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ABSTRACT OF THE DISSERTATION

Human-Centered Machine Learning for Healthcare:
Examples in Neurology and Pulmonology

by

Vishwajith Ramesh

Doctor of Philosophy in Bioengineering with a Specialization in Multiscale Biology

University of California San Diego, 2020

Gert Cauwenberghs, Chair
Nadir Weibel, Co-Chair

Machine learning (ML) in healthcare has enabled the automatic detection of diseases

from medical images or sensors with high accuracy, often outperforming domain experts.

Unfortunately, there is a large variance between how such diagnostic aids perform in

research settings and in the real-world. This is due to challenges unique to healthcare

that, if unaddressed, limit the usefulness of ML-based software when deployed in hospitals.

For example, in human subjects research and clinical trials, subject recruitment and data

acquisition are involved processes for both patients and healthcare providers; there are

several regulatory and cybersecurity requirements to satisfy to ensure that patient care is

not compromised in the pursuit of big data. Without abundant data to train ML models,

xviii



it can be difficult to elicit good performance that also generalizes well on unseen data

in clinical practice. Moreover, ML tools in hospitals cannot function independently but

must integrate with existing workflows. There are ethical considerations with respect to

how these tools influence the decision making of clinicians and whether they encourage an

over-reliance on predictions.

In this dissertation, we discuss these and other concerns in the context of three

focus areas: stroke, respiratory disease, and Parkinson’s disease. We present machine and

deep learning pipelines for weakness detection in stroke patients from video, respiratory

disease classification from audio of coughs, and gait assessment in Parkinson’s disease with

body sensors. In our efforts, we were cognizant of the technical and human challenges of

healthcare. We developed models that not only performed well but also could be trained

and rigorously evaluated in a data-conscious way. Our ML solutions ranged from simple

leave-one-out approaches to data augmentation with generative adversarial nets. Lastly, we

show how ML can more effectively aid medical diagnosis when paired with human-centered

design. We describe a clinical decision support system for acute stroke, focusing on the

development of an intuitive user interface that balances neurologist assessments with the

symptom predictions of our models. This dissertation details novel, human-centered ML

techniques for disease diagnosis in neurology and pulmonology, highlighting several lessons

learned to benefit the field of machine learning in healthcare at large.

xix



Chapter 1

Applied Machine Learning for

Healthcare

1.1 Problems Unique to Healthcare

Machine learning (ML) and deep learning have made significant strides in the past

decade, being used to drive cars autonomously [1–3], improve computational photography

on smartphones [4, 5], and even create synthetic media [6, 7]. All three examples have

fundamentally shifted entire industries and have driven heated discussions as to the

implications of artificial intelligence (AI). A consumer vehicle able to drive autonomously

based on video sensor feeds motivates a discussion of how such cars handle the safety of

pedestrians relative to that of the driver [8–11]. A photograph no longer represents a

singular moment in time but is comprised of several slices merged together by deep learning

to create a better looking image for social media [4, 5]. The creation of synthetic media, so

called "DeepFakes," have drawn considerable push-back from a public fearful of the spread

of misinformation from agenda-driven institutions [7, 12–14].

Relative to its impact in other fields, the impact of AI in healthcare and medicine,

1



while growing, has been restricted. It can be challenging to show that AI tools designed to

support medical decision making do not in practice negatively impact patient health or care.

Unlike typical drugs or medical devices, there is a greater variance between performance of

an AI or ML-based software in artificial testing environments and in actual practice [15].

This discrepancy is due to several technical and human problems presented by AI in medicine

that are unique to this space. For example, to be effective in hospitals, AI systems in

healthcare must be designed to work alongside a range of medical professions, from medical

residents to nurses to experienced physicians. They need to work in conjunction with

existing clinical tools and workflows in order to avoid obstructing the ability of providers to

care for patients. Recently, the Food and Drug Administration (FDA) developed guidelines

for classifying and regulating "software as a medical device" [15,16]. The FDA recognizes

that such challenges do not preclude the use of AI in healthcare nor do they reduce the

large impact it has had and can yet have in the field. But it is important to understand

them and to build AI-based systems that are cognizant of them. We outline a few of these

challenges below.

1.1.1 Technical Challenges

The three examples given earlier in the automotive, photography, and media indus-

tries have benefited from a rich and large corpus of labeled images that can be used to train

machine learning algorithms [17–21]. ML algorithms are very sensitive to the datasets being

used to train them and often reflect the biases and imbalances in the training data. Image

datasets are large enough to mitigate the effects of imbalances between classes, and even

if such imbalances exist, they can be readily fixed. Consider for example Google’s facial

recognition technology for unlocking smartphones. There is a well documented imbalance in

face datasets between dark-skinned people and light-skinned people [22–25]. To counter this

2



inequality, Google recorded videos of those with darker skin tones to minimize any racial

bias in their face detection algorithms – a fairly straightforward (but ethically questionable)

process in which participants were compensated $5 [26–28]. Even if a racial bias was not

corrected for, ultimately, inability to unlock a phone via face is an innocuous concern to

the consumer.

In healthcare, however, such problems can have grave consequences. Healthcare

datasets tend to be magnitudes of order smaller than popular image datasets, which are

exceedingly big; there are 60,000 labeled examples in CIFAR-100 over 14 million examples

in ImageNet [17, 20]. In human subjects research and clinical trials, it is challenging to

recruit and record a large number of participants on the order of millions or even tens of

thousands [29–32]. Patient recruitment and the logistics of data acquisition in hospitals and

clinics is an involved process with numerous regulatory and cybersecurity hurdles [33,34].

After all, extensive requirements are necessary to avoid obstructing patient health and care.

Acquiring labels, the gold standard target of interest used in supervised learning tasks (e.g.

true states of clinical outcomes or true disease phenotypes), requires the domain knowledge

of highly trained experts [35]. Data collection must therefore involve the time of doctors,

nurses, clinicians, and healthcare providers, in addition to that of patients recorded. These

constraints tend to limit the size of healthcare datasets comprised of information from

human subjects.

Machine learning algorithms often tend to overfit when trained with little data,

performing well on the data used to train the algorithms but not on unseen out-of-sample

data; they have poor generalizability [36–39]. The effects of imbalances and biases are

especially strong with small datasets [38, 40]. Imbalances in data may lead to underfitting

with poor prediction accuracy, especially due to samples not well represented in the training

set [37]. Feature rich input (time series from body sensors with high sampling frequency,
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for example) in an otherwise small dataset and overparameterized models trained on a

finite number of samples suffer from overfitting and low statistical precision – the "curse of

dimensionality" [41,42].

Fixing imbalances is challenging because of the difficulty of consenting and recruiting

(sick) patients, especially when considering the ease with which individuals otherwise

underrepresented in a facial recognition database can be recruited and recorded. The labels

required to train supervised learning algorithms can also be difficult to come by in medicine.

An example that highlights all these healthcare-specific data concerns is the electronic

health record (EHR). Longitudinal EHR data describes the trajectory of a patient’s health

over time. Since different patients visit hospitals at different frequencies, events in EHR

data are irregularly sampled [35]. Moreover, patients who visit a hospital often comprise

more of a EHR dataset; healthy individuals are unlikely to make regular clinical visits and

are thus less represented. EHR datasets are inconsistent between different sites due to a lack

of standards and semantic interoperability of health data. The inconsistency is worse when

considering free-text notes written by doctors, nurses, and other providers [35,43,44]. Gold

standard labels are also not consistently captured in EHR data, in part due to different

standards between healthcare systems. The unavailability of labels further restricts the

amount of EHR data usable for training [35].

With biometric facial recognition for unlocking smartphones or computational

photography, mistakes made by AI are relatively harmless. Mistakes made by an AI-based

clinical decision support system, however, can be pernicious to patient health. Medical

errors by humans are considered to be a leading cause of death and AI may only serve

to exacerbate this issue [45–48]. Prediction mistakes due to improper training on small

and imbalanced datasets may also lead to malpractice lawsuits and large settlements for

hospitals and health care providers [49,50]. It is for these reasons that the issue of small
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and imbalanced datasets is of special concern in healthcare.

1.1.2 Human Challenges

While there is an abundance of retrospective studies conducted in controlled settings,

AI-based clinical decision support systems deployed in the real world are relatively few

and far between. There is a large variance between performance in the two environments

due in part to human factors [15]. AI tools in hospitals cannot work independently but

in conjunction with existing clinical care workflows, resources, and data management

protocols, all of which involve humans [15, 51]. Consider a computer-aided detection

system for mammography that was shown to improve breast cancer detection and therefore

deployed in practice [52]. Real world diagnostic performance with the system was in fact

no better (and, in some cases, worse) than without because of how humans interacted with

the system [15,52].

Poor interpretability of AI or ML-based algorithms can cause confusion and make it

difficult to understand the underlying reasons behind predictions. AI often tends to be

a black box but its inner workings cannot be nebulous when it comes to healthcare, as

it impacts a doctor’s trust in the system. Physicians prefer to understand how systems

produce recommendations and desire explainability as a feature of clinical decision support

systems [53–55]. Systems can be considered explainable if they use non-black box approaches

(a rule-based one, for example) or black box algorithms that make interpretable and

justifiable predictions [56–59]. Interpretability is particularly important in situations when

the AI system disagrees with the clinician; a result that deviates from expected behavior

will prompt a need for an explanation [60–62].

Human judgment also introduces biases and errors. Humans can over-extrapolate

from small samples, identify false patterns from noise, and be unusually risk averse [15, 63].
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There are ethical concerns as well, with respect to how AI tools influence the decision making

of clinicians and whether they encourage an over-reliance on predictions, particularly in

those with little experience [60,64]. Robust human factors testings and a human-centered

design approach are therefore required for AI-based computational aids to be effective in

practice [15].

1.2 Exploring Solutions by Example

We outlined a few technical and human challenges unique to the healthcare space

above. In the following chapters of this dissertation, we touch again on these challenges

and introduce other concerns in the context of three specific focus areas: stroke,

Parkinson’s disease, and respiratory disease. In Chapter 2, we describe our early

efforts to develop a clinical decision support system for acute stroke diagnosis. In this work,

we developed a machine learning classification pipeline for identifying weakness in sitting

stroke patients from video. We discuss the challenges of building a stroke dataset in an

active clinical environment and our approach for training and rigorously evaluating the

ML pipeline in a data-conscious way. We outline the pros and cons of leave-one-out cross

validation, a training strategy that enables maximal use of limited data for training but

has high variance. In Chapter 3, we discuss an unsupervised data augmentation strategy

to address the small, imbalanced dataset concern we brought up in Section 1.1.1. We

significantly improved the performance of off-the-shelf classifiers for cough-based respiratory

disease diagnosis by adding synthetic cough examples to balance and augment a training set

with otherwise underrepresented classes. In Chapter 4, we detail a deep learning pipeline

to assess the gait of Parkinson’s disease patients and to predict their ON/OFF state. We

showed that training the network adversarially alongside another network that generated

fake samples ultimately reduced overfitting, a concern with applying deep learning on
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small datasets. In Chapter 5, we discuss again the clinical decision support system for

stroke but this time focusing on our efforts to make it human centered. Through a user

interface experiment, we showed that domain experts do not seem to over-rely on the

system’s predictions and can catch the mistakes that it makes, properly weighing their

own assessments with the symptom predictions of the algorithms. Human factors testing

such as the one we outline in this chapter are necessary to maximize the efficacy of such

systems in practice, as mentioned in Section 1.1.2. Lastly, in Chapter 6, we discuss the

contributions of our work, highlighting how the solutions we developed in three focus areas

can benefit the field of machine learning in healthcare at large.
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Chapter 2

Identifying Stroke-Associated Weakness

from Video

2.1 Motivation and Background

Stroke is a leading cause of disability and death and costs the United States $34

billion dollars a year in missed days of work, treatment, and rehabilitation [65,66]. Early

treatment of stroke improves long-term outcomes and lowers recurrent stroke risk by up

to 80% [67]. The standard of care is the administration of a clot dissolving agent, tissue

plasminogen activator (tPA), within 4.5 hours of the onset of symptoms. To facilitate early

treatment, hospitals see most strokes first in the emergency department (ED); approximately

70% of strokes are admitted as inpatient from the ED [68].

Unfortunately, strokes are often missed or incorrectly diagnosed in the ED. A

comprehensive study examining the ED visit records of hospitals across 9 states in the

United States found that nearly 13% of stroke cases were diagnostic errors – a diagnosis

that was missed or incorrect, as determined by a definitive test or finding done at a later

time [69]. This corresponded to 24,000 patients who received an incorrect diagnosis and

8



were seen on a treat-and-release basis in the ED, only to be later admitted as inpatient

with a confirmed stroke diagnosis [69]. Because of the narrow treatment window of tPA and

its reduced effects if administered after this window, such missed or delayed diagnoses can

prove fatal or hurt a patient’s chances of rehabilitation. Another study found that 22% of

strokes were missed in the ED [70]. Of these a third presented within the time window for

tPA eligibility, but because they were misdiagnosed, they did not receive tPA [70]. A study

assessing stroke care in Texas found that 35% of stroke and transient ischemic attack cases

were missed in the ED [71]. This last study is of particular interest because most of the

patients who presented with acute neurological symptoms in the ED were not examined by

neurologists but by ED physicians alone [71]. The high rate of missed strokes by emergency

medicine clinicians can be ascribed to the difficulty of distinguishing strokes from stroke

mimics [71, 72]. There is a wide range of diseases with symptoms similar to those of stroke

– seizure, encephalopathy, and brain tumors, for example – and an experienced vascular

neurologist is required to be able to differentiate strokes from mimics [73].

The cost of stroke misdiagnosis is high. 65% of malpractice claims made against clin-

icians involved a delayed or missed ED diagnoses that harmed patients, and compensation

for plaintiffs ranged from $100,000 to $30 million [74,75]. There is a large cost for hospitals

as well, as treating a stroke mimic increases costs by a median of over $5,000 [76]. Missed

strokes have been shown to increase hospital length of stay by 2 days, corresponding to

approximately $1,600 per day in costs [77]. Most importantly, there is a large human cost –

80,000 to 160,000 preventable deaths or permanent disabilities each year in the U.S. [78].

To reduce the number of incorrect stroke diagnoses made in the ED, we propose a

computational system that uses ubiquitous technology and machine learning to capture the

expertise of experienced neurologists and translate it to the emergency room. A system that

automatically identifies acute stroke symptoms when present can help ED physicians to
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not only accurately distinguish stroke from stroke mimics but also reduce time to diagnose

or rule out stroke. Such a system especially benefits hospitals in underserved areas without

ready access to neurologists nor a comprehensive stroke center.

As a first step towards a clinical decision support system for acute stroke, we focus

on automatically identifying body weakness, or hemiparesis.

2.1.1 Hemiparesis – A Key Indicator of Acute Stroke

Hemiparesis is the partial paralysis of the left or right side of the body and is a

common, early warning sign of stroke [79–81]. It is characterized by difficulty moving the

limbs of the affected side. Hemiparesis is identified and its severity assessed through motor

arm and leg tests conducted by a trained stroke specialist as part of the National Institute

of Health Stroke Scale (NIHSS) [82, 83]. While the NIHSS motor tests have been found

to have strong inter-rater reliability, they require an experienced neurologist to conduct

them [84].

Efforts have been made to quantitatively analyze hemiparesis without the need

for a stroke specialist. Computational methods to track walks using wearable three-axis

accelerometers, reflective markers, and ankle-mounted step watch activity monitors have

been shown to reliably identify hemiparetic gait [85,86]. These techniques were designed

to monitor hemiparetic stroke patients outdoors or at their residence and do not require

the presence of a neurologist. Unfortunately, the approaches focus on rehabilitation in the

long-term rather than diagnosis in the short term, with the goal of tracking improvements

in movement over time. Moreover, they require made-to-fit, obtrusive devices to be worn

by patients.

In this chapter, we explore means of determining hemiparesis in an unobtrusive way

without requiring active motor movements like walking. Our goal is to develop approaches
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that can be used in emergency medical settings without ready access to neurologists for

diagnosis soon after the incidence of stroke. We first describe a support vector machine

(SVM) pipeline trained on body skeletons of stroke patients recorded with the Microsoft

Kinect. We then discuss a more sophisticated video-based approach that improved on the

initial model. This work was based on the hypothesis that body posture, particularly when

sitting, is a meaningful metric for diagnosing hemiparesis in stroke patients [87–89]. In

the context of the overall dissertation, we will highlight key problems with clinical data

collection as well as the pros and cons of using the leave-one-out training paradigm to

measure classifier performance.

2.2 Hemiparesis Detection with the Microsoft Kinect

and Support Vector Machines

2.2.1 Building a Clinical Dataset of Hemiparetic Stroke Patients

In collaboration with a team of neurologists from the University of California, San

Diego (UCSD) Stroke Center, we recorded 39 stroke subjects at outpatient clinics in San

Diego with the Microsoft Kinect v2. The Kinect enabled us to record audio, high-definition

video at 60 frames per second, and depth footage of subjects, as well as provided the

x, y, z spatial coordinates of 25 body joints over time. The Kinect was mounted on the

wall opposite to a patient table. We placed the camera fully facing the subject to avoid

occluding parts of the body. Data was collected using ChronoSense software, at a body

tracking capture rate of 30 Hz [90]. Figure 2.1 shows our data collection set-up. All subjects

agreed to be recorded with sensors by signing a consent form approved by the local Human

Research Protections Program office.

We recorded subjects during a set of motor and cognitive evaluation exams – the
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Figure 2.1: Body tracking data collected from a subject in an outpatient clinic with
the Microsoft Kinect v2. The subject shown was sitting at rest prior to the start of the
NIHSS examination. The representation of the body skeleton obtained with the Kinect is
on the left. Note that because the image and skeleton is mirrored, the viewer’s right side
corresponds to the subject’s right side.

NIHSS [83]. Hemiparesis was identified and its severity assessed through motor arm and

leg tests conducted by a trained stroke specialist [82]. We also recorded subjects as they

were sitting and waiting for the neurologist to begin these in-person assessments. Subjects

sat at rest waiting for the neurologist to begin the NIHSS exam anywhere from 10 seconds

to 2 minutes.

Of the 39 subjects, 4 were omitted from this study due to technological errors

in data capture and storage. 13 out of 35 subjects suffered from hemiparesis – 8 with

right-side weakness and 5 with left-side weakness. 22 subjects were used as non-hemiparetic

controls. Controls were healthy subjects who had never had a stroke or were fully recovered

(no deficits identified by the neurologist’s NIHSS exam). To incorporate as much of the

collected data into the training set, we also included subjects who had stroke symptoms

unrelated to weakness such as facial droop or speech difficulties. A subject with conversion
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disorder but who was otherwise healthy was considered a control too.

Subjects seen at the outpatient clinic are usually several months from the incidence

of stroke and are well into their rehabilitation, so their symptoms tend to be less severe.

Weakness in each arm or leg is scored on a scale of 0 to 4 [83]. The sum of the NIHSS

scores for the left arm and left leg or right arm and right leg ranged from 1 to 4 (out of a

maximum of 8) for the 13 hemiparetic outpatient subjects.

2.2.2 Capturing Body Posture at Rest with the Kinect

For each of the 35 outpatient subjects, we obtained a time series of 25 body joints

as they were sitting at rest. We focused our analysis on this rest period because we wanted

to capture subjects in their natural state; we did not ask them to perform any action or

activity. This would allow our system to be deployed in EDs where stroke patients could be

monitored while waiting to be evaluated by a specialist. Note that it is often challenging

to ask patients admitted to the ED to perform motor tasks because they are likely severely

debilitated by their recent stroke.

To account for differences in heights, physicality, and body skeletons mapped by

the Kinect, we used body angles, a metric that is relative to each subject and that can

be compared between subjects. To extract the value of the core body angles (shown in

blue and green in Figure 2.2), we first calculated 3D vectors between 4 core body angles

(highlighted in dark red in Figure 2.2). We then applied simple trigonometry. The body

angle θ between 3D unit vectors a and b, each connecting 2 body joints, was calculated

(in degrees) as: θ = arccos(a · b). We monitored core body angles instead of limb angles

(about the elbow for example) because even at rest, subjects tended to move their arms

and legs. We did not ask subjects to remain perfectly still to avoid being obtrusive.

To account for temporal dynamics of motion, i.e. changes in the 4 core body angles,
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Figure 2.2: Body geometry recorded by the Microsoft Kinect v2. Orange dots represent
3D positions of body joints. Highlighted in blue and green are the 4 core body angles
analyzed. The vectors from which these angles were calculated are in red.

we computed the first order derivative or slope of each of the 4 time series. Slope was the

difference between 2 consecutive data points divided by ∆t = 1
Frequency of Data Capture (30 Hz) .

Slight changes in a body angle over time – fidgets – were captured in the time series of

its slope; if no fidgets occurred, slope was 0. Since fidgets happened randomly, if at all,

we could not predict when during the rest period they occurred or their amplitude (the

amount of change in body angles). We therefore averaged the root mean square (RMS)

value of the slope of the 4 core body angles over the entire rest duration.

Our data processing yielded a set of 4 features for each of the 35 subjects. Each

feature was obtained by averaging (over the rest period) the time series of the RMS slope

of 1 of the 4 core body angles. Our approach was greatly simplified because we were no

longer dealing with time series of dynamically changing body angles.
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2.2.3 Developing an Initial Hemiparesis Classification Pipeline

In order to predict whether each subject had hemiparesis or no hemiparesis based

on 4 average RMS slopes described above, we used the C-support vector classification

implementation from the Scikit-learn library (svc.svm.SVC) [91]. The benefit of using

SVMs over other machine learning algorithms is that they perform well when the number

of feature dimensions is much larger than the number of samples in the dataset.

Because of the low sample size of 35 subjects and to avoid overfitting, we used

leave-one-out cross validation instead of dividing the dataset into separate training and

test sets. Cross validation is an estimate of model generalizability, i.e. the expected fit of a

model to unseen data independent of the data used to train it. We used the classification

accuracy as a means of summarizing this fit. In the leave-one-out training paradigm, 34

outpatient subjects were used to train a linear SVM, which was subsequently tested with

the 1 outpatient subject left out of the training set. This process was repeated 35 times,

with each subject left out and tested exactly once. The leave-one-out training paradigm

maximized the amount of data for training. We obtained a predicted label per subject that

we then compared to the ground truth label. Classification accuracy was calculated as the

number of correct predictions divided by the total number of samples.

To account for imbalance between sample sizes of the classes, we weighted cost param-

eter C of each class i by the inverse of its sample size. Weighting cost in this way greater pe-

nalized mistakes in classes with lower sample size: Total Samples in Training Set (34 with leave-one-out)
Number of Samples of Class i in Training Set .

We performed a grid search over all possible combinations of the following values

of SVM hyper-parameters. The performance metric optimized was classification accuracy.

We tested radial basis function, linear, sigmoid, and polynomial kernels (with 2, 3, or 4

possible degrees for the polynomial kernel). Based on suggestions in literature, we varied

penalty parameter C and gamma by orders of magnitude [92]. To minimize overfitting, we
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capped C at 1.0 to favor a soft-margin classifier. Possible values for C were therefore 10−5,

10−4, 10−3, 10−2, 10−1, and 1.0. Possible values for gamma were 2e−9, 2e−6, 2e− 3, 0.25,

1.0, 2e3, 2e6, 2e9. We report classification accuracy of predictions from the best, most

optimal classifier identified by the grid search.

Performance of SVM Classifier

The grid search revealed that a radial basis function kernel (C = 10−5, gamma =

2e−9) gave the best performance in terms of classification accuracy. By applying an SVM

algorithm with a radial basis function kernel under the leave-one-out training/testing

methodology, we obtained a prediction per subject. We compared each prediction with the

corresponding ground truth label from the neurologist to calculate an overall accuracy.

With 35 subjects, the SVM was able to classify hemiparesis and no hemiparesis

with 100% accuracy. There were no instances of misclassification. We were able to achieve

this accuracy when we averaged the RMS slopes of body angles over the rest period for

each subject. Subjects only need to sit at rest without being asked to move, waiting for a

neurologist to start the NIHSS examination, for our algorithm to detect hemiparesis with

high accuracy. The benefit of such an approach is that it can be implemented in emergency

settings where subjects are not likely to move. Gait analysis in ambulances or in the ED,

for example, is difficult. Our method was less obtrusive than wearable accelerometers, and

did not need to be tailored to each subject because body angles were relative and could be

compared between subjects.

Moreover, the results support medical literature that show that hemiparetic patients

have difficulty maintaining their posture and balance due to reduced muscle strength on

the paretic side [87]. The ability to maintain balance requires postural control, which

involves limiting the body’s sway and keeping its center of gravity within its base of support.

16



Studies used a force platform to measure center-of-pressure displacements in sitting stroke

patients and found increased postural disturbance in hemiparetic patients and an inability

to recover from leaning either forward or to the paretic side while sitting [88, 89]. The

Kinect and RMS slope features computed from body angles at rest were seemingly accurate

and precise enough to capture subtle fidgets in sitting posture.

Despite promising results, there were significant drawbacks with this work that

limited its real-world use. The SVMs were not tested on subjects with severe symptoms,

only on recovering outpatient subjects with slight symptoms. The optimal model identified

by the grid search likely would not generalize well to patients with severe strokes seen in

the ED. Furthermore, accurate Kinect body skeletons (without occlusion of the core body)

were required for the classifier to work well. The angle-based machine learning pipeline also

involved complicated feature processing and grid search, making the features and results

difficult to interpret.

2.3 A Video-Based Machine Learning Pipeline for

Identifying Weakness in Sitting Stroke Patients

Despite drawbacks, our early hemiparesis detection efforts showed that a SVM

classifier could be used to identify hemiparesis from body posture at rest [93–95]. That is,

the way patients orient themselves in 3D space at rest is indicative of body weakness, a

conclusion bourne out by medical literature that showed that hemiparetic patients have

difficulty maintaining their posture and balance [96, 97]. Inspired by these results, we

leveraged the latest in video-based pose estimation to automatically diagnose hemiparesis

from 10 seconds of footage of stroke subjects simply sitting at rest, without requiring

any movement (Figure 2.3). We obtained high performance with a SVM classifier trained
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and rigorously tested with two real-world clinical datasets: the dataset of outpatient

clinic subjects described in Section 2.2.1 and a dataset of more severe inpatient subjects.

Moreover, our new video-based classifier exceeded the performance of 8 experienced stroke

specialists conducting a video-based assessment of hemiparesis.

2.3.1 Obtaining Body Skeletons from Video

In our initial approach described in Section 2.2.2, we used body skeletons (particularly

body joint angles) generated by the Microsoft Kinect v2 to classify hemiparesis [93–95].

Unfortunately, the hospital gowns worn by some subjects (especially inpatient subjects, as

described later) interfered with the Kinect’s depth-based pose estimation approach.

As an alternative, we used VideoPose3D, a deep learning approach for 3D human

pose estimation from video published by Pavllo et al. in 2019 [98]. Using the VideoPose3D

technique and the high-definition videos recorded, we generated 17-joint body skeletons for

Figure 2.3: Overview of video-based hemiparesis classification approach. Body skeletons
are obtained from videos of subjects sitting at rest. The covariances of body joints are used
as input into a linear support vector machine classifier for hemiparesis detection.
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each subject. All subjects had a rest duration of at least 10 seconds. So we considered only

the first 10 seconds of recorded video to avoid omitting subjects from the dataset.

At 60 frames per second for X seconds of video, T = 60 ∗X total frames. For each

frame t out of T , we obtained x (left/right), y (up/down), z (toward/away from camera)

spatial coordinates of 17 body joints per subject. We defined S as the vector of all joint

locations per subject:

S = [x1 , ..., x17 , y1 , ..., y17 , z1 , ..., z17 ]′ (|S| = 51)

2.3.2 Computing a Feature Descriptor for Body Posture

Body posture at rest has shown to be indicative of hemiparesis [94, 95]. Because

we only considered subjects sitting at rest and subjects did not significantly move around

during the 10 seconds, we treated each frame of video as independent from the next. Each

subject had T samples from which we calculated sample mean S̄.

To obtain a feature descriptor for body posture, we computed the covariance matrix

from 3D joint locations for each subject, as described by Hussein et al. in 2013 [99]. A

benefit of the covariance matrix is that it can be visualized and interpreted easily with

a heat map. The covariance matrix describes whether 3D body joint positions correlate

positively with each other, negatively with each, or do not correlate, and to what extent.

We calculated the sample covariance as follows:

Cov(S) =
1

T − 1

T∑
t=1

(S− S̄)(S− S̄)′

where ′ is the transpose operator.

Each subject had T vectors S with which the covariance matrix for that subject

was calculated. T was defined to be the frame rate of video capture, 60 frames per second,

multiplied with the duration of video in seconds, X. We considered X values between 1
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second and 10 seconds (T between 60 and 600) to gauge how few samples per subject

were required for good classification performance. That is, we wanted to identify the

least number of frames of video necessary for SVM performance to be better than that of

clinician raters.

By definition, the sample covariance matrix is a symmetric 51X51 matrix so we

only consider the upper triangle of Cov(S), U. After flattening, the descriptor has length

|S|(|S| + 1)/2 = 1326: Uflat = [u1 , u2 , ..., u1326 ]. In this way, for outpatient subjects,

we obtained a set of 35 Uflat descriptors. The feature processing protocol is outlined in

Figure 2.3.

2.3.3 A Human Benchmark for Hemiparesis Classification

In order to obtain a baseline against which to compare the performance of our

machine learning model, we created and emailed a survey to clinicians at the UCSD Stroke

Center. Telestroke evaluations are as accurate as in-person evaluations in diagnosing acute

stroke, and video-based motor arm and leg tests in particular having high NIHSS score

correlation with bedside evaluations [100,101]. Motivated by these studies, we asked stroke

specialists to view the recorded videos of 35 subjects sitting at rest (for 10 seconds to 2

minutes depending on the subject) as well as undergoing NIHSS motor tests; we obtained

a separate set of responses from each type of video shown. The former is also the input

into the machine learning pipeline (see Figure 2.3) while the latter is representative of a

telestroke NIHSS motor exam. Average accuracy was calculated for each of the two cases

by comparing survey participants’ responses for whether or not an outpatient subject was

hemiparetic with the results from the in-person neurologist’s motor exam. (Note that

survey participants had never examined any of the 35 subjects previously, in person or over

video.)
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8 clinicians completed the survey. We found that when examining at footage of

subjects at rest, average accuracy across the 8 participants was 64%. Diagnostic performance

was better when participants looked at footage of the NIHSS motor exam – 68% average

accuracy.

The benefit of a computational diagnostic tool is that it should perform consistently

across multiple runs, whereas human evaluation can give inconsistent results based on the

individual conducting the NIHSS exam. To gauge this inconsistency, we calculated the

inter-rater reliability using the free-marginal multi-rater kappa coefficient, κfree. This type

of kappa coefficient is suitable for cases involving more than two raters and for which raters

are not informed beforehand of the number of subjects that fall into each category [102].

Both conditions held true in our survey. The equation for the free-marginal multi-rater

kappa coefficient is:

κfree =

[
1

Nn (n− 1)

(∑N
i=1

∑k
j=1 n

2
ij −Nn

)]
−
[
1
k

]
1−

[
1
k

]
N is the number of subjects evaluated via video, n is the number of raters, and k is

the total number of categories into which the subjects can be placed. We calculated κfree

for each of the two sets of participant responses. A κfree value of 0 indicates no consistency

in the responses of raters while a value of 1 indicates perfect consistency. Inspired by Fleiss’

Rule of Thumb, we used a cutoff of 0.75 for gauging good or bad inter-rater reliability;

κfree > 0.75 was considered good [103].

We calculated the free-marginal multi-rater kappa coefficient, κfree, with N = 35

outpatient subjects, n = 8 survey participants, and K = 2 categories (hemiparetic or not).

Kappa for raters examining videos of outpatient subjects at rest, κfree_rest, was 0.69. For

raters examining videos of the NIHSS motor exam, κfree_movement was 0.61. Both κfree

values were below Fleiss’ 0.75 cutoff for good performance.
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2.3.4 Video-Based Hemiparesis Classification with SVMs

To classify hemiparesis from covariance descriptors, we once again used the Scikit-

learn implementation of a C-support vector machine (svc.svm.SVC) [91]. The SVM classifier

is known to perform well for small datasets. Moreover, while we explored the use of other

kernels, using a linear kernel enabled us to not only maximize classification performance but

also let us determine the top 10 features that contributed the most towards classification

(that is, the features with the greatest weights svm.coef_ ) [104]. Identifying the support

vectors that influence the decision boundary is intuitive only for a linear kernel [105].

Normalization of data has been shown to maximize the performance of SVMs. We

explored two strategies:

L2 Norm:
Uflat

‖Uflat‖2
=

Uflat√
u12 + u22 + · · ·+ u13262

Max Norm:
Uflat

max(Uflat)
=

Uflat

max(u1, u2, ..., u1326)

To facilitate comparison with the results from human raters, we compared the

predictions of the SVM with the hemiparesis diagnoses from the in-person neurologist to

compute raw accuracy. We also calculated weighted F1, weighted precision, and weighted

recall. For rigor, we report results from 6 different training and testing paradigms: leave-

one-out and 90/10, 80/20, 75/25, 66/33, and 50/50 train/test splits. The leave-one-out

training paradigm was the same as the one described in Section 2.2.3. Leave-one-out

not only maximized the amount of data used for training but also allowed us to identify

problematic subjects and possible reasons why the SVM failed to make a correct prediction.

To test the robustness of the classifier and its sensitivity to reducing the number

of training samples, we randomly selected 90% of the dataset (31 outpatient subjects) for

training and 10% (4 outpatient subjects) for testing. We calculated the aforementioned

performance metrics from predictions made on the test set. We repeated this process 20

times for 20 different classifiers, each trained on a random selection of 90% of the dataset
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and tested on 10%. We averaged the evaluation metrics across all 20 runs to check how

consistently the SVM performed. We repeated this same analysis for smaller training set

sizes – 80/20, 75/25, 66/33, and 50/50 train/test splits.

Performance of SVM on Outpatient Subjects Only

Table 2.1 summarizes the results of experiments using outpatient subjects only. The

leave-one-out training paradigm had highest accuracy, weighted F1, weighted precision, and

weighted recall, all >=80%. As the size of the training set decreased, the performance of the

SVM generally decreased. Regardless, all accuracies, including for the 50/50 train/test split,

were >=70%. L2 normalization yielded slightly better SVM performance on outpatient

subjects than max normalization (∼3% bump in accuracy for leave-one-out).

SVM Performance Compared to Clinicians

80% accuracy obtained with leave-one-out exceeded 64% average accuracy of 8

clinician raters using video footage of subjects sitting at rest to diagnose hemiparesis. The

SVM also outperformed clinician raters using video footage of subjects moving their arms

and legs as part of the NIHSS motor exams.

80% was obtained with T = 60 ∗ 10 = 600 samples per subject. By varying the

number of samples used to compute a covariance matrix per subject, we found that as

the number of samples increased, the performance of the SVM generally increased as well.

Figure 2.4 shows the accuracy and weighted F1 metrics for a linear SVM trained and

tested with leave-one-out with respect to the number of seconds of video used as input. We

found that we needed at least 8 seconds of video footage to match the best performance of

clinician raters (68% accuracy).
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Figure 2.4: Accuracy and weighted F1 of SVM trained using leave-one-out with respect
to duration of video used as input. Classifier performance generally increased with the
number of frames of video used to calculate covariance descriptors. Top: SVM trained
on outpatient subjects only. In red are the performance of clinician raters using video
to detect hemiparesis, either footage of subjects at rest ("Clinician Raters Rest") or of
subjects moving their arms and legs as part of NIHSS motor exams ("Clinician Raters
Movement"). Accuracy meets and exceeds human benchmark, for durations greater than
8 s. Bottom: SVM trained on outpatient and inpatient subjects.
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2.3.5 Incorporating Inpatient Subjects with Severe Weakness

To augment the dataset of outpatient subjects, we incorporated 21 subjects – 12

with hemiparesis and 9 without – seen at inpatient clinics at the UCSD Jacobs and Hillcrest

Medical Centers. These subjects were diagnosed with stroke 24 to 48 hours prior to being

recorded, and were kept in hospital for observation. Due to the recency of stroke, inpatient

subjects had more severe symptoms; the sum of the left limb motor tests or right limb motor

tests ranged from 1 to 8 rather than from 1 to 4 as was the case with hemiparetic outpatient

subjects. Data collection protocol was identical to the one described for outpatient subjects.

With inpatient subjects included, the dataset was comprised of 56 subjects total – 25

hemiparetic subjects and 31 non-hemiparetic controls.

We re-ran the 6 classification experiments detailed in Section 2.3.4 with the larger

dataset of outpatient and inpatient subjects. Note that inpatient data collection is ongoing.

We do not yet have a complete set of subjects for human raters to evaluate via video as

in the outpatient case, so we do not have a human performance benchmark for inpatient

subjects.

Performance of SVM with Inpatient Subjects Included

Table 2.2 summarizes the results of the linear SVM when we incorporated inpa-

tient subjects with more severe hemiparesis. With inpatient subjects included, the max

normalization strategy yielded marginally better performance than the L2 normalization

strategy – 76.79% accuracy for the former as compared to 73.21% for the latter. These

metrics were for the leave-one-out experiment, when the training set size was maximized.

The best performance was obtained when we split the dataset into 80% training and 20%

testing – 79.58% accuracy (averaged across 20 classifiers). Once again, SVM performance

generally increased with the duration of video used as input (the number of samples used
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to compute a covariance matrix per subject). Performance with 9 seconds of video was

slightly better than with 10 seconds, ∼80% versus ∼77% (Figure 2.4).

2.4 Contributions to the Field

A computational system designed to aid acute stroke diagnosis needs to capture the

expertise of neurologists and translate it outside of the stroke center and into (underserved)

emergency departments. As the first part of such a system, we developed a machine

learning pipeline that used 3D body posture at rest (described by the covariance matrix of

body joints) to detect hemiparesis or weakness with high accuracy, exceeding that of stroke

specialists conducting a video-based hemiparesis assessment. A neurologist is required to

conduct the NIHSS exam reliably. Given that we obtained high performance with sitting

subjects without requiring them to perform any particular exercise, we believe that out

approach is primed to be taken outside of stroke centers and into places where neurologists

are not readily available. Our work here paves the way for a more comprehensive clinical

decision support system for stroke diagnosis that considers other acute symptoms as

well, like facial droop and speech difficulty. Ultimately, we hope that this work reduces

misdiagnosis of stroke in the emergency department and overall improves stroke patient

outcomes.

2.4.1 Making the Most of Small Datasets with Leave-One-Out

In this work, we collected a novel dataset of 35 outpatient stroke subjects across

the stroke severity spectrum. In Section 2.2.3, we used a leave-one-out cross validation

approach to train and test an SVM model, along with a grid search of parameters to find

the optimal classifier. The benefit of leave-one-out was that it enabled us to use the most

amount of data possible for training – 34 subjects out of 35. Leave-one-out cross validation
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is a low bias technique, and yielded perfect accuracy in differentiating between left-side

hemiparesis, right-side hemiparesis, and no hemiparesis from the slope of body angles

(as reported in Section 2.2.3) [36]. The leave-one-out technique has certain drawbacks

however. Leave-one-out results are often over optimistic especially on small datasets [38,40].

Typically, overfitting refers to a hypothesis or model (with several parameters) that is

too complex and perfectly fits the training data generalizing poorly on test data. With

leave-one-out coupled with an extensive grid search, overfitting comes from having tested

too many hypotheses [36, 37, 106]. For these reasons, when we developed a video-based

approach using covariance features as input, we more rigorously evaluated the classifier

by splitting the dataset into training and test. The high performance obtained with a

linear SVM trained on just 50% of the outpatient data – 72% accuracy, greater than the

68% benchmark from 8 domain experts – was a strong indicator that the model was not

overfitting and could generalize well (see Section 2.3.4).

Note that we also reported results from leave-one-out as it let us identify problematic

subjects by analyzing SVM performance on a per-subject basis. To better represent subjects

with severe stroke in our dataset, we incorporated 21 inpatient subjects. The accuracy

dropped from 80% to 77% when we trained and tested the SVM classifier on the augmented

dataset with leave-one-out. This in part was due to errors introduced by the addition of

inpatient subjects. Some inpatient subjects had such severe weakness (in conjunction with

other severe stroke symptoms) that they were unable to sit upright and were recorded lying

down, as can be seen in Figure 2.5. Other subjects were recorded sitting abnormally. We

believe that the SVM was not able to classify these subjects correctly due to their aberrant

postures at rest; the SVM was trained on a dataset that skewed in favor of outpatient

subjects with less severe symptoms. The leave-one-out strategy revealed the type of patients

missing in our dataset, allowing us to focus our future data collection efforts on those lying
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down or sitting abnormally due to the high severity of their symptoms. This is required to

translate our approach to the emergency department, where potential stroke patients are

often brought in by ambulances on gurneys and so are lying down rather than sitting up

right. We hope to improve the generalizability of the SVM model by accommodating these

types of body postures.

The example of hemiparesis detection in stroke subjects with machine learning

reveals the pros and cons of the leave-one-out training strategy. It enables maximal use of

data for training and reveals problematic subjects and gaps in a dataset, but is only an

estimate of generalizability and can still overfit. It is not replacement for a more rigorous

evaluation strategy involving train/test splits, but did allow us to focus on recording

subjects with greater weakness going forward.

2.4.2 Importance of Interpretability in Medicine

In Chapter 1, we discussed the fact that physicians prefer clinical decision support

systems that enable interpretation of the reasons underlying predictions [53–55]. So we

were conscious of explainability when developing our hemiparesis classification pipelines.

For example, we used a SVM with linear kernel in order to be able to identify the features

most useful for classification; identifying support vectors is difficult with nonlinear kernels

that implicitly map features to high-dimensional spaces that are difficult to comprehend or

visualize [105]. 20 classifiers were each trained on a random selection of 90% of outpatient

and inpatient subjects and tested on a random 10%, as described in Section 2.3.4. We

identified the 10 features weighted the highest by all 20 trained SVM classifiers.

Moreover, despite its simplicity as a feature descriptor, the covariance matrix of

3D body joints not only had high discriminatory potential yielding robust results but also

could be easily visualized. 3D orientations of wrists and ankles relative to each other and
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Figure 2.5: Hemiparetic subjects missed by the SVM (false negatives). On the left are
severely debilitated subjects who were unable to sit upright or were sitting abnormally,
possible reasons for the erroneous predictions. The SVM was trained primarily using videos
of subjects sitting upright, like the two subjects on the right. Inferred body joints are
displayed in red and black dots.

to other joints were the most discriminatory for hemiparesis classification. To visualize

how these covariances were different between hemiparetic and non-hemiparetic subjects,

we averaged the covariance matrices for 25 hemiparetic subjects and plotted the average as

a heat map. We did the same for 31 non-hemiparetic subjects, and highlighted the top 10

features on the 2 heat maps. See Figure 2.4.2.

Several of the top 10 most discriminatory features for classification were the variances

of left ankle, left wrist, right ankle, and right wrist and the covariances of these joints with
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Figure 2.6: Heat map of average covariance matrix for outpatient and inpatient subjects
without hemiparesis (top) and with hemiparesis (bottom). Top 10 most discriminatory
features for classification are highlighted in black.
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respect to each other. This result emphasized that weakness primarily impacts the arms

and legs; the NIHSS motor exams are used to identify weakness for this reason. Moreover,

limb positions even at rest are seemingly related to hemiparesis. We therefore believe that

as long as we are able to record the 3D positions of the limb joints well, the SVM classifier

approach should generalize well.

The variance of y (which represents up/down height) of the left wrist was highly

positively in control subjects but 0 in hemiparetic subjects. That is, subjects without

hemiparesis had a larger range of values for the heights of the left wrist, whereas hemiparetic

subjects generally kept their left wrist positioned the same (vertically). The opposite was

true for variance of y of the right wrist. Such asymmetries in the heat maps of the two classes

were related to the side of hemiparesis with which a patient was affected. Hemiparesis is

the partial paralysis of one side of the body or the other, and we did not consider which

side was weak in our classification experiments. We chose to focus on binary classification

instead of three-class because in practice, the side of hemiparesis is not relevant to the

decision to administer stroke treatment.

Interpreting the linear SVM and the covariance feature descriptor enabled us to

identify whether the most discriminatory features made intuitive sense, allowing us to

validate whether the machine learning pipeline followed a clear logic – a sanity check to

confirm that the SVM is not simply learning a one-off rule unique to the datasets that were

used to train it.

2.4.3 Benchmarking Performance Against Domain Experts

A simple, off-the-shelf SVM classifier with linear kernel was able to identify hemi-

paretic and non-hemiparetic control subjects with 80.0% accuracy when trained with

leave-one-out, using outpatient subjects only. Initially, we did not know whether this
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accuracy was impressive as we were missing a benchmark against which to compare SVM

performance. We therefore recruited 8 stroke specialists who conducted a video-based

assessment of hemiparesis. When these video raters assessed videos of subjects moving their

arms and legs as part of the NIHSS exam, average accuracy for hemiparesis detection was

68%. When they assessed videos of subjects sitting at rest, average accuracy dropped to

61%. This would make sense as the former is typically used by stroke specialists in practice

to identify hemiparesis. Identifying weakness from subjects at rest is not the standard and

requires years of experience with paralyzed patients and pattern recognition. The clinician

raters also had the benefit of viewing more than 10 seconds of video of sitting subjects,

when available. The input into the SVM was truncated at 10 seconds for all subjects to

avoid excluding subjects with short wait times from the dataset. Regardless, the SVM

clearly exceeded the performance of domain experts.

Note that the performance results reported in Table 2.1 and Table 2.2 were averaged

across 20 classifiers, for all experiments except leave-one-out. Each classifier was tested

on a different, random selection of subjects. So on average, the SVM performed well

regardless of the subjects chosen to test it. This would indicate that the linear SVM was

not overfitting on the subjects used for training, and highlights the consistency of results

obtained with the covariance feature descriptor. By comparison, human raters were not

consistent. 8 raters assessing videos of the NIHSS motor exam and of subjects sitting at

rest had inter-rater reliability less than the cutoff for good performance (see Section 2.3.3).

Performance therefore varied depending on the stroke specialist conducting the assessment,

whereas the SVM classifier consistently did well.
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Chapter 3

Cough-Based Respiratory Disease

Diagnosis

3.1 Motivation and Background

Respiratory diseases, characterized primarily by difficulty breathing, are some of

the most prevalent illnesses in the world. In the United States alone, chronic obstructive

pulmonary disease (COPD) is the third leading cause of death [107]. Asthma affects more

than 25 million people in the United States, of which 6 million are children [108].

The human diagnosis of respiratory diseases is challenging and accurately assessing

airway sounds depends on extensive clinical training and experience [109,110]. Accurate

testing not only requires several assessment modalities such as auscultatory examinations,

spirometry, fluid analysis, and medical imaging but also trained clinicians to obtain

and assess results. The difficulty of accurate testing is highlighted by the poor inter-

rater reliability of clinicians’ diagnoses, particularly those made through radiographic

interpretation and auscultation [111–114].

Errors in asthma or COPD diagnosis (particularly under diagnosis) affect treatment
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and even mortality [114]. Moreover, COPD is progressive and presents with slow-to-

develop symptoms that are easily dismissed by individuals but gradually get debilitating;

not catching COPD early will delay vital treatment and increase morbidity. Automatic

diagnosis of respiratory diseases, particularly those that use machine learning techniques

and work in the wild, is a growing field that shows much promise in addressing the challenges

of human diagnosis. Unfortunately, these efforts are hindered by the small, imbalanced

datasets prevalent in healthcare applications.

To address these shortcomings, we drew inspiration from the high correlation of

coughs with respiratory diseases, the ubiquity of smartphones for passively capturing

coughs, and data augmentation using unsupervised generative models (Figure 3.1). In this

chapter, we discuss our efforts to develop random forest (RF) and support vector machine

(SVM) classification pipelines that used coughs recorded using a smartphone microphone

to distinguish between adults that were healthy and those with major respiratory diseases,

namely asthma, COPD, and chronic cough. We developed and trained a generative

adversarial network (GAN) per disease class in order to synthesize raw audio samples of

coughs – “CoughGAN.” We discuss how balancing and augmenting a small, real-world

clinical dataset with synthetic samples can boost the performance of the classifiers and

reduce overfitting.

Figure 3.1: Specialized medical equipment like spirometers can be replaced with smart-
phones for automatic, cough-based respiratory disease diagnosis.

37



3.1.1 Automatic Diagnosis of Respiratory Diseases

Badnjevic et al. developed an expert diagnostic system to automatically identify

asthma and COPD in clinical settings [115]. The system used a symptom-based question-

naire to screen out healthy patients and a classifier for distinguishing between COPD and

asthma. The results of the questionnaire and a pulmonary function test (vital capacity,

forced vital capacity, forced expiratory volume in the first second, etc.) were used to

train a one-layer artificial neural network (ANN). The authors were able to classify COPD

and asthma with over 95% accuracy [115]. Despite the decent performance, the primary

limitation of this work is that it was designed to be deployed in clinical settings. The

features used were the results of manually filled questionnaires and tests conducted by a

trained clinician. So this work has some of the same aforementioned limitations as human

diagnosis.

Rather than using the results of medical tests, several studies have proven that

coughs can reliably discriminate between respiratory diseases such as asthma, COPD, and

pertussis [116,117].

Amrulloh et al. showed that cough sounds could be used to differentiate between

asthma and pneumonia in children using ANNs [118]. The benefit of using voluntary

coughs is that they do not require any medical testing, which can especially be challenging

to perform on children. The authors recorded coughs using a microphone and computed

features commonly used in audio signal processing – Mel-frequency cepstral coefficients

(MFCCs), entropy, zero crossing rate (ZCR), etc. With a small subject pool of eighteen and

the leave-one-out training paradigm, the authors obtained 94% accuracy, 100% specificity,

and 89% sensitivity [118].

Another study by Porter et al. expanded on this work and used cough sounds

to differentiate between asthma, pneumonia, lower respiratory tract disease, croup, and
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bronchiolitis in children [119]. The authors were able to show a high level of agreement

between the results of their automated approach and the diagnoses of four pediatric

clinicians [119]. These positive results lend credence to the authors’ idea that during a

cough event, there is an unimpeded column of air between the lungs and atmosphere. The

authors hypothesized that this column propagates sounds generated inside the lungs and

that pathophysiological changes caused by different respiratory conditions modulate the

sound quality. This enabled the use of the signal processing techniques common to speech

recognition to analyze the cough sounds [119,120]. Cough features are overall far simpler

to obtain as they do not require any medical tests to be performed, nor do they require

any specific equipment.

The ubiquity of smartphones and smart wearables has opened the door for health

monitoring through mobile sensing, especially for pulmonary patients [121,122]. Because

of the rich acoustic data that can be captured via smartphone microphones, studies have

used signal processing and deep learning techniques to reliably perform smartphone-based

spirometry to quantitatively assess lung inhalation and exhalation [123,124]. The benefit

of such tests is that they do not require experienced medical professionals nor expensive

equipment to conduct, allowing for an inexpensive alternative for respiratory disease

assessments. Such technology makes the continuous identification of cough events and

cough data capture far simpler and more feasible in the wild than in clinics [125,126].

3.1.2 Limitations of Respiratory Disease Datasets

The primary reason for the use of the k-fold or leave-one-out training paradigm in

the aforementioned studies was the relatively small size of the healthcare datasets collected

by the authors; by comparison, datasets like MNIST or CIFAR that are commonly used

in machine and deep learning applications are orders of magnitude larger [115,118,119].

39



Leave-one-out enables maximal use of the little data that is available for training and

has low bias. Unfortunately, k-fold/leave-one-out has high variance that may lead to

unreliable estimates especially for classifiers with a large number of classes. So the good

k-fold/leave-one-out performance obtained in prior work with several respiratory disease

classes may not necessarily translate to good performance on unseen data [127,128].

Furthermore, particularly for imbalanced data, when an instance of a minority label

is removed as part of leave-one-out, the model will most likely pick (one of) the majority

class(es) [127]. Unfortunately, healthcare datasets tend to be imbalanced, as either there

are far more healthy subjects than sick or data collection and subject recruitment in clinical

settings is biased towards sick subjects because healthy individuals do not often go to

a hospital. The inconsistencies associated with k-fold/leave-one-out motivate the use of

typical train-test dataset splits. The standard, more rigorous training paradigm that uses a

training set, an optional validation set, and a separate test set that the classifier has never

seen is a better indicator of the generalizability of a trained model. But the issues with the

small size of healthcare datasets and their class imbalance still need to be addressed.

A data augmentation strategy would solve both concerns, enabling the use of a more

rigorous evaluation method that uses a test set unseen by the model. For audio, synthetic

examples can be generated by adding noise, changing pitch, or changing speed. However,

for classifying respiratory diseases, it is not yet clear what aspects of audio signals would

be relevant for diagnosis; modifying audio randomly may lead to the corruption of features

that are required to distinguish between healthy and different respiratory conditions.

Therefore, in this work, we used generative adversarial networks (GANs) as a way

to cleverly engineer synthetic examples similar to real examples. Because the technique is

unsupervised, synthetic examples that preserved class label information could be created

without having to specify individual transformations. Their use in healthcare applications
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such as those involving medical images and electrocardiograms show that GANs can be used

to augment datasets without sacrificing diagnostic ability; in fact, adding synthetic examples

created by GANs for training have been shown to boost test performance [129–133]. We

demonstrated that the same held true for respiratory disease classification.

3.2 A Respiratory Disease Classification Pipeline

3.2.1 Building a Dataset of Coughs

In collaboration with a pulmonary clinic at the Brigham and Women’s Hospital, we

recruited 45 subjects – 5 were healthy, 19 were diagnosed with asthma, 17 with COPD,

and 4 with chronic cough (a cough that persisted for more than 8 weeks). Each subject

was asked to voluntarily cough as many times for two minutes. The audio was recorded

with sampling frequency 44100 Hz using a Samsung Galaxy Note 8 smartphone that was

held 3 feet in front of the subjects sitting on a table. Study procedures were approved

by an Institutional Review Board (IRB) and the subjects gave informed consent for their

recordings.

For each subject, three annotators manually annotated cough events by going

through the recorded audio and identifying and saving each single cough event – defined as

a rapid, sharp expulsion of air from the lungs sometimes directly preceded by inhalation;

the duration of a single cough was typically 0.5 seconds. Note that because the coughs

were voluntarily produced, subjects had a varying number of cough examples each. In

total, there were 2832 annotated cough examples: 237 healthy, 1106 asthma, 1231 COPD,

and 258 chronic cough.

The dataset collected varied in the number of subjects with a particular condition –

there were only 5 healthy subjects but 19 with asthma, for example – and in the number of
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cough examples per subject – from 11 to 168 coughs. We addressed the former imbalance by

adjusting the class weights of the costs of the classifier models (described in Section 3.2.4)

and the latter imbalance in this dataset preparation step. To discourage models from simply

predicting the class with the larger number of coughs, we only used 11 coughs (the least

number of coughs produced) from each subject to train the classifiers. So for the healthy

vs. asthma experiment, there were a total of 11 ∗ 19 = 209 (44 healthy, 165 asthmatic)

examples in the training set and 5 ∗ 11 = 55 (11 healthy, 44 asthmatic) in the test.

3.2.2 Creating Synthetic Coughs with GANs to Augment Dataset

We leveraged a generative model for 1 second audio synthesis – WaveGAN – to

capture cough audio patterns and to generate synthetic coughs [134]. Because the coughs

collected were roughly 0.5 seconds in duration, we modified the WaveGAN’s generator to

create audio samples that were 8192 data points in length; this corresponded to 0.5 seconds

at a sampling frequency of 16384 Hz. We modified the discriminator network to accept

0.5 second coughs as input as well. We trained the GAN with randomly selected batches

of batch_size. Figure 3.2 summarizes this architecture, detailed below. We implemented

CoughGAN in TensorFlow [135].

Generator Architecture

The generator accepted noise sampled from the uniform distribution, with input

shape batch_size × 100. The first layer of the generator was a fully connected dense layer

with rectified linear unit (ReLu) activation and 32768 neurons. The output of this layer

was reshaped to batch_size × 16 × 2048. We then used four one-dimensional transposed

convolution layers to upsample the noise. All four layers used ReLU activation and one-

dimensional filters of length 25 with stride of 4 (with TensorFlow’s “SAME” padding
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algorithm). The first of the four layers had 1024 filters, the second 512 filters, the third 256

filters, and the fourth 128 filters. We added a last one-dimensional transposed convolution

layer with tanh activation and 1 filter of length 25 and stride 2. This layer reshaped the

output of the previous layer, batch_size × 4096 × 128, to batch_size × 8192 × 1 (for 1

audio channel).

Discriminator Architecture

The discriminator consisted of five one-dimensional convolution layers with leaky

ReLU activation and filters of length 25 (with TensorFlow’s “SAME” padding algorithm).

The first layer had 64 filters with stride 2, reshaping the input batch_size × 8192 × 1 to

batch_size × 4096 × 64. The remaining four layers used 128, 256, 512, and 1024 filters with

stride 4. As outlined in the WaveGAN paper, we randomly shuffled the phase of the output

of each of these layers (by -2 to 2 radians). This was done to discourage the discriminator

from trivially learning to reject synthetic examples by the artifact frequencies caused by

transposed convolutions in the generator [134]. The output of the fifth convolution layer

was flattened and connected to a single logit using a dense layer. This logit described

whether an input cough was real or synthetic.

CoughGAN Training

For training, we used the Wasserstein distance with the gradient penalty strategy

proposed by Gulrajani et al. to encourage GAN loss convergence [136]. To minimize the

Wasserstein distance, we used the Adam optimizer with a learning rate of 0.0001. We also

used a batch_size of 64 samples. We trained a separate CoughGAN per label (healthy,

asthma, COPD, chronic cough) and used the raw audio samples of the corresponding

label when training, after resampling (at 16384 Hz) and normalizing the decoded audio

waveforms.
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Figure 3.2: CoughGAN discriminator (in blue) and generator (in red) architectures. The
discriminator takes cough examples as input and essentially determines whether they are
real or synthetic. The generator transforms noise into synthetic cough examples.

During training, we calculated the short-time frequency transform (STFT) of the

real batch used as input and of the synthetic batch generated at that training step (with

frame size of about 30 milliseconds and frame step of about 15 milliseconds). We plotted

the least-squares distance between the two (training step on the horizontal axis). We

trained each GAN until this difference between real and synthetic examples converged to a

minimum value. This comparison was done per class label.

Evaluating Synthetic Cough Quality

After the CoughGANs were trained, we used the trained generators to create 1000

synthetic samples per label. Each sample was passed through a low-pass filter and encoded.

We used a low-pass filter at 5000 Hz to remove high frequency noise in the generated audio,
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an occasional issue when using WaveGAN. In order to ensure that the generator was not

simply producing the same synthetic cough samples repeatedly, we listened to each of the

1000 synthetic coughs per label as a check of diversity.

For each of the four CoughGANs trained, the plot of the least-squares distance

between the STFT of the real and synthetic batches converged to a minimum, steady

value (Figure 3.3). Note that the least-squares distance metric is a quantitative measure

of the similarity between real and synthetic coughs. We used this metric as an indicator

for when to stop CoughGAN training and the fact that the least-squares distance curves

converge to a low value around zero at the end of training shows that synthetic coughs

are similar to real coughs. (A value of zero would mean that the synthetic coughs are

exactly the same as real coughs, akin to oversampling.) In this way, the CoughGANs

were successfully trained to mimic real coughs. This similarity is confirmed by Figure 3.4,

which shows the average spectrogram generated from randomly selected real and synthetic

coughs for the four classes. Figure 3.4 shows that differences between the real spectrograms

of the four types of coughs were maintained by the generator when creating synthetic

coughs. For example, the spectrogram for real asthma coughs has higher frequencies than

the spectrogram for real healthy coughs. This difference can also be seen between the

spectrograms for synthetic asthma and synthetic healthy coughs. We thus preserved class

label information when creating synthetic coughs.

Furthermore, listening to the synthetic audio samples revealed that the trained

CoughGANs successfully generated realistic sounding coughs. Listening to the audio also

confirmed that the generator was not trained to simply output a single cough waveform.

A diverse range of coughs were generated for the four labels. The more quantitative

least-squares distance assessment, coupled with listening to the coughs and looking at the

spectrograms, showed that synthetic coughs were similar to real ones.
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Figure 3.3: Least-squares difference between the short-time frequency transform of a
batch (of size 64) of synthetic examples and a batch of real examples, during training. All
four curves converged to a minimum, steady value by the end of training.

3.2.3 Extracting Audio Features from Coughs

With the pyAudioAnalysis library, we extracted short-term feature sequences for

each cough, be it real or synthetic [137]. We used a frame size of 50 milliseconds and a

frame step of 40 milliseconds (20% overlap). We computed, for each time frame, features

used in the aforementioned studies and also used commonly in speech processing tasks:

ZCR, energy, entropy of energy, spectral centroid, spectral spread, spectral entropy, spectral

flux, spectral rolloff, and 13 MFCCs. Since there were slight differences in how the three

annotators segmented coughs, a cough event could occur at the start, middle, or end of the

audio, depending on the annotator. We therefore averaged each of the 21 features over the

time frames corresponding to a cough example.
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Figure 3.4: Spectrograms of real and synthetic coughs, for healthy, asthma, COPD, and
chronic cough conditions. The vertical axis is the frequency ranging from 0 to 8192 Hz.
The horizontal axis is time from 0 to 0.5 seconds. Each spectrogram was computed by
taking the average of the spectrograms of 64 randomly chosen audio samples with the
corresponding label.

3.2.4 Effects of Dataset Augmentation on Classification

We used two common supervised-learning models, a SVM and RF, for cough-based

classification and to evaluate the effectiveness of adding synthetic examples. The SVM and

RF models were implemented in Scikit-learn [91]. We ran four binary, medically-relevant

classification experiments: healthy vs. asthma, healthy vs. COPD, healthy vs. chronic

cough, and asthma vs. COPD.

For each experiment, to ensure that there were subjects from each class in both the

training and testing of the classifier models, we randomly picked approximately 20% of the

subjects for each of the two classes for a test set, with the remaining 80% of each class

for training. For example, for the healthy vs. asthma experiment, we selected 1 out of 5
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healthy subjects and 4 out of 19 asthmatic subjects, giving a test set of 5 subjects and

training set of 19. We repeated this selection process 5 times and ran the analyses for each

of the 5 random selections for the training and test sets. Essentially, the model was trained,

tuned, and evaluated 5 times independently. For each of these runs, we computed the

test accuracy, F1 score, true positive rate (TPR) or sensitivity, false positive rate (FPR),

false negative rate (FNR), and true negative rate (TNR) or specificity. The healthy class

was the “negative” class for the first three experiments, while the asthma class was the

“negative” class for the asthma vs. COPD experiment. We averaged these performance

metrics over the 5 runs. This was done to account for any variation in performance that

might occur due to the specific subjects randomly chosen for each run.

Note that we intentionally limited the work presented here to binary classification

results. Multi-class classification presents unique challenges that, coupled with the greater

complexity of deep learning models like convolutional neural networks, would have made it

difficult to isolate and analyze the performance improvements obtained via GAN-based

data augmentation.

Tuning Models

We were conscious of overfitting given the small size of our dataset. So we chose

features and tuned hyperparameters to maximize the performance we could obtain from

each baseline model – trained without synthetic examples – for the four binary classification

experiments.

Motivated by the feature selection used in prior work, we used average ZCR, spectral

centroid, and 12 MFCCs as features for the SVM [119]. To maximize RF performance and

to reduce overfitting, we did not use all 21 features computed in the feature extraction step.

Instead, we ran a principal component analysis (PCA) dimensionality reduction using 12
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components, which together explained >91% of the variance in the feature space (of the

training set); each example therefore had 12 transformed features rather than 21 or 14,

as was the case for the SVM. The features that account for most of the variance in the

data were the first 11 MFCCs and spectral spread or spectral entropy (depending on the

particular run and randomly selected training set). We obtained the best performance of

the baseline RF by using these 12 features, as opposed to the 14 used for the SVM or all

21 extracted features.

We used balanced class weights to address the imbalance in the number of sub-

jects with a particular condition. The cost parameter for each of the two classes in a

classification experiment was weighed by the inverse of the class frequency in the input

data; misclassifications of examples belonging to the smaller class were penalized more

than misclassifications of examples belonging to the larger class. Balanced class weights

discouraged the SVM and RF from simply predicting the dominant class for every example

in the test set. Furthermore, a grid search revealed that a linear SVM outperformed SVMs

with polynomial, radial basis function, or sigmoid kernels for the four binary classification

experiments. In the grid search for the RF, we tested 5 to 100 trees and maximum depths of

4 to 12 for each tree. We found that 5 estimators and a depth of 4 gave the best performance

– at least 60% test accuracy, above random chance prediction for binary classification. The

baseline RF was prone to overfitting – high train accuracy but low test accuracy – with

larger numbers of estimators and greater depths of trees.

Augmentation Strategies

To determine if adding synthetic examples to the training set would yield improve-

ments in classifier performance, we tested two augmentation strategies:

1. Balanced : We randomly added synthetic examples until the two classes in the
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training set for an experiment were balanced. For instance, for the healthy vs.

asthma experiment, there were 165 asthma examples and 44 healthy examples in the

training set. We randomly selected 121 synthetic healthy examples out of the 1000

generated. We then added them to the training set to balance the two classes at 165

examples (so 330 examples total in the augmented training set).

2. Balanced and Doubled : We randomly added synthetic examples until the two classes

were not only balanced but also doubled in the training set. For the healthy vs. asthma

experiment, after balancing the two classes by adding 121 randomly chosen synthetic

healthy examples, we added 165 synthetic asthma examples and an additional 165

synthetic healthy examples. So the augmented balanced and doubled training set for

this experiment consisted of 330 asthma and 330 healthy examples (660 total).

In general, when compared to the baseline SVM and RF models trained without

synthetic examples, the “Balanced” augmentation strategy had better test accuracy, F1

score, TPR, and TNR (and smaller FPR and FNR). The “Balanced and Doubled” strategy

yielded even larger improvements. While we saw this pattern for all four experiments, we

show only the results for the healthy vs. asthma experiment in Table 3.1. (We did not see

any significant improvements in test performance past doubling the training set size, so we

do not report on those augmentation strategies – “Balanced and Tripled,” for example – in

this chapter.)

Table 3.1 shows the results for the healthy vs. asthma experiment. A SVM model

(with linear kernel and balanced class weight) had 43% test accuracy and 59% F1. The

baseline SVM model had a very low number of true negatives (the negative class being

the healthy one) and a high number of false positives; the SVM trivially predicted the

larger class for many of the test examples, despite our efforts to discourage this behavior

by balancing class weights. A baseline RF (5 trees each with depth 4 and balanced class
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Table 3.1: SVM and RF Results for HEALTHY VS. ASTHMA Experiment

weight) had better TNR than the SVM, as well as better test accuracy (67%) and F1

(79%).

Adding synthetic examples and balancing the training set increased the SVM test

accuracy by 20% and the F1 by 15%. The RF test accuracy improved to 71% and the F1

to 82%. Balancing and doubling the training set using synthetic examples further increased

the SVM test accuracy by 30% and F1 by 24%, while the RF test accuracy only increased

by 6% and F1 by 4%. Compared to the baseline, both augmentation methods increased

TPR and TNR and reduced FPR and FNR. The train minus test accuracy, an indicator

for overfitting, decreased for both SVM and RF too.

Table 3.2 shows the performance metrics for “Balanced and Doubled” augmentation

for healthy vs. asthma, healthy vs. COPD, healthy vs. chronic cough, and asthma vs.

COPD experiments. The “Balanced and Doubled” augmentation strategy generally yielded

the largest increases in test accuracy, F1, TPR, and TNR compared to the “Balanced”

strategy. Table 3.2 shows whether these metrics were higher or lower than the metrics for

the baseline models trained without any synthetic examples (in parentheses). For example,

in Table 3.2, the “Train – Test” accuracy of the SVM for healthy vs. asthma is 16% using
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Table 3.2: SVM and RF Performance After Balancing and Doubling Training Set

the balanced and doubled dataset. It is 32% using the un-augmented dataset (Table 3.1,

under “WITHOUT SYNTHETIC”). Balancing and doubling the dataset reduced the ”Train

– Test” accuracy by 16%.

Across all four experiments, balancing and doubling the training set increased the

test accuracy, F1, TPR, and TNR. We saw corresponding decreases in the FPR and FNR

except in the case of the SVM in the COPD vs. asthma experiment, when the FPR actually

went up by 10%. Moreover, the train minus test metric decreases for all experiments for

both models, again except for the SVM in the COPD vs. asthma experiment (up by 5%).

For the healthy vs. asthma, COPD, or chronic cough experiments, the test accuracy

is greater than 70%. But for the COPD vs. asthma experiment, the test accuracy is around

60% and adding synthetic examples did not improve the performance by much (not at all

for the SVM test accuracy).

Generally, augmenting the dataset best helped the performance of the SVM, de-

creasing the FPR and increasing the TNR. The baseline RF performed better than the
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baseline SVM and therefore had less room to improve with augmentation. But even if the

increase in test accuracy or F1 was marginal for the RF, the TNR increase was substantial.

In the healthy vs. asthma experiment, the RF test accuracy increased by only 6% (an

increase of 9%) but the TNR went up (and the FPR down) by 13%.

3.3 Contributions to the Field

Given the challenges of collecting data in the wild, obtaining good diagnostic

performance with a small number of cough examples while using data augmentation to

boost performance is important. We developed a classification pipeline to distinguish

between healthy and three major respiratory diseases based on cough samples acquired

using a smartphone. We demonstrated that augmenting the dataset with synthetic cough

samples boosted classifier performance. We were able to tune a SVM classifier to distinguish

between healthy and asthma/COPD with 74% test accuracy and 83% F1, between healthy

and chronic cough with 76% test accuracy and 75% F1, and between COPD and asthma with

62% test accuracy and 60% F1. While these results were not as high as the >90% metrics

reported in previous studies (Section 3.1.1), we were able to obtain decent, generalizable

performance with a more rigorous training paradigm than k-fold/leave-one-out cross-

validation. Our classification pipeline also used coughs recorded with a smartphone and did

not require a clinician or specialized medical equipment, making diagnosis easier. When

combined with the latest in automatic cough identification, our work may contribute to the

development of a smartphone-based early warning system for catching respiratory disease

quickly and accurately.
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3.3.1 Augmenting Small and Imbalanced Datasets with GANs

Augmenting the dataset had overall positive effects on the performance. Balancing

the dataset by adding synthetic examples to the class with the smaller size increased the

number of true negative predictions; the added samples discouraged the models from always

predicting the majority class label. Balancing the training set, rather than doubling it,

boosted TNR the most (from 6% to 36% for the SVM); the TNR did not go up significantly

by doubling the dataset (only from 36% to 42% for the SVM). Doubling the dataset

provided the two models with additional examples during training, which generally reduced

train minus test accuracy while simultaneously increasing test accuracy, an indication that

the models trained on synthetic data do not overfit. Creating synthetic examples in an

unsupervised way with GANs are a great way to fill in gaps in a small and imbalanced

clinical dataset without sacrificing the discriminatory potential of features. As shown

for respiratory disease classification, doing so boosts classifier performance and reduces

overfitting.
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Chapter 4

Gait Assessment in Parkinson’s Disease

4.1 Motivation and Background

The standard for assessing motor symptoms associated with Parkinson’s disease (PD)

– tremor, postural instability, gait difficulty, and bradykinesia – is the motor examination

section of the Unified Parkinson’s Disease Rating Scale, or UPDRS Part III. This test

is conducted in person by clinicians and has good inter-rater reliability [138]. However,

Parkinson’s disease is characterized by sporadic symptoms that are often not observed in

clinic. For example, freezing of gait (FoG), which causes postural imbalance and frequent

falling, has been shown to be difficult to elicit during visits to the clinic. More broadly, it

is well established that the range and severity of symptoms experienced by a patient in

their home environment do not always agree with measurements taken in clinic [139–141].

Discontinuous monitoring through clinical visits and in-person assessments does not capture

PD symptoms and their progression completely. This is especially evidenced by the fact

that patients’ self-assessments of their improvement over time in response to treatment do

not agree with their UPDRS scores from in-person appointments [142].

ON/OFF cycles are another defining characteristic of PD. A patient treated with a
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dopamine precursor drug like levodopa experiences the ON state when the drug is active

and motor symptoms are less severe. As the drug wears off and motor symptoms worsen,

the patient transitions to the OFF state [143]. When a patient visits a neurologist at a

clinic, they are either ON, OFF, or transitioning into one of the states. The neurologist

can identify the patient’s state during a visit using the symptom severity measured with

the UPDRS exam. But without continuous monitoring, it is not possible to capture the

relevant dynamics – time in each state, severity of the OFF state, frequency – of these

ON/OFF cycles. Cycles are dependent on the progression of PD and are often unique

to individual patients. Understanding the dynamics of these cycles is important because

they inform clinicians of the effectiveness of their treatment regimen and the degree of

rehabilitation of the patient in a personalized way [144–146].

The standard for tracking ON/OFF cycles more continuously than in-person clinical

visits is the Hauser diary, a major endpoint in PD clinical trials [145,147,148]. Patients

monitor the severity of their symptoms and report their ON/OFF state in a home diary

every 30 minutes over the span of several days. PD patients are able to determine their own

ON/OFF state well, by correctly perceiving their non-motor and especially their motor

function [149]. Despite this, Hauser diaries are often inaccurate and unreliable [145,150,151].

Poor patient compliance, recall bias, and diary fatigue are common, well-established

problems with both paper and electronic diaries [145,150,152]. Due to poor adherence by

patients and the fact that diaries only measure the duration of time spent in a state and

not the severity of impairment, Hauser diaries are a limited source of information about

patients’ physical functions at home.

Moreover, individual UPDRS tasks can benefit from a more objective quantification

of symptoms. Gait itself is scored on a scale of 0 to 4 from "Normal" to "Severe". Examiners

are asked to consider stride amplitude, stride speed, height of foot lift, heel strike during
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walking, turning, and arm swing [153]. Assessing all of these independently and then

combining them into a single score is a very subjective process and involves a good deal of

intuition derived from the experience of the examiner.

Wearable sensors address all of the above concerns [150]. They have been shown to

have high biomechanical resolution for quantitatively assessing gait impairment in PD, so

they have a high degree of clinical applicability [139]. They especially benefit from being

able to be taken out of clinic and worn continuously at home or "in-the-wild". In other

words, as Parkinson’s disease patients are simply going about their day, their gait metrics

and motor symptoms can be continuously tracked and ON/OFF cycles automatically

monitored. It is important to be able to measure Parkinson’s disease outcomes objectively

without bias, reliably, and in an unobtrusive way. In-the-wild tracking of the progression

of PD in patients via wearables increases the relevance of any clinical visits and improves

overall patient management by clinicians [139,150].

4.1.1 Machine Learning for PD Symptom Assessment

There have been several successful attempts at tracking PD symptoms using wearable

sensors and machine learning. Sama et al. were able to detect and score bradykinesia, the

slowness of movement, using a waist-worn accelerometer and a support vector regression

model [154]. By using machine learning to characterize the walks and strides of patients,

they were able to detect and score bradykinesia in 12 subjects with high accuracy and

correlation. However, the work used a small subject pool of only 12. And while they were

able to achieve high accuracies, the authors used a leave-one-subject-out methodology in

which each subject was used to not only train the model but also test it once [154]. The

model therefore was trained and tested on signals from the same set. Without out-of-sample

testing where the entire data from a subject is set aside, models that use few subjects are
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prone to overfitting.

Another similar study by Rodriguez-Martin et al. used support vector machines

(SVMs) to detect FoG events from a single waist worn sensor that can be worn at home,

to address the lack of FoG events that occur during clinical visits [139–141]. The study’s

subject pool was larger at 21. Their model also used a leave-one-subject-out approach but

did not perform as well as current standards for detecting FoG. And while their alternative,

patient-specific model outperformed the standard, it was personalized in such a way that it

involved training on 50% of a patient’s data and testing on the other 50%. While more

nuanced, this personalized model was simply a modified leave-one-subject-out approach

that used data from 20 subjects and half of the sensor data from 1 test subject to train the

algorithm, with the remaining half used to test the model [140]. The model was therefore

trained and tested on the same (test) subject’s data.

More recent work also used similar approaches. Studies by Rastegeri et al., Rovini et

al., and Chomiak et al. tested several common machine learning algorithms for sensor-based

gait analysis and diagnosis of PD, including SVMs, random forest, and naive Bayes [155–157].

All three studies used a cross-validation strategy to train their models (five-fold, ten-fold,

and Monte Carlo cross-validation, respectively) and reported high performance (accuracy

>95%). As in the studies by Sama et al. and Rodriguez-Martin et al., this training

paradigm enabled the authors to make the most use of the small sample data that they

had collected – 10 healthy controls and 10 PD subjects in Restegeri et al., 30 healthy and

30 PD in Rovini et al., and 9 controls and 21 PD in Chomiak et al. [140,154–157]. Note

however that while models trained via cross-validation have lower bias, they also tend

to have high variance, giving unreliable estimates particularly for classification involving

multiple classes [127,128]. Furthermore, notably with leave-one-out, removing one or more

examples corresponding to the minority label as part of training will encourage the model
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to predict the majority class [127]. This is of high concern with healthcare datasets as

they tend to be imbalanced; either there are more healthy than sick subjects or subject

recruitment in clinics favors sick subjects since healthy individuals do not often go to a

hospital. The accuracy values reported in the aforementioned studies are therefore merely

upper bounds on real world performance. These inconsistencies motivate the use of a more

rigorous training paradigm – one that uses a training set, an optional development set or

a validation set for tuning hyperparameters, and a separate, independently collected test

set that the classifier has never seen. This more rigorous paradigm is a better indicator of

the generalizability of a trained model. However, the small size of healthcare datasets and

their class imbalance remain problematic – there is not enough data to split into multiple

sets for training, validating, and testing of models.

Despite their shortcomings, the aforementioned studies demonstrated the ease with

which signals can be acquired using wearable sensors. And while not ideal, the leave-one-

subject-out methodology did seem to demonstrate a connection between the time series

accelerometer signals captured during scripted events like walking and PD symptoms like

bradykinesia or FoG.

4.1.2 Dataset Augmentation with GANs

The benefit of using support vector machines – the machine learning technique used

in the studies by Sama et al. and Rodriguez-Martin et al. – is that they have relatively few

parameters to train [140, 154]. Complex deep neural networks have several weight and bias

parameters to update and hyperparameters (number of layers, neurons per layer, filters,

etc.) to tune. The challenge with using deep nets for small datasets like the ones in the

aforementioned studies is that it is easy for models to overfit [36–39]. Such models perform

well on the data used to train them but not on unseen out-of-sample test data; they have
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poor generalizability. Overfitting is exacerbated by the high sampling rate of wearable

sensors, which greatly increases the dimensionality of features – the so-called "curse of

dimensionality" [41,42].

Datasets typically used in deep learning like the MNIST handwritten digit database

and the CIFAR image dataset have at least several tens of thousands of examples each

for training and testing [20, 21]. By comparison, the Sama et al. study had 12 subjects

and Rodriguez-Martin et al. 21 [140,154]. Unfortunately, in healthcare it is challenging to

acquire large samples of subjects on the order of thousands of patients or greater. This is

due to difficulties associated with patient recruitment and with logistics of data acquisition,

which can be involved for both clinicians and patients [29–32].

Despite small sample sizes, deep learning applications in PD have shown promise.

Camps et al. used an 8 layer 1D convolutional neural network (CNN) trained on inertial

signals from 21 PD patients to detect FoG events [141]. They were able to obtain 90%

geometric mean between specificity and sensitivity, outperforming other state-of-the-art

wearable-based methods that used SVMs by 7 to 18% [141,158,159]. In order to avoid the

problem of overfitting, Camps et al. used a data augmentation strategy to stochastically

quadruple their training dataset size [141]. Their strategy involved shifting and rotating

the windowed time series inertial signals for a subset of the samples in their dataset, in

order to create a transformed subset that they then added to the training dataset. Because

of the stochastic nature of this strategy, the modified instances were different for each

training epoch, adding noise to the training process and preventing their CNN model from

overfitting.

In line with the concept of data augmentation, we propose to use generative

adversarial networks (GANs) to create realistically generated artificial or "fake" samples that

can be used with real samples during training. GANs involve the use of two neural networks,
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a generator and a discriminator, that play an adversarial minimax game. Fundamentally,

a discriminator network is trained to output whether a sample is real or fake in order to

minimize its loss function (similar to traditional CNNs). Concurrently, a generator is trained

to create fake samples that "fool" the discriminator and maximize the discriminator’s

loss [160, 161]. We incorporate PD symptom assessment (a regression model) into this

adversarial game in order to use deep learning on a dataset with a relatively small subject

pool with reduced overfitting.

Other studies have shown this to be the case. Odena, A. experimented with a similar

type of GAN as the one we propose to use here [162]. An SGAN was designed to learn

not only a generative model but also a classifier simultaneously. On MNIST data, Odena,

A. was able to show that the classifier component of the SGAN had better classification

accuracy on restricted datasets than a regular CNN. In fact, even with as little as 25 training

examples, the SGAN outperformed the CNN [162]. The poor performance of the CNN

can be attributed to greater overfitting on the small training sets compared to the GAN.

Therefore, we believe that GANs will enable us to obtain better performance on smaller

datasets with deep neural networks. GAN-based data augmentation strategies have also

shown promise in healthcare-focused classification tasks. Synthetic or "fake" examples used

in conjunction with real examples from both small and large training datasets have resulted

in increased test performance, as shown by Frid-Adar et al. for computed tomography

scans of 182 liver lesions, Ratner et al. for a dataset of 1,506 mammograms, and Golany et

al. for 109,492 electrocardiograms [129,130,163].

Inspired by the prior reasoning, we employed adversarial training to develop a

neural network-based regression model that could predict the postural instability and gait

disorder score (PIGD) of a Parkinson’s disease subject wearing a lumbar inertial sensor.

The proposed models were evaluated on their ability to predict PIGD score as well as to
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accurately classify ON/OFF states from inferred PIGD scores (i.e. predicted PIGD scores

should be greater for the OFF state than for the ON state). We used a modified loss

function that takes into account ON/OFF states of subjects to encourage the network to

learn meaningful features that were relevant to Parkinson’s disease state, instead of simply

learning the difference between various subjects. The models were tested rigorously with

a dataset collected independently and at a different clinic from the one used for training.

Adversarial training of a GAN led to better performance compared to typical training of

a CNN, and GAN model outperformed clinicians when determining ON/OFF state from

PIGD scores.

4.2 Assessing Gait and Predicting ON/OFF State with

Deep Learning

4.2.1 Building a Clinical Dataset of Parkinson’s Disease Patients

Data was collected from PD patients at two different sites: Tufts University and

Spaulding Rehabilitation Hospital. In both sites, subjects were recorded while they

performed the different tasks required for the UPDRS test under the supervision of a

trained clinician. Each task was scored on a scale from 0 to 4, and then added to create

the total UPDRS score. The PIGD sub-score was calculated by adding only the scores

relevant to posture and gait: arising from chair, gait, freezing of gait, postural stability,

and posture.

Subjects were outfitted with APDM Opal inertial sensors strapped around the limbs

and torso with stretchable bands. The APDM sensors recorded accelerometer, gyroscope,

and magnetometer data at 128 Hz over time, as subjects underwent the UPDRS test.

We briefly describe the two studies – Study 1 and Study 2 – below. For more details
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about data acquisition, consult Erb et al. [150,164].

1. Study 1 – The subjects in this study were recruited at Tufts University. 35 subjects

were recorded over 2 visits, one visit when they were in the ON state and one when they

were in the OFF state. In each state/visit, they performed the full battery of UPDRS

Part III tests and their sensor data and UPDRS scores were recorded. As per protocol,

the UPDRS Part III was timed to take place either immediately prior to a subject’s next

dose of levodopa or immediately after the next dose, with self-reported confirmation

that the subject was feeling OFF or ON, respectively. When reporting a state, subjects

assessed the severity of their non-motor and motor functions to determine whether they

felt the re-emergence of symptoms associated with the wearing off of levodopa.

Motivated by studies that showed the feasibility of remotely assessing PD symptoms

with video conferencing software, we recruited 2 clinicians to score the symptoms of

Study 1 subjects from video [165]. We compared the PIGD scores from each of these

video raters to those of the live rater (the clinician who conducted the UPDRS Part

III exam in person) to calculate two coefficients of determination or R2 (reported in

Section 4.3.2).

2. Study 2 – The subjects in this study were recruited at Spaulding Rehabilitation

Hospital. A total of 26 subjects were recorded, but 3 were omitted due to missing

UPDRS clinician scores. Each of the 23 subjects remaining was recorded up to 5 times

over 6 hours, the approximate duration of a full ON/OFF cycle. As a consequence,

subjects could have been ON, OFF, or somewhere in between ("TRANSITIONING TO

ON" or "TRANSITIONING TO OFF") in each recording/visit. Furthermore, not all

subjects completed a full cycle. For example, there were subjects who were recorded

only when they were ON or transitioning into the ON state. Other subjects had at least
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1 visit out of (up to) 5 when they were ON and at least 1 recording when they were

OFF. In each recording, the subjects underwent the UPDRS Part III test and their

sensor data and UPDRS scores were collected. The sensor setup used was the same as

in Study 1.

There were 70 visits (35 subjects, 2 visits each) for Study 1, each with a self-

reported "ON" or "OFF" state. For Study 2, there were 89 recordings with an "ON,"

"OFF", "TRANSITIONING TO ON", or "TRANSITIONING TO OFF" self-reported state,

corresponding to 23 subjects with up to 5 visits each. Figure 4.1 shows the distribution of

PIGD scores for each study, along with a table of statistics including mean and skew.

Feature Processing

As part of the UPDRS Part III, subjects walked for 2 minutes along a straight line,

turned around, returned to the examiner, and repeated this process. They were outfitted

Figure 4.1: Distributions of PIGD scores for study visits. Both distributions favor lower
PIGD scores; distribution for Study 1 is skewed less than for Study 2.
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Figure 4.2: Position of an APDM Opal inertial sensor attached to the lumbar region using
a stretchable belt. The sensor was placed on the lower back of the subject. Accelerometer,
gyroscope, and magnetometer data was collected as subjects walked back and forth for 2
minute (as part of the UPDRS Part III test) while wearing this sensor.

with several sensors, including a lumbar inertial measurement unit (IMU) worn about the

torso (Figure 4.2). In this work, we considered only this sensor because:

1. It is close to the center of mass of the human body. The trunk is therefore the

best sensor location for assessing standing balance, walking stability, and posture

identification [166–170].

2. Wearing a lumbar sensor around the torso towards the front (above the anterior superior

iliac spine) has been shown to be more comfortable for subjects [171].

The lumbar IMU included an accelerometer to measure acceleration in the X, Y,

Z directions and a gyroscope to measure rotation speed around the X, Y, Z axes. We

therefore obtained 6 time series as the subjects walked and turned. By using the gyroscope
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values, we detected and cut out turn events; turns were defined as time periods when the

rotation about the X axis was larger than 120 degrees. We were therefore left with only

snippets of straight walking events. Since subjects walked back and forth, each walk was

an example and each subject had several walks or examples per clinic visit. To simplify

our approach, we considered only the 3 acceleration signals.

Some subjects walked faster than others, so we truncated the 3 IMU acceleration

signals at 3 seconds. Doing so ensured that we maintained the same data dimensions across

all subjects. We found that a greater cutoff reduced the number of examples overall, since

subjects generally completed a single straight walk in around 3 seconds. On the other

hand, a smaller cutoff resulted in shorter examples with less information, ultimately giving

poorer model performance. A 3 second cutoff gave us a good number of examples without

encouraging overfitting or sacrificing performance.

The timeseries IMU signals were filtered using a high-pass Butterworth filter (0.25

cutoff) to remove drift and gravity effects. Lastly, we converted the time series to log

spectra using a Fourier transform. It was natural to look at the Fourier decomposition of

the time series signals because walking is a periodic activity; this periodicity was reflected

in the log spectra [172,173].

At the end of feature processing, we obtained 4178 examples from the Study 1

dataset and 5405 examples from the Study 2 dataset. Each subject had multiple walks or

examples per visit. Each example consisted of 3 spectra (acceleration along the X, Y, Z

directions) and was 384 data points long (3 seconds multiplied by 128 Hz, the frequency of

data capture of the IMU). The dimensions of the data were therefore 4178 x 3 x 384 for

training and 5405 x 3 x 384 for testing. Each example had an associated PIGD sub-score

and UPDRS score, which were unique to a subject as well as a visit.
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4.2.2 A Neural Network Trained With and Without an Adversary

We used the larger subject pool recorded at Tufts University to train our deep

learning pipelines, and the Study 2 dataset to test them. While both dataset distributions

were concentrated around lower PIGD scores rather than higher scores, Study 1 dataset

had more evenly distributed scores. Study 2 dataset had few subject recordings with PIGD

scores in the middle; a disproportionate majority of visits had low score labels (below

4) with only a few visits with higher scores (greater than 10). Moreover, skewness was

smaller for Study 1 than for Study 2, indicating that the distribution of Study 1 was less

asymmetric (Figure 4.1). This in particular was important for generalization. A pipeline

trained with the more skewed distribution of Study 2 scores would not have performed well

when tested with examples not well represented by that dataset, namely walks for subjects

with high scores.

The networks were trained to take 3 second walks as input and to output a PIGD

score. Parameters were updated using the Adam optimization algorithm, an extension to

stochastic gradient descent; Adam is a standard for minimizing a parametrized (non-convex)

objective function or "loss" in a computationally effective way [174]. The technique was

also used by Salimans et al. in "Improved Techniques for Training GANs" [175]. In this

paper, Salimans et al. outlined several methods to encourage loss convergence in the

minimax game played by the GAN, an otherwise challenging model to train [175]. One

such technique was the historical averaging learning rule, which involved keeping a running

average of the parameters of the last few models during training. Any updates that yielded

parameters significantly different from this historical average were discouraged (with an L2

cost added to the objective function) to improve convergence. Our implementation of this

learning rule was the same as the one by Salimans et al. [175]. While not required, we used

historical averaging during the training of the CNN primarily because we used it when
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training the GAN discriminator. This was done to more directly compare the performance

of the two techniques and to better understand the effects of adversarial training.

Our deep learning pipelines were developed using Lasagne and Theano, Python

libraries to build and train neural networks and to work with mathematical expressions

involving large multi-dimensional arrays [176,177].

CNN Architecture

CNN performance was the baseline against which we compared the GAN’s per-

formance. In order to minimize overfitting, the CNN architecture was not deep – 2 1D

convolutional layers and 2 fully connected layers, with the last fully connected layer also

serving as the output of the pipeline. Hyperparameters like batch size and learning rate

were empirically determined based on what values yielded the fastest convergence of training

losses and the best accuracy metrics.

We trained with mini-batches containing 400 examples from two visits in Study 1. In

the 1D convolutional layers, 32 filters of size 3 operated along the last dimension of the input

with stride 1 and padding 1. The 400 X 3 X 384 output of the second convolutional layer

was passed into a fully connected layer with 512 units. In order to minimize overfitting we

applied dropout regularization with probability of 0.5 for all three hidden layers. The last

fully-connected layer had 2 units for output. Figure 4.3 summarizes the CNN architecture.

The convolutional layer weights were initialized as an orthogonal matrix [178]. For

the two fully connected layers we used a He initializer with weights sampled from the

uniform distribution [179]. All layers except the last output layer used the rectified linear

unit (ReLU) activation function. We applied weight normalization to the hidden layers

(instead of batch normalization in order to avoid adding noise to an already noise-sensitive

regression model) [180]. Biases were initialized as 0’s and the norms of the parametrized
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Figure 4.3: CNN and GAN discriminator architecture. When training the CNN, we
disregarded the "Real/Fake" output. Dropout with probability 0.5 was applied to the
output of 2 convolutional and 1 fully-connected layers.

weights, g, as 1’s.

CNN Training

We used the Study 1 dataset to train the pipeline. Each subject in this dataset

had examples from two visits, one visit when they were ON and one when they were OFF.

We trained the CNN (and GAN) with data from 25 out of 35 subjects recorded at Tufts

University; 10 subjects were randomly selected for a development set and their walks left

out to be used as a check for convergence.

We trained in mini-batches of size N = 400. We first randomly selected 200 examples

out of 4178. A walk from one of the 25 subjects corresponded to one of the two visits for

that subject. If the example came from the first visit, we randomly selected a walk from

the second visit for the same subject, and vice versa. Subjects may have appeared multiple

times in a mini-batch, but every example from one visit was paired with an example from

the opposite visit. We therefore obtained mini-batches of size 2 ∗ 200 = 400 = N .
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The goal was to learn to differentiate between not only subjects but also the two

visits of a subject. Note that the difference in score between subjects was often larger than

the difference in scores between the two visits of the same subject. We therefore included

the mean squared error (MSE) of the difference between two visits in the standard mean

squared loss objective function:

loss_train = α ∗ 1

N

N∑
i=1

(yi − ŷi)2 + β ∗ 1

N

N∑
i=1

((yi1 − yi2)− (ŷi1 − ŷi2))2

loss_train = α ∗MSE(yi, ŷi) + β ∗MSE(yi1 − yi2, ŷi1 − ŷi2)

yi is the predicted PIGD score of a subject’s walk, provided by one of the two

units in the output layer. ŷ is the ground truth PIGD score of the example. The first

summation term is the MSE between predicted values and ground truth values, weighted

by hyperparameter α.

In the second summation term, we first calculated the difference between the

predicted PIGD score for a walk corresponding to a subject’s first visit, yi1, and the

predicted PIGD score for a walk from the subject’s second visit, yi2. We then calculated

this same difference but between the ground truth PIGD values, ŷi1 − −ŷi2 . Lastly, we

calculated the mean squared error between these two terms, weighted by hyperparameter

β. We calculated the second MSE in this way because we wanted to encourage the CNN

(and GAN) to learn to make predictions such that the regressed PIGD score of one visit

had the same inequality relationship with respect to that of the other visit. That is, if a

subject was OFF during their first visit and ON during their second, their PIGD score for

the first visit should be higher than that of their second. The predictions made for this

example should therefore reflect the same inequality relationship.

In addition to α and β, other hyperparameters relevant for CNN training included
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the learning rate and the number of epochs over which we trained. We set α and β to 1.0

to prioritize differentiating subjects and differentiating visits for a given subject equally

during training. The learning rate was fixed at 0.01.

The 10 development set subjects recorded at Tufts University that were not used to

train the pipeline were used to compute an error at the end of every epoch. We picked

these 10 subjects out of the 35 randomly once before training; the 10 subjects remained

fixed during training so that we could calculate a loss per epoch and compare it between

different epochs. At the end of each epoch, we inputted all walk examples from these

10 subjects into the pipeline. We then computed a MSE loss between the predicted and

ground truth labels of these 10 subjects. We used this development MSE loss as a way of

determining the number of epochs over which to train. We trained until this loss converged

to a steady-state value (that remained the same for at least 1000 epochs). Randomly

selecting a different set of 10 subjects at the end of every epoch would have made it difficult

to reliably compare loss between epochs; it would have been challenging to gauge whether

the model was being properly trained if changes in loss could have been due to the subjects

randomly chosen for a given epoch.

GAN Architecture

The architecture of the GAN consisted of two neural networks: the generator and the

discriminator. The discriminator had the same architecture as the CNN described earlier.

This allowed us to directly compare the performance of the CNN and GAN discriminator

and to isolate and understand the effects of training with and without data augmentation

via a generator network. Henceforth, "GAN discriminator" refers to a shallow neural

network trained with an adversarial generator to predict PIGD score and identify real

walks from fake ones. "CNN" is the same shallow neural network but trained without a
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Figure 4.4: GAN generator architecture. Input noise sampled from the uniform distribu-
tion was fed into 3 fully-connected layers, and the output of the last was reshaped to the
dimensions of the input accepted by the discriminator.

generator that predicts PIGD score alone.

The generator neural network accepted input noise with dimensions 400 X 100,

sampled from the uniform distribution between 0 and 1 as in the study by Salimans et

al. [175]. The generator architecture consisted of 3 fully connected layers. The first 2

layers had 512 units, used the ReLU activation function and weight normalization [180].

The last layer served as the output layer and consisted of 1152 units with no nonlinearity

and L2 regularization. Weights were initialized using the He initializer with the uniform

distribution, biases were initialized as 0’s, and the weight norms (g) as 1’s [179]. Figure 4.4

summarizes the GAN generator architecture.

GAN Training

In the CNN (trained without an adversarial network), we used only one of two

output units in the network; this unit provided the predicted PIGD score. However, when

training the GAN, we made use of the second output unit to distinguish real walk examples
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from fake ones created by the generator. The generator itself was trained to fool the

discriminator. The training paradigm is detailed below and summarized in Figure 4.5.

The discriminator was trained to minimize the following loss, designed to accommo-

date both PIGD score regression and real/fake example identification:

loss_disc = γ ∗ loss_train+ δ ∗ (
1

N

N∑
i=1

(D(xi)− 1)2 +
1

N

N∑
i=1

(D(G(zi)))
2)

The function loss_train was previously defined for training the original CNN,

except weighted by the hyperparameter γ. D(•) is the sigmoid output of the discriminator,

and identifies whether a sample is real, 1, or fake, 0. Thus, D(G(zi)) is the discriminator

output when a fake walk example G(zi) is passed in as input. Fake examples were created

from noise zi by the generator G(•). D(xi) is the output when a real walk example, xi, is

passed in as input. (i ranges from 0 to the batch size.) The discriminator was essentially

trained to push the value of D(xi) to 1 and D(G(zi)) to 0.

The generator was trained to minimize the following loss, designed to fool the

discriminator by pushing D(G(zi)) to 1:

loss_gen =
1

N

N∑
i=1

(D(G(zi))− 1)2

The interplay between training the discriminator and generator is outlined in

Figure 4.5. The training protocol was the same as that of the CNN, with a learning rate

fixed at 0.01 and data from 10 subjects used as a test for convergence.

Parameters γ and δ allowed us to control the game between the discriminator and

generator. For example, a GAN discriminator trained with γ > δ would behave similarly

to the original CNN; the loss term weighted by γ and using unlabeled, fake examples from

the generator would not be weighted as highly as loss_train, which used real examples. In
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Figure 4.5: GAN training paradigm. The discriminator predicted a PIGD score as well as
a real/fake label for every walk example input. The generator provided fake walk examples.
These outputs were used to compute loss terms for training the discriminator and generator.

the opposite scenario, with δ > γ, the generator would have a greater than equal influence

on the training of the discriminator. In our testing, we used the following combinations of

(γ, δ): (1.0, 1.0), (0.1, 0.5), (1.0, 0.5), (0.5, 1.0), and (0.1, 1.0).

4.2.3 Testing Models and Analyzing their Output

We evaluated the CNN and GAN discriminator on their ability to determine ON

or OFF state from predicted scores – "ON/OFF accuracy." For a given subject, the OFF

state should have a higher PIGD score than the ON state. The same should hold true for

the scores provided by clinicians. After training, we tested the models using the Study 1

development set described in Section 4.2.2 as well as the Study 2 dataset.

Note that each subject had several walks in a recording/visit. We averaged the
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predicted PIGD scores of all walk examples for a given visit. We therefore obtained 2

predicted scores per Study 1 subject, one for each of their visits. For Study 2, we obtained

up to 5 predicted scores per subject.

Performance on Study 1 Development Set

Study 1 subjects reported themselves as either ON or OFF in each visit. For the 10

development set subjects, we compared the predicted PIGD score for the OFF state with

the predicted PIGD score for the ON state; we counted the number of times out of 10 that

the former was greater than the latter. We repeated this analysis with scores provided by

the clinician rater. We gauged clinician performance via both the PIGD sub-score and the

overall UPDRS score.

In addition to ON/OFF accuracy, we report the coefficient of determination, R2.

R2 was calculated using 20 predicted PIGD scores from the CNN or GAN discriminator

and 20 ground truth PIGD scores from the clinician.

Performance on Study 2 Dataset

Study 2 subjects could have been ON, OFF, transitioning into the ON state, or

transitioning into the OFF state in each of their visits. These labels were self-reported, and

it was not a requirement that each subject had visits satisfying all 4 criteria. Therefore,

to simplify our approach, we averaged predicted PIGD scores for visits when the subject

was ON or TRANSITIONING TO ON, µON . We similarly averaged the predicted scores

for visits when the subject was OFF or TRANSITIONING TO OFF, µOFF . Out of 23

subjects, 17 had at least 1 visit when they were ON or TRANSITIONING TO ON and at

least 1 visit when they were OFF or TRANSITIONING TO OFF. Of these 17, we counted

the number of times µOFF > µON . That is, to calculate ON/OFF accuracy, we counted

the number of correct ON/OFF determinations made by the CNN or GAN discriminator
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Table 4.1: Performance of CNN, GAN Discriminator, and Clinician Rater

Study 1 Development Set Study 2 Dataset

ON/OFF Accuracy R2 ON/OFF Accuracy R2

GAN Discriminator

(γ, δ)

(1.0, 1.0)

(0.1, 0.5)

(1.0, 0.5)

(0.5, 1.0)

(0.1, 1.0)

100%

100%

90%

90%

100%

0.51

0.49

0.57

0.51

0.51

65%

76%

71%

71%

76%

-0.62

-0.42

-0.33

-0.29

-0.43

CNN – 70% 0.52 53% -0.60

Clinician Rater – PIGD – 100% – 65% –

Clinician Rater – UPDRS – 100% – 88% –

and divided by total number of examples. We also considered the clinician scores µ̂, and

assessed whether µ̂OFF > µ̂ON . µ̂ could be either PIGD or UPDRS. Lastly, as for the

Study 1 development set, we computed R2 with 89 predicted and 89 ground truth PIGD

scores (corresponding to all 23 Study 2 subjects).

4.2.4 Baseline Performance Without Adversarial Training

We trained the CNN model for 5000 epochs on the Study 1 dataset. Figure 4.6

shows loss_train (with α = β = 1.0) plotted over epochs. We similarly plotted the MSE

loss curve computed using 10 Study 1 subjects at the end of every epoch (as described in

Section 4.2.2). The fact that both curves converged to some steady-state minimum value

confirmed that 5000 epochs was enough to complete training.

As detailed in Section 4.2.3, we used 10 subjects from Study 1 and 17 subjects

from Study 2 to test whether predicted PIGD scores could be used to correctly determine

ON/OFF states. Table 4.1 shows that in 7 occurrences out of 10, the CNN regressed

a PIGD score that was greater for the OFF state than for the ON state, yielding an
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ON/OFF accuracy of 70%. For comparison, the clinician had 100% accuracy for the Study

1 development set.

The CNN’s ON/OFF accuracy for Study 2 subjects was 53%. In this case, the

clinician evaluated on the PIGD sub-score had an accuracy of 65%. In other words, the

tests the clinician conducted to assess postural instability and gait difficulty yielded scores

that were sometimes erroneously larger for the ON state than for the OFF state. These

mistakes happened for 6 out of 17 subjects. The clinician rater made fewer mistakes when

the total UPDRS was taken into account – 2 mistakes out of 17 or 88% accuracy. Note

that the UPDRS score included tasks unrelated to postural instability and gait difficulty,

like speech and cognition.

4.2.5 Performance when Trained Alongside Adversarial Network

We trained the GAN model for 5000 epochs on the Study 1 dataset. In Figure 4.6,

loss_disc and loss_gen (with α = β = γ = δ = 1.0) were plotted over epochs. Figure 4.6

also shows the MSE loss curve from 10 Study 1 subjects. All curves converged to some

steady-state minimum value in 5000 epochs. Convergence occurred for all combinations of

γ and δ as well.

Table 4.1 shows ON/OFF accuracy results of the GAN discriminator for all 5

combinations of (γ, δ) tested: (1.0, 1.0), (0.1, 0.5), (1.0, 0.5), (0.5, 1.0), and (0.1, 1.0). The

GAN discriminator’s performance varied based on the values of (γ, δ) tested, more so for

Study 2 than for Study 1. At best, the GAN discriminator outperformed the CNN by

30% and matched the clinician’s perfect performance on the Study 1 development set, for

(γ = 1.0, 0.1, δ = 0.5, 1.0). For Study 2, the discriminator always outperformed the CNN,

doing 12% to 23% better in determining ON/OFF state. When (γ = 0.1, δ = 0.5, 1.0), the

discriminator also outperformed the clinician evaluated on PIGD, by 11%. For Study 2,
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Figure 4.6: CNN and GAN loss curves plotted over training epochs. (Top) CNN loss
curves. loss_train is plotted over epochs in gray, and the MSE loss curve for 10 Study 1
subjects in black. (Bottom) GAN loss curves. loss_disc is plotted in red and loss_gen in
blue over epochs. MSE loss curve for 10 Study 1 subjects is shown in black. All 3 curves
are for the instance when for (γ = 1.0, δ = 1.0). Note that convergence occurred for the 4
other (γ, δ) combinations tested as well.

using the full UPDRS score to make ON/OFF predictions resulted in the best clinician

performance – 88%, 12% better than the GAN discriminator’s best ON/OFF accuracy.

The full UPDRS score contains additional information about the subject’s symptoms that

go beyond gait (e.g. speech, tremor, bradykinesia of the upper limbs, etc.).

4.3 Contributions to the Field

In this work, we set out to show that we could teach neural networks to predict

PIGD score from a single lumbar accelerometer. By using separate training and test sets,
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we were better able to evaluate the generalizability of the resulting models as compared

to other work that used less rigorous training paradigms on a single dataset. There was

novelty in this work that distinguished it from other machine or deep learning sensor-based

approaches for tracking PD symptoms. First, all models were trained and tested with two

independently collected datasets. The results reported in this paper were obtained without

using less rigorous cross-validation training paradigms that potentially inflate performance

(detailed in Section 4.1.1). Second, adversarial training maximized the performance of

the discriminator, a shallow neural network that was otherwise prone to overfitting due

to the small size of the training set (a common problem with deep learning in healthcare

applications). Lastly, PIGD scores alone were used to accurately predict ON/OFF states

from just a few walking events. Going forward, the challenge is to be able to translate this

work from the clinic to the home. We envision a system that could be used to reliably

assess symptoms and track ON/OFF cycles continuously. Doing so would better inform

clinicians as to the state of their patients and aid patients in their rehabilitation, ultimately

improving their quality-of-life.

4.3.1 Reducing Overfitting with Adversarial Training

We tested the ability of adversarial training to improve out-of-sample performance

of a shallow neural network on the premise that generating synthetic samples from noise

can successfully augment real clinical datasets. Our models were evaluated on their ability

to predict PIGD scores that were greater for visits that were OFF than for visits that were

ON. The ability to predict ON/OFF – "ON/OFF accuracy" – was used as a performance

metric for both the GAN discriminator and CNN to facilitate a comparison with clinicians.

Clinicians in practice can use the PIGD or UPDRS scores to determine ON/OFF state of a

patient. Self-reported ON/OFF labels were used as ground truth because: (1) it has been
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shown that patients’ perception of their motor functions successfully model PD severity on

par with the clinically objective UPDRS exam and (2) self-reported states are often used

as a clinical endpoint in PD clinical trials [149].

GAN discriminator’s ability to predict ON/OFF state was greater than that of the

CNN due to adversarial training. A fully trained discriminator outperformed a fully trained

CNN on Study 1 development set subjects, matching a clinician rater’s 100% ON/OFF

accuracy. Similarly, GAN discriminator always outperformed the CNN on Study 2 subjects,

at best doing 23% better. Since both pipelines were trained on the same data, the results

suggest that the performance difference was due to the influence of an adversarial generator

during discriminator training. In fact, the GAN discriminator did the best – making only 4

mistakes total (76% accuracy) on Study 2 – when δ > γ. That is, the GAN discriminator

did better when the generator had greater than equal influence on discriminator training,

when the second term in loss_disc (computed using generated examples) was weighted more

than the first term. Because augmenting the dataset led to better performance, we argue

that the CNN must have performed poorer because of overfitting, a conclusion supported

by prior work [162]. GANs help counter the curse of dimensionality problem of applying

deep learning techniques on the small datasets prevalent in healthcare applications. After

all, a shallow neural network trained alongside an adversary yielded better performance

than a network with the same shallow architecture trained normally. Overall, GANs are a

promising technique to properly analyze walk data and assess postural instability and gait

disorder in a way that enables ON/OFF prediction.

4.3.2 Pros and Cons of Deep Learning Compared to Clinicians

When tested with Study 2 subjects, the GAN discriminator generally outperformed

a clinician rater evaluated using their PIGD scores. Besides the instance when performance
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equaled the rater (γ = 1.0, δ = 1.0), the GAN discriminator made fewer mistakes. The

human rater was ultimately still better when considering the full UPDRS score (88%

accuracy). However, the clinician had the advantage of assessing symptoms that were

not captured by the PIGD sub-score, more information than was available to the neural

networks. Note that we were interested in developing models that can be taken outside the

clinic to automatically monitor patients in-the-wild. So even though clinicians outperformed

the GAN discriminator when they used the full UPDRS score to predict ON/OFF state,

clinical visits are discontinuous whereas the trained models can be deployed as part of a

larger, wearable-based system to track PD symptoms continuously, our future goal.

We developed networks that could regress PIGD scores useful for accurately de-

termining ON/OFF state. Doing so came at the cost of reduced R2; the models’ PIGD

predictions for test data were not close to scores from the live clinician rater. R2 values as

reported in Table 4.1 were generally very low. For Study 1, CNN R2 was 0.52 and GAN

discriminator R2 was between 0.49 and 0.57 based on (γ, δ). For Study 2, CNN R2 was

only -0.60 and GAN discriminator R2 ranged from -0.62 to -0.29. (The GAN discriminator

generally had greater (more positive) R2 than the CNN. For Study 2, CNN R2 was 0.31 or

approximately 50% less than the best GAN discriminator R2, likely due to overfitting by

the CNN.) In other words, even if a predicted score for the OFF state was greater than

that of the ON state, the score values themselves were not similar to ground truth values.

Note however that the PIGD sub-score is very noisy. As mentioned in Section 4.2.1,

we obtained PIGD scores from two video raters for Study 1 subjects. We calculated 2

R2 values by comparing PIGD scores from each video rater to those of the live clinician.

R2 values were 0.24 and -0.04 for an average of only -0.10. Clinicians themselves score

PIGD inconsistently. Moreover, our endpoint was the ability to determine ON/OFF state

reflective of subjects’ self-reported health. We were not trying to replicate a clinician’s
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UPDRS exam and did not expect high correlation with the live rater’s scores. (To improve

R2, the second term in loss_train would have to be removed and the models retrained.

For example, for the Study 1 dataset, simply decreasing the impact of the second term by

setting α = 1.0 and β = 0.5 increased CNN R2 to 0.78 and GAN discriminator R2 to 0.72.)

4.3.3 Limitations to Consider Before Real-World Deployment

Another drawback of this study is that the models described were trained on walk

sensor data collected in a clinic under a data collection protocol (subjects walked back and

forth for 2 minutes). Walks that occur at home are shorter in both duration and distance,

and in-the-wild walks are likely diverse and erratic. The current models may not generalize

well to walks collected outside of a clinic. We are therefore collecting in-the-wild sensor

data to incorporate into our training dataset; subject recruitment and data collection is

ongoing. Mode collapse, a growing concern with GANs, was unaddressed in this work

but needs to be quantified before deployment [181]. Note however that the empirical

improvements provided by adversarial training would not have been as large if the generator

were producing only a limited range of diverse samples; GAN discriminator performance

was still better than CNN performance.
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Chapter 5

Design Considerations for a Clinical

Decision Support System for Stroke

5.1 Motivation and Background

Acute stroke diagnosis presents several challenges that motivate the development and

use of computational aids. Stroke diagnosis typically requires a neurological examination

done by a clinician in a hospital – the National Institute of Health Stroke Scale (NIHSS) [182,

183]. The NIHSS is a set of motor and cognitive tests designed to quickly and quantitatively

assess impairments. It is a widely adopted exam that has been shown to be useful for

rehabilitation planning. However, it is not a perfect test for diagnosis. Follow-up imaging

revealed that 21% of patients treated for stroke based on the results of the NIHSS did not

in fact have stroke-associated brain infarcts [184]. Moreover, subtleties between certain

symptoms like neglect and weakness make them difficult to differentiate using the NIHSS,

especially when conducted by inexperienced clinicians or emergency services personnel. In

fact, the diagnosis of stroke by emergency medical services (EMS) is only 50% accurate

with a similarly low sensitivity of 57.5% – EMS personnel tend to miss strokes [76,185].
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In addition, while useful for identifying large vessel occlusions, the NIHSS cannot

properly identify stroke mimics, false positive stroke cases that represent up to 30% of

acute stroke hospital admissions [186,187]. Stroke mimics are non-vascular conditions (e.g.

brain tumors, migraine, and conversion, a psychiatric disorder) that present with similar

symptoms as acute ischemic stroke. With a specificity of only 52%, the NIHSS cannot

properly filter out stroke mimics, often resulting in unnecessary diagnostic procedures that

waste neurologists’ and patients’ time [186].

The efficient triage of stroke patients in the emergency department is important

because ideally, acute ischemic stroke is diagnosed within 3 hours from the presentation

of symptoms. Tissue plasminogen activator (tPA), the only FDA-approved therapy for

ischemic stroke, must be administered in that time for it to be effective [188]. However, due

to the narrow therapeutic time window, tPA administration happens in <5% of acute stroke

cases [189–192]. While the NIHSS assessment is designed to be completed in <8 minutes,

the increasing demand for immediate and accurate diagnoses has led to the emergence of

computational approaches to aid stroke evaluation [193].

Computational diagnostic aids quicken the recognition of stroke and help reduce

errors by providing decision support in a limited amount of time [194]. Several researchers

have developed machine and deep learning-based systems for stroke diagnosis to support

the NIHSS and improve clinical outcomes [195–197]. Recent work capitalizes on advances

in machine learning and ubiquitous technology (namely wearables and depth cameras that

provide body pose) to computationally identify and reliably quantify the degree of different

stroke-related deficits [93–95]. Our goals were to: (1) shed more light on how to best

integrate such artificial intelligence (AI) diagnostic tools into existing hospital workflows

such that they support clinicians, (2) understand how AI-based tools might change current

practices for stroke diagnosis, and (3) inform proper design of the next generation of AI
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tools in clinical settings.

5.1.1 Over-Dependence on Technological Aids

When deciding to adopt digital healthcare technology, hospitals and clinics often

prioritize cost and ability to improve workplace efficiency. However, the risk that that

technology may build blind trust and negatively impact the decision making process of

clinicians is often ignored [198]. In fact, over-dependence on technology was discovered

to be an unintended adverse consequence of clinical information systems; Campbell et al.

and Ash et al. both found that clinicians could not work efficiently without computerized

systems and that they had false expectations about data accuracy and processing [199,200].

It was this latter issue that concerned us about AI diagnostic tools. Various diagnostic

AI techniques have been proven to be capable of solving numerous clinical problems

yet clinicians are hesitant to include them in their decision making processes [201]. It

is important to balance computational approaches for diagnosing stroke with clinicians’

assessments, to augment them rather than replace them. This balance is necessary to

promote the adoption of AI tools in healthcare environments.

Our neurologist collaborators were concerned that practitioners outside the field

of neurology like EMS and less experienced neurologists like residents may become over-

dependent on technological aids for stroke diagnosis, ignoring their own assessments.

Motivated by this concern, we decided to better understand clinician reliance on software

designed to improve decision making in acute stroke diagnosis. To do so, we took a similar

approach as a study done in the area of diabetes care. Sims et al. developed and tested a

new type of interface for a diabetes-specific clinical decision support system that displayed

laboratory results in a color-coded way for the quick understanding of diabetics’ metabolic

control [202]. In their paper, Sims et al. evaluated the effects of their dashboard on the
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identification of patients who required adjustments in their treatment [202]. They measured

the amount of time clinicians spent on each patient’s case and compared their dashboard to

existing laboratory reporting interfaces [202]. They asked doctors to perform timed mock

clinical tasks with and without their dashboard and to rate their confidence in interpreting

diabetes-related test results. By uncovering the effects of their dashboard on clinicians’

decisions for adjusting treatment, the authors learned how to best integrate their support

system into existing workflows [202]. No such study existed for computational aids being

developed for stroke diagnosis.

In this chapter, we describe the development of an initial user interface (UI) for a

stroke diagnostic tool based on prior work and feedback from a focus group of 10 stroke

clinicians. We designed and conducted an online experiment in which we evaluated whether

computational aids influenced an otherwise standard, video-based stroke diagnosis. We

discovered that clinicians considered computational aids only when the aids confirmed or

denied their loosely held beliefs.

5.2 Measuring Clinician Reliance on a Computational

Aid for Stroke

In order to understand how computational aids affect stroke clinicians’ decision

making, we conducted a focus group at the UCSD Stroke Center. The results of the focus

group informed the design of a prototype UI for an acute stroke diagnosis computational

aid that we then evaluated in an experimental setting.

The focus group consisted of 10 clinicians working at the UCSD Stroke Center,

including registered nurses, medical residents, and experienced neurologists. Participants

were asked to: (1) outline concerns about the introduction of AI-based diagnostic technology
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Figure 5.1: The initial prototype of the system’s UI that we evaluated in this study. In
the top left, we show the footage recorded of a stroke patient undergoing an in-person
NIHSS. Deficits identified are listed in the top right. (A) We used a 3-color skeleton to
display symptoms and severity (red for most severe, yellow for moderate symptoms, and
green for no deficits). Clickable nodes represent the joints for which we could display spatial
position data. (B) The position data of the left wrist (blue), right wrist (red), core (purple),
and right shoulder (peach) over time are displayed on the bottom graph. The user can
choose whether to have horizontal (left/right), vertical (up/down), or depth (away/towards)
spatial information displayed on the Y axis.
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into their clinic, (2) identify gaps in the information typically available to them, and (3)

list additional information that would be valuable for acute diagnosis.

The focus group revealed that a tool that supports clinicians during stroke evaluation

needs to quickly convey information. Focus group participants also expressed the desire to

see quantitative data about the stroke symptoms identified by a computational system. For

example, they wanted to be able to see graphs that could be used to understand how the

system detected certain stroke symptoms. Finally, while the prospect of a computational aid

was received positively, clinicians worried about the use of such a tool by less experienced

clinicians. Specifically, they wondered how less experienced stroke practitioners would

balance their own assessments with the predictions of a computational aid, especially in

cases of disagreements between the two.

5.2.1 Designing a User Interface

Based on feedback from the focus group and prior work done in the setting of user

interfaces for stroke diagnosis, we designed the initial prototype UI shown in Figure 5.1.

We wanted to better understand clinician reliance on technological aids in stroke

diagnosis to inform the development of a computational pipeline into a well-integrated,

real-time system. An understanding of the user would give us guidelines for the design of a

final interface. Since a real-time, fully functional system was still under development at

the time of the experiment, we filled the UI prototype with previously recorded data from

stroke patients, as described in Section 5.2.2.

We detail two key visual features of the UI relevant to the study to measure clinician

reliance:

1. Skeleton of Deficits: In earlier work, Gotoh et al. designed a figure with different

body parts highlighted to represent the symptoms of a stroke patient [203]. We used
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a similar representation and created a skeleton image to easily visualize different

deficits of the body parts, shown in Figure 5.1A. An important benefit of using the

skeleton was that our system used 3D coordinates of human body joints (obtained

with depth cameras such as the Microsoft Kinect or from video with deep learning

methods for human pose estimation) to identify symptoms like hemiparesis [95]. A

skeleton visual enabled us to place a clickable node on each body joint to graph the

joint’s X, Y, or Z position in space over time.

2. Plotting Joint Position: Several stroke studies plot the movement and velocity of body

joints in the upper extremities and pupil position (obtained via video-oculography)

over time [204, 205]. Inspired by this approach and the fact that the NIHSS is

comprised primarily of motor tests that assess symptoms ranging from weakness

to tremors, we present quantitative position information of key joints to clinicians

using graphs like the one in Figure 5.1B. The X axis represents time and the Y axis

represents the movement of a joint in X, Y, or Z coordinate space.

To obtain data to fill our initial UI, we recorded 8 stroke patients while a neurologist

was conducting the NIHSS at UCSD Stroke Center outpatient clinics. We followed the

same data collection protocol outlined in [95]. We used the Microsoft Kinect v2 depth

camera to record audio, video, and the 3D position of 25 body joints over time. For each

of the 8 patients, we obtained the neurologist’s diagnosis, a list of symptoms identified,

and their associated NIHSS scores. All patients agreed to be recorded with sensors by

signing a consent form approved by the local Human Research Protections Program office.

After obtaining the NIHSS results for the 8 patients, we displayed the recorded video, the

identified symptoms and their severity, and the recorded body joint position information in

the UI prototype as shown in Figure 5.1.

We created a high-fidelity dynamic web interface using HTML, CSS, and React.js.
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Figure 5.2: Left: First part of our experiment. Participants watched audio and video
footage of a neurologist conducting the NIHSS in-person (right side of the UI) and filled out
a drop-down menu version of the NIHSS (left side of the UI). Right: Data collection setup
in the clinic, with a Microsoft Kinect v2 mounted on the stand of a roll-able computer
table.

Users are able to watch and listen to recordings of stroke patients undergoing an NIHSS

exam and to view plots of the spatial positions of body joints over the duration of the

in-person NIHSS exam. The graphs and the video are synced (as in [206]). So users can

jump to any timestamp in the video and be shown the body joint positions at that point

in the video, and vice-versa.

We categorically represent a stroke deficit’s severity with a 3-color scale to enable

quick identification of symptoms. Implementing a 3-color scale using NIHSS scores is

challenging because each of the tests in the NIHSS exam has a different scoring system,

with some deficits scored out of 3 and others out of 2 or 4 [182]. To address this issue,

we designed the skeleton to have 11 components or areas: left/right eyes, left/right face,

left/right arm, left/right leg, left/right head, and mouth. The NIHSS test scores associated

with each area were added up. For example, the right leg is one area and the related NIHSS

tests measure ataxia of the right leg, sensory loss in the right leg, and drift of the right

leg. If all 3 of these NIHSS scores were 0, the right leg on the skeleton is colored green. If
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at least one of the 3 scores is 1, the area is colored in yellow. Red is used to indicate the

highest severity, when the total is greater than or equal to the number of related NIHSS

scores. In the case of the motor leg, a total >=3 would be colored red. We do the same

analysis for the other 10 areas on the skeleton.

5.2.2 Assessing Clinicians’ Reliance

We wished to determine whether a clinical decision support system for stroke

diagnosis would influence the decision making of clinicians (across different expertise levels).

With this goal in mind, we designed an experiment and survey to evaluate our prototype

UI.

Overview of Experiment Structure

In stroke telemedicine, stroke specialists can diagnose a potential stroke case occur-

ring in another location by "calling in" via video conference software. Typically, specialists

coordinate with a nurse or member of emergency medicine staff onsite who does an in-

person NIHSS. Stroke diagnosis via telemedicine has been shown to be about as effective as

diagnosis with an in-person NIHSS, especially when the remote stroke specialist has access

to brain imaging [100]. Video-based stroke assessments have similarly been shown to be

useful even without brain imaging available [207]. Therefore, in our experiment, we asked

participants to watch the recorded footage (video and audio) of stroke patients undergoing

an in-person NIHSS and to diagnose stroke to the best of their ability.

Participants were presented with 7 cases, plus 1 more patient who was used as a

tutorial to acclimate the user to the experiment’s interface. Each case was broken up

into 2 parts. In the first, participants filled out a drop-down form of the NIHSS exam

while using the recorded footage to identify symptoms and diagnose stroke (see Figure 5.2).

91



Diagnosing stroke through video is more challenging than interacting with a patient in

person, so we gave participants the ability to rate their confidence in their assessments

from 1 (least confident) to 7 (most confident) as well as the the option to write general

notes and feedback, especially if they felt that they could not properly assess a symptom

from video and audio. This approach was inspired by a similar healthcare study related to

spirometry interpretation that rated the perceived confidence of participants out of 7 [208].

Studies in non-healthcare fields, namely those related to answering trivia questions and

eyewitness identifications, have also used a 7 point scale for confidence [209,210].

In the second part of each case, participants were shown our prototype UI from

Figure 5.1 that listed the deficits identified by the neurologist conducting the in-person

NIHSS. Participants’ NIHSS scores and confidence ratings from the first part (the left side

of Figure 5.2) were saved and carried over. In the second part, participants were given the

option to change their answers from the first part in light of the new information provided

to them through the UI. This information was namely the body joint position graphs and

the identified deficits and associated severity. Participants were told that this data was

detected by the computational AI system, but in reality it came were from the original

expert neurologist conducting the in-person NIHSS.

To assess reliance on computational aids, we monitored changes made in this second

part of the experiment by our participant. Participants were again asked to rate their

confidence in their NIHSS diagnoses after using the computational aid. They were also

asked if they felt that any of the displayed symptoms were wrong, to which they had the

option to respond "Yes" or "No".

After completing the tutorial and all 7 cases, we presented participants with a

final, post-experiment survey that included questions regarding: (1) their confidence in

the accuracy of the information that was shown by the UI, (2) whether they had difficulty
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diagnosing any symptoms with the information provided, (3) what sources of information

they generally trusted and regularly used in their diagnoses, and (4) which UI elements

they found to be most and least helpful.

The experiment was designed to take 1.5 to 2 hours to complete and could be done

in parts to accommodate the busy schedules of clinician participants.

Recruiting Participants

Our study was conducted in collaboration with the UCSD Stroke Center. To recruit

participants, we sent a link to the online experiment and survey to the center, comprised

of neurologists, fellows, residents, nurses, and nurse practitioners. Note that none of the

experiment’s participants were the neurologist conducting the NIHSS in person. The

participants of the experiment were not involved in the diagnosis or rehabilitation of any

of the patients used in the experiment.

We collected responses from a total of 6 clinicians who used our online prototype.

Out of the 6, 4 also finished the post-experiment survey. Table 5.1 shows the roles of the

participants: we had responses from 3 stroke fellows, 1 nurse practitioner, and 2 full-time,

more experienced, neurologists.

Participant Confidence in Video-Based NIHSS Assessments

Table 5.2 lists how each participant perceived their confidence regarding their ability

to diagnose stroke by watching the audio and video footage of the NIHSS exam (in the first

part of the experiment). The stroke fellows and experienced neurologists were generally

confident in their video-based NIHSS assessments; scores were primarily 5 or higher out of

7. Participant 4, the nurse practitioner, was the least confident with scores of either 4/7 or

5/7.
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Table 5.1: Participants and their Clinical Roles

Participant ID Clinician Position

1 Stroke Fellow

2 Neurologist

3 Neurologist

4 Nurse Practitioner

5 Stroke Fellow

6 Stroke Fellow

Manipulating the Ground Truth

The in-person neurologist’s NIHSS assessments were the basis of real-life treatment

and rehabilitation planning for the 8 recorded stroke patients. As such, we deemed the in-

person scores as "ground truth". We used the in-person NIHSS results in our UI prototype

as a proxy to our computational AI-based system. In-person NIHSS diagnoses also tend to

be more accurate than video-based diagnoses, so we felt justified in using the former as a

gold standard against which to compare the latter [211].

In order to properly measure dependence on the computational aid, we wanted to

gauge how clinicians would respond to discrepancies between their own assessments and

the results of the system shown on the UI. After all, the final, fully developed system may

still make erroneous predictions far from the ground truth. We slightly manipulated the

in-person NIHSS results shown to participants in the prototype UI to identify if participants

caught the deliberately introduced deviations from the ground truth. It is for this reason

that in each case, as well as in the final survey, we asked participants about whether they

believed the information showed to them on the prototype UI was accurate.

3 out of the 7 stroke patient cases were randomly chosen and manipulated. In the
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first case, we slightly changed the NIHSS score of a random symptom identified by the

in-person neurologist to another random number. In the second case, for each identified

symptom, we changed the score to a random score. In the third case, we listed a deficit

that was not identified by the in-person neurologist and so was not actually present in the

stroke patient. Participants were given the ability to change their NIHSS assessments from

the first part when these manipulated results were shown to them in the second part.

Changes Made After Seeing Prototype UI and Manipulations

For the cases in which we manipulated data, we analyzed how clinicians changed

their scores, if they did. We looked for correlations between our manipulations and the

changes the clinicians made to their self-reported confidence.

The NIHSS scores and symptoms of Patients 2, 3, and 6 were manipulated as

described in Section 5.2.2. For Patient 2, we reduced the motor arm left NIHSS score from

3/4 to 1/4. For Patient 3, a score of 1/4 for the motor arm left NIHSS test and a score of

1/4 for the motor leg left NIHSS test were changed to 2/4 and 3/4, respectively. Lastly, for

Patient 6, we added a motor arm right NIHSS score of 2 when the patient was actually

healthy (total NIHSS score of 0) and did not have drift in their right arm.

4 out of 6 participants made at least 1 change upon seeing the UI in the second

part of the experiment. Participant 1, for example, increased their motor leg score for

Patient 3 by 1, from 0. Participant 2 also initially (and erroneously) thought Patient 1 was

healthy but changed their answer to the scores presented to them in the UI. Interestingly,

Participant 2 initially scored a deficit in Patient 5 that they then removed after seeing the

UI, ultimately giving Patient 5 a healthy diagnosis (correct). For Patient 1, Participant

2’s confidence decreased from 6/7 to 5/7. For Patient 5, their confidence increased from

5/7 to 6/7. After seeing the UI, Participant 4 changed the motor leg test NIHSS score for
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Patient 4 from 1 to 0. But they maintained their total score of 1 and their confidence level

of 5/7. Refer to Tables 5.2 and 5.3.

Participants 3 and 5, a neurologist and stroke fellow, respectively, did not make any

changes. Participant 3 maintained a confidence rating of 7 for all cases.

Belief in the Accuracy of Displayed Results

We expected clinicians to change some of their decisions in response to being shown

manipulated results. We wanted to better understand how unexpected or discordant

predictions from the UI would influence participants’ belief in the accuracy of results.

Table 5.4 shows the responses of participants when they were asked about the

accuracy of the results shown on the UI in the second part of the experiment. Of particular

interest are the manipulated patients – Patients 2, 3, and 6. While the results and data

shown in the UI for (healthy) Patient 5 were deemed accurate by all of the participants,

they unanimously distrusted the manipulated results shown for Patient 6. The belief in

the accuracy of the displayed results for Patients 2 and 3 were more mixed.

Final Survey Results

After the experiment was over, clinicians were asked to complete a short survey

about the prototype interface and to answer specific UI-related questions.

The survey revealed that despite not being in person, participants did not have

difficulty diagnosing most stroke symptoms using audio and video footage and the developed

prototype UI. Some participants did have difficulty assessing facial palsy and best gaze

symptoms due to lighting conditions in the video. Overall, 3 out of the 4 responding

clinicians indicated that the system was "generally accurate" and all 4 considered the

interface to be "consistent". For the respondents, the color-coded skeleton proved to be
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Table 5.4: Participant Belief in the Accuracy of Displayed Results*

Participant ID Patient 1 Patient 2 Patient 3 Patient 4 Patient 5 Patient 6 Patient 7

1 No Yes No Yes Yes No No

2 Yes No No Yes Yes No Yes

3 No No Yes No Yes No Yes

4 No Yes Yes Yes Yes No No

5 No Yes Yes Yes Yes No Yes

6 No Yes No Yes Yes No Yes
*Highlighted in grey are the patients with manipulated results.

most helpful for their diagnoses while the joint movement graphs were not considered as

important.

The final survey revealed that the joint position graphs were superfluous for diagnosis;

the quantitative position information was too granular to be useful to clinicians. Categorical

representations of the data would be more appropriate for future UI iterations.

5.3 Contributions to the Field

In this chapter, we discussed our efforts to understand how practitioners would

make use of a computational aid created to support stroke diagnosis. Our study uncovered

a number of interesting results regarding the effects of a computational support system

on decision making and whether clinicians were able to correct for errors made by the

system. We showed that generally, clinicians balanced predictions from aids with their own

assessments without letting the former dominate their thinking. Clinicians who participated

could easily identify when the system was incorrect and did not seem to blindly trust it.

Lessons learned from this study provide guidance on properly designing computational aids

for healthcare, and specifically how to best integrate them into diagnostic workflows for

acute stroke diagnosis.
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5.3.1 Effects of Computational Aids on Clinical Decision Making

An important concern raised by the participants of our focus group was the danger

of relying too much on computational aids and how doing so would change the diagnostic

ability of clinicians. Our results showed that computational aids did affect decision making,

but only in specific instances. For example, as discussed in Section 5.2.2, Participant 1’s

changes for Patient 3 reflected the artificial increase in Patient 3’s NIHSS score for the

left motor leg. At first glance, it would seem that Participant 1 was completely swayed by

our manipulations. However, Participant 1 noted that they suspected Patient 3’s NIHSS

score in the UI was too high, by looking at footage of the patient lifting her left leg against

gravity. Our subtle manipulation of Patient 3 affected Participant 1’s diagnosis even though

they correctly identified it.

Participant 2’s changes for Patient 1 and Patient 5 were also of note. In the case

of Patient 1, Participant 2 identified deficits only after they saw what was displayed on

the UI, initially misdiagnosing the patient as healthy but later correcting themself. For

Patient 5, Participant 2 did the opposite, changing their diagnosis to healthy (correct).

Participant 2’s decision making process was especially impacted by the data displayed in

the UI. Their confidence went down for Patient 1 after seeing the UI, and up for Patient 5

when the UI helped them fix their initial, incorrect assessment. On the other hand, while

Participant 4 made a negligible change in the NIHSS motor leg score of Patient 4, their

overall assessment did not seem to be affected by the UI.

Participant 1 and Participant 4 were able to incorporate results shown in the UI

into their decision making without letting the technological aid dominate their thinking,

in contrast with the behavior of Participant 2. Clinicians seemed inclined to change

their diagnoses only when the system definitively confirmed or denied their

low confidence or "loosely held" beliefs, a conclusion supported by other work
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in the field of explainable AI [60]. The behavior of Participant 3 further emphasized

this idea. Participant 3 was entirely unaffected by the UI, making no changes in the second

part of the exam. Participant 3 reported perfect 7/7 confidence in their own assessments in

both parts of the experiment, a possible justification for why their decision making was not

affected by the UI – Participant 3 had no loosely held beliefs that could have been affected

by the UI.

It is unclear why Participant 5 was unaffected by the UI, especially given that they

did not identify the manipulations for Patients 2 and 3 and did not have perfect confidence

in their own assessments. Further work needs to be done to understand why this individual

was unaffected; perhaps issues with the design of the UI itself or the information presented

may have discouraged Participant 5 from making use of the computational aid. (Participant

5 did not complete the final post-experiment survey.)

Note also that whether participants changed their responses in the second part of

the exam did not relate to their role nor their experience level with the NIHSS. In fact,

we did not notice any significant relationship between the roles (fellow, nurse practitioner,

or neurologist) and how the UI affected decision making or their belief in the accuracy of

results.

Clinicians Correctly Catch Significant Errors in the UI

The absence of an over-dependence on a computational system in our study is

an important result to consider when thinking about future computational aids and the

difficulty, especially in healthcare, of building an AI-based system that is always correct [64].

We demonstrated on a small scale that clinicians were aware of possible computational

mistakes and were able to identify them when they occur. Future work at the intersection

of AI and human-computer interaction needs to focus on how to make these instances
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obvious; it should be made clear to clinicians that the results presented by computational

aids are approximations and should be treated only as additional cues to incorporate in

their clinical judgement, rather than a perfectly accurate diagnostic.
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Chapter 6

Conclusion and Outlook

In Chapter 1 we outlined the technical and human challenges of machine learning

in healthcare. A major technical challenge is the small and imbalanced nature of real-world

clinical datasets. It is difficult to rigorously evaluate the generalizability of machine and

deep learning models for disease diagnosis and symptom identification trained on poor

datasets. A human challenge unique to the healthcare space is the potential for over-

reliance on AI-based clinical decision support systems. Through examples in neurology

and pulmonology, we highlighted solutions for both these concerns. We summarize these

contributions and discuss their broader impacts here.

In Chapter 2, we motivated a clinical decision support system for acute stroke

diagnosis. As a first step, we developed a machine learning pipeline that used body

angles from the Microsoft Kinect depth camera and the leave-one-out training strategy

to classify hemiparesis or weakness with perfect accuracy. We addressed limitations with

this initial approach – the lack of interpretability of features and the difficulty of obtaining

reliable body angles from patients – by developing a video-based classification pipeline.

Our video-based approach used the covariance matrix of body joint positions as a feature

descriptor, which not only had high discriminatory potential but also could be easily
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interpreted. We rigorously evaluated this pipeline by using a test set unseen during training

and obtained high accuracy exceeding that of 8 stroke specialists conducting a video-based

stroke assessment. This work highlighted the pros and cons of the leave-one-out training

paradigm regularly used in machine learning in healthcare. The strategy allows for the

maximal use of limited datasets for training and yields high classification accuracy. An

unfortunate drawback, however, is that such performance is often overly optimistic and

it is possible for models trained with leave-one-out to overfit. Regardless, leave-one-out

enabled us to identify gaps in our stroke dataset by evaluating our classifier’s performance

on a subject-to-subject basis. Doing so enabled us to focus our data collection efforts going

forward, namely on those with severe hemiparesis unable to sit upright. More broadly,

identifying weakness from video of subjects simply sitting at rest is a highly scalable

approach and primed for real-world deployment. We envision deploying this classifier as

part of a clinical decision support system for stroke in emergency settings without ready

access to neurologists. By automating stroke severity assessment with a real-time system,

our goal is to increase speed of diagnosis and reduce missed strokes by emergency medical

physicians.

In Chapter 3, we leveraged the audio characteristics of coughs to create classifiers

that could distinguish common respiratory diseases in adults. Moreover, we built on recent

advances in generative adversarial networks (GANs) to augment our dataset with cleverly

engineered synthetic cough samples for each class of major respiratory disease, to balance and

increase our dataset size. We experimented on cough samples collected with a smartphone

from 45 subjects in a clinic. Our CoughGAN-improved support vector machine and random

forest models showed up to 76% test accuracy and 83% F1 score in classifying subjects’

conditions between healthy and three major respiratory diseases. Adding our synthetic

coughs improved the performance we could obtain from a relatively small unbalanced
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healthcare dataset by boosting the accuracy over 30%. Our data augmentation reduced

overfitting and discouraged the prediction of a single, dominant class. This work was of

particular importance because despite the prevalence of respiratory diseases, their diagnosis

by clinicians is challenging. Accurately assessing airway sounds requires extensive clinical

training and equipment that may not be easily available. Current methods that automate

this diagnosis are hindered by their use of features that require pulmonary function tests.

Our work paves the way for an automatic, cough-based respiratory disease diagnosis using

smartphones or wearables in-the-wild.

In Chapter 4, we presented a solution that used a single wearable inertial sensor

to automatically assess the gait of a Parkinson’s disease patient and predict the postural

instability and gait disorder sub-score of the Unified Parkinson’s Disease Rating Scale. We

showed that for a 2 minute walk test, our deep learning method’s predicted PIGD scores

could be used to identify a patient’s fluctuations in motor state better than a physician

evaluated on the same criteria. We used adversarial training via GANs to overcome the

curse of dimensionality of the training dataset. Note that the longitudinal progression of

Parkinson’s disease is monitored using episodic assessments performed by trained physicians

in the clinic, whereas our deep learning method has the potential to be deployed in-the-wild

for reliable, continuous tracking of patients’ symptoms and fluctuations.

In Chapter 5, we revisited the clinical decision support system for stroke motivated

earlier but from a human-computer interaction perspective. In this work, we developed

a high-fidelity user interface for a computational aid designed to support acute ischemic

stroke diagnosis. Engaging with practitioners at the UCSD Stroke Center, we conducted

an experiment to determine how technology for identifying stroke symptoms affected their

diagnostic decision-making processes. Other studies have assessed reliance on clinical

decision support systems in fields like diabetes, but no such study exists for stroke diagnosis.
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By assessing how clinicians changed their video-based diagnosis when provided with

data visualizations and predictions from a machine learning tool, we observed that such

computational aids do in fact affect clinicians’ decisions but only in cases when the aid

directly supported or contradicted their prior beliefs. This experiment is an example of how

to measure over-dependence on AI-based technology, an important concern for clinicians.

The results emphasized that future computational aids for stroke diagnosis should focus

on helping clinicians solidify their decisions rather than only providing them with overly

quantitative information that may impede or confuse their judgement.

While the contributions of this dissertation were in the focus areas of stroke,

respiratory disease, and Parkinson’s disease, the lessons learned and techniques developed

can be translated to any healthcare domain in which machine learning can be used. We

hope that continued developments in this field are cognizant of the challenges unique to

healthcare and medicine because there is a long ways to go for AI to have the same impact

in health as it has had in other fields.
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