces the

maximum throughput, especially during bursts, which is the opposite of our goal. An ideal

load dissemination design would quickly react to bursts while simultaneously generating little

overhead during burst events.

Daronpon consists of two distinct but complementary messaging mechanisms. The

first mechanism is logarithmic gossip that guarantees the reactive spread of load information
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when bursts occur, while generating little overhead otherwise. The second one is opportunistic

piggybacking that spreads load information between ToRs when requests are redirected. We

find in our evaluation that our log gossip approach prevents large queue build-ups, while our

piggyback approach reduces latency.

Figure 2.1: High-level overview of Daronpon. Each ToR tracks outstanding request for
services running in its rack, and maintains approximate counters for remote ToRs hosting shared
replicated services.

2.3.1 Microbursts

Figure 2.2 (top) shows an example of a microburst. In this case, requests are issued at a

Poisson arrival rate by multiple clients. The peaks show outstanding requests from the perspective

of a ToR instrumented to track request counts. In this case, when requests queue, that queue

grows without bound, even though other replicated services are available to process this influx of

requests. This has a dramatic impact on the tail latency of the requests in the burst, and also the

overall mean request time. A typical request incurs longer wait times due to decreased overall

system throughput.

In Figure 2.2 (bottom) the queue builds up with our logarithmic gossip mechanism enabled.

Each red X’s on the chart represents a point at which the load on the server is gossiped. Note that
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when peaks occur, and a gossip is sent, the load is quickly spread to other servers. This increases

overall system throughput and decreases tail latency. This strategy, however, is not perfect. At low

load the benefit of redirecting requests is minimal. For example, when the number of outstanding

requests is just one or two above a remote service, and so redirection reduces overall performance.

The age of the gossiped information complicates the act of redirecting. The remote

information on remote hosts is at least a few microseconds out of date. Given the few microsecond

budget our requests have to begin with, the benefit of redirection quickly evaporates if even a

few requests arrive from the point in time at which the load information is sent. This leads to

unnecessary redirections and high overheads in terms of gossip messages which do not ultimately

deliver useful information. This overhead can be mitigated by adding a threshold which prevents

gossip messages from being sent until the number of outstanding requests has exceeded a given

threshold. Our proposed log gossip technique for curtailing this overhead is described in the

following section.

2.3.2 Packet flow

The Daronpon load balancers are stateful and act per request. Figure 2.3 provides a

high level message flow diagram of this system. When requests arrive, Daronpon executes the

admission protocol. Requests are admitted only if the local service has the minimum observable

global load. A load tracker keeps counters for each global service. Local counters are up-to-date,

while remote counters are learned via gossip and piggyback messages. When a request is admitted,

the ToR increments its load counter corresponding to that service. When a response passes back

through the ToR, that service has its local counter decremented. If, when a request arrives, the

local load of a service is not the global minimum, the request is redirected. The redirected

request is then sent to the service with the lowest load, based on the ToRs’ local load tracker

(see Section 2.3.4). Redirected requests have load information attached to them. The attached

load consists of request counters for the intersection of services the ToRs share. Therefore, the

14



0 250 500 750 1000 1250 1500 1750 2000
0

20

40

60

80

Ou
ts

ta
nd

in
g 

Re
qu

es
ts

Default
powers of 2

0 250 500 750 1000 1250 1500 1750 2000
Request Index

0

20

40

60

80

Ou
ts

ta
nd

in
g 

Re
qu

es
ts

Gossip Enabled
gossip message

Figure 2.2: Microburst with no mitigation (top) vs. with logarithmic gossip load balancing
enabled (bottom)

overhead per redirected request is variable as per the systems’ configuration.

Increments and decrements in local load are tracked by a gossip monitor (see Section 2.3.3).

The job of the gossip monitor is two-fold. First, it identifies bursts. When load spikes the monitor

broadcasts gossip messages to let other ToRs know it is experiencing high load. Second, it

identifies valleys. Load balancing schemes which use potentially stale information are known

to exhibit herding behavior, a condition which leads to sub-optimal queuing behavior [Dah00,

Mit00]. When load drops sharply, gossip messages are also generated to announce that a service

has spare processing capacity.

2.3.3 Logarithmic Gossip

Daronpon generates gossip messages aiming to reacting quickly to bursts while consum-

ing little overhead in terms of additional messages. In an earlier design, ToRs gossiped load
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Figure 2.3: Key functionality and message flow of Daronpon. Incoming requests are either
admitted or redirected. Redirected requests spread load information via piggyback. Load
is updated upon admission, and response. Gossip messages are issues when load breaks a
logarithmic threshold.

information every 25 µs. This logarithmic gossip approach has the advantage of providing highly

updated load information, but it incurred scalability bottlenecks as the number of ToR increased,

since the 25 µs gossip contends with request goodput for link bandwidth.

To compress the number of messages, Daronpon’s gossip messages are sent on exponential

changes in load. Daronpon uses powers of two as the interval. Daronpon chooses two for its ease

of computation requiring only bit shift operations because no commodity programmable switch,

to our knowledge, is able to compute floating point arithmetic [GLY+].

Each step increases the bounds in which server load can fluctuate prior to a gossip message

being issued. For instance, if the load were to increase from 1 to 2, a gossip message would

be broadcast to all other servers with the replicated service that crossed this threshold. In this

message, load information for all other shared services is added. When the boundary of two is

crossed, and the value of two is sent, this ToR will not issue another gossip message until the load

on the service rises by a power of two to four outstanding requests, or falls back down by a power

of two to one.

Logarithmic gossip has several benefits. First, it sorts microbursts by magnitude without

16



0 1 2 4 8 16 32
Gossip Threshold

0.001

0.010

0.100

1.000

10.000
Ov

er
he

ad
 (%

 tr
af

fic
 p

er
 re

qu
es

t)

Figure 2.4: The percentage of gossip messages generated by a logarithmic gossip mechanism
as a percentage of overall traffic. Collected from runs of 96 KRPS.

adding significant packet overhead. Given that small fluctuations may occur at rapid pace, it is

important to give priority to bursts with larger magnitudes.

Second, logarithmic gossip reduces the number of gossip messages sent during bursts,

which reduces the overall strain on the system when resources are at their tightest. This is an

issue with gossip strategies that operate periodically (e.g. at preordained wall clock times) or are

issued at some constant ratio to requests (e.g gossip every 5 requests). When request rates are low,

gossip messages are automatically sent with a higher frequency per number of requests which

allows for better decision-making at lower request rates. ToRs have the advantage of being an

aggregator for the load of an entire rack. Were we to implement our solution on end hosts, each

host would need to gossip its load to every other host. Using ToRs, the load of each server in a

rack is known explicitly and is gossiped in its entirety, assuming the rack sees both requests and
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the associated responses.

Other approaches which use load information collected from end hosts themselves suffer

from additional delays in responding to load spikes, as the knowledge of load must be transmitted

to the balancer before it can react. Daronpon’s logarithmic gossip mechanism reacts to load as

soon as a request is admitted. This allows for precise load balancing decisions to be made at

sub-RTT time scales. For instance, in a Fat-Tree with two ToRs connected by a single aggregate

switch, the distance traveled by load updates is halved in comparisons to a host based solutions

(e.g. Tor-Agg-Tor vs Host-Tor-Agg-Tor-Host). This approach is not limited to Fat-trees, as many

networks use ToRs, however our ToR-based approach always results in two hops less than an host

based approach.

Daronpon’s logarithmic gossip estimates server load on the ToR with counters instead

of requiring precise and up-to-date measures of load on the host, which we can only get with

precise application level knowledge and host control, This imposes lower tracking overhead, and

performs nearly as well as highly tuned approaches which report server load directly [ZKC+,

Figure. 15 (proactive)]. This algorithm decreases the number of gossip messages significantly,

and can be greatly improved by carefully considering a lower bound at which to disable the

mechanism entirely. For example, setting a lower threshold such as t implies that below an

outstanding request count of t a ToR will not gossip information. The threshold is determined by

an exponential weighted moving average and a floor value that the threshold does not go beneath

it.

Figure 2.4 shows the percentage of messages gossiped relative to the requests processed

for different threshold values. Note that the default values of 0 and 1 have an overhead of around

30% of the request rate. Redirections of requests at these levels of outstanding request sees

little benefit in terms of performance as at any reasonably high request rate, the depth of remote

queues have changed since the remote data was received making the choice stale. By increasing

the threshold to four, the overhead in gossip messages is reduced by a factor of ten down to
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around 2% when our system is around 70% saturation. This suggests four is a good floor value

for the gossip threshold setting. See Section 2.5.5 for a comprehensive evaluation of gossip

overhead. Increasing the gossip threshold beyond four significantly reduces overhead down to

around 0.02%, however this comes at the cost of only identifying bursts of size eight and greater

which significantly effects our reductions in 99th percentile tail latencies.

Logarithmic gossip, however, provides no liveness guarantees to the freshness of the load

information announced despite all the aforementioned benefits. For instance, a server which

maintains an outstanding number of requests between 4 and 16 for n requests will not issue a

gossip until either threshold is crossed. While this is unlikely in practice due to the small range

and short duration of requests, there is no guarantee. This can become an issue for extended

periods of load when the number of outstanding requests is deep (e.g. 128 to 512).

2.3.4 Piggyback

Beyond using logarithmic gossip, the redirect requests also able to propagate load infor-

mation by making load information riding with these requests heading to remote ToRs. With

gossip enabled, the percentage of redirected requests is 22%. Each of these redirected requests

is sent from the redirected ToR to the receiving one, and therefore has the ability to report the

load information on the ToR that performed the redirection. We refer to this method of attaching

load information to redirected requests as piggyback, and using redirection to spread information

provides significant advantages in the common case. Piggybacking depends on a threshold called

load delta indicating the difference between the load on local replica and the load information on

remote replica. Load delta determines the triggering of redirection and controls the aggressiveness

of redirection. It is determined by an exponential weighted moving average as a threshold to

adapt for different workload patterns.

In contrast to the centralized approaches in both Racksched and R2P2 [ZKC+, KPG+]

piggybacking information load on requests is not a sufficient mechanism for learning about
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Figure 2.5: Performance breakdown of gossip and piggyback mechanisms. Lower values are
better.

remote load. This is because our load balancer is decentralized, which means that our load

balancers do not see load information updates from every request. Unlike our logarithmic gossip

mechanisms, it provides no guarantees about its operational bounds. Using gossip messages

exclusively provides no guarantees that any specific server will have information propagated to it

as only the server which is redirected to receive fresh information.

In the case of these centralized solutions, each request returns some information to the

scheduler. In the distributed case, there is no liveness guarantee with regard to redirections, and

indeed, information can become arbitrarily stale. We therefore consider our piggyback algorithm

to opportunistic, only aiding in the common case when load is low, but when making precise

redirections will still improve throughput and provide lower latency.

Piggybacking load has the advantage that it is responsive proportional to the request
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rate of the system. As the number of requests per second increases so to does the rate at which

information is spread between ToRs. Furthermore, it has the advantage of introducing a small

amount of overhead. Rather than incurring the cost of an entire load information update, this only

adds a few bytes to a custom header injected at the ToR.

Figure 2.5 shows a performance breakdown of the two pillars of Daronpon’s design:

logarithmic gossip and piggyback compared to a baseline of performing random selection on the

client alone. At low request rates the logarithmic gossip does not provide much of a performance

benefit in relation to the piggyback method. However, as the request rate, and variability, of the

system rises (e.g. to 102 and 105 thousand requests per second), the logarithmic gossip provides

the majority of the gains as it detects the peaks which increase tail latencies the most.

2.4 Implementation

We deployed Daronpon on the AWS cloud with instances hosted in VMs connected via

Elastic Network Adapter (ENA) virtual NICs. These instances use the Data Plane Development

Kit (DPDK).

Components: Our deployment consists of three components: DPDK ToRs, DPDK clients,

and servers with default Linux networking stacks relying on UDP for application messaging.

DPDK is a kernel bypass networking library which allows for high throughput and low latency

packet processing in user space [DPD21]. DPDK ToRs emulate ToR switches with limited

latency overhead (< 1 microsecond). Ideally, we would implement our algorithm on P4 switches,

however to our knowledge no cloud providers allow for customers to offload custom programs

to programmable switches at this time. Considering that programmable P4 switches have not

been widely deployed in datacenters, Daronpon could also be offloaded to SmartNICs, reducing

packet processing latency through dedicated hardware without interrupting the main CPU cores

We implement our clients using DPDK for lower latency and precisely controllable request rates.
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These traits are important as AWS’s ENA NICs do not have hardware timestamping available

to users. Our DPDK clients can generate hundreds of thousands of requests per second with a

single virtual core. These UDP-based servers represent services relying on the standard Linux

networking stack. We choose to use UDP as the transport because it allows us to redirect request

atomically without connecting multiple packets together and redirecting as a group, though this

could be supported as future work.

Daronpon DPDK ToRs: DPDK ToRs use an arbitrary number of cores to forward requests/responses

and a single core to gossip load information. Redirecting involves header manipulation, tracking

load information using hashtable table lookups, and counter increment/decrement operations.

The operations we used in these DPDK ToRs are carefully chosen to be simple, and within the

capabilities of programmable switches to compute.

Custom packet headers: Daronpon appends a custom header after the IPv4 UDP header. The

header consists of a unique request ID for each request, which is used to track lost packets and

measure end-to-end latency. A service type field differentiates services, e.g. Memcached and

RocksDB. Additionally, the IP and ports describe addresses of replicas which implement other

copies of the service. We assume that clients know the server replica addresses by asking the

cluster-level replication manager, e.g., Google’s Slicer or Facebook’s Shard manager [fac20,

AMH+, KXH+]. Gossip messages are also based on UDP, and load information is appended

after the UDP header. The header contains a list of server addresses, load counters, and its

corresponding service types for all servers under a ToR switch.

2.5 Evaluation

We evaluate Daronpon in on the Amazon Web Services cloud (AWS us-west-2 region)

using c5n instances. In this section, we describe the experiments and the resulting conclusions.
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2.5.1 Experimental Setup

We use 6 instances as servers, 6 as clients, and 3 as software ToRs. All instances are

placed in a cluster placement group for predictable low latency. The mean RTT latency between

every instance is 50 microseconds. In this setup, we configure 6 servers, 6 clients, and 3 software

ToRs. This configuration emulates a datacenter network of 3 ToRs that each ToR has 2 services

running underneath it. Services are deployed to servers using the stock Linux networking stack.

While this does incur higher latencies as compared to DPDK-based kernel bypass stack, we note

that it is representative of many datacenter applications.

We implement the random and Power-of-2 choices as the baselines. Both of them select

the replica of the service on the client side. Random baseline selects a replica of a service

regardless of any load information. Power-of-2 choices for service selection is another baseline

that selects a replica of a service based on load information available to the client. The power-of-2

choices [Mit01] randomly chooses two random replicas of services and picks the one with lower

load out of the two ones. The load information used for service selection is stale when it reaches

the client because the actual load may have changed. The load information is obtained with active

probing the servers or from the response of a previous request. We compare Daronpon to random

and power-of-2 choice in the experiments.

2.5.2 Workloads

We evaluate our load balancing approach with request-response based applications, in

which the time spent on the server is emulated based on different statistical distributions. In our

evaluation, we generate requests according to two statistical distributions, one of which generates

application-level requests and is run on DPDK-based clients, and another which generates

emulated service times. Clients generate requests based on open-loop Poisson arrival using the

standard random library. Servers distributions are split into different distribution categories, each
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of which has its own separate parameters. These include constant time, bimodal, and exponential

distributions.

Each server is loaded with an equal number of requests (in expectation) drawn from

common request rate distributions, as described next. Our goal in using these distributions is to

demonstrate that using outstanding requests (blind to the underlying service distribution) works

in general, without the need to tune our load balancer for each application. Both our gossip

and piggyback mechanisms are enabled in each experiment. The lower threshold on the gossip

mechanism is initialized as 4.

Constant: In this configuration, all requests compelte in 25 µs on the server. On the server,

a work thread busy-polls the time until 25 µs has passed to emulate application-level service

times. This type of workload is indicative of many highly tuned key-value stores with strict

SLOs [Mem21, roc21]. The servers experience additional latency overheads from the Linux

networking stack. Our choice of this constant latency is intended to be representative of a

performance-tuned microservice which performs a fixed amount of work per request. To provide

a sensitivity analysis to this choice of constant, Section 2.5.5 provides an overview of Daronpon’s

performance across constant service times

Exponential: To generate an exponential distribution we use the standard C++ random library.

We set the mean to 25 µs with a standard distribution of 40,000. These parameters generate tails

of up to 400 µs which is indicative of many applications that may be subject to blocking, such as

occasional writes to disk or the invocation of a blocking RPC to another machine.

Bimodal: Our bimodal service times are distributed into two categories. 90% of the requests

take 13 µs and 10% are 130 µs. We choose this distribution as the mean value is close to 25 µs.

This distribution is aimed at emulating longer and less frequent tasks such as writes and scans in

certain key-value store workloads or even garbage collection events in the runtime.
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Figure 2.6: 99th percentile latency improvements on three common service distributions
(Constant, Bimodal, Exponential). Each server is provisioned with homogeneous processing
power.

2.5.3 End-to-end experiments

We test the effectiveness of our load balancing technique by running it against random

replica selection alternatives on the aforementioned workloads. Figure 2.6 shows the relative

performance gains across these workloads at the 99th percentile latency. In this configuration,

each of the servers has identical processing capacity for each service. We consider this idealized

and homogeneous configuration because of its simplicity.

Daronpon demonstrates the most relative gain over random when skew in the workloads

is common. At high loads, request variation occurs at higher degrees for multiple reasons. First,

the Poisson arrival process on our clients has a higher probability of generating bursty sequences

of events at higher load. Second, hypervisor and NIC hardware on AWS contributes to the bursty

arrival of requests because of the underlying batching behavior. These forms of burstiness is

largely out of our control as we do not have direct access to AWS’s hardware configuration.

Finally, as rates increase, more batching happens in the Linux kernel networking stack. This leads

to sharp decreases in the number of outstanding requests.

Daronpon demonstrates observable benefits in the bimodal and exponential distributions

and the long service times cause significant and frequent queuing on the end hosts. Daronpon’s

logarithmic gossip design reacts quickly to these changes under load and steers requests away

from the servers which are running long average request times. In our homogeneous experiments,

25



the average value for number of outstanding requests is four in our constant distribution, with

frequent peaks of up to 80 outstanding requests when Daronpon is disabled.

Constant: Figure 2.6-left shows our approach provide benefit on tail latency starting at 1248

Krps (kilo-requests per second). This constant workload gives Daronpon the fewest opportunities

to load balance effectively as the random distribution of requests, each with a static service time,

should be approximately even. In this distribution, the benefit is found in the load fluctuations. At

high request rates, other mechanisms such as Linux’s request batching, have more of an effect on

queuing. At the highest request rate that a single vCPU core can handle, the latency improvements

of Daronpon over the random and power-of-2 choice baselines are 0.60 × and 0.25 × at the 99th

percentile with the highest request rate. The improvement over power-of-2 choices is less because

the evenly distributed requests given the same constant service times. This remediates the stale

information and makes the performance of power-of-2 choices relatively close to Daronpon.

Exponential: Figure 2.6-middle shows the throughput and latency gains on an exponential server

distribution. The benefits are most noticeable here as the exponential distribution leads to the

fastest disparity in load. In this case, a single request on the exponential distribution can lead to

significant queuing on a given server. Daronpon’s latency improvements over the random and

power-of-2 choice baselines are 0.54 × and 0.43 × at the 99th percentile.

Bimodal: In Figure 2.6-right, we see the disparity between random service selection and Daron-

pon. The service time dispersion provided by bimodal distribution causes noticeable request

queuing when a long service time request occupying a service. Logarithmic gossip messages

are ideal in this case as they quickly react to the skew in load. Further, in this distribution the

probability of finding an under-utilized replica is relativity high. The difference of 99th percentile

latency between random and power-of-2 choices shrinks compared to the case of the constant

and exponential service time. The 99th percentile latency of power-of-2 choices moves closer to

random as the queuing penalty of selecting the congested replica could be as large as 130 µs.
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Figure 2.7: Throughput and latency improvements with skewed processing capacity in a
heterogeneous server configuration. Daronpon scales linearly with with the aggregate processing
capacity available.

2.5.4 Heterogeneous server configurations

The placement of replicated services is subject to the cluster scheduler [fac20, AMH+,

KXH+]. The placement of individual services may be tightly coupled to a single rack, or

distributed to multiple racks. Additionally, not all replicated services may be configured using

identically powered instances. Some may be provisioned with different core counts, memory,

and potentially different OS versions. Finally, should rack-level scheduling be utilized such as

Racksched or R2P2, the individual rack level throughput may differ below the operating domain

of Daronpon.

To show the generality of our approach in situations where replicated applications differ

in their throughput capabilities, we configure one out of our three servers to run using three times

the processing capacity, i.e., 3 × number of CPU cores rather than one. In this setup, clients

otherwise operate identically to the homogeneous configuration.

Figure 2.7 shows the performance gains from enabling Daronpon on our heterogeneous

testbed. In this test, the server with twice the processing power of the other processes requests

twice as quickly. Our random client takes no measure of queue depth, and therefore does not

adjust to this excess compute power. Its performance is only marginally better in this case, as

the request which it probabilistically sends to the doubly provisioned server are processed more

quickly.
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Daronpon apportions load to servers in precise relation to their processing power. Our

results from this test show that Daronpon exhibits good scaling with more computation in this

configuration. Daronpon is able to process 1.4 × in the case of the constant service time.

When running in a heterogeneous configuration, the proportion of gossip and piggyback request

remains approximately the same as in the homogeneous case. The gossip mechanism is triggered

periodically as the request on the faster servers drains below its current threshold, however this

periodic variance occurs on the same order as the natural fluctuations in load. Redirections

also occur at approximately the same rate, however they are almost entirely directed at the over

provisioned server.

Ideally, we would demonstrate the scalability of Daronpon across many racks with

more services. We see this heterogeneous result as a proof of concept that our approach can

scale approximately linearly with available processing power. We expect this result to hold

as our approach is similar in style to theoretical approaches for distributed load balancing

which are proven to provide linear scaling while using incomplete local information to balance

load [VKO20].

2.5.5 Gossip and Piggyback Overhead
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Figure 2.8: Service times across three orders of magnitude (2us, 20us, 200us). Daronpon pro-
vides relative improvements with similar overheads in terms of piggyback and gossip messages
at each service time.

To investigate Daronpon’s sensitivity on service time and the related overhead, we vary
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constant service times by three orders of magnitude across three experiments: 2 µs, 20 µs, and

200 µs. This helps us to understand the overhead of our logarithmic gossip mechanism, the

redirected proportion of messages with piggybacked load information under different service

times. First, constant service times stress the servers more because it makes the servers to process

more requests per second. With more incoming requests, the number of outstanding requests on

the switches is also higher. Second, we set up aggressive redirection that does not require the

load of a remote replica to be lower than that of the local one. In this experiment, the load delta

between remote and local replica is set to 0, which means that the minimum replica is always

selected regardless of the performance impact. Choosing delta above 0 resulted in a lower number

of redirections, with a delta of 8 resulting in piggyback messages being generated for only 6% of

all requests. The aggressiveness of redirection is a trade-off of performance, resulting in lower

tail latencies at the cost of the bandwidth.

Figure 2.8 shows the tail latency and the corresponding overhead of Daronpon. At 2

µs (Figure 2.8-left), the 99th percentile latency increases wit higher request rate as expected.

Interestingly, Daronpon gossips more frequently between 200 and 400 Krps and shows a bump

peaks at 330 Krps. The frequent trigger of gossip is because gossiping thresholds are based on

power of two numbers, e.g. 2, 4, 8, 16, etc. Statically, gossiping thresholds are more frequently

met when the number of outstanding requests is lower. For example, an increase of outstanding

requests from 1 to 8 triggers 3 gossip messages while an increase from 8 to 17 triggers a single

message. At ranges of 64 and above, Daronpon gossips when encountering bursts of incoming

requests. Daronpon gossips less frequently during higher request rates when piggyback takes

over gossip as the main mechanism to propagate load information.

At 20 µs (Figure 2.8-middle), Daronpon operate with the maximum gossip overhead

reaching no more than 3% at peak system load. On the other hand, the number of piggyback

messages grows with the request rate. This is because at higher rates more bursts occur, and

thus the opportunities to load balance increase. Near peak load, piggyback messages reach
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approximately 40% with the highest request rate, the redirected packets do incur additional

bandwidth usage. The additional uplink bandwidth usage, as mentioned in Google’s Jupiter-

Rising paper [SOA+], does not stress the most bottleneck links that are all downlink to servers

and to ToR switches.

At 200 µs service times, Daronpon operates with lower traffic on piggyback as the service

time is longer. With longer service time, it provides a larger window for load information to

propagate. The overhead from gossip remains low.

2.6 Discussion

Scaling: In production cluster, managers determine the application service replication factor.

This factor is determined dynamically by monitoring system load, which can cause applications

to scale up and down significantly on the order of hours. Daronpon’s gossip broadcast could be

inflated by the replication factor, and therefore large replication counts (e.g. in the 100s) present

a potential bottleneck. Proper placement of services is possible to constrain the overhead of

gossip within a specific sets of racks. The placement can also enable piggybacking to carry load

information for multiple services on a single redirected request.

Emerging Topologies: Daronpon works on any datacenter topology which uses ToRs, or virtual

ToR-like abstractions (such as our DPDK software middlebox switches). Emerging network

designs, e.g. Jellyfish [SHPG] and Xpander [VSDS], are supported under our architectural

assumptions. Some network designs have asymmetric latencies between servers. While this may

cause some racks to propagate information which is more stale, we do not see this as a limitation

of our techniques as our AWS testbed has latency variations on the order of a few microseconds.

Daronpon’s redirection piggyback and load gossip can take a variable amount of time to propagate

load information to other ToRs, but our load balancing design is similar to theoretical techniques

prevent to be effective even with stale information [VKO20].
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Multi-packet requests: Daronpon operates on IPv4 UDP packets. It does not bake reliable

transport into the design and assumes that retransmissions of lost requests are handled by the

application. To support reliable transmission such as TCP for Daronpon, it is required to track

flow-level specific state in the network and ensure that once a replica is selected for a request, no

further selections occur on that flow. This is interesting but also introduces additional complexity.

It is left for future work.

Failures: Our approach does not explicitly handle failures. If a server fails, Daronpon will

automatically load balance around it, as requests issued to the failed server will not respond,

and thus the queue will grow indefinitely. If a Daronpon ToR were to fail, that rack becomes

partitioned. We leave the detection of ToR failure in this case to future work.

Application Heterogeneity: Daronpon assume that all replicas are created equal, in that any

request can be sent to any replica. In the case of replication systems with various roles, such as

leaders and followers [OO], additional application-level information would be required to only

perform replica selection on requests which do not have a specially configured destination.

2.7 Future Work

We’ve used DPDK as a software ToR for simplicity. The latency between our software

switches is approximately 25 µs on AWS. This overhead is caused by the underlying network at

AWS. These overhead may have reduced the benefits of Daronpon’s gossip and piggyback based

mechanism as every microsecond of delay diminish the value of the propagated load information.

In the future, we would like to implement Daronpon on a programmable switch such as the

Barefoot Tofino 2 [tof20]. We predict that with inter-ToR one-way latencies between 1 and 3

µs, Daronpon’s load balancing decisions is very likely to be further improved. Also, thus far

we’ve explored microservices which we expect to have service times on the order of tens of
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microseconds. Recent work in persistent memory has demonstrated that remote storage is now

accessible on these same time scales, and so we believe that replicated storage might benefit from

Daronpon’s approach of distributed load-balancing.

2.8 Conclusion

In this work we present Daronpon, a microsecond timescale load balancer for replicated

data center-wide applications. We have developed a novel hybrid gossip and piggyback scheme

to keep ToR switches up to date with load information on each server with low overhead, and

have demonstrated the effectiveness of this technique by comparing to random load balancing

and demonstrating up to 2.1 × lower 99th percentile latency.

2.9 Sources for Material Presented in This Chapter

Chapter 2, in part, reprints material as it appears in a draft titled: ”Daronpon: Datacenter-

scale Sub-RTT Replica Selection for Low-latency Applications” by Shu-Ting Wang, Stewart

Grant, Keerthana Ganesan, George Porter, and Alex C. Snoeren. The dissertation author was the

primary researcher and author of this material.
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Chapter 3

Fianchetto: Accelerating Data Motion

Across the Board

With the effective end of Dennard Scaling [DGR+74], the dark silicon [EBA+11, HFFA11]

phenomenon has led to the development and adoption of Domain-Specific Architectures (DSA)

or accelerators. With the Cambrian explosion of accelerators [CDS+14, ZLS+15, LCL+15,

DFC+15, LDT+16, ZDZ+16, SWH+16, SPM+16, ACFM16, MPA+16, SFM17a, SQLC17,

PRM+17, JYP+17, SFM17b, KSK18, LKK+18, CYES19, SCV+19, GYP+19, GLS+20, YDH+20,

GAK+20, QSK+20, LWL+21, LLKB21, HWS+16, LKY+17, YZL+18, MBA+18, ZZW+18,

SZQ+18, ZMTC18, BGP+19, MBS19, RAGG20, ZLJ+21, RAAGG21, ZZL+21, TBD18, FSZ+18,

CGH+18, BEHL+19, NRB+19, HLL+19, CKB+20, KIMR20, HML+20, LGY+20, FWO+20,

HMSA+21, MGPM+22, CKL+22, KGP+13, MFJQ+16, SMLE18, LZT+21, NPB+21], it is fit-

ting to consider the current cadence of the architecture design as the golden age of accelerators.

Amazon Web Service (AWS) [awsa, awsb], Microsoft Azure [PCC+14, CCP+16, FOP+18, mica],

and Google Cloud Platform (GCP) [JYP+17, JHYA+21, RSC+21] as the three providers of public

cloud recently started offering accelerator equipped instances.

The offering of accelerator equipped instances is the result of market push toward
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hardware-accelerated compute-intensive applications such as genomics, content streaming, recom-

mendation systems, virtual reality, data analytics, etc. Such applications often cross the boundary

of multiple domains, each of which can be potentially accelerated with its own domain-specific

architecture (DSA). These applications would maximally benefit from the DSAs in the cloud only

if all the domains are accelerated and not just one.

Accelerator 3

CPU

Accelerator 1

DSA
1

DSA
2

Accelerator 2
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Internal Dataflow
DSA Dataflow

DSA 6
Accelerator 4

DSA 7
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(a) Current multi-accelerator systems.
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(b) Multi-accelerator systems with Fianchetto.

Figure 3.1: Current multi-acceleration systems rely on CPU for accelerator chaining. (a)
shows a system with four heterogeneous accelerator cards. The CPU needs to intervene in the
communication between accelerator cards. This involves data copies from system memory
to accelerator memory and non-trivial data transformations. (b) The proposed Fianchetto
framework removes the CPU from the data path of multi-acceleration. Fianchetto delivers the
performance of a monolithic accelerator while offering the composability and programmablity
of the baseline system.
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To enable heterogeneous cross-domain multi-acceleration, there is an essential need for

cross-stack solutions for accelerator chaining to enable intimate communication between different

DSAs, each of which is responsible for accelerating a part of a single application. This chapter

sets out to explore a heterogeneous cross-domain multi-acceleration datacenter that harvests

the recent initiative towards democratizing hardware design and enables the vision of a sea of

accelerators [JPOB20, Tay18, PGW+20, CQS+22, GKK+23].

In a cross-domain multi-acceleration system, a chain of DSAs is created, where each DSA

accepts inputs in a specific data structure and produces outputs in another data structure. The

accelerator chaining currently needs to involve the system CPU (Figure 3.1(a)) for restructuring

and then exchanging data between different DSAs to run a single application. This restructuring

usually involves reshaping and reformatting the output of one DSA to match the input of the next.

We refer to the data restructuring and communication overhead of executing a single

application using a number of different DSA as data motion overhead. Using the CPU for data

motion requires frequent copies between the host and the DSA memory. Moreover, because the

overhead of data restructuring between DSAs exacerbates with the number of accelerators, the

CPU quickly becomes the performance bottleneck at scale.

To address these challenges, we propose Fianchetto to accelerate data motion by integrat-

ing a programmable Data Restructuring Accelerator (DRX) with each DSA. DRX offloads data

restructuring computation from the CPU back to a specialized engine near the DSAs. Fianchetto

illustrated in Figure 3.1(b) removes the CPU from the data path of accelerator chaining and gives

the illusion of a monolithic but composable accelerator to the user application.

Fianchetto offloads the data restructuring operations to a scale-out programmable ac-

celerator (DRX) while running the control plane on the CPU. DRX acts as a compute-enabled

interface through which data moves between DSAs while DRX itself encapsulates a domain-

specific accelerator. Although there have been efforts in offloading ser/des protocols to hard-

ware [PGK+20, KLK+21], prior work has not considered acceleration and offloading of cross-
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domain DSA communication, which enables efficient and seamless accelerator chaining.

We evaluate Fianchetto using five end-to-end applications, each of which was composed

of kernels from different domains weaved together using data restructuring kernels. We evaluate

the scalability, performance, and energy of various Fianchetto configurations with a baseline

that uses the same accelerator but still executes data restructuring on the host CPU. Fianchetto

provides on average 3.4× to 8.2× speedup on end-to-end latency, 3.0× to 13.6× improvements on

throughput, and 3.8× to 5.2× improvements on energy consumption. The significant additional

improvements over a baseline that itself maximally speedups an application using multiple DSAs

show the emerging importance of data motion and restructuring as accelerators take the stage in

datacenters.

3.1 Preliminaries and Motivation

Future datacenter computing landscape will deploy an ocean of accelerators, each purpose-

built for accelerating different application domains. A mixture of CPU, GPU, with FPGA-

and ASIC- based accelerator cards is already employed in today’s cloud services [PCC+14,

CCP+16, JYP+17, FOP+18, awsa, JHYA+21, RSC+21, awsb]. Such an accelerator-heavy data-

center [MKGT16, TVK+20] breaks applications into several domains, each running on a domain-

specific accelerator (DSA), possibly implemented on different accelerator cards. 1

The current accelerator cards, unlike GPUs, do not have a well-supported system around

proprietary interconnection and programming interfaces such as NVLINK and CUDA. Accelerator

cards are developed by individual vendors using standard interconnection technologies (i.e., PCIe)

and lack a standard interface to inter-operate with each other. The vendors implicitly assume that

their accelerator is the only accelerator in the system. Therefore, as illustrated in Figure 3.1(a),

two DSAs implemented on different accelerator cards rely on a CPU to communicate with each

1DSA and accelerator are used interchangeable throughout Chapter 3.
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other following these steps: (S1) the CPU copies the output of the first accelerator to the system

memory, (S2) the CPU transforms the output to the second accelerator’s input format, (S3) the

CPU copies the transformed data to the second accelerator’s memory, and (S4) the CPU fires

up the computation on the second accelerator. Note that often the CPU configures a DMA

device to copy data from accelerator memory to system memory. The lack of an inter-accelerator

communication standard necessitates excessive data movement and data restructuring overhead

for performing non-trivial data restructuring operations on general-purpose cores.

We call the data movement and restructuring, data motion and develop Fianchetto frame-

work to maximize the end-to-end performance of heterogeneous multi-accelerator systems.

Figure 3.1(b) illustrates a high-level overview of Fianchetto. Fianchetto removes CPU from the

data plane of multi-accelerator communication by offloading data restructuring to a programmable

Data Restructuring Accelerator (DRX) integrated into the I/O periphery of each accelerator card.

In the rest of this section, we motivate Fianchetto design by studying representative data restruc-

turing operations and the overhead and scalability issues of performing data motion operations on

a CPU in a multi-accelerator system.

3.1.1 Data Restructuring Operations

In this work we use five end-to-end applications that span multiple domains [APR20,

SJB14, KdCL+20, micc, SOI+17, CMM+22] to quantify the inefficiencies of cross-domain accel-

eration in current multi-accelerator systems. Each of them has different domain-specific kernels

and data restructuring requirements between the kernels. Specifically, Video Surveillance decodes

input video streams into video frames and passes them to an object detection kernel [RF18].

Brain Stimulation receives electromagnetic signal input generated from a brain simulation model,

processes it with FFT and data restructuring operations before outputs the data to reinforcement

learning kernel [KdCL+20]. Personal Information Redaction decrypts privacy-sensitive text and

uses a regular expression kernel to detect personally identifiable information and redact them
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Figure 3.2: (a) Data motion stands between two application kernels, i.e., Fast Fourier Transform
and Support Vector Machine, of an end-to-end application. (b) Data motion is on CPU and
application kernels are on their corresponding accelerators (c) For Fianchetto, data motion is
accelerated on DRX and application kernels are on their corresponding accelerators.

from the text with blanks [micc]. Database Hash Join decompresses database tables and hash

joins the tables [SOI+17, CMM+22].

Figure 3.2(a) illustrates the end-to-end application pipeline of the Sound Detection appli-

cation. As shown, Sound Detection is composed of two domain-specific kernels: (1) FFT kernel

running short-time Fourier transformation for the input audio snippet, and (2) support vector

machine kernel to decide the genre of the audio snippet. An intermediate data motion step is

required for restructuring the output of the FFT kernel to the input format of the support vector

machine kernel while copying the data from the output buffer to the input buffer. In this example,

data restructuring requires generating a spectrogram from the output of FFT kernels and applying

mel scale transformation to the spectrogram. The mel scale transformation maps the spectrogram
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into mel-frequency bins which are closer to the human-perceivable scale.
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Figure 3.3: (a) Runtime breakdown when running applications on CPU or multiple accelerator
setup that uses CPU for data motion. (b) Multi-acceleration speedup and scalability are con-
strained by data motion overhead.

3.1.2 Data Motion Overheads

Figure 3.3(a) shows the geometric mean of the runtime breakdown for the five applications

explained in Sec.3.1.1. We show the results for co-running up to 15 applications on the server

while data restructuring is performed on the CPU. All-CPU configuration runs application kernels
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on the CPU while Multi-Axl runs the application kernels on the DSAs. Because each application

consists of 2 domain-specific kernels, 15 application setup runs on 30 DSAs. As Figure 3.3(a)

shows, in the All-CPU setup, the execution of domain-specific kernels accounts for up to 78.5%

and on average 49.1% of the total runtime. However, the Multi-Axl setup reduces the runtime

of domain-specific kernels, but at the same time amplifies the ratio of data motion within the

end-to-end runtime. The ratios range from 71.3% to 97.1%, showing that data motion becomes

the performance bottleneck under multi-acceleration.

Another important observation from Figure 3.3 is the poor scalability of current multi-

accelerator systems when concurrently running applications on multiple accelerators. From a

single application to 5 applications, data movement emerges as a bottleneck. The limited PCIe

bandwidth of CPUs creates a bottleneck for data moving in and out of CPU for data restructuring

operations as they cannot directly connect all accelerators concurrently. As the number of

applications grows further to 10 and 15 applications, the CPU demonstrates its incapability to

keep up with the increased concurrency of data restructuring operations though using 16 Xeon

cores. Such a bottleneck in data movement and data restructuring stifles the end-to-end speedup

achieved by multi-acceleration at scale. As shown in Figure 3.3(b), accelerating application

kernel while relying on the CPU for data restructuring achieves 1.4× and 1.1× end-to-end speed

up for 1 and 10 applications, while the geometric mean of per DSA speedup is 6.5×.

The above results demonstrate the untapped potential of multi-acceleration with ideally

accelerated data motion. This significant performance difference between end-to-end and per-

kernel speed-up stems from the following Insights: (I1) Using specialized accelerators reduces

the runtime of kernels significantly, shifting Amdahl’s bottleneck towards data motion. (I2)

Host CPU engagement imposes inevitable data communication with accelerators, adding the cost

of data movement on top of data restructuring. (I3) Heterogeneity in the architecture of both

accelerators and CPU demands additional data type conversions and layout transformation on

top of discussed data restructuring, further amplifying the cost of data motion. Heeding these
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insights, this work makes a case for accelerating the data motion.

3.2 Fianchetto: Accelerating the Data Motion

Multi-acceleration in Figure 3.2(b) represents the current system design using CPU for

data motion. This design requires data to move through the CPU for restructuring the output of one

accelerator before the data can be used by the next accelerator. In this chapter, we propose Data

Motion Acceleration as illustrated in Figure 3.2(c) to facilitate data motion between heterogeneous

accelerators. Fianchetto accelerates data restructuring and bypasses CPU for data movement

between accelerators via integrating the purposefully-built Data Restructuring Accelerator (DRX)

into the system. Realizing Fianchetto requires synergistic design considerations at the following

levels:

• DRX Placement. An important design decision in Fianchetto is the location of the

DRX. The placement of DRX impacts the data movement and the overall system design.

We consider three different placements for DRX: integration on the CPU, standalone

PCIe-attached card, and per accelerator bump-in-the-wire placement.

• Specialized Hardware Acceleration. We need to design DRX to be programmable and

support a range of data restructuring operations. As Figure 3.3(a) shows, data restructuring

accounts for 57.7%∼73.2% of end-to-end runtime, therefore efficient execution of data

restructuring is critical for multi-acceleration.

• System Integration and Programmability. To minimize data movement, the CPU should

be removed from the data path of accelerator-to-accelerator communication. However, the

control plane should run on the CPU, otherwise, it requires a completely new programming

interface that stifles interoperability of Fianchetto across arbitrary accelerators. In Sec.3.5

we explain the current programming interface of multi-accelerator systems and how Fi-
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anchetto only offloads the data plane to the hardware without changing the current control

plane.

In Sec.3.3 we explore various placements for DRX and show that tight integration of DRX

and accelerators in a bump-in-the-wire fashion minimizes the data movement and delivers the best

performance and energy efficiency at scale. Next, we demystify the data restructuring operations

in Sec.3.4 and introduce a programmable accelerator specialized for the data restructuring domain.

Lastly in Sec.3.5, we discuss the runtime and kernel drivers that coordinate the offload of data

restructuring operations to bump-in-the-wire DRX while still running the control plane on the

CPU.

3.3 DRX Placement

The key design considerations in designing Fianchetto are the placement of DRX and

interconnection between DRX, accelerator, and CPU in the system. Since Fianchetto is to enable

interoperability between accelerators designed by different vendors, DRX’s interconnect should

be standard and well adopted. As such, the current incarnation of Fianchetto considers PCIe as

the standard interconnect to connect accelerators to CPU and DRX. PCIe is a well-established

standard of interconnect and serves as the basis for future interconnects such as CXL [cxl].

The placement of DRX ideally should (1) scale with the capacity of associated accelerators,

(2) avoid being the bandwidth bottleneck when accelerators transfer/receive data from it, and (3)

minimize data movement as data movement is the main performance and energy bottleneck in

today and future system [Hor14].

Integrated DRX into CPU. This configuration considers integrating DRX with the CPU as

illustrated in Figure 3.4. The integrated accelerators become more common recently as Intel

Sapphire Rapids, IBM z15, POWER9, and Telum offer them in their CPU products [Bis21,

ABR+20, LBB+22]. Integrated accelerators are efficient in performing computation on the

42



PCIe

Accelerator1 

PCIe 
Switch1

Accelerator2 Accelerator3 
Accelerator4 

PCIe 
Switchk

Acceleratorn-1 Acceleratorn 

CPU DRX1

Figure 3.4: Integrated DRX.

data that is on the CPU chip. However, integrated accelerators are going to eat up the already

limited CPU power budget [EBA+11, HFFA11]. Such power and thermal constraints limit the

performance of integrated accelerators on the CPU.

Fianchetto considers a fixed power budget for an integrated accelerator and design an

Integrated DRX to operate within this power limit [sup, ABR+20]. This fixed power budget limits

the performance of DRX. As we will show in Sec.3.7, Integrated DRX becomes the performance

bottleneck when scaling the number of accelerators to more than 8. Although integrating DRX

using die-to-die interconnects like UCIe could alleviate the affect, integrated DRX still becomes

the performance bottleneck with excessive data movement [NBB+21, ods, uci]. Moreover,

Integrated DRX has the same data movement as the baseline CPU without DRX. Such design

requires all accelerators to send their data to the CPU which makes the PCIe link connecting the

CPU to the accelerators the bandwidth bottleneck when multiple accelerators use DRX at the

same time. Such data movement is also the main source of system energy consumption.

Standalone DRX as a PCIe card. This configuration considers implementing DRX as a stan-

dalone PCIe card that is installed just like any other accelerator on a PCIe slot. Without using an

external power supply cable, the performance of a single Standalone DRX PCIe card is limited

by the PCIe power supply standard, which is 25 Watts, and its bus bandwidth. Nevertheless, as
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Figure 3.5: Standalone DRX. Number of DRX units in Standalone placement is configurable,
and the illustration represents just one possible configuration.

illustrated in Figure 3.5, installing multiple Standalone DRX cards can scale DRX performance

with the number of accelerators. However, this Standalone DRX still incurs bandwidth oversub-

scription as the PCIe link to a shared, Standalone DRX card can become the bottleneck. The

bandwidth contention could be worse with multiple Standalone DRX cards are under the same

PCIe switch.

Compared to Integrated DRX, a Standalone DRX has the potential to reduce the data

movement if Fianchetto implements a point-to-point PCIe connection between DRX card and

accelerator cards. This way, a Standalone DRX can localize the communication under the PCIe

switch to which other accelerator cards are installed.

PCIe-Integrated DRX. This configuration integrates DRX onto a PCIe switch (Shown in

Figure 3.6). Compared to a Standalone DRX, A PCIe-Integrated DRX saves a round-trip between

DRX and the PCIe switch. However, PCIe-Integrated DRX requires DRX to operate at the

aggregated rate of all downstream PCIe ports, which adds considerable hardware complexity.

Also, computation on switches only permits limited memory usage and a limited number of

instructions per packet [BGK+13, CFM+17, SAA+17, TDP+19]. This configuration requires
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Figure 3.6: PCIe-Integrated DRX.

significant engineering effort to redesign the PCIe hardware and related software stack.
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Figure 3.7: Bump-in-the-Wire DRX.

Bump-in-the-Wire DRX. Lastly, we introduce a Bump-in-the-Wire DRX configuration inspired

by Catapult [PCC+14] that connects an exclusive DRX to each accelerator (Figure 3.7).

Bump-in-the-Wire configuration avoids overprovisioning of PCIe links and DRX re-

sources for a multi-accelerator system and enables Fianchetto to scale with the hardware resources

compared with the other configurations. More importantly, Bump-in-the-Wire DRX placement
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reduces the data movement to a minimum when accelerators communicate with each other. Cou-

pled with a programmable DRX that enables offloading of any data restructuring operation (c.f.,

Sec.3.4), Bump-in-the-Wire DRX serves as an option to build future scalable multi-accelerator

systems.

3.4 Data Restructuring Accelerator (DRX) Design

As discussed in Sec.3.1, the CPU is not an optimal place to perform data restructuring

operations. In this section, we first analyze different data restructuring operations by profiling

their execution on the CPU. This analysis guides us in devising a programmable accelerator

specialized for the data restructuring domain. Refer to Sec.3.6 for more information on the

experimental setup.
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Figure 3.8: Top-down breakdown of stall cycles for data restructuring operations.

3.4.1 Data Restructuring Characterization

Figure 3.8 shows the top-down [Yas14] breakdown of stall cycles for data restructuring

operations. We characterize data restructuring operations with the top-down analysis of Intel
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VTune [intf] on an Intel Xeon Gold 6242R processor. The processor has the same microarchitec-

ture as our testbed setup on AWS (See Sec.3.6 for details). Across different data restructuring

operations, we see at most 12.5% Bad Speculation Bound and 14% Front-End Bound cycles.

A deeper analysis of Video Surveillance reveals that this distinct behavior is linked to a higher

number of branch instructions, resulting in a relatively larger number of cycles spent on branch

re-steer and uOp cache switches. On the other hand, the Back-End Bound cycles range from 53%

to up to 77.6% of total cycles. The culprit for Back-End Bound cycles is both the unavailability of

functional units and misses in the data cache. 23.2% of Back-End Bound cycles are Core-Bound

and 46% are Memory-Bound.

The profiling shows that data restructuring operations have low L1I cache Misses Per

Kilo Instructions (MPKI). The average L1I MPKI for data restructuring is 2.3. As a reference,

our measurements for online services from CloudSuite [noa] report an average of 7.8 L1I MPKI.

Such low L1I MPKI suggests a small instruction working set for data restructuring operations

that fit inside the L1I cache of the core.

The profiling results show that all data restructuring operations have a high degree of

vector unit utilization. The data restructuring kernels use 100% of available vector unit capacity

which is 256 bits wide AVX-256 on our servers. We also observe a high number of ephemeral

threads that are spawned by the Intel Math Kernel Library while restructuring the data. The

number of threads that are spawned while running the data restructuring operations is between 130

to 140. These threads operate on the data in parallel and illustrate the high data-level parallelism

and inefficiency of CPUs in executing the data restructuring operations.

3.4.2 DRX Hardware Architecture

We use the above insights to design a programmable DRX that specializes in the data

restructuring domain. The main observations driving DRX design are the abundance of data-level

parallelism, streaming access pattern, and non-trivial operations of data restructuring. Figure 3.9
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overviews the architecture of DRX hardware.

DRX uses a decoupled access-execute architecture that consists of a programmable front-

end specialized for walking over multi-dimensional data structures, and a configurable number of

interleaved vector processing units dubbed Restructuring Engine (RE) in the same pipeline. It also

includes a Transposition Engine for data transposition operations and a programmable Off-chip

Data Access Engine for off-chip load/store which also houses a DMA engine that initiates data

movement with other accelerators. For evaluation, we configure the DRX to contain 128 lanes of

RE, a 64KB instruction cache, a 64KB data scratchpad, and 8GB of DDR4 DRAM. A DDR4

3200 memory channel sustains ∼25GBps, therefore DRX implements a single DDR4 channel to

match the bandwidth of an x8 PCIe Gen 4 link.

DRX ISA. The DRX ISA and hardware architecture are optimized based on the observation

that data restructuring workloads consist of known-shape, pre-located multidimensional arrays.

Such arrays can be indexed using a set of loops. As shown in Figure 3.10, the DRX ISA includes

specialized loop, compute, off-chip memory access, and synchronization instructions for vector

operations while preserving the option for scalar operations, enabling serial tasks like pointer

dereferencing.

The DRX ISA significantly departs from traditional SIMD semantics, offering opti-

mizations for memory, loops, and data packing. For memory optimization, DRX employs

software-managed on-chip scratchpads instead of vector register files and the conventional cache

hierarchy found in common SIMD ISAs. Memory instructions configure the Off-chip Data Access

Engine to fetch data directly from DRAM to the on-chip scratchpads. For loop optimization, DRX

utilizes hardware loops within an Instruction Repeater unit to reduce branch instruction overhead.

Loop instructions configure the Instruction Repeater based on the dimensions of the kernel’s

multidimensional arrays. For data packing optimization, the DRX compiler partitions the kernel’s

multidimensional arrays across the REs, eliminating the need for pack/unpack instructions.

During the vector execution, loop instructions first configure the Off-chip Data Access
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Engine and Strided Scratchpad Address Calculator with sets of (Base, Stride, Iteration) con-

figurations that correspond to the input/output loop dimensions and data location. After the

Off-chip Data Access Engine loads the data to scratchpad banks, compute instruction is issued

with scratchpad addresses calculated by the Instruction Repeater by traversing the dimensions of

multidimensional arrays based on the configurations in the Strided Scratchpad Address Calculator.

This data access scheme significantly reduces memory and address calculation overhead and is

applied to all operations on multidimensional arrays such as data transformation, memory access,

and compute operations. Finally, synchronization instructions are issued at the start and the end

of the instruction stream to ensure proper program order. For scalar execution, DRX turns off all

but one REs and operates as a scalar in-order CPU.
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Figure 3.9: DRX Hardware Architecture.
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Figure 3.10: DRX instruction types.

DRX compiler. Inspired from prior works [CMJ+18, CZY+18] in other domains, DRX compiler
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compiles high-level data restructuring kernels into DRX instructions based on the DRX ISA.

The DRX compiler takes two inputs: a high-level representation of the data restructuring kernel

and an architecture configuration file that defines the DRX hardware configurations such as the

number of REs and on-chip scratchpad size. The compiler first maps the data restructuring kernel

to the intermediate representation of the kernel operations. It then optimizes tiling and relaxes

dependency on the intermediate representation based on the hardware configuration and the

dimension of multidimensional arrays. Finally, it generates instructions based on DRX ISA from

the optimized intermediate representation. Figure 3.11 shows a sample of the DRX kernel.

3.5 System Integration and Programmability

In this section we discuss the system integration and programmability of Fianchetto with

Bump-in-the-Wire DRX placement. The system integration of other DRX placements share many

similarities with Bump-in-the-Wire DRX.

Programming model. Fianchetto implements an OpenCL-style programming model that has a

host program on the CPU and kernels on accelerators or DRX. Application kernels are executed

on accelerators while data restructuring kernels are executed on DRX. Because Fianchetto runs

the control plane on the CPU, it does not compromise the programmer’s productivity and does

not incur any additional accelerator orchestration overhead compared to the baseline multi-

acceleration system.

The host program creates an execution context for each instance of the application kernel

or data restructuring kernel. The context includes (1) the hardware – e.g. the accelerator or DRX–

involved in the applications, (2) application or data restructuring kernels, and (3) a per accelerator

command queue that is mapped to the global host address space. The command queue is used for

buffering the output of the application kernels and the restructured input of the next application

kernel before being transferred to the destination.
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The host program uses user-level OpenCL API to create the execution context. It also uses

the API to interact with the accelerators and DRXs through their own command queue on each

device. The command queue accepts commands to enqueue kernels for execution, transfer data,

or synchronize memory buffers. The execution of a command can be blocking or non-blocking.

Blocking execution does not return to the host program before the current command completes.

Non-blocking execution, on the other hand, requires a detailed description of the dependency

between kernels and data restructuring programs. For a single command queue, the queued

commands are executed in the order they are enqueued.

The application kernels execute domain-specific kernels of the end-to-end application

on different accelerators. The data restructuring kernels perform the required data restructuring

operations when two accelerators are communicating. The host program executes the serial

portion of the application and runs a daemon to orchestrate the execution of application and data

restructuring kernels running on accelerators and DRXs, respectively. The data restructuring

kernels are shipped to DRXs that understand the exact input and output format of each accelerator.

The data restructuring kernels are engaged to ensure that properly structured input/output data is

moved directly between accelerators and DRX.

Driver support for Fianchetto. At a high level, Fianchetto enumerates both accelerators and

DRXs as PCIe devices connected to the CPU. Each DRX unit has a driver to initialize the

command queues, exchange the start and end pointers of the queue to other DRXs at the start,

and orchestrate data restructuring operations. The drivers use GEM [lina, linb] for command exe-

cutions and memory-related operations. DRX driver executes commands and reads/writes/maps

operations using ioctl syscall. For setting up point-to-point DMA between DRX and accelerators,

the drivers use dma-buf API [dma]. The vendor-specific accelerator drivers should support point-

to-point DMA in order to work with Fianchetto. By default, we operate accelerators and DRXs in

interrupt mode for sending notifications to the CPU. The interrupt handling of the drivers utilizes

interrupt coalescing for the bursty arrival of interrupts. If the arrival rate of interrupts exceeds a
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Figure 3.12: RX/TX data queue pair architecture in Bump-in-the-Wire DRX. DRX uses the
data queue as a circular buffer with head and tail pointers. The output of the accelerator that
is destined for Acceleratori is enqueued in RXi before being restructured and stored in T Xi

for transmission to Acceleratori. Current DRX implementation supports up to a total n = 40
accelerators.

certain threshold, the drivers switch to polling. This design is similar to Linux NAPI design [nap].

Although Bump-in-the-Wire DRX is attached to each accelerator, each DRX unit should

be able to set up a point-to-point connection with all the other accelerators and DRXs in the system.

The memory address space of each DRX is statically partitioned between all the accelerators as

well as DRXs in the system to implement two pairs of RX/TX data queues per accelerator on

each DRX: one pair of queues for direct DRX-accelerator communication and another pair of
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Figure 3.13: Point-to-point DMA workflow involves two accelerators and the sending side
DRX. The DMA bypasses the receiving side DRX. Fianchetto supports other communication
patterns such as broadcast and multicast among DRXs and between DRXs and accelerators.

queues for DRX-DRX communication.

The number of accelerators is determined at PCIe enumeration time when it discovers

connected accelerators that need data restructuring. We provision 8GB of memory space for

implementing data queues on each DRX. The size of each data queue pair is 100MB. This will

enable Fianchetto to support up to 40 accelerators on a server. DRX driver maintains a head and

tail pointer for each data queue to keep track of the data that is enqueued for restructuring. RX

and TX data queues on a DRX are shown in Figure 3.12. A point-to-point DMA moves data

between data queue pairs and accelerator memory.
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GEM allocates and frees data buffers opaquely because it is agnostic to the data content

in the buffer. The allocated data buffers are referred to by their handle, which is equivalent to a

file descriptor.
Table 3.1: End-to-end benchmarks.

Benchmark Kernel 1 Kernel 1 Accelerator Data Restructuring Kernel 2 Kernel 2 Accelerator Input Dimension

Video

Surveillance [APR20]
H.264 Codec

Xilinx Video

Codec Unit [xila]

Mul, MaxPool,

Reshape, Cast

Object

Detection
DNN Accelerator [SPM+16] (960, 540, 3)

Sound

Detection [SJB14]
FFT

Xilinx Vitis

DSP Library [xile]

Pow, Add, Mul,

Div, Log10, Cast

Support Vector

Machine

Xilinx Vitis Data

Analytics Library [xilb]
(8192, 768)

Brain

Stimulation [KdCL+20]
FFT

Xilinx Vitis

DSP Library [xile]

Pow, Div, Mul,

Cast

Proximal Policy

Optimization
DNN Accelerator [SPM+16] (256, 1024, 8)

Personal Information

Redaction [micc]
AES-GCM

Xilinx Vitis

Security Library [xilg]
Concat, Flatten

Regular

Expression

Xilinx Vitis Data

Analytics Library [xilb]
(4, 2048, 768)

Database Hash Join

[SOI+17]
Gzip

Xilinx Vitis Data [xilc]

Compression Library

Concat, Reshape,

Cast
Hash Join

Xilinx Vitis

Database Library [xild]
(4, 1024, 512)

End-to-end data motion acceleration. Figure 3.13 shows the interactions between accelerators,

CPU, and Bump-in-the-Wire DRX when Accelerator1 tries to communicate with Accelerator2.

Although Figure 3.13 depicts the accelerator and its DRX as separate chips with separate DRAM

modules, DRX can be integrated into the accelerator chip and share its physical DRAM modules.

When Accelerator1 completes kernel execution in step 1 , it raises an interrupt to the CPU

in step 2 . The driver of Accelerator1 captures the interrupt and setup a point-to-point DMA

between Accelerator1 and the TX data queue corresponding to Accelerator2 on DRX1. DRX1’s

driver shares the offset of RX2 data queue (i.e., RX data queue corresponding to Accelerator2)

in step 3 with Accelerator1. This enables the Accelerator1 to access and write to the RX2 data

queue on DRX1. A DRX driver then configures Accelerator1 to perform a point-to-point DMA

and move data from Accelerator1’s memory to the next available buffer in RX2 data queue on

DRX1 in step 4 . The DRX processing unit on DRX1 reads the output on Accelerator1’s memory

from RX2 data queue, performs data restructuring, and writes the output to the next available

buffer in T X2 data queue as shown in step 5 to 7 . In step 8 , DRX1 raises an interrupt to the

CPU to notify the DRX1 driver about the completion of data restructuring. Next, a point-to-point
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DMA is configured between DRX1 and Accelerator2 in step 9 . In step 10 , point-to-point DMA

between DRX1 and Accelerator2 passes through an internal PCIe multiplexer without invoking

DRX2 because it does not need further data restructuring on it. In step 11 , Accelerator2 runs the

kernel on its DRAM.

One-to-many and many-to-one data movement. Supporting broadcast and multicast between

the accelerator chain is necessary for load balancing as well as efficient collective communication

implementation. The workflow of such movement patterns is similar to that of Figure 3.13, except

that for one-to-many, the source DRX transfers the restructured output of the source accelerator

to multiple accelerators (or DRXs) using multiple back-to-back point-to-point DMA transfers.

Variations of many-to-one data movement can be used to implement reduction collectives by

setting up direct data transfer from multiple source DRXs to a single destination DRX that also

performs the reduction operation. The Fianchetto support for broadcast and multicast facilitates

the efficient implementation of various collective operations.

3.6 Experimental Methodology

Benchmarks. We create five diverse cross-domain and end-to-end applications inspired by real-

world scenarios. Table 3.1 lists the five benchmark applications, their cross-domain kernels and

corresponding accelerators, the data restructuring operations needed to chain the kernels, and the

dimensions of the input data. Each application is a pipeline of two kernels, where the first kernel

outputs intermediate data, which requires restructuring before it can be processed by the second

kernel. The Video Surveillance decodes input video streams into video frames and passes them to

an object detection kernel [RF18]. Sound Detection performs Fast Fourier Transform (FFT) on

audio snippets and use the transformed snippets to determine the genre of input audio [SJB14].

Brain Stimulation receives electromagnetic input signal generated from a brain simulation model,

processes it with FFT and data restructuring operations before outputting the data to reinforcement
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learning kernel [KdCL+20]. Personal Information Redaction decrypts privacy-sensitive text and

uses a regular expression kernel to detect personally identifiable information and redact them from

the text with blanks [micc]. Database Hash Join decompresses database tables and hash joins

the tables [SOI+17, CMM+22]. To exercise the system performance with respect to resource

contention on interconnect bandwidth and compute for data restructuring, we use 1, 5, 10, to 15

concurrent running applications for the benchmarks.

DRX hardware implementation. We implement DRX using Verilog in RTL and synthesize it on

Xilinx UltraScale+ VU9P FPGA using Xilinx Vivado 2022.2. The synthesized design achieves an

operating frequency of 250 MHz. We also synthesize an ASIC version of DRX using Synopsys

Design Compiler R-2020.09-SP4 with the FreePDK 15nm standard cell library [SCW+07]. The

ASIC implementation achieves a 1 GHz operating frequency.

Baseline FPGA-based multi-acceleration system. Beside DRX, we also synthesize application

kernels discussed earlier in this section on FPGA to implement a baseline multi-acceleration

system without data motion acceleration (i.e., that uses CPU for performing data motion). This

setup consists of multiple AWS Xilinx UltraScale+ VU9P FPGAs [ama] connected through PCIe

x16 to Intel Xeon Platinum 8260L CPUs operating at 2.4 GHz with 64 GB of memory and

hyperthreading disabled.

We implement the application kernels on the FPGA using the following methods: hard-IP

blocks, High-Level Synthesis (HLS), or Register-Transfer Level (RTL) implementation. For the

video codec kernel, we use a pre-existing hard-IP available on the VT1 instance of AWS [awsc].

We use Xilinx’s Vitis libraries [xilf], which provide HLS implementations, for kernels such as

FFT, support vector machine, AES-GCM, Gzip decompression, regular expression, and database

hash join. We use the RTL implementation from open-sourced accelerators [SPM+16] for the

remaining kernels that use deep neural networks such as object detection and proximal policy

optimization. We synthesize both the HLS and RTL implementations on the FPGAs operating at

250 MHz clock frequency.
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In this FPGA multi-acceleration implementation the host CPU runs the control plane

(refer to Sec.3.5) and performs the data restructuring operations while the FPGAs accelerate the

application kernels.

Performance evaluation. We use the FPGA setup to collect cycle-level latency of executing

end-to-end applications on a baseline without data motion acceleration (we refer to this baseline

as Multi-Axl configuration in Sec.3.7). We then scale the performance of FPGA acceleration using

scaling factors based on ASIC implementation and clock frequency (250 MHz to 1GHz). We

develop an end-to-end system emulation infrastructure to compare the performance of different

configurations of Fianchetto with a multi-acceleration baseline without Fianchetto. The input

to the emulation setup are cycle-level latency numbers for executing application kernels, data

restructuring on the CPU or DRX, communication over PCIe, and software stack overheads for

interrupt and polling.

Energy evaluation. We measure the energy of the CPU using Intel RAPL [intd]. We use the

post-synthesis power of the FPGA and multiply it by the execution time of the kernels to estimate

the energy consumption for the accelerators. We also include the energy consumption of the PCIe

switch [bro] and the energy for data transfer over PCIe [BWPN18].

3.7 Experimental Results

3.7.1 End-to-end Performance Improvement

Speedup. Figure 3.14 compares the end-to-end execution time of cross-domain applications

withiout (Multi-Axl) and with Fianchetto. Note that Fianchetto uses Bump-in-the-Wire DRX

placement. On average, accelerating the data motion provides 3.5× to 8.2× speedup for running

one to 15 concurrent applications. The higher the number of accelerators in use, the greater

the data motion between the accelerators. Therefore, as DRX accelerates the data restructuring

portion of the end-to-end application, the speedup grows as the number of concurrent applications
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Figure 3.14: Fianchetto speedup over Multi-Axl configuration that uses CPU for data motion
between accelerators. Fianchetto performance scales with the number of concurrent applications
by using Bump-in-the-Wire DRX placement.

increases. Fianchetto yields less end-to-end speedup for Video Surveillance because the accelerator

used for Video Surveillance provides less speedup compared to the other benchmarks. The speedup

of Fianchetto is more pronounced for Database Hash Join because the data restructuring takes up

the majority of the runtime for this benchmark which is significantly being accelerated by DRX.

To better understand the sources of benefits, Figure 3.15(a) and Figure 3.15(b) report

the runtime breakdown for Multi-Axl baseline and Fianchetto across the three main runtime

components: accelerated kernels time, data restructuring, and data movement time between

CPU and accelerator for Multi-Axl and between accelerators for Fianchetto. Kernel execution

latencies are the same for both Multi-Axl and Fianchetto. However, after we apply Fianchetto

(Figure 3.15(b)), the kernel execution takes up larger portion of the runtime breakdown compared

to the baseline (Figure 3.15(a)).

As shown in Figure 3.15(a), data restructuring accounts for the largest portion of the

end-to-end runtime for the baseline. Data restructuring is on average 66.8%, 55.7%, 64.7%,

and 71.7% of multi-acceleration end-to-end latency for 1, 5, 10, and 15 concurrent applications,
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Figure 3.15: The latency breakdown of the Multi-Axl baseline and Fianchetto. Fianchetto
shrinks data restructuring ratio from 64.1% to 14.1% in average.
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Figure 3.16: Fianchetto throughput improvement over Multi-Axl. Fianchetto resolves the
throughput bottleneck of data restructuring and shifts the throughput bottleneck to the accelerated
kernel.

respectively. Using DRX significantly accelerates data restructuring and shrinks data restructuring

overhead to 17.0%, 15.3%, 13.5%, and 7.2% of Fianchetto end-to-end latency for 1, 5, 10, and

15 concurrent applications, respectively, as shown in Figure 3.15(b). Increasing the number

of concurrent applications requires more accelerators, meaning more computation for data

restructuring operations between accelerators. Furthermore, the data movement in the baseline

system increases due to the bandwidth bottleneck caused by multiple accelerators sharing the

PCIe switch’s upstream bandwidth. On the contrary, Fianchetto accompanies each accelerator

with its own local DRX and therefore avoids bandwidth contention on shared PCIe links.

Throughput improvement. Although the end-to-end execution latency of each request is

important, in a real world setup, an application receives back to back requests that need to be

processed in the cross-domain application pipeline. Therefore, assuming that each application

consists of three pipeline stages (first kernel, data motion, and second kernel as shown in

Figure 3.2), the throughput of an application is determined by the latency of the slowest stage.

We compare the throughput of Multi-Axl baseline and Fianchetto assuming continuous arrival of
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requests for each application.

Figure 3.16 shows the throughput improvement of Fianchetto over the multi-acceleration

baseline. On average, Fianchetto achieves from 3.0× to 13.6× throughput improvements when

running one to 15 concurrent applications, respectively. Data restructuring is the slowest stage

of the application pipeline in the Multi-Axl baseline as demonstrated in Figure3.15(a). Hence

it is the throughput bottleneck for all benchmarks, especially as the number of concurrent

applications increases. Fianchetto leverages DRX to address this bottleneck and shifts the

throughput bottleneck to the accelerated kernel. Personal Info Redaction shows relatively low

improvement on the throughput as its throughput is limited by its regular expression kernel

accelerator. Data movement is not the throughput bottleneck for the Multi-Axl baseline because

the PCIe bandwidth never gets saturated due to the poor throughput of data restructuring operations

on the CPU.

3.7.2 DRX Placement Analysis

One of the critical design decisions in Fianchetto is the location of the DRX in the system:

Integrated, Standalone, Bump-in-the-Wire, PCIe-Integrated. This is because the placement of

DRX impacts the data movement and the overall system design.

Speedup with different DRX placements. Figure 3.17 compares the latency speedup between

Integrated DRX,Standalone DRX, Bump-in-the-Wire DRX, and PCIe-Integrated DRX. The figure

reports the average speedup across the five benchmarks for one to 15 concurrent applications.

For all setups from one through 15 concurrent applications, the results show that the speedups

compared to the Multi-Axl baseline are in the following order: Integrated ≤ Standalone ≤

Bump-in-the-Wire ≤ PCIe-Integrated.

Integrated DRX shows 4.4× speedup with 15 concurrent applications compared to the

baseline where data restructuring is performed on the CPU. However, when running more than

one application in Integrated DRX, the concurrent applications contend for the shared DRX
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Figure 3.17: Comparison of end-to-end latency speedup with different DRX placements.
Integrated DRX integrates a shared DRX on the CPU. Standalone DRX implements DRX as a
standalone PCIe card shared by accelerators. Bump-in-the-Wire DRX is an exclusive DRX to
each accelerator. PCIe-Integrated DRX integrates shared DRXs with PCIe switches connecting
accelerators.

computation resources on the CPU and the PCIe bandwidth to access the shared DRX. The

upstream port of the PCIe switch connecting to the CPU uses a single link (8 lanes) while the

downstream ports connecting to accelerators use multiple links. Also, a PCIe transaction pays

110 ns or more port-to-port latency tax to get through a PCIe switch [bro]. Despite the significant

overhead from the contended PCIe links, Integrated DRX’s speedup relative to the baseline

increases as we add more accelerators. This demonstrates the benefits of using DRX instead of

general-purpose CPU cores for data restructuring operations.

Standalone DRX shows 3% and 48% improvements compared to the Integrated for one

and 15 concurrent applications, respectively. In the Integrated DRX, we have a single DRX that

is integrated to the CPU for the entire system. On the other hand, the Standalone configuration

scales the number of DRX with the number of concurrent applications by inserting more DRX

PCIe cards. Therefore, the speedup compared to Integrated DRX can be attributed to the larger

number of DRX in the system.
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Figure 3.18: System-wide energy reduction, including host CPU cores, accelerators, and DRXs.
Bump-in-the-Wire DRX achieves less reduction than Standalone DRX due to its internal PCIe
multiplexer shown in Fig. 3.7. Integrated, Standalone, and Bump-in-the-Wire DRX draw up to
26%, 23% and 28% more power than the Multi-Axl baseline. PCIe-Integrated is not included
because we are not able to estimate the power of a DRX-integrated PCIe switch.

Bump-in-the-Wire DRX achieves 33%, 17%, and 26% higher speedup for 5, 10, and

15 concurrent applications compared with Standalone DRX. Bump-in-the-Wire DRX keeps its

point-to-point DMA traffic between accelerators and DRX under the same PCIe multiplexer so

the accelerators do not need to contend for PCIe bandwidth as in Standalone DRX placement on

the CPU.

PCIe-Integrated DRX shows the highest speedup. The improvement of PCIe-Integrated

DRX against Bump-in-the-Wire DRX comes from the saving of a round-trip between the source

DRX and the source PCIe multiplexer and a pass-through of the destination PCIe multiplexer.

However, it is important to note that the integration of DRX with a PCIe switch requires in-depth

modification to make the PCIe switch programmable and process data at the line rate. In other

words, despite the luring benefits, the prohibitive level of engineering effort to achieve it makes the

Bump-in-the-Wire a reasonable choice of Fianchetto design that can achieve significant speedup

with relatively affordable engineering efforts.
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Energy reduction with different DRX placements. Figure 3.18 shows system-wide energy

reduction provided by different DRX placements compared to Multi-Axl baseline. Integrated

DRX provides 3.4×, 3.9×, 4.0×, and 4.0× of energy reduction. The energy reduction does

not scale with the number of concurrent applications because it only benefits from the energy

efficiency of the DRX hardware acceleration for data restructuring operations. Standalone DRX

and Bump-in-the-wire DRX provide energy reduction scaling with the increased number of

concurrent applications. Bump-in-the-wire DRX placement delivers the best energy reduction of

3.8× and 4.3× for 1 and 5 concurrent applications. Standalone DRX delivers the best energy

reduction of 6.1× and 6.5× for 10 and 15 concurrent applications because of the reduced

bandwidth contention on PCIe links. This is because the extra glue logic and the dual-port PCIe

multiplexer are replicated in each Bump-in-the-Wire DRX placement, while such overhead is

amortized across the applications on a large Standalone DRX. PCIe-Integrated is not evaluated

for energy reduction because of the difficulty of estimating the energy consumption of a PCIe

switch integrated with DRX.

3.7.3 Sensitivity Studies

Speedup with more than two kernels. As real-world applications can consist of multiple

kernels across domains, it is important for Fianchetto to scale beyond two kernels. To evaluate

Fianchetto’s scalability with multiple application kernels, we add a third application kernel

to the Personal Info Redaction benchmark, along with its additional data restructuring kernel

consisting of reshaping and typecasting. This third kernel is a Transformer model fine-tuned for

Named Entity Recognition (NER). NER identifies personal and sensitive information that is hard

to capture for regular expression kernel [ner]. We use an open-source BERT implementation

for the kernel [EGG+21]. Figure 3.19(a) shows the runtime breakdown of this three-kernel

benchmark. Although the benchmark included the compute-intensive NER kernel, the runtime is

still dominated by the data restructuring kernels for the Multi-Axl baseline. Fianchetto alleviates
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Figure 3.19: Fianchetto reduces data motion overhead to less than 5% for Personal Info
Redaction benchmark extended with Named Entity Recognition kernel.

the bottleneck of data motion and restores kernel to be the largest contributor that represents

97.2% to 93.7% of the end-to-end execution time for one to 15 concurrent applications. As

such, Fianchetto provides 1.9× to 4.2× speedup for one to 15 concurrent applications shown in

Figure 3.19(b).

One-to-many and many-to-one data movement. Cross-domain multi-acceleration of end-to-

end applications entails using multiple accelerators. The data movements in multi-acceleration,
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however, are not necessarily always one-to-one but likely include one-to-many and/or many-to-

one data movement between accelerators. Therefore, we want to analyze whether Fianchetto

design can cope with the one-to-many and/or many-to-one data movements in multi-acceleration.

To this end, we compare Bump-in-the-Wire DRX against the Multi-Axl baseline for one-to-many

(i.e., broadcast) and many-to-one (all-reduce) data movement using 4 to 32 accelerators. For

broadcast, the baseline first passes the output of the source accelerators to the main memory of

the CPU using DMA. After data restructuring on the CPU, the driver then copies the restructured

data and initiates N DMA transfers sequentially to the destination accelerators. All-reduce has

two stages: scatter-reduce and all-gather. Both require similar DMA transfers between CPU and

accelerators; however, scatter-reduce entails additional steps to first sum the inputs from sources

and then scatter the outputs to all destinations. On the contrary, Fianchetto’s implementation

of broadcast and all-reduce utilizes the Bump-in-the-Wire DRX for data restructuring and data

movement.

Figure 3.20 shows that the Fianchetto achieves 3.7× to 5.2× speedup on broadcast and

5.1× to 10.5× speedup for all-reduce on 4 to 32 accelerators. This is because Fianchetto utilizes

DRXs to (1) perform data restructuring and the DMA transfers in parallel and (2) eliminate

the extra DMA transfers between the accelerators and the CPU. Furthermore, for all-reduce,

Fianchetto uses DRX to accelerate the summation operations. The speedup also scales with

the number of accelerators because the amount of data restructuring and data movement scale

accordingly to the number of accelerators. There is a dip when using 16 or more accelerators,

but this is due to the additional latency on the PCIe switches that scales with the number of

accelerators. Fianchetto achieved higher speedup in all-reduce compared to broadcast because

all-reduce involves more DMA transfers and data restructuring which provided more acceleration

opportunity using DRX.

DRX hardware configurations. To understand the sensitivity of Fianchetto to the amount

of compute resources in DRX, we sweep the number of RE lanes for DRX and compare its
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Figure 3.20: Fianchetto eliminates redundant DMA transfers and performs DMA in parallel for
broadcast and all-reduce on multi-accelerator setup.
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Figure 3.21: Data restructuring latency speedup with different numbers of RE lanes on DRX.
The increase of speedup is limited after 128 lanes. which is our default configuration.

performance to the Multi-Axl baseline that performs data restructuring on CPU. Figure 3.21 shows

the speedup achieved for the different number of lanes for DRX: from 32 to 256. The speedup

improves with the number of lanes increasing up to 128 lanes by taking advantage of available

data parallelism in data restructuring operations. However, the increase of speedup of DRX is
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Figure 3.22: Fianchetto speedup across generations of PCIe. PCIe Gen4 and Gen5 result in a
slight decrease of speedup because their corresponding Multi-Axl baselines improve more than
their Fianchetto counterparts.

limited after 128 RE lanes, and increasing the lanes to 256 does not provide noticeable benefits.

Therefore, we use 128 RE lanes as the default configuration for DRX throughout the experiments.

Different PCIe generations. Newer PCIe generation provides significantly more bandwidth

and the increased bandwidth can potentially negate the performance benefit of Fianchetto. To

understand the impact of different generations of PCIe, we compare the Bump-in-the-Wire DRX

latency speedup on PCIe Gen 3 with PCIe Gen 4 and Gen 5. Figure 3.22 shows that using

PCIe Gen 4 and Gen 5 resulted in a slight decrease of speedup because their corresponding

Multi-Axl baselines improve more than their Fianchetto counterparts. Across PCIe generations,

the baselines and Fianchetto show different levels of improvement only in data movement latency.

Such differences come from the following two reasons. First, the baselines face more bandwidth

contention than the Fianchetto and thus benefit more from the increased PCIe bandwidth per

lane. Second, the baselines are able to use more PCIe lanes to reduce bandwidth contention

from accelerators to CPUs with PCIe Gen 4 and Gen 5 compared to CPUs with PCIe Gen

3 [inta, intc, inte]. The results shown in Figure 3.22 suggests that the bottleneck of Multi-Axl
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configuration is not just the PCIe interconnect, but also the data restructuring computation.

3.8 Related Work

Real-world applications span multiple domains, posing a challenge for end-to-end acceler-

ation. While the research community has explored accelerators across diverse domains [WLP+14,

KGP+13, SOI+17, CMM+22, APR20, HMSA+21, MGPM+22, CKL+22, KGP+13, MFJQ+16,

SMLE18, LZT+21, NPB+21], the adoption of these heterogeneous accelerator to accelerate a

single end-to-end application is challenging. The challenge arises due to the diverse data formats

generated and consumed by each accelerator. This necessitates restructuring inputs and outputs

across accelerators. While some prior works have focused on performed data restructuring using

CPUs, Fianchetto introduces the concept of data motion acceleration of for efficient cross-domain

multi-acceleration with heterogeneous DSAs. We review the most relevant related work in three

areas: data movement, data restructuring, and interconnect fabrics integration below.

Data movement. Prior works studied point-to-point data movement between GPUs [gpu],

between GPU and storage [TZZ+16, BBCS17, LT21], between NIC and accelerator [NKA20,

TMS20, EFM+22], and between on-chip accelerators [CGG+12]. Prior works have used various

techniques such as scheduling [MYS+22, MAW+22, DK13, TMS20, EFM+22] to co-locate

multiple domains on the same system. While these works only optimize the data movement, non-

trivial operations of the data restructuring still consumes a significant fraction of the data motion.

Intel Data Stream Accelerator [intb] and DCS [AKK+15, KAC+18] share a similar insight,

both lack programmability and hence have limited capacity to optimize data restructuring. This

work in contrast leverages DRXs as a compute-enabled glue that links different heterogeneous

accelerators together and makes them appear as a monolithic but composable accelerator for the

application.

Data restructuring. For message serialization, Optimus Prime [PGK+20] and Protobuf accel-
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erator [KLK+21] design an accelerator for RPC message serialization. HGum [ZAC17] and

Fletcher [PVSW+] implement serialization on FPGAs for acceleration. For machine learning

pipelines, tf.data [MvKI21], DSI [ZAB+22], DALI [nvi] optimize data restructuring on GPU

with programmable operations. In contrast to these prior works that only optimize data restruc-

turing for a single accelerator, this chapter investigates data restructuring and movement for

multi-acceleration with heterogeneous devices.

Interconnect fabrics. Previous works have used PCIe’s Non-Transparent Bridge (NTB) to

enable PCIe to support multiple hosts with more than one root complex, which performs address

translation for operations in a specific memory range [HJZ+13, MKH+21]. Point-to-point DMA

over PCIe fabric is enabled by a shared address space across all devices [gig]. CXL 3.0 or later

allows accelerators on different servers to be connected seamlessly by using fabric switching to

link racks of devices and accelerators [cxl]. DUA [SCC+19] creates an overlay fabric on top

of the existing physical communication stacks, such as PCIe, Ethernet, DDR, etc. These works

can connect accelerators without addressing data restructuring for multi-acceleration. This work,

however, tackles data motion challenges to maximize the performance of multi-acceleration.

3.9 Conclusion

In this chapter, we quantified the data motion performance and cost of chaining hetero-

geneous domain-specific accelerators for multi-acceleration. The results showed that the data

motion overhead curtails the end-to-end speedup of accelerating each domain on a set of heteroge-

neous accelerators. The chapter introduced Fianchetto that seamlessly weaves together multiple

accelerators that deliver the performance of a large, monolithic cross-domain accelerator. On

average, Fianchetto provides between 3.4× to 8.2× speedup, 3.0× to 13.6× higher throughput,

and 3.8× to 5.2× energy reduction.

Even with current single-domain accelerators, overheads of moving data on- and off-chip
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is presently a dominant factor that limits the performance and energy efficiency of gains [Hor14,

Dal23]. The impact of the data motion–highlighted in this chapter–will worsen when cross-

domain accelerators are chained in future datacenters to cater to the requirements of emerging

end-to-end applications. This even includes the multimodal generative AI applications that use

multiple models and require acceleration beyond neural networks (e.g., vector database lookups,

search, etc.). Heterogeneous/3D integration coupled with emerging high-bandwidth chiplet-to-

chiplet interconnects such as UCIe can improve data movement, but not data restructuring that

requires computation. As such, embedding our Fianchetto concept and architecture within these

interconnects can synergistically unlock the the potential of cross-domain multi-acceleration for

next-generation dataceneters.

3.10 Sources for Material Presented in This Chapter

Chapter 3, in part, reprints material as it appears in a paper titled: ”Data Motion Accel-

eration: Chaining Cross-Domain Multi Accelerators” by Shu-Ting Wang, Hanyang Xu, Amin

Mamandipoor, Rohan Mahapatra, Byung Hoon Ahn, Soroush Ghodrati, Krishnan Kailas, Mo-

hammad Alian, and Hadi Esmaeilzadeh [WXM+24]. The dissertation author was the primary

researcher and author of this material.
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Chapter 4

Aurelia: Scalable CXL fabric

With the trend toward disaggregation and composable infrastructure, different resources

in datacenters are taken from a logical pool to satisfy the demand from applications. Existing

efforts of disaggregation relies on RDMA over Ethernet, a fabric not designed with disaggregation

in mind [SHCZ18, ABAL+20, MC20, RSAB20, ZWL+22, LMC+22, WQM+23]. However,

retrofitting existing hardware prevents applications from achieving their optimal performance

under disaggregation.

Recent works focus on co-designing hardware with software to realize disaggrega-

tion [CIP+21, Sha23, MWD+23, LBN+23]. These works focus on externalizing hardware

interconnects to create a fabric that connects many devices in a disaggregated setting Fabrics

directly connect all the devices allowing access to remote devices in a manner similar to accessing

local devices on a server’s PCIe slots. PCIe is an example of this type of fabric, but it currently

only connects local devices within a server. An ideal fabric for disaggregation offers direct

connections between devices while providing low latency and high bandwidth at a specific scale,

e.g. a single rack or a few neighboring racks.

ompute Express Link (CXL) has emerged as a viable candidate, supported by a converged

industry standard following its absorption of OpenCAPI and Gen-Z. CXL is built on top of PCIe

72



with the addition of memory accessing semantics (CXL.mem), caching semantics (CXL.cache),

and peer-to-peer memory access between devices (Unordered I/O in CXL.io). More importantly,

CXL can be a fabric through its support of multi-level switching.

Experimental CXL fabric demonstrates on-par performance with lower cost in the case

of machine learning model training on tens of GPUs [fab]. CXL fabric offers bandwidth as

high as 63 GB/s with PCIe 5.0 now and 121 GB/s PCIe 6.0 on the horizon within the next

two years [pcib]. CXL fabric offers low latency by operating on a device-attached interface

that uses direct load/store instructions. It avoids the network software stack overhead and the

PCIe transition between device and NIC on the sending (Device → PCIe → NIC) and receiving

(NIC → PCIe → Device) path. The network stack and PCIe transition create latency overhead

and throughput bottleneck. First, the network stack using kernel bypassing still incurs latency

overhead in the range of microseconds [KCH+19, OFB+19, KKA19, MdKA+19]. Second, the

PCIe latency overhead of 1500 B packets reaching the wire can be as high as 77% [NAZ+18].

Third, the PCIe link to NIC is a potential throughput bottleneck when multiple devices share the

NIC. Dedicating a NIC for each device circumvents the throughput bottleneck but at the cost of

requiring more NICs and switches.

4.1 Motivation and Background

Compute Express Link (CXL) has emerged as an enhancement of PCIe, providing cache

coherency (CXL.cache), host-managed or fabric-attached memory (CXL.mem), and peer-to-peer

memory access between I/O devices (CXL.io). CXL.mem provides host-managed memory that

CPU and accelerators are able to read/write into each other’s memory directly. This avoids redun-

dant DMA operations for moving data back and forth [LGS+20, HMCX22, Sha23]. CXL.mem

enables fabric-attached memory providing a shared memory pool for applications with different

demands [Jun22, GLKJ22, LBN+23]. CXL.cache supports a fully coherent cache on the devices.
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These devices, however, do not open their local, private memory to CXL-capable hosts. CXL.io

uses unordered I/O for peer-to-peer memory accesses between non-coherent devices over its

fabric.

Fabric Routing. CXL routes packets with a per-device ID called Port ID on the fabric. The Port

ID-based routing (PBR) addresses each device with a 12-bit ID. A packet using PBR contains a

specific source port ID and destination port ID before it leaves an edge CXL switch that directly

connects with devices. Each CXL fabric has a single fabric manager responsible for initializing,

binding/unbinding devices to ports, and handling event notifications, such as device removal

or failure, from the switch. This fabric manager functions similarly to a centralized network

controller, as it controls per-port forwarding and is aware of all route changes.

Flow control. CXL inherits point-to-point flow control from PCIe, which was designed for

communication between the device and CPU rather than for a fabric. The flow control operates

between two directly connected endpoints. They exchange credit tokens to evaluate the available

buffer space on each side.

QoS Telemetry:. CXL fabric offers a rate throttling mechanism for hosts called QoS Telemetry.

It is used for devices with local memory, including memory expansion devices and accelerators

with device memory, such as GPUs, FPGAs, and ASICs. QoS telemetry enables memory devices

to indicate their current internal load with 2 bits in CXL.mem response packets. Senders use

the reported internal load to monitor and throttle their request rate to avoid device overload

and potential fabric congestion. The rate throttling specifically targets devices, mainly memory

devices, that are associated with a host in the current design. In addition, QoS telemetry includes

a mechanism called Egress Port Backpressure (EP Backpressure). It monitors the flow control

backpressure situation on each CXL switch egress port. If the port cannot transmit packets for a

period of time due to a lack of credits, it marks the EP Backpressure value with 2 bits in the device

load field of the outgoing request. The overall load of a device is determined by the maximum of

the device’s internal load and EP Backpressure.
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4.1.1 What is Different with CXL Fabric?

CXL fabric exposes memory traffic that used to be internal to a server to all endpoints

connected to the fabric. The memory traffic, such as cache coherence, memory access, and I/O-

style accesses, runs between processor and device endpoints on the CXL fabric. This contrasts

with standard datacenter traffic, which runs with encapsulated packets from per-server NICs

outside the internal memory fabric of a server. Processors and accelerators access remote devices

using load/store instructions through the CXL fabric. They synchronously request data from

remote devices, such as memory expansion modules, accelerators, and storage devices. However,

these synchronous data requests cannot tolerate significant latency, as it will stall the execution

of the requesting hardware while awaiting the requested data. This poses stringent latency

requirements for the fabric and necessitates proper system-level support. Additionally, the CXL

fabric supports up to 4096 endpoints. Given the scale of thousands of endpoints and the mixture

of memory traffic, this introduces a challenge to the scalability of the underlying protocol design.

A centralized scheduler is a possible solution for tens or even hundreds of endpoints on racks.

However, the scheduler is very likely to become a performance bottleneck because it needs to

sustain and determine the order of every load/store instruction. The scheduler can also become a

single point of failure for all memory traffic. A centralized design for the scheduler limits the

scalability of CXL, especially when using a longer-distance physical layer compared to PCIe. To

understand the practical challenges, use cases of the CXL fabric from the CXL specification and

the literature are discussed next [cxl, GLKJ22, LBN+23].

4.1.2 Use Cases of CXL Fabric

The use cases of CXL fabrics demand large memory capacity, high bandwidth, and low

latency. Emerging and existing workloads in datacenters, such as machine learning models,

large-scale key-value stores, and high-performance computing (HPC) applications, can benefit
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from CXL fabrics.

First, current machine learning models require a large amount of memory on an accelerator,

such as a GPU or TPU, which is beyond the capacity of individual accelerators. To make matters

worse, the size of state-of-the-art machine learning models ranges from tens of GB to tens of

TB [RRRH20, RRR+21, MHH+22] and continues to grow every few months. Training and

inference of machine learning models now require multiple accelerators to jointly fit the model

and intermediate variables into their memory. The CXL fabric could expand accessible memory

for accelerators by providing fabric-attached memory. Fabric-attached memory increases the

memory capacity and bandwidth to all available memory on the fabric [cxl, PKK+22, mem]. A

host is connected with an accelerator with CXL, and they share a coherence domain (Shown

in Figure 4.1a). Accelerators access the fabric-attached memory and each other’s memory in a

producer-consumer fashion of I/O coherency.

Second, datacenters run cloud services with key-value stores. Many high-performance key-

value stores use RDMA inside data centers to speed up communication and operations [DNCH14,

KKA14, KKA19, WCC20]. These operations are sensitive to latency and are on the performance-

critical path of applications. DirectCXL demonstrated that CXL has 8.3x lower latency than

RDMA for 64B reads and incurs less overhead when replacing RDMA [GLKJ22]. DirectCXL

provides a lower bound on CXL latency because its fabric uses a single switch and is not subject

to stress or congestion. Hosts do not maintain cache coherence between themselves. Instead, the

fabric-attached memory module maintains coherence between itself and the host address space it

has mapped. (Shown in Figure. 4.1b).

Third, HPC workloads demonstrate high utilization (greater than 90%) of memory band-

width as well as capacity for representative applications [doe, cro, exa]. However, each application

reaches its peak memory usage for different durations. The cluster must be provisioned to accom-

modate peak bandwidth and capacity to avoid significant slowdowns [Rad19, Ham20, DMN+23].

Machine learning and HPC workloads both involve collective communication, while
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key-value stores involve bursty, non-structural communication. Collective communication is

structural and can be optimized with data prefetching to minimize stalls on pending memory

accesses. This relaxes their requirements on latency and reduces burstiness. Training and

inference of machine learning models use all-reduce operations to update model weights across

each accelerator after each iteration. The size of state-of-the-art models ranges from tens of GB

to tens of TB [RRRH20, RRR+21, MHH+22]. HPC workloads, compared to machine learning,

have a more diverse communication pattern, such as sweeping or nearest-neighbors [LMM+19,

emb, exa, doe]. Key-value stores and databases, however, serve bursty requests and are sensitive

to latency [NFG+13, CD20].
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(a) Machine learning and HPC. Hosts and their accelerators share a coherent domain.
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(b) Key-value store for cloud services.

Figure 4.1: CXL fabric abstractive topology. Each solid line connecting to CXL fabric is 16
lanes of PCIe 5 or PCIe 6 with a total bandwidth of 128 GB/s or 256 GB/s.
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4.2 Challenges

The current design of the CXL fabric [cxl] poses challenges regarding scalability and

latency. First, its addressing and routing design limits the possibility for flexible and dynamic

routing. Second, the lack of an end-to-end transport layer in the fabric makes it prone to congestion

and latency spikes. More importantly, with the use of load/store instructions, processors and

accelerators that synchronously request data are highly sensitive to latency, as it determines how

long they need to stall their execution. The challenges related to addressing, routing, and transport

layers are discussed in the following subsections.

4.2.1 Addressing and Routing Challenges

CXL routes packets with a per-device ID called Port ID on the fabric. The Port ID-based

routing (PBR) assigns each device a 12-bit ID. A packet with PBR contains a specific source

port ID and destination port ID before it leaves an edge CXL switch that connects directly with

devices. Each CXL fabric has a single fabric manager to initialize, bind/unbind devices to ports,

and handle event notifications, such as the removal or failure of devices, from the switch. The

fabric manager is similar to a centralized software-defined network controller as it controls the

per-port forwarding and is aware of all the route changes. However, the CXL fabric has (1)

a limiting addressing scheme that is hard to support multi-path and adaptive routing, and (2)

single-path and inactive routing regardless of the traffic condition.

Challenge: Limited addressing support for multi-path and adaptive routing. The current

PBR routing scheme assigns an ID to devices only. PBR routes packets to the destination

device through multi-level switches with routing installed by the fabric manager. Any routing

reconfiguration needs to go through the fabric manager, making load-aware, adaptive routing

inefficient and infeasible on a large scale. The centralized routing of PBR prevents the usage

of classic multi-pathing techniques like packet spraying or ECMP because all the routes are
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Figure 4.2: Congestion on a shared PCIe switch port causes latency spikes of RDMA writes
going through the port.

pre-determined by the fabric manager. Figure. 4.4 shows an example of multi-level CXL fabric.

Challenge: inflexible routing over diverse topologies. CXL fabric supports flexible topology

and thus opens the possibility of having a wide range of topologies such as a fully connected

graph, fat-tree [AFLV08], Dragonfly [KDSA08], or reconfigurable topology [OYQ+19]. These

topologies provide multiple paths for a source and a destination, but CXL fabric cannot route

packets over multiple possible paths given its current design.

4.2.2 Transport-level Challenges

CXL inherits point-to-point flow control from PCIe, which was designed for the commu-

nication between the device and CPU rather than for a fabric. The flow control operates between

two directly connected endpoints. They exchange credit tokens to evaluate the available buffer

space on each side.

Challenges: Flow control cannot prevent congestion. The point-to-point, credit-based flow
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control is focused on preventing buffer overruns only. It cannot handle pairs of endpoints sharing

a port on the switch because no information is exchanged between them.

PCIe congestion experiment. We design an experiment of multiple flows sharing a port on a

switch, and creating congestion. Given the lack of commercially available hardware for CXL 3.0,

we use PCIe, which shares the same flow control mechanism, for our experiment. Interestingly,

PCIe congestion has been identified and demonstrated under various setups [KM05, MKA+16,

TWZL21].

We create artificial PCIe congestion on a PCIe switch port shared by two devices. The

machine uses a SuperMicro X11SPA-TF motherboard with a Broadcom PEX8747 PCIe switch.

The PCIe switch has one upstream port to the CPU and two downstream ports connecting to the

devices: An Nvidia 2080 Ti GPU and a ConnectX-5 RDMA NIC. The PCIe switch connects with

GPU
PCIe
I/F

Switch

RDMA 
NIC

PCIe
I/F

CPU
PCIe
Root 

Complex

Figure 4.3: Experimental setup for PCIe congestion.

the host processor on one side and provides two ports connecting to GPU and RDMA NIC. The

experimental setup is shown in Figure 4.3. During the experiment, the NIC periodically sends

RDMA write requests to another machine every 100 microseconds. Each write request is sent

from the CPU and travels through the PCIe switch to the NIC. After a second, a large integer

array of 200 MB is moved from the main memory to the GPU. It causes heavy traffic on the

upstream port and the downstream port to the GPU. Their traffic collides on the upstream port of

the PCIe switch because flow control does not account for congestion caused by an outgoing link.

We use PerfTest of Linux-RDMA library to measure the RDMA write request latency [ofe]

shown in Figure 4.2. The latency spikes to almost 3x from 2.593 µs to 7.483 µs at the peak of PCIe
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congestion. PCIe’s virtual channel is a feasible but not scalable solution because it provides only

7 channels. Traffic on the same channel still suffers from the same congestion as demonstrated

above.

Challenge: Rate throttling between host CPU and devices only: CXL fabric offers a rate

throttling mechanism called QoS Telemetry to avoid device overload and possible fabric conges-

tion. The current QoS telemetry is designed for CXL.mem between the host and devices with

their local memory specifically. However, machine learning and HPC applications illustrated in

Figure 4.1 rely on unordered I/O of CXL.io for peer-to-peer memory accesses. QoS telemetry

is much needed for these two use cases like key-value stores using CXL.mem because the CXL

fabric supports all CXL protocols to mitigate congestion and device overload.

Challenge: Inaccurate load & congestion information. QoS telemetry devises a mechanism

called Egress Port Backpressure (EP Backpressure) to indicate the load of CXL switch ports. It

monitors the flow control backpressure situation on each CXL switch egress port. If the port

cannot transmit packets due to insufficient credits, the port marks a 2-bit EP Backpressure value

on the device load field of the outgoing request. Also, each device reports its internal load.

However, QoS telemetry does not distinguish the backpressure on fabric and the device’s internal

load. This prevents QoS telemetry from describing the load on fabric and device end points

accurately and separately.

4.3 Design of Aurelia

We propose Aurelia, a network design involving devices and switches on the CXL fabric.

Aurelia provides addressing, routing, and congestion control protocol design by augmenting

necessary functionalities on the fabric interface and switches. For the rest of Sec. 4.3 and further

sections, non-oversubscribed fat-tree is assumed as the default topology to demonstrate the

primitive addressing and routing design of Aurelia. Different topologies with their related costs
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Figure 4.4: CXL fabric as a fat-tree using 12-bit FAN-ID address X:Y:Z, which X, Y, and Z are
hexadecimal values. Dash lines represent the routes from switch 2:2:1’s routing table.

and configurations are discussed in Sec. 4.5.

4.3.1 Addressing & Flow

Aurelia proposes to generalize CXL’s port ID scheme by assigning a 12-bit fabric node ID

(FAN-ID) to a node that is either a device or a switch on the fabric. This is analogous to the 32-bit

IP address describing hosts in an IP network. FAN-ID assignment is agnostic to the underlying

topology as long as a FAN-ID is unique for a node on a CXL fabric.

With a similar analogy to ”5-tuple” in the IP network, Aurelia is able to defines a flow

by a sequence of CXL packets that share the same source device, destination device, protocol,

and message classes. Thus, routable CXL packets can be identified with a quadruple: (Source

FAN-ID, Destination FAN-ID, CXL protocol, message classes). The CXL protocols include

CXL.io, CXL.mem, and CXL.cache. The message classes are subtype of packets within each

protocol. For example, a CXL.mem packet writing to a device belongs to a class of M2S Request
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with Data and a CXL.cache packet that carries responses from the device to the host belongs to a

class of D2H Response with Data.

4.3.2 Routing

Aurelia routes packets based on FAN-ID addresses similar to IP routing. CXL switches

route a packet based on its routing table that maps a group of FAN-ID destinations onto a port.

CXL switches transmit the packet out of a specific port to another switch that knows the next hop

for this packet. The forwarding continues until the packet reaches the FAN-ID destination.

Routing: Fat-tree as an example. Constructing a fat-tree [AFLV08] with 12-bit FAN-ID address

shows a k-ary fat-tree with k = 4 in Figure 4.4. Fat-tree uses a hierarchical scheme that assigns

FAN-ID to nodes as pod:switch:device with three segments. Each segment is a 4-bit hexadecimal

value. For example, the leftmost CPU has FAN-ID 2:0:2 representing it belongs to the third pod,

the first switch, and the third node, which is right after the switch itself. Similar to IP routing, the

routing on fat-tree follows a single shortest path despite that the fat-tree topology provides path

diversity. This creates potential bottlenecks even for trivial communication patterns because of

the underutilization of available bandwidth. The fat-tree implements a two-level routing table

on each switch. One level of the table routes traffic down to the device, while the other routes

traffic toward the core of the fabric. The table maps a set of destinations to a specific port. The

table maps a set of destinations to a specific port. The routing lookup for destinations uses the

address prefix for traffic downward to the devices and the address suffix for traffic going toward

the cores. The address suffix approach spreads traffic toward the fat-tree core across different

switches based on FAN-ID. The bottom of Figure 4.4 shows the routing table of CXL switch

2:2:1 filled in gray. The prefix table routes packets toward its downstream switches 2:0:1 and

2:1:1. The suffix table routes the packet upward to core switches 4:1:1 and 4:1:2.

Multi-path routing. The two-level routing table of the fat-tree is an implementation of multi-path

routing tailored to a specific topology. Aurelia imposes no restriction on how the fabric should
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be constructed. Instead, Aurelia is able to have routing tables that map a destination to multiple

next-hop FAN-ID and its corresponding metric. These metrics can include distances in terms of

hops or local congestion level on each switch port. Aurelia selects a next-hop with minimal metric

and randomly selects one if there are multiple next-hop options with equal metrics. Considering

the number of hops for shortest path routing, Aurelia can perform a random selection for the next

hop on flow granularity or on packet granularity, i.e. Equal-Cost Multi-pathing (ECMP), or at the

packet granularity, similar to packet spraying.

Adaptive routing. ECMP and packet spraying are oblivious to the workload. Aurelia is able to

to achieve adaptive routin by further exploiting local per-port information on the switches or by

manipulating the routing table on the fabric manager. Aurelia uses per-port EP Backpressure as a

measure of local congestion. For selecting an egress port with minimal congestion on the switch,

Aurelia uses power-of-2 choice [Mit01] to avoid congestion on ports based on possibly delayed

congestion information. Additionally, Aurelia allows the fabric manager to insert routes and has

the sole authority to modify the routing table at any time. This is useful for the workload that

requires non-trivial routing tailored to specific workloads [TLG+15, VMB+22].

Sender CXL 
I/F ReceiverCXL 

I/FSwitch

EP 
Backpressue

Overload Signal 
Piggyback

EP Backpressue 
Notification

Figure 4.5: Aurelia uses EP Backpressure notification to resolve congestions and overload
signal for flow control to avoid overrunning the buffer on the device.
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4.3.3 End-to-end Congestion Control

CXL relies on point-to-point flow control that is prone to congestion and lacks a congestion

control design for the fabric. As stated in Sec. 4.2.2, CXL’s QoS telemetry and EP Backpressure

partially mitigate congestion for specific scenarios.

QoS telemetry currently supports only CXL.mem protocol between the host and devices

with their locally attached memory. QoS telemetry enables memory devices to indicate their

current internal load with 2 bits for CXL.mem response packets. The sender on the host CPU

uses this reported internal load to monitor and throttle its request rate. However, not every sender

on CXL fabric is on the host CPU. Peer-to-peer memory accesses using Unordered I/O of CXL.io

allow devices to access the memory of another device directly. These peer-to-peer accesses under

CXL.io are not throttled in the current design because QoS telemetry is limited to CXL.mem and

does not consider the sender to be other than a host CPU.

EP Backpressure is not effectively utilized in the current design of QoS telemetry, because

QoS telemetry determines the overall load of a device by taking the maximum of the device’s

internal load and EP Backpressure. This approach subsumes EP Backpressure that offers valuable

congestion information on the fabric. By simply taking the maximum value of the separated

piece of information, QoS telemetry provides neither accurate device internal load nor congestion

on the fabric. This inaccuracy hinders QoS telemetry’s ability to perform effective end-to-end

flow control and congestion control for the transport protocol. The aforementioned challenges

motivate us to design Aurelia.

Extending existing mechanisms. Aurelia implements end-to-end congestion control with

overload avoidance by extending the existing mechanisms of CXL. The mechanisms are EP

Backpressure on switches, internal load reported on receiving devices, and rate throttling on

sending devices. EP Backpressure triggers switches to mark packets on their way to the receiving

device when noticeable queuing occurs on the switch. This is similar to Explicit Congestion

Notification (ECN) for Ethernet and Infiniband because they react when the queuing situation

85



begins to indicate congestion. Internal load reporting triggers an overloading signal when the

device is overloaded. Device overload is likely to cause significant device-side delay or even

loss of CXL packets. Aurelia, unlike CXL’s design, separates EP Backpressure and the device’s

internal load since they represent fabric and device information. Rate throttling controls the

sending rate into the fabric to avoid congestion and overload.

Algorithm. Aurelia’s congestion control algorithm operates on the switch, the receiving device,

and the sending device. On the switches, Aurelia mandates the switches to mark the packets when

the ratio of EP Backpressure events in their recent window is larger than a specific threshold.

On the receiving devices, Aurelia makes the receivers piggyback an overloading signal to the

sending device when its sending rate exceeds the receiver’s processing rate. The receiving device

notifies the sender with EP Backpressure notification (EPN) in its response to the sending device

when it receives EP Backpressure marked packets. On the sender side, the sending device

throttles the sending rate based on the 1-bit signal of EPN and the 1-bit overloading signal. When

the sender receives a response packet marked with EPN or an overloading signal, the sender

records its current rate Rc as the target rate Rt for later recovery and cuts its rate half by default.

The rate cut can also be determined by also a rate reduction factor α, similar to DCTCP and

DCQCN [ZEF+15]. The recovery of the reduced sending rate has two different paths depending

on the trigger. If the reduction is triggered by EPN, then the recovery to the target rate Rt is

expected in a fixed number of iterations. If the reduction is triggered by an overloading signal,

then the recovery is an additive increase.

Protocol implementation. Aurelia relies on hardware implementation to throttle sending rate

for congestion control due to sub-µs latency and peer-to-peer memory access requirements.

First, rate throttling has a tight latency requirement of sub-µs on CXL fabric. Pond measured

end-to-end CXL.mem latency and obtained latency ranging up to 270 ns on CXL system with

a single switch [Sha22, LBN+23]. Under the same assumption, the latency of CXL packet

traveling through a two-level fat-tree takes around 680 ns, which is under 1 µs. Second, peer-
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to-peer memory access between devices is expected, especially with the usage of accelerators.

Therefore, Aurelia extends CXL’s original design to generalize the reporting of device load for all

kinds of memory access, including peer-to-peer memory access between devices. Peer-to-peer

memory access between devices without an additional embedded CPU motivates the necessity

of implementing rate throttling in hardware on the CXL interface. The control plane of these

hardware devices is kept on the host CPU, but the execution of rate throttling is on hardware to

meet these requirements. Hardware-based rate throttling ensures all devices on the CXL fabric are

able to control their sending rate and further reduces the congestion and overload. Implementing

rate throttling logic on hardware has been used on RDMA over Infiniband and Ethernet with

RoCEv2 support and thus suggests the feasibility in the case of CXL fabric.

Comparable protocol design on lossless fabric. Aurelia’s congestion control design is inspired

by congestion control on existing lossless fabric, such as Infiniband and DCQCN for RoCEv2,

which implemented a rate-based congestion control algorithm requiring Explicit Congestion

Notification (ECN) on switch to indicate congestion. Infiniband switches mark packets with a

Forward ECN (FECN) bit when congestion is detected [inf]. The receiver receives the FECN-

marked packets and sends a Backward ECN (BECN) marked packet to the sender. The sender

throttles its injection rate when it gets packets with BECN. The throttling over time reduces

congestion and the fabric returns to a state without any congestion. The FECN marking of

packets requires switch support and the implementation of BECN and rate throttling requires

additional logic in CXL interface hardware. DCQCN, a congestion control protocol designed for

RoCEv2, relies on the ECN of Ethernet to notify the sender to adjust its injection rate, similar to

Infiniband [ZEF+15].
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4.4 Evaluation of Aurelia’s Design

We simulate the design of Aurelia because CXL hardware supporting CXL 3.0 with fabric

is not available to the author at the time of writing. We evaluate Aurelia’s congestion control

design using routing described in Sec. 4.3.2. Additional routing designs, such as multipath and

adaptive routing, are not enabled for the evaluation. The evaluated workloads are: (1) key-value

store on memory expansion modules [PKK+22], and (2) machine learning model inference on

GPUs/accelerators involving collective communication [awsa]. They represent different uses of

CXL fabric: one focuses on CPU and memory expansion, while the other focuses on the data

exchange between accelerators. The baseline of the evaluation is vanilla CXL described in its

specification [cxl]. It performs point-to-point flow control for packets of each CXL protocol. It

does not employ any end-to-end congestion control or flow control mechanisms.

4.4.1 Packet-level Simulation using ns-3

We use NS3 [ns-] to simulate packet level behavior on a CXL fabric. NS3 is a discrete-

event network simulator that is open-sourced and well-established in the research community.

Our implementation uses primitive, built-in NS3 classes and starts from scratch because there is

no existing simulator for the CXL fabric. Previous simulators of other lossless fabrics focus on

RDMA over Converged Ethernet (RoCE) [ZEF+15, LML+19, BBRL+20]. These implementa-

tions are not usable for CXL fabrics because they assume the use of Ethernet, IP, and the RDMA

interface cards. CXL fabrics assume none of those, as the devices on the fabric issue load/store

instructions directly.

The hardware parameters are cross-checked with published literature [LBN+23, SYY+23,

h3p]. The latencies on each hardware component are calibrated with H3 platform’s CXL expan-

sion chassis supporting CXL 2.0 [h3p]. The chassis integrates a CXL switch [xco] supporting

CXL.mem and CXL.io that are used in the evaluation.
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We simulate CXL’s transaction layer and link layer in 256B mode assuming a PCIe 6.0

physical layer. The physical layer of PCIe 6.0 with 256 GB/s is on a 16-lane configuration. All

links in the simulation use this configuration. All messages classes of CXL.mem and CXL.cache

are supported. CXL.io functionalities for peer-to-peer memory access are supported. Packing

of CXL.mem and CXL.cache messages is implemented to ensure the number of packets on the

fabric is accurate to the specification.

The simulator enables multi-level switching and implements Aurelia’s addressing, routing,

and congestion control mechanism on top of CXL’s port-based routing. There are 16 nodes on a

2-level fat-tree topology. In the case of machine learning model inference, the topology connects

8 accelerators and 8 memory expansion devices. In the case of the key-value store, the topology

connects 12 memory expansion devices with 4 CPUs.

4.4.2 Simulation of Large Model Inference

We study the improvement of inference throughput on the LLaMA2 70B model [TLI+23]

due to improved congestion control on the CXL fabric. The inference of the model operates on the

unit of tokens for a sequence of input and output data. First, the fabric connects the accelerators

to the memory expansion devices that store the model weights. Partial weights of the model are

kept on the accelerator as the weights are loaded partition by partition. Each accelerator stores an

8.125 GB partition on the device and another partition on the memory expansion devices. This

leaves enough capacity for intermediate generated tokens on the accelerators. A run of inference

performs 2 weight loading operations between the accelerators and the memory expansion devices.

Second, the fabric supports the communication among accelerators that aggregates tokens. A run

of inference performs 2 operations of all-reduce collective communication among the accelerators

to aggregate the intermediate and the output tokens. Each all-reduce operation exchanges 810

× 8 MB of data among the accelerators. The all-reduce operations are 3 milliseconds apart as

these durations represent the computational part of the inference run. The simulation executes
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1000 runs of inference based on the aforementioned parameters. Aurelia’s improved congestion

control aims to speed up both the weight loading and the all-reduce operations.

Aurelia achieves 21% improvement on median throughput and 27% improvement on the

10th percentile throughput because of faster weight loading and all-reduce operations. These

operations encounter 2.1× fewer pauses on the links than the baseline when the links are out

of credits to send packets. EPN of Aurelia throttles the sending rate to avoid triggering pauses

on links. The traffic pattern of weight loading and all-reduce operations does not create much

imbalance therefore there is no overload on any of the accelerators that requires an overload

signal for remediation. Imbalanced traffic among accelerators could test Aurelia’s effectiveness

on such kind of traffic pattern. We leave it for future investigation.

4.4.3 Simulation Results on YCSB Benchmarks

We study the 99th percentile latency on key-value stores using YCSB benchmarks

[CST+10]. YCSB benchmarks are widely used to evaluate key-value stores with a mix of

insert, read, and update operations in memory or on SSD. In the case of CXL fabric, we evaluate

key-value stores on fabric-attached memory expansion. Memory expansion devices manage their

own coherence between themselves and connected CPUs. They invalidate data in the CPU cache

to maintain the coherency.

We evaluate YCSB A, B, C, and F for read, write, and read-modify-write operations on

the key-value store. YCSB D and E are not evaluated because their performance depends on

the recently accessed keys and also how the keys are hashed when inserted. These additional

requirements make them less ideal for us to objectively evaluate the improvement provided

by Aurelia. YCSB A, B, C, and F, on the other hand, access key-value pairs based on a fixed

Zipf distribution. The Zipf distribution makes the probability of accessing nth key inversely

proportional to n. The plot of a Zipf distribution in linear scale is similar to an exponential decay

curve so the first few nth keys are way more likely to be frequently accessed. This makes the
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traffic imbalanced because the requests to a key-value pair are more likely to be headed to a

certain memory expansion device.
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Figure 4.6: YCSB benchmarks with higher ratio of writes demonstrate more improvement.

Aurelia’s improvement on 99th percentile latency for YCSB benchmarks is shown in

Figure 4.6. Aurelia’s EPN and overload signal combined handle the imbalance of traffic caused

by Zipf distribution. The improvement for read-only YCSB C is the lowest because it incurs a

request-response pair to a specific memory expansion device without any cache invalidation. The

improvement for YCSB A and B is higher because YCSB A and B incur write and subsequent

cache invalidation from the memory expansion device to other CPUs. The improvement of YCSB

A is higher than YCSB B because it has 50% of operations as writes operations compared to 5%

of YCSB B. EPN has a higher contribution to the latency improvement because the overload

signal contributes 22% more improvement on YCSB F compared to Aurelia without it. This is

expected as overload should not be a frequent event unless memory capacity and bandwidth are

not properly provisioned On average, Aurelia without overload signal is only 14% worse on all
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YCSB benchmarks.

4.5 Discussion

Aurelia demonstrates a fabric for disaggregation based on the CXL specification [cxl].

However, CXL is not the panacea for every issue and challenge in the dataceneters. First,

alternative fabrics like NVLink for GPUs and PCIe for existing devices are discussed with their

advantages over CXL. Second, CXL is limited to a shorter range of reach compared to Ethernet.

With CXL’s limitation in the physical layer from PCIe, Ethernet is still much needed for inter-rack

communication. Third, CXL fabric flexibility on topology motivates us to discuss multi-pathing

strategy based on specific topologies. Lastly, CXL externalizes system interconnect to connect

more devices than ever and thus further exposes itself to more potential side-channel attacks

Alternatives: NVLink and PCIe fabric. NVLink is an interconnect by Nvidia for high through-

put between GPUs [nvl]. NVLink supports GPU-CPU interconnect with cache coherency on the

recent Grace-Hopper 200 hardware [dgxa]. NVLink presents an interesting alternative to CXL

but has three limitations. First, GPUs using NVLink with cache coherence are equivalent to CXL

type 2 devices. However, NVLink does not support CXL type 3 devices, which expand memory

independently of the main memory capacity. The capability to scale memory capacity is attractive

for memory-hungry large language models [BMR+20, TLI+23]. Second, NVLink scales to

256 endpoints but connects only GPUs as endpoints [dgxb]. Third, NVLink as a proprietary

interconnect limits its usage beyond Nvidia’s hardware. PCIe using Non-Transparent Bridge

(NTB) expands beyond a single root complex to multiple hosts as a fabric with many more

connected devices [pcia]. However, PCIe, included in CXL as CXL.io, lacks the memory and

caching semantics that are much needed in the face of accelerators and memory expansion. This

is exactly the reason that motivates the creation of CXL. Both NVLink and PCIe fabric support a

subset of CXL’s use cases but do not support all of them.
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Co-existence of CXL and Ethernet. Given the scaling discussion, CXL is still unlikely to

completely replace Ethernet in the datacenter due to its current PCIe based physical layer design.

We speculate CXL fabric is beneficial on a rack-scale due to its signal integrity and CXL switch

hardware cost. CXL fabric is not intended to replace existing Ethernet completely but to be a

cost-effective alternative at the rack level. CXL packets are converted to Ethernet frames at a

location equivalent to a top-of-rack switch for cross-rack traffic. Previous work investigating the

co-existence of Ethernet and a memory fabric follows a similar approach [GHL+22].

Cost-effective scales of CXL fabric: CXL is an exciting technology, but it comes with its

limitations. First, CXL requires a retimer to maintain its signal integrity after a 500 mm dis-

tance [micb, ast]. The retimer raises the hardware cost and incurs an extra 20 ns latency every

500 mm [LBN+23]. Second, to scale CXL supporting multi-level switching, multiple CXL

switches are used. They cause an estimated 70 ns latency for each hop over a switch. Considering

the combined cost of switches, retimers, and additional memory controllers, Pond [BEL+23]

suggests a scale smaller than 32-socket for their memory expansion usage (shown in Figure 4.1b).

However, the exact scale of cost-effective CXL fabric for model training and HPC usage (shown

in Figure 4.1a) remains to be determined in future work.

Topologies and multipathing. The flexible topology of CXL fabric empowers the fabric operator

to optimize their topology based on their cost consideration and traffic pattern. Though fat-tree

offers straightforward addressing and routing, it requires many switches and incurs high wiring

costs. Topologies require fewer switches and less wiring, e.g. Dragonfly or other low-diameter

alternatives, could be considered if cost is the primary concern. The recently released CXL 3.1

supports native multipathing. Topologies with high path diversity, such as Dragonfly, can be

easily implemented with CXL’s multipathing. Packet spraying and ECMP on fat-tree-related

topologies can benefit from this as well. With CXL switch prototype supporting 32 ports [xco],

we expect these higher radix switches to enable more design options. For example, the fabric

operator can assign a high over-subscription ratio if the traffic pattern demonstrates high locality
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under a CXL switch. As another example, the fabric operator can add or reduce the bandwidth of

certain CXL links to better match the bandwidth to the actual demand between particular nodes

Security implication: Delay based side channel. CXL fabric exposes the server interconnect to

a shared fabric that may contain malicious devices. The fabric exposes a delay-based side channel

caused by interconnect congestion. This side channel enables attackers to recover information

from different delay patterns. Previous work [TWZL21] investigate the same issue with PCIe

on a server. CXL fabric enlarges the attack surface by leaving all devices vulnerable to delay

probing. Delay probing requires accurate timing measurement. CXL’s use of direct load/store

makes it easy for an attacker to acquire accurate timing of every memory load/store. Defense

against this specific type of side channel attack is interesting for future security research.

4.6 Conclusion

Emerging standard CXL facilitates disaggregation with the support of multi-level switch-

ing. However, the current CXL fabric presents scalability and latency limitations. Aurelia

addresses these challenges by designing effective addressing, routing, and transport layer design.

4.7 Sources for Material Presented in This Chapter

Chapter 4, in part, reprints material as it appears in a published WORD’23 paper titled:

”Aurelia: CXL Fabric with Tentacle” by Shu-Ting Wang and Weitao Wang [WW23]. The

dissertation author was the primary researcher and author of this material.
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Chapter 5

Conclusion

The dissertation investigates the redundant communication between servers for large-scale

web and cache requests and redundant data movement between accelerators for compute-intensive

applications. The redundancy is an impending and critical issue for datacenters designed for

hardware accelerators and disaggregated resources. The dissertation makes the following three

contributions to address this.

The first contribution of the dissertation is Daronpon. Daronpon is a datacenter-wide,

inter-rack distributed load-balancing system for replicated datacenter services. Daronpon, at its

heart, is a highly efficient gossip protocol that ensures that requests originating at any point in

the datacenter can be directed away from overloaded replicas at sub-RTT timescales. Through

a mixture of simulation and deployment within AWS’s cloud network, we show that Daronpon

reduces the 99th percentile of latency for common workloads by up to 2× while admitting 10%

more requests per unit time.

The second contribution of the dissertation is Fianchetto. Fianchetto acts as a compute-

enabled bypass for inter-accelerator communication. The data restructuring and communication

overhead of executing a single application using a chain of accelerators is defined as the data

motion overhead. With the current paradigm of using accelerators, the data motion overhead
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is very likely to outweigh the benefits from all these chained heterogeneous accelerators. In

contrast to previous works on accelerators that deal with accelerating only compute kernels,

Fianchetto focuses on accelerating data motion within a chain of heterogeneous accelerators in a

multi-accelerator datacenter. To that end, Fianchetto reduces data movement, accelerates data

restructuring, and enables interoperability between heterogeneous accelerators from different

domains through a cross-stack hardware-software solution. The results from five end-to-end

applications show that utilizing Fianchetto offers up to 8.2×, 13.6×, and 5.2× improvement in

latency, throughput, and energy efficiency in a multi-accelerator system, respectively.

The third contribution of the dissertation is Aurelia. Aurelia leverages the emerging

interconnect of CXL to investigate the design of a scalable fabric for accelerators and fabric-

attached memory expansion. Compute Express Link (CXL) has emerged as a frontier for

disaggregation by providing a fabric supporting memory accessing, caching, and peer-to-peer

memory access between devices. CXL externalizes the internal memory fabric of a server and

blurs the notion of server for realistic disaggregation. The key feature of enabling CXL as a

memory fabric is its support of multi-level switching up to 4096 endpoints. However, CXL’s

current multi-level switching poses challenges on scalability and latency. To cope with the

expected scale of CXL fabric and take full advantage of disaggregation, we propose Aurelia.

Aurelia architects addressing, routing, and transport as networking layers, which are typical in

host networking, for CXL fabric. Aurelia uses existing CXL mechanisms to realize the much-

needed functionalities for a scalable fabric. With these networking layers, Aurelia improves by

27% on throughput for large language model inference and up to 2.6 × for key-value stores on

YCSB benchmarks.
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López-Buedo, and Andrew W. Moore. Understanding pcie performance for end
host networking. In Proceedings of the 2018 Conference of the ACM Special
Interest Group on Data Communication, 2018.

[NBB+21] Samuel Naffziger, Noah Beck, Thomas Burd, Kevin Lepak, Gabriel H. Loh,
Mahesh Subramony, and Sean White. Pioneering chiplet technology and design
for the amd epyc™ and ryzen™ processor families. In Proceedings of the 48th
Annual International Symposium on Computer Architecture, 2021.

[ner] Transformers based named entity recognition models.

[NFG+] Rajesh Nishtala, Hans Fugal, Steven Grimm, Marc Kwiatkowski, Herman Lee,
Harry C Li, Ryan McElroy, Mike Paleczny, Daniel Peek, Paul Saab, David Stafford,
Tony Tung, and Venkateshwaran Venkataramani. Scaling Memcache at Facebook.
page 14.

[NFG+13] Rajesh Nishtala, Hans Fugal, Steven Grimm, Marc Kwiatkowski, Herman Lee,
Harry C. Li, Ryan McElroy, Mike Paleczny, Daniel Peek, Paul Saab, David
Stafford, Tony Tung, and Venkateshwaran Venkataramani. Scaling memcache
at facebook. In 10th USENIX Symposium on Networked Systems Design and
Implementation, 2013.

[NKA20] Ryo Nakamura, Yohei Kuga, and Kunio Akashi. How beneficial is peer-to-peer
dma? In APSys, 2020.

[noa] CloudSuite | A Benchmark Suite for Cloud Services.

[NPB+21] Sabrina M. Neuman, Brian Plancher, Thomas Bourgeat, Thierry Tambe, Srinivas
Devadas, and Vijay Janapa Reddi. Robomorphic computing: A design method-
ology for domain-specific accelerators parameterized by robot morphology. In
ASPLOS, 2021.

[NRB+19] Anirban Nag, C. N. Ramachandra, Rajeev Balasubramonian, Ryan Stutsman,
Edouard Giacomin, Hari Kambalasubramanyam, and Pierre-Emmanuel Gaillardon.
Gencache: Leveraging in-cache operators for efficient sequence alignment. In
MICRO, 2019.

[ns-] ns-3. https://www.nsnam.org/.

[nvi] Nvidia dali.

[nvl] NVLink. https://www.nvidia.com/en-us/data-center/nvlink/.

[OAVR] Vladimir Olteanu, Alexandru Agache, Andrei Voinescu, and Costin Raiciu. State-
less datacenter load-balancing with beamer. In 15th USENIX Symposium on
Networked Systems Design and Implementation, NSDI ’18.

112

https://www.nsnam.org/
https://www.nvidia.com/en-us/data-center/nvlink/


[ods] ODSA-BoW specifications.

[OFB+19] Amy Ousterhout, Joshua Fried, Jonathan Behrens, Adam Belay, and Hari Balakr-
ishnan. Shenango: Achieving high cpu efficiency for latency-sensitive datacenter
workloads. In USENIX Conference on Networked Systems Design and Implemen-
tation (NSDI), 2019.

[ofe] Open fabrics enterprise distribution (ofed) performance tests. https://github.
com/linux-rdma/perftest.

[OO] Diego Ongaro and John Ousterhout. In search of an understandable consensus
algorithm. In Proceedings of the 2014 USENIX Conference on USENIX Annual
Technical Conference, ATC’14.

[OYQ+19] Matheus Ogleari, Ye Yu, Chen Qian, Ethan Miller, and Jishen Zhao. String figure:
A scalable and elastic memory network architecture. In 2019 IEEE International
Symposium on High Performance Computer Architecture (HPCA), 2019.

[PBY+] Parveen Patel, Deepak Bansal, Lihua Yuan, Ashwin Murthy, Albert Greenberg,
David A. Maltz, Randy Kern, Hemant Kumar, Marios Zikos, Hongyu Wu,
Changhoon Kim, and Naveen Karri. Ananta: Cloud scale load balancing. In
Proceedings of the ACM SIGCOMM 2013 Conference on SIGCOMM, SIGCOMM
’13.

[PCC+14] Andrew Putnam, Adrian Caulfield, Eric Chung, Derek Chiou, Kypros Constan-
tinides, John Demme, Hadi Esmaeilzadeh, Jeremy Fowers, Gopi Prashanth, Jan
Gray, Michael Haselman, Scott Hauck, Stephen Heil, Amir Hormati, Joo-Young
Kim, Sitaram Lanka, James R. Larus, Eric Peterson, Aaron Smith, Jason Thong,
Phillip Yi Xiao, and Doug Burger. A reconfigurable fabric for accelerating large-
scale datacenter services. In ISCA, 2014.

[pcia] Pci-sig specifications. https://pcisig.com/specifications.

[pcib] Pcie 6.0 and 7.0. https : / / www . xda-developers . com /
pcie-6-to-launch-in-2024-pcie-7-in-2027/.

[PGK+20] Arash Pourhabibi, Siddharth Gupta, Hussein Kassir, Mark Sutherland, Zilu Tian,
Mario Paulo Drumond, Babak Falsafi, and Christoph Koch. Optimus prime:
Accelerating data transformation in servers. In ASPLOS, 2020.

[PGW+20] Daniel Petrisko, Farzam Gilani, Mark Wyse, Dai Cheol Jung, Scott Davidson, Paul
Gao, Chun Zhao, Zahra Azad, Sadullah Canakci, Bandhav Veluri, Tavio Guarino,
Ajay Joshi, Mark Oskin, and Michael Bedford Taylor. Blackparrot: An agile
open-source risc-v multicore for accelerator socs. IEEE Micro, 40(4):93–102,
2020.

113

https://github.com/linux-rdma/perftest
https://github.com/linux-rdma/perftest
https://pcisig.com/specifications
https://www.xda-developers.com/pcie-6-to-launch-in-2024-pcie-7-in-2027/
https://www.xda-developers.com/pcie-6-to-launch-in-2024-pcie-7-in-2027/


[PKB] George Prekas, Marios Kogias, and Edouard Bugnion. Zygos: Achieving low tail
latency for microsecond-scale networked tasks. In Proceedings of the Symposium
on Operating Systems Principles, SOSP ’17.

[PKK+22] S. J. Park, H. Kim, K.-S. Kim, J. So, J. Ahn, W.-J. Lee, D. Kim, Y.-J. Kim, J. Seok,
J.-G. Lee, H.-Y. Ryu, C. Y. Lee, J. Prout, K.-C. Ryoo, S.-J. Han, M.-K. Kook, J. S.
Choi, J. Gim, Y. S. Ki, S. Ryu, C. Park, D.-G. Lee, J. Cho, H. Song, and J. Y. Lee.
Scaling of memory performance and capacity with cxl memory expander. In IEEE
Hot Chips 34 Symposium (HCS), 2022.

[PRM+17] Angshuman Parashar, Minsoo Rhu, Anurag Mukkara, Antonio Puglielli, Ranghara-
jan Venkatesan, Brucek Khailany, Joel Emer, Stephen W Keckler, and William J
Dally. SCNN: An Accelerator for Compressed-sparse Convolutional Neural Net-
works. In ISCA, 2017.

[PVSW+] Johan Peltenburg, Jeroen Van Straten, Lars Wijtemans, Lars Van Leeuwen, Zaid
Al-Ars, and Peter Hofstee. Fletcher: A framework to efficiently integrate fpga
accelerators with apache arrow. In FPL.

[QSK+20] Eric Qin, Ananda Samajdar, Hyoukjun Kwon, Vineet Nadella, Sudarshan Srini-
vasan, Dipankar Das, Bharat Kaul, and Tushar Krishna. Sigma: A sparse and
irregular gemm accelerator with flexible interconnects for dnn training. HPCA,
2020.

[RAAGG21] Shafiur Rahman, Mahbod Afarin, Nael Abu-Ghazaleh, and Rajiv Gupta. Jetstream:
Graph analytics on streaming data with event-driven hardware accelerator. In
MICRO, 2021.

[Rad19] Milan Radulovic. Memory bandwidth and latency in HPC: system requirements
and performance impact. PhD thesis, Polytechnic University of Catalonia, Spain,
2019.

[RAGG20] Shafiur Rahman, Nael Abu-Ghazaleh, and Rajiv Gupta. Graphpulse: An event-
driven hardware accelerator for asynchronous graph processing. In MICRO, 2020.

[RF18] Joseph Redmon and Ali Farhadi. Yolov3: An incremental improvement. arXiv,
2018.

[roc21] RocksDB. https://rocksdb.org/, 2021.

[RRR+21] Samyam Rajbhandari, Olatunji Ruwase, Jeff Rasley, Shaden Smith, and Yuxiong
He. Zero-infinity: Breaking the gpu memory wall for extreme scale deep learning.
In Proceedings of the International Conference for High Performance Computing,
Networking, Storage and Analysis, 2021.

[RRRH20] Samyam Rajbhandari, Jeff Rasley, Olatunji Ruwase, and Yuxiong He. Zero:
Memory optimizations toward training trillion parameter models, 2020.

114



[RSAB20] Zhenyuan Ruan, Malte Schwarzkopf, Marcos K. Aguilera, and Adam Belay.
AIFM: High-Performance, Application-Integrated far memory. In 14th USENIX
Symposium on Operating Systems Design and Implementation (OSDI 20), 2020.

[RSC+21] Parthasarathy Ranganathan, Daniel Stodolsky, Jeff Calow, Jeremy Dorfman, Maris-
abel Guevara, Clinton Wills Smullen IV, Aki Kuusela, Raghu Balasubramanian,
Sandeep Bhatia, Prakash Chauhan, Anna Cheung, In Suk Chong, Niranjani
Dasharathi, Jia Feng, Brian Fosco, Samuel Foss, Ben Gelb, Sara J. Gwin, Yoshiaki
Hase, Da-ke He, C. Richard Ho, Roy W. Huffman Jr., Elisha Indupalli, Indira
Jayaram, Poonacha Kongetira, Cho Mon Kyaw, Aaron Laursen, Yuan Li, Fong Lou,
Kyle A. Lucke, JP Maaninen, Ramon Macias, Maire Mahony, David Alexander
Munday, Srikanth Muroor, Narayana Penukonda, Eric Perkins-Argueta, Devin
Persaud, Alex Ramirez, Ville-Mikko Rautio, Yolanda Ripley, Amir Salek, Sathish
Sekar, Sergey N. Sokolov, Rob Springer, Don Stark, Mercedes Tan, Mark S. Wach-
sler, Andrew C. Walton, David A. Wickeraad, Alvin Wijaya, and Hon Kwan Wu.
Warehouse-scale video acceleration: Co-design and deployment in the wild. In
ASPLOS, 2021.

[RZB+] Arjun Roy, Hongyi Zeng, Jasmeet Bagga, George Porter, and Alex C. Snoeren.
Inside the social network’s (datacenter) network. In Proc. of the ACM Conference
on Special Interest Group on Data Communication, SIGCOMM ’15.

[SAA+17] Amedeo Sapio, Ibrahim Abdelaziz, Abdulla Aldilaijan, Marco Canini, and Panos
Kalnis. In-network computation is a dumb idea whose time has come. In Proceed-
ings of the 16th ACM Workshop on Hot Topics in Networks, 2017.

[SCC+19] Ran Shu, Peng Cheng, Guo Chen, Zhiyuan Guo, Lei Qu, Yongqiang Xiong, Derek
Chiou, and Thomas Moscibroda. Direct universal access: Making data center
resources available to FPGA. In NSDI, 2019.

[SCV+19] Yakun Sophia Shao, Jason Clemons, Rangharajan Venkatesan, Brian Zimmer,
Matthew Fojtik, Nan Jiang, Ben Keller, Alicia Klinefelter, Nathaniel Pinckney,
Priyanka Raina, et al. Simba: Scaling deep-learning inference with multi-chip-
module-based architecture. In MICRO, 2019.

[SCW+07] James E. Stine, Ivan Castellanos, Michael Wood, Jeff Henson, Fred Love, W. Rhett
Davis, Paul D. Franzon, Michael Bucher, Sunil Basavarajaiah, Julie Oh, and Ravi
Jenkal. Freepdk: An open-source variation-aware design kit. In 2007 IEEE
International Conference on Microelectronic Systems Education (MSE’07), pages
173–174, 2007.

[SFM17a] Yongming Shen, Michael Ferdman, and Peter Milder. Escher: A cnn accelerator
with flexible buffering to minimize off-chip transfer. In FCCM, 2017.

[SFM17b] Yongming Shen, Michael Ferdman, and Peter Milder. Maximizing cnn accelerator
efficiency through resource partitioning. In ISCA, 2017.

115



[Sha22] Debendra Das Sharma. Compute express link®: An open industry-standard
interconnect enabling heterogeneous data-centric computing. In IEEE Symposium
on High-Performance Interconnects (HOTI), 2022.

[Sha23] Debendra Das Sharma. Novel composable and scale-out architectures using
compute express link. IEEE Micro, 2023.

[SHCZ18] Yizhou Shan, Yutong Huang, Yilun Chen, and Yiying Zhang. LegoOS: A dissemi-
nated, distributed OS for hardware resource disaggregation. In OSDI, 2018.

[SHPG] Ankit Singla, Chi-Yao Hong, Lucian Popa, and P. Brighten Godfrey. Jellyfish:
Networking data centers randomly. In 9th USENIX Symposium on Networked
Systems Design and Implementation, NSDI ’12.

[SJB14] Justin Salamon, Christopher Jacoby, and Juan Pablo Bello. A dataset and taxonomy
for urban sound research. In ACM Multimedia, 2014.

[SMLE18] Jacob Sacks, Divya Mahajan, Richard C Lawson, and Hadi Esmaeilzadeh. Robox:
an end-to-end solution to accelerate autonomous control in robotics. In ISCA,
2018.

[SOA+] Arjun Singh, Joon Ong, Amit Agarwal, Glen Anderson, Ashby Armistead, Roy
Bannon, Seb Boving, Gaurav Desai, Bob Felderman, Paulie Germano, Anand
Kanagala, Jeff Provost, Jason Simmons, Eiichi Tanda, Jim Wanderer, Urs Hölzle,
Stephen Stuart, and Amin Vahdat. Jupiter rising: A decade of clos topologies and
centralized control in google’s datacenter network. In Proc. of the ACM Conference
on Special Interest Group on Data Communication, SIGCOMM ’15.

[SOI+17] David Sidler, Muhsen Owaida, Zsolt István, Kaan Kara, and Gustavo Alonso.
doppiodb: A hardware accelerated database. In FPL, 2017.

[SPM+16] Hardik Sharma, Jongse Park, Divya Mahajan, Emmanuel Amaro, Joon Kim,
Chenkai Shao, Asit Misra, and Hadi Esmaeilzadeh. From high-level deep neural
models to fpgas. In MICRO, 2016.

[SQLC17] Linghao Song, Xuehai Qian, Hai Li, and Yiran Chen. Pipelayer: A pipelined
reram-based accelerator for deep learning. In HPCA, 2017.

[sup] Intel built-in accelerators.

[SWH+16] Lili Song, Ying Wang, Yinhe Han, Xin Zhao, Bosheng Liu, and Xiaowei Li. C-
brain: A deep learning accelerator that tames the diversity of cnns through adaptive
data-level parallelization. In DAC, 2016.

[SYY+23] Yan Sun, Yifan Yuan, Zeduo Yu, Reese Kuper, Chihun Song, Jinghan Huang,
Houxiang Ji, Siddharth Agarwal, Jiaqi Lou, Ipoom Jeong, Ren Wang, Jung Ho
Ahn, Tianyin Xu, and Nam Sung Kim. Demystifying cxl memory with genuine

116



cxl-ready systems and devices. In Proceedings of the 56th Annual IEEE/ACM
International Symposium on Microarchitecture, 2023.

[SZQ+18] Linghao Song, Youwei Zhuo, Xuehai Qian, Hai Li, and Yiran Chen. Graphr:
Accelerating graph processing using reram. In HPCA, 2018.

[Tay18] Michael Bedford Taylor. Invited: Basejump stl: Systemverilog needs a standard
template library for hardware design. In 2018 55th ACM/ESDA/IEEE Design
Automation Conference (DAC), 2018.

[TBD18] Yatish Turakhia, Gill Bejerano, and William J. Dally. Darwin: A genomics co-
processor provides up to 15,000x acceleration on long read assembly. In ASPLOS,
2018.

[TDP+19] Yuta Tokusashi, Huynh Tu Dang, Fernando Pedone, Robert Soulé, and Noa Zil-
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