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Validity of the static-exchange approximation for inner-shell photoionization of
polyatomic molecules

Carlos A. Marante,1 Loren Greenman,2 Cynthia S. Trevisan,3 Thomas

N. Rescigno,1 C. William McCurdy,4, 1 and Robert R. Lucchese1

1Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley CA 94720
2Department of Physics, Kansas State University, 116 Cardwell Hall,

1228 N. 17th St., Manhattan, Kansas 66506-2601
3Department of Sciences and Mathematics, California State University, Maritime Academy, Vallejo, California 94590

4Department of Chemistry, University of California, Davis, CA 95616

The simple single-channel static-exchange approximation completely ignores correlation between
the continuum and molecular ion electrons. In molecular systems with symmetry equivalent atoms,
the single-channel approximation can seriously fail in core ionization when using delocalized orbitals
to represent the core hole states. We present cross sections and molecular frame photoelectron
angular distributions with both localized and delocalized core orbitals in CF4 F (1s) ionization. We
show that only a full coupled-channel calculation can recover an accurate description of the physics
of inner-shell photoionization when using delocalized orbitals, whereas nearly the same result can be
obtained from independent single-channel static-exchange calculations when localized core orbitals
are used. A grid-based variational method described here makes such single-channel calculations
possible on larger systems without local-exchange approximations. Illustrative calculations on the
core ionization of SF6 are presented to illustrate the power of the grid-based method.

I. INTRODUCTION

The amplitude for photoionization of an atom or
molecule is proportional to the matrix element of the
dipole operator between the initial state and a contin-
uum wave function for electron-ion scattering. It has
been known for some time that in general the accurate
calculation of molecular photoionization cross sections
requires a close-coupling treatment of the electron-ion
scattering wave function in which the ionization channels
producing the ion in different electronic states are cou-
pled [1–3]. In recent decades the development of experi-
mental momentum imaging observations of ion fragments
and electrons in coincidence have allowed the measure-
ment of molecular frame photoelectron angular distribu-
tions (MFPADs) [4, 5], and has provided increasingly
strict tests of theoretical predictions. In that context it
has been observed that, while a coupled channels treat-
ment is frequently necessary for valence photoionization
of molecules, the single-channel static-exchange approx-
imation can provide accurate results for core ionization
or inner-shell ionization when the ionized state is not
degenerate or nearly degenerate. Using this simpler ap-
proximation, which ignores correlation between the con-
tinuum and bound electrons, combined experimental and
theoretical studies have uncovered “imaging” and “anti-
imaging” angular distributions in core and inner-shell
ionization [6–9] and explored the consequences of core-
hole localization in molecules with symmetry equivalent
atoms [10–13].

In earlier studies [8, 10] it was found that when the
ion channels defined by the removal of a core electron
from degenerate orbitals arising from symmetry equiv-
alent atoms, for example the F 1s orbitals in CF4 [10]
or carbon 1s in ethane [8], channel coupling changed

the MFPADs greatly and was necessary to reproduce
the experimental angular distributions. On the other
hand for similar molecules, like 1,1-difluoroethylene [8]
where both fluorines are on the same carbon, making
the carbon atoms inequivalent, the single-channel static-
exchange treatment was entirely sufficient.

In the present study we demonstrate that in cases with
equivalent atoms, the approximation of uncoupling de-
generate channels can generally misrepresent the physics
of core ionization, strongly affect the integral cross sec-
tions, and even break the molecular symmetry expected
in the body-frame angular distribution of photoelectrons.
Moreover, the results of single-channel calculations de-
pend on which equivalent definition of the degenerate
channels is used. The sum of the photoionization cross
sections for degenerate channels is not invariant to a uni-
tary transformation of the degenerate orbitals from which
the ionization takes place. We will discuss the origin of
these effects and also propose a procedure that minimizes
channel coupling and allows the treatment of both delo-
calized and localized core hole formation in photoioniza-
tion in single-channel calculations. This idea is applicable
to large systems where coupled channel photoionization
calculations may not be feasible.

We explore these questions here using the complex
Kohn variational method, which is well established in
the literature [14–17], but which in its previous imple-
mentation is limited to smaller systems. To extend that
method to larger systems we have recently introduced
an “overset-grid” implementation of the complex Kohn
method [18] for electron-molecule scattering making use
of a grid-based discrete variable representation of the con-
tinuum wave function that replaces its expansion in the
analytic basis functions of the earlier implementations.
Here we also describe the further extension of that ap-
proach to photoionization, and its application to F K-
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edge ionization in SF6, which is out of reach of the pre-
vious complex Kohn coupled-channel approach and at
the limits of the iterative Schwinger variational approach
using single center expansions [19, 20] for single-channel
calculations with which we also compare.

Photoionization calculations on larger systems with-
out local exchange or correlation approximations require
both a numerical representation of the continuum com-
ponents of the wave function and a way to operate with
exchange potentials and exchange coupling operators.
The overset-grid implementation of the complex Kohn
method [18] provides both of those attributes by effec-
tively expanding the scattering wave function simultane-
ously about multiple centers, as indicated in Fig. 1. As
explained in Section II, to extend this approach to pho-
toionization we must overcome the fact that it is based on
repeated applications of the free-particle Green’s function
and does not naturally apply Coulomb boundary condi-
tions.

FIG. 1. Schematic representation of an overset grid for calcu-
lations on the SF6 molecule. The actual central and sub grids
are denser and radially adaptive.

In the following section and in the appendices we
briefly summarize the complex Kohn variational method
and the extension of its overset-grid implementation to
photoionization, and provide a benchmark example. In
Sec. II C we demonstrate the breakdown of the single-
channel static-exchange approximation for F K-edge ion-
ization of CF4 using delocalized orbitals and with that
example explore the effects of channel coupling with both
localized and delocalized core hole calculations. A prin-
cipal result of this analysis is a way to avoid the necessity
of channel coupling in such cases, no matter how many
symmetry equivalent atoms the molecule contains. In
Sec. IV we present results on both sulfur and fluorine

core ionization in SF6 using the overset-grid approach,
and in Sec. V we summarize our principal conclusions.

II. THE COMPLEX KOHN VARIATIONAL
METHOD FOR PHOTOIONIZATION AND ITS

EXTENSION TO OVERSET-GRIDS

A. The complex Kohn variational formalism

We begin by briefly describing the Complex Kohn
variational method for electron-molecule and electron-
ion collisions, focussing on how the trial function treats
the collision physics while avoiding details of the work-
ing equations [16–18]. The traditional implementation,
originally developed in the late 1980s [21], uses a mix-
ture of Gaussian and continuum analytic basis functions
to form the trial wave function. The more recently devel-
oped overset-grid implementation avoids the limitations
of using Gaussian basis functions to describe the interac-
tion region, but requires an extension to treat photoion-
ization, which we describe for the first time below and in
Appendix A.

For single-channel, elastic scattering the Kohn station-
ary functional for the scattering T-matrix, T+S

k′,k, is a

functional of the trial functions, ψ
(+)t
k and ψ

(−)t
k′ ,

T+S
k′,k = T+t

k′,k + (2π)−
3
2

〈
ψ

(−)t
k′

∣∣∣ Ĥ − E ∣∣∣ψ(+)t
k

〉
, (1)

where T+t
k′,k specifies the asymptotic form of the trial

function, ψ
(+)t
k . The two T -matrices in Eq.(1) are la-

beled by asymptotic momenta, and the continuum states
are δ3(k′−k) normalized. Importantly for our discussion
here, this variational expression is related to a similar one
for the photoionization amplitude [22] that is discussed in
Appendix B. Expanding the wave functions with incom-
ing (−) and outgoing (+) boundary conditions in partial
waves as in Ref. [18]

ψ
(±)
k (r) =

√
2

π

∑
l,m

ilψ
(±)
klm(r)Y ∗l,m(k̂), (2)

where Ylm denotes a spherical harmonic, produces a par-
tial wave version of Eq.(1)

T+S
k,l′,m′,l,m = T+t

k,l′,m′,l,m +
〈
ψ

(−)t
kl′m′

∣∣∣ Ĥ − E ∣∣∣ψ(+)t
klm

〉
, (3)

where l and m denote the angular momentum quantum
numbers. The basis set implementation of the complex
Kohn method expands the wave function in a combina-
tion of the Gaussian basis functions of quantum chem-
istry, ϕi, and Bessel functions,

ψ
(±)t
klm (r) =

∑
i

c
(±)
i ϕi(r) +

1

kr

[
ĵl(kr)Ylm(r̂)

+
∑
l′,m′

T±tk,l′,m′,l,mh̃
±
l′ (kr)Yl′m′(r̂)

]
(4)
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In Eq. (4) ĵl(kr) denotes the regular Riccati-Bessel func-

tion, and h̃±l (kr)
r→∞−−−→ ĥ±l (kr) is a function regular

at the origin that becomes the outgoing Riccati-Hankel
function asymptotically. To apply this method to elec-
tron ion scattering, and thus to photoionization, the
Bessel functions in Eq.(4) are replaced by Coulomb func-
tions Fl(k, r) and Hl(k, r) with the asymptotic forms
given in Eq.(A4) of Appendix A. In either case the vari-
ational parameters in the trial function, namely the coef-

ficients, c
(±)
i , and the T -matrix elements, T±S

k,l′,m′,l,m, are
found by solving linear equations and the stationary ap-
proximation to the T -matrix, T+S

k′,k is constructed from

them in a simple matrix expression given in refs. [16–
18, 21].

The multichannel version of the trial function is formed
by antisymmetrizing the product of continuum functions
like that in Eq.(2) and the bound channel eigenfunctions,
ΦΓ(r1 · · · rN ) describing electronic states of the target
molecule or molecular ion,

Ψ
(±)t
Γ0,kΓ0

= A
∑

Γ

ΦΓ(r1 · · · rN )ψ
(±)
Γ,Γ0,kΓ0

(rN+1)

+
∑
µ

d
Γ0,kΓ0
µ Θµ(r1 · · · rN+1) .

(5)

where the unscattered state has the photoelectron with
momentum kΓ0

in the field of the target ΦΓ0
and where

we have added closed channel and correlating contri-
butions Θµ(r1 · · · rN+1). The working equations now
additionally include the linear variational parameters,

d
Γ0,kΓ0
µ , but still retain the same overall form as for the

single-channel case [16, 17, 23].
The fully differential photoionization cross section for a

fixed direction of the polarization vector is related to the
dipole matrix element between the neutral and electron-
ion scattering wave functions via the relation

d2σΓ0

dΩk̂Γ0
dΩn̂

=
8πω

3c

∣∣∣〈Ψ0|n̂ · µ|Ψ(−)
Γ0,kΓ0

〉
∣∣∣2 (6)

which defines the cross section for linear polarization n̂
and ejected electron momentum kΓ0 leaving the ion in
state Γ0. The complex Kohn scattering calculation pro-

duces the final state wave function Ψ
(−)S
Γ0,kΓ0

in this expres-

sion. If the matrix element in Eq.(6) is evaluated with
the Kohn trial function using its variationally determined
parameters, it is itself a variational approximation to the
photoionization amplitude, as pointed out by Orel and
Rescigno [22] and further explained in Appendix B.

The overset-grid representation begins by construct-
ing a compact grid basis of products, φn(r)Ylm(θ, φ), of
spherical harmonics multiplied by radial discrete vari-
able representation (DVR) functions, φn(r), around each
atomic center of the molecule. These “subgrids” do not
overlap one another, as indicated in the sketch in Fig. 1
of the overset grid. The subgrids are overlapped by a cen-
tral grid of the same form that oversets them and reaches

to the asymptotic region. The key point of the complex
Kohn trial function in Eq.(4) is that it explicitly applies
the correct outgoing (or incoming) asymptotic boundary
conditions, and that property of the trial function is es-
sential to the working equations. The grid representation
does not apply those boundary conditions, so we must do
it by another means.

The overset-grid trial function,ψt is constructed by ex-
panding it in a set of functions that are constructed on
the grid by operating with the free-particle Green’s func-
tion, Ĝ+

0 , which here denotes the Green’s function for

outgoing boundary conditions Ĝ+
0 ≡ (E − T̂ + iε)−1,

where T̂ is the kinetic energy operator. Expanded in
that basis, the trial function analogous to that in Eq.(4)
is

ψ
(±)t
klm (r) = φ0

klm(r) +

N∑
i=1

ci φ
(±)
i,klm(r) (7)

φ
(±)
i,klm(r) ≡ (Ĝ±0 V̂ )iφ0

klm(r) (8)

with φ0
klm(r) = ĵl(kr)Ylm(θ, φ)/kr being the incoming

wave defined on the central grid. Here, for simplicity,
we have written the equations for a single channel case
where the potential is denoted by V . This form of the
trial function imposes the correct boundary conditions,
when the potential does not behave asymptotically as a
Coulomb potential, because all the functions in the ex-
pansion of the trial wave function, except for φ0, satisfy

outgoing wave boundary conditions (φ
(+)
i,klm) or incoming

wave boundary conditions (φ
(−)
i,klm) due to the asymptotic

form of Ĝ±0 . However in the present study we are consid-
ering the problem of scattering from an ion, which does
have a long-range Coulomb potential, for which Ĝ±0 does
not have the correct asymptotic form. In the next sec-
tion we will discuss how we apply this approach to the
problem where the interaction has a Coulomb tail.

The numerical properties of the overset-grid implemen-
tation are explored at length in ref. [18]. In particular it is
shown there that using the iterative basis given in Eq.(7)
in the complex Kohn variational expression leads to a
sequence of scattering T -matrices, where for each N the
computed T -matrix is equivalent to a [(N − 1)/N ] Padé
approximant to the scattered portion of the T -matrix.
Maintaining that property, which leads to particularly
advantageous numerical properties, in the present appli-
cation is essential.

B. Extension of the overset-grid implementation to
photoionization

A key idea of the overset-grid approach is that the
continuum portion of the scattering wave function is ex-
panded in partial waves simultaneously about the centers
of the central grid and of all the subgrids. This expan-
sion is dramatically more compact than a single-center
expansion in spherical harmonics, particularly for larger



4

molecules. To apply scattering boundary conditions we
rely on the fact that the result of operating with the free
particle Green’s function, Ĝ±0 in Eq.(8) produces a func-
tion with outgoing (or incoming) boundary conditions.

Because Ĝ±0 is translationally invariant, we can operate
with it in the local coordinates of each subgrid, and that
is a central simplification that makes the overset-grid ap-
proach practical.

The Coulomb Green’s function does not have that
property so we take another approach. We solve the
electron-ion scattering problem truncated at a distance r0

in the central grid radius at which we can neglect shorter
range forces and the Coulomb potential alone dominates
the interaction of the continuum electron with the target
ion. We can then easily match that solution to the correct
Coulomb boundary conditions as described in Appendix
A. We have found that more terms in the sum given in
Eq.(7) are generally required for convergence with ionic
targets than with neutral ones in this procedure, but that
the overall computational effort is not increased by more
than about a factor of two over a similar sized neutral
problem. In the terminology of ref. [18], more terms in
Eq.(7) is equivalent to more Born-Arnoldi iterations in
the solution of the linear equations of the Kohn method.

The static-exchange potential for the scattering of an
electron from an ion described by a single configuration
which contains one singly occupied orbital has the form

VSE = Vnuc +
∑
d

(
2Ĵd − K̂d

)
+ Ĵs ± K̂s (9)

where the sum over d is over doubly occupied orbitals,
Ĵ and K̂ are direct and exchange operators and s refers
to the singly occupied orbital for which the sign depends
on whether overall singlet or triplet coupling is used for
the scattering wave function. The potential Vnuc is the
nuclear attraction potential. In the special case of a
closed shell target (for which the operators defined by
the singly occupied orbital are absent), and if the orbitals
are Hartree-Fock orbitals, the continuum solution of the
Schrödinger equation with this potential is automatically
orthogonal to the occupied orbitals. That result derives
from the fact that the occupied orbitals are eigenfunc-
tions of the same (Fock) operator as the continuum or-
bital. However in all open shell cases orthogonality of
the continuum solution to the doubly occupied orbitals
is not automatic and must be explicitly enforced. In the
basis-set Kohn implementation of electron ion scattering
the trial function is made orthogonal to doubly occupied
orbitals by construction.

In the extension of the overset-grid approach to pho-
toionization, the needed orthogonality constraint can be
applied by a change in the definition of the potential.
Applying the constraint that the scattered orbital be or-
thogonal to the doubly occupied orbitals in that man-
ner retains the Padé property of the Kohn variational
expression for the T -matrix that underlies its rapid con-
vergence with respect to the number of terms in Eq. (7).

The procedure and its working equations are explained
in Appendix C.
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FIG. 2. Integral cross section (top) and β parameter (bottom)
for the angular distribution of the photoelectron relative to
polarization direction for ionization of the carbon 1s orbital in
CF4, comparing the converged overset-grid results with those
using a single center expansion and the Schwinger iterative
method.

C. Numerical tests of the overset-grid
implementation for photoionization

Although it is much more slowly convergent with re-
spect to partial waves, the iterative Schwinger variational
method based on a single center expansion [19, 20] can
be systematically improved, and so we first compare the
overset-grid results for the test case of CF4 with that ap-
proach. Figure 2 compares the integral cross sections and
β parameters for ionization of the carbon 1s level in the
static-exchange approximation from a converged overset-
grid calculation with the results of the Schwinger single-
center expansion calculation using various numbers of
partial waves. The calculation using the overset grid,
whose central grid consists of concentric spherical shells
of DVR functions has been converged with respect to the
DVR functions, and has a maximum angular momentum
of l = 30, while the subgrids centered on fluorines have
a maximum angular momentum of l = 3. The central
grid component of the overset grid, consist of 42 finite
elements (FEM) in box of 19 Å, in which DVR radial
functions are expressed in terms of Legendre polynomi-
als of degree 11 (462 grid points in total). Similarly, each
subgrid has 18 FEM in a box of 0.6 Å, which is a distance
that insures that the subgrids do not overlap with each
other. The underlying DVR quadrature is the same as
the central grid, that leads to a total of 198 grid points
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for each subgrid. The single center expansion results con-
verge towards the overset-grid values as the number of
partial waves is increased, verifying the convergence of
the overset-grid algorithm for photoionization to the cor-
rect result.

In Fig. 3 we compare the results of a basis-set Kohn
calculation with those of the overset-grid calculation for
the integral cross section for C(1s) ionization in CF4.
The basis-set Kohn calculations used a maximum of l = 6
in trial function in Eq.(4) and a triple-zeta with polariza-
tion basis set [24, 25] with three additional s-type Gaus-
sians, with exponents 0.08, 0.04, and 0.02, and two p-type
Gaussians, with exponents 0.05 and 0.01, at the center
of the molecule, for a total of 109 contracted Gaussian
basis functions. The differences between the converged

0 10 20 30 40 50
Photon energy (eV)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

σ
 (

M
b

)

Basis Kohn, L
Basis Kohn, V
Overset grid, L

Overset grid, V

FIG. 3. Integral cross section for C(1s) ionization in CF4 com-
paring basis-set Kohn variational calculations in both length
(L) and velocity (V) gauges with converged overset-grid re-
sults. The breakdown seen in the basis-set Kohn calculations
at energies above 40 eV is due to the limited basis set used in
the expansion in Eq. (4)

overset-grid and basis-set Kohn results for kinetic ener-
gies below about 40 eV are primarily the result of inade-
quacies of the Gaussian basis used in Eq. (4). Also small
contributions from higher partial waves are neglected in
the basis-set calculations, which would require high angu-
lar momentum basis functions not found in typical quan-
tum chemistry packages. However the spurious features
in the basis-set Kohn results at higher kinetic energies
are more serious, and likely arise because combinations
of the Gaussian functions that would be coupled to higher
angular momenta, were they present in the calculation,
are partially decoupled from the continuum and thus ap-
pear as spurious resonance-like features. On the other
hand, the overset grid can be improved systematically
by increasing the density of radial DVR functions as well
as the number of angular momenta used in the subgrids
and central grid so that the overset-grid calculations can
be easily be extended to kinetic energies of hundreds of
eV.

FIG. 4. PA-MFPADs for carbon 1s ionization at 4 eV (left)
and 13 eV (right scaled by 2.3). The “anti imaging” angular
dependence on the left is essentially identical to the basis-set
Kohn result in Fig. 5 of ref. [8] where it is compared with
experiment.

While there are some differences between the overset-
grid and basis-set Kohn results for integral cross sections,
differences in the angular distributions seen in the com-
puted MFPADs are hardly visible. In Fig. 4 we show po-
larization averaged MFPADs (PA-MFPADs) for carbon
ionization. It is the average over polarization directions
that frequently shows the “imaging” behavior or “anti-
imaging” (in which electrons appear ejected between the
bonds) that have been studied previously [6–9]. These
figures are essentially identical to those produced by the
basis-set Kohn calculation, differing only slightly in over-
all magnitude.

Finally we compare MFPADs at a photoelectron en-
ergy of 3.0 eV with a fixed polarization direction from
overset-grid and basis-set complex Kohn single-channel
calculations in the top and middle panels of Fig. 5 at
the F K-edge to produce an F(1s) hole localized on one
of the fluorines. Again there are minimal differences at
this energy. However, as one considers lower energies
near the Cooper minimum, shown in the basis-set com-
plex Kohn and overset grid integral cross section in Fig. 6,
the computed MFPADs are sensitive the value of the pho-
toelectron energy relative to the location of the Cooper
minima in the two calculations. However, when the MF-
PADs at the respective minima, as shown in Fig. 7 for
a different polarization direction and without averaging,
are compared we again see very good agreement between
the overset-grid and basis-set complex Kohn methods.

From the results shown in Fig. 2, with the single-center
result converging to the overset-grid result, we are con-
vinced that the overset-grid result is well converged. We
have not attempted to converge the basis-set Kohn cal-
culation with respect to the size of the basis, so that of
the overset-grid results are most likely the most accurate
single-channel static-exchange results given here.
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FIG. 5. MFPADs for a 3 eV photoelectron from ionization
by linear polarization along a CF bond (two-headed green ar-
row) for the creation of F(1s) hole localized on the F atom
on the polarization axis, which is shown in red. All three
calculations used the localized orbitals with one orbital corre-
sponding to the localized F(1s) hole state and the other three
F(1s) orbitals being delocalized on the other F atoms. The
top panel shows the results from the single-channel overset-
grid calculation. The middle panel shows the results from the
single-channel basis-set Kohn calculation. And the bottom
panel shows the basis-set Kohn results with all four F(1s)
ionization channels coupled.

III. THE USE OF LOCALIZATION TO
IMPROVE THE SINGLE-CHANNEL

STATIC-EXCHANGE APPROXIMATION FOR
CORE IONIZATION

To explore the validity of the single-channel static-
exchange approximation for core ionization we first com-
pare the results of several calculations on F K-edge ion-

0 2 4 6 8 10 12 14 16 18
Photoelectron Energy (eV)

1.2

1.4

1.6

1.8

2.0

2.2

2.4

σ To
ta

l (M
b)

Localized coupled
Delocalized coupled
Delocalized uncoupled
4 x F(1s) uncoupled
4 x F(1s) Overset Grid

FIG. 6. Total cross sections for F K-edge photoionization
in CF4 from basis-set Kohn calculations in the length gauge
summed over the four channels . Curves labeled delocalized
have channels defined as vacancies in the four orbitals of a1
and t2 symmetry in tetrahedral symmetry. Curves labeled
“localized” have one channel defined as a F(1s) vacancy and
the other three as vacancies in the remaining a1 and e sym-
metry in C3v symmetry. The curves labeled “F(1s)” are four
times the cross section for a single channel defined as a va-
cancy in one fluorine 1s orbital. The overset-grid result for
the F(1s) channel is also shown.

ization of CF4. In a Hartree-Fock calculation on the
neutral molecule at its equilibrium tetrahedral geometry,
the F 1s orbitals form four effectively-degenerate molec-
ular orbitals: one a1 and three t2 orbitals. If the elec-
tronic states of CF+

4 are defined as single configurations
in which an electron is removed from a Hartree-Fock spin
orbital, those orbitals define the static-exchange poten-
tials for four single-channel photoionization calculations
or the four channels of a coupled channel treatment. We
can see the answer to the question of whether channel
coupling is important with this definition of the channels
in Fig. 6, where the results of such calculations using the
basis-set Kohn method are plotted. The coupled chan-
nel result is labeled “Delocalized coupled” in that figure.
Comparing with the result from the single-channel cal-
culations labeled “Delocalized uncoupled” shows the first
effect of making the static-exchange approximation with
uncoupled channels. The total cross sections for ioniza-
tion summed over the four channels differ substantially
at low energies, and the Cooper minimum essentially dis-
appears in the uncoupled approximation.

In an earlier study on the observation of the localiza-
tion of the F(1s) hole we performed calculations with
one orbital defined as a F 1s orbital, and the other
three transforming with the a1 and e irreducible repre-
sentations of the resulting C3v symmetry. Such calcula-
tions can be done simply by performing a unitary trans-
formation on the orbitals in Td symmetry or by very
slightly displacing one CF bond distance and allowing
the Hartree-Fock calculation to converge to a localized
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FIG. 7. Comparison of calculated MFPADs for F(1s) ionization of CF4 by linearly polarized light, with the polarization
direction indicated by the two headed green arrows. On the left, the results of a basis-set complex Kohn method at its Cooper
minimum (2.18 eV), from a coupled four channel calculation with the MFPAD summed over all four channels. On the right, a
single channel overset-grid calculation at its Cooper minimum (1.5 eV), where the F(1s) hole is localized on one F atom and
the MFPAD is summed over four such single-channel calculations with the F(1s) hole being localized on the different F atoms.
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FIG. 8. Partial photoionization cross sections for each of the
four channels from coupled-channel basis-set Kohn calcula-
tions with one channel defined as a F(1s) vacancy and the
other three as vacancies in the remaining C3v symmetry or-
bitals. The cross sections from the two different e symmetry
orbitals are the same. The single-channel (uncoupled) results
for the F (1s) hole are shown as symbols alone, and are seen
to be nearly identical to the F(1s) coupled channel results.

1s orbital for one of the core molecular orbitals. If the
photoionization cross section is calculated with the four
resulting channels coupled, the result for the total cross
section is the same as if the close-coupling calculation is
performed with the orbitals from tetrahedral symmetry,
as the points labeled “Localized coupled” in Fig. 6 show.

Also shown in Fig. 6 is the result of multiplying the
single channel result for the channel defined as a vacancy
in a single F 1s orbital by four. It is essentially identical
to the total cross section computed with the four channels

coupled for either definition of the channels. Even more
striking is fact that the resulting MFPAD for the F(1s)
channel from this single-channel calculation, shown in
Fig. 5 is essentially identical to the result for that chan-
nel from a four-channel close coupling calculation. So
it appears that localizing that vacancy essentially elimi-
nated that channel’s coupling to the other three.

To make sense of this result and to understand its gen-
eral significance, we examine the contributions of the four
channels to the total cross section for coupled-channel
calculations with one hole localized on a single fluorine.
In Fig. 8 we show the cross sections of the four resulting
channels (with holes in the F 1s, a1 and e orbitals). The
sum of these different cross sections (with the cross sec-
tion for the hole in the e symmetry core orbital multiplied
by two) is shown in Fig. 6, where it is labeled “Localized
coupled” and is seen to be the same as the coupled chan-
nel calculation using the totally delocalized Td orbitals.
Thus the total cross section in a coupled channel cal-
culation is invariant to the definition of the degenerate
channels. Additionally in Fig. 8 we see that the partial
cross sections for ionizing to produce an F(1s) vacancy
are virtually identical in both the coupled-channel and
single-channel calculations when the F(1s) vacancy is lo-
calized on one center.

The symmetry breaking in single channel calcula-
tions with degenerate channels is seen strikingly in Fig.
9 which shows PA-MFPADs for F K-edge ionization.
When the four channels are defined as vacancies in a1

and t2 orbitals in tetrahedral symmetry, and used in a
close-coupling calculation, the resulting PA-MFPAD re-
flects the tetrahedral symmetry of the molecule, as it
must. However when the same channels are uncoupled
using only the C2v point group, and the four single-
channel results are summed, the broken symmetry is
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a b

c d

FIG. 9. Calculated PA-MFPADs from delocalized and localized hole states for ionization from the F K-edge in CF4 2 eV above
threshold. (a) The total PA-MFPAD summed over all four channels ( a1 and t2 orbitals) in tetrahedral symmetry coupling
the four channels using delocalized hole states; (b) The same calculation using delocalized hole states with the four channels
uncoupled, showing broken symmetry from the single-channel treatment; (c) The same calculation (from the overset-grid
implementation) in the full Td symmetry using delocalized hole states, recovering the symmetry but not the correct coupled
channel result, and (d) The PA-MFPAD (times 2.75) for ionization of the localized F(1s) hole on the F atom pointing towards
the viewer from the single-channel calculation, which when rotated on to the other three CF directions and summed reproduces
(a).

evident. However, we also show in Fig. 9(c) the re-
sults of single-channel calculations, using the overset-grid
method, where the full Td point group is employed. This
calculation displays the correct Td symmetry in the PA-
MFPAD, although not the correct result. In particular,
we note that the single-channel Td result has four large
lobes in the direction of the C3 symmetry axes of the
molecule opposite to the location of the F atoms on those
axes. Whereas, the correct coupled-channel result shown
in Fig. 9(a) has six lobes along the three C2 axes that
bisect the F-C-F bond angles. In the single-channel Td
symmetry calculations, the couplings between the three
components of the t2 orbital are included through the use
of symmetry, however the coupling between the a1 and
t2 hole states is still neglected.

Nonetheless if a single-channel calculations are per-
formed for ionization from localized F 1s orbitals on the

four fluorines separately, the resulting PA-MFPADs, one
of which is shown in Fig. 9(d) can be added together
to recover the correct coupled channels result shown in
Fig. 9(a). Defining the channels using the four ion states
formed from localized F 1s orbitals thus effectively elim-
inates the coupling between them.

To see why that is the case we can write the operator
Ĥ−E in the coupled channel version of Eq.(1), specializ-
ing for clarity to this case of single configuration channel
eigenfunctions

Ĥ− E =

[
T̂ − E + Vnuc +

∑
o

(
2Ĵo − K̂o

)]
1 + V̂CC,

(10)
where o is summed over all of the doubly occupied or-
bitals in the initial state. The form of the channel cou-
pling potential between single configuration hole states
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is then [3]

V̂ CC
i,j = −Ĵi,j + 2K̂i,j (11)

where the coupling operator V̂ CC
i,j between channel i, with

only one electron in orbital ϕi, and channel j, with only
one electron in orbital ϕi, operating on the continuum
function ψk(r1) has the form

V̂ CC
i,j ψk(r1) =−

∫
ϕ∗i (r2)ϕj(r2)

r12
dr2 ψk(r1)

+ 2

∫
ϕ∗i (r2)ψk(r2)

r12
dr2 ϕj(r1) .

(12)

A unitary transformation among the four orbitals ob-
viously leaves the diagonal first term in Ĥ − E, defined
in Eq. (10) unchanged. Transforming the matrix of po-
tential operators redefines the channels, but cannot break
the symmetry of the coupled-channels equations, because
the potential matrix has the symmetry of the molecule.
That is why the total cross section and PA-MFPADs re-
main unchanged by such a redefinition of the channels.
On the other hand neglecting all the off-diagonal cou-
pling potentials, V̂ CC

i,j and making such a transformation
on the orbitals produces a diagonal matrix of static ex-
change potentials that need not reflect the symmetry of
the molecule. Two holes might be localized and the other
two appear in linear combinations of the remaining two
F 1s orbitals for example, with no compensating redef-
inition of the couplings. This observation explains the
symmetry breaking in single-channel calculations in the
case of ionization from degenerate core levels.

The result of making the specific unitary transforma-
tion that localizes all four of the F 1s orbitals, and then
neglecting the coupling between those channels, can be
seen from the definition of the coupling potential. If the
two orbitals ϕi and ϕj are 1s orbitals on different flu-
orines their product is effectively zero and so the first
term in Eq.(12) from the Ĵij operators, the direct cou-
pling, vanishes. The matrix elements of the exchange
coupling, the second term in Eq.(12), are minimized be-
cause the products of these two nonoverlaping core or-
bitals with continuum functions in their respective chan-
nels produces two distributions that are strictly localized
on the atoms, and which are separated by the distance
between the atoms. In contrast, when the hole states
are delocalized there will be strong interchannel coupling
coming from significant non-zero off-diagonal Ĵij terms.

Thus the separated, single-channel approximation for
channels defined in terms of localized orbitals constructed
from degenerate core levels is expected to be better than
for other choices of channel definitions. Our results here
suggest that it is in general a very good approximation.
Most interestingly, the results of a coupled channel cal-
culation that defines the channels as delocalized sym-
metry orbitals can be retrieved from the single-channel
calculations by transforming the electron-ion scattering
T-matrix or photoionization amplitudes back to the sym-
metry orbital definition of the channels. That fact will

make it possible to perform calculations of core photoion-
ization on larger molecules with many equivalent atoms
as single-channel static-exchange calculations, but only
with the channels defined as localized vacancies.

IV. CORE IONIZATION IN SF6

For the case of the SF6 molecule, the close coupling cal-
culations with the basis-set Kohn is out of range, because
for the F(1s) holes, whether localized or in symmetry
orbitals, prohibitively large Gaussian basis sets are re-
quired to produce unitary results. Thus, while the basis-
set Kohn implementation can treat sulfur core ionization
in this molecule, close coupling calculations with that
method would be prohibitive for fluorine core ionization.

Nevertheless, the overset-grid implementation does not
have this problem with producing unitary results, given
the fact that the radial basis is expressed in terms of DVR
functions. Therefore it can be used on this molecule with
localized F(1s) vacancies defining the channels, and then
treating them in single-channel calculations.
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FIG. 10. Photoionization cross section (top) and β parameter
(bottom) of SF6 from the S(1s) orbital, computed with the
single center expansion for different values of the maximum
angular momentum ` and the converged overset-grid result.

For the sake of consistency, we first explore 1s and 2s
ionization of the sulfur atom to demonstrate the conver-
gence properties of the overset-grid implementation, for
which other theoretical results have been previously re-
ported [9, 20]. First we note that the ionization potential
of the S 1s orbital is 2490 eV [26]. Thus the wave length
of the light need to ionize from this orbital is λ ≤ 4.98 Å
which is on the order of the R(S-F) = 1.561 Å, so that
one might expect significant non-zero non-dipole effects.
However, computed non-dipole parameters have shown
that these effects are only a few percent of the dipole-
allowed parameters [27]. Thus the present results for the
dipole MFPAD should be quite close to the MFPADs
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one would obtain if non-dipole effects were included. In
Fig. 10, the total photoionization cross section and the
β asymmetry parameter, both in the length gauge, are
shown for the S(1s) photoionization. Several results com-
puted with the single-center expansion for several max-
imum angular momenta ` = 15, 25, 45, 65, clearly points
to a convergence trend to the actual result, computed
with the overset grid using a moderate value of maxi-
mum `. In a similar way that we did for CF4 in pre-
vious sections, a maximum angular momentum ` = 30
for the central grid, and ` = 3 for the subgrids located
at the fluorine atoms, were enough in order to converge
the overset-grid calculations with respect to the angular
basis. The central grid is expanded in a 7.7 Å spherical
box, which is divided in 88 FEM with 440 grid points in
total; meanwhile each subgrid is enclosed in a 0.7 Å box
with 170 grid points distributed in 34 FEM. The degree
of the underlying Legendre polynomials is 11.
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FIG. 11. Comparison between the photoionization of SF6

from the S(1s) and S(2s) orbitals, for the cross section (top)
and β parameter (bottom). The cross section corresponding
to the S(1s) photoionization has been resized by a factor of
2.5 to compare better the energy dependence.

A comparison between the photoionization from the
S(1s) and S(2s) orbitals is shown in Fig. 11. First we
note that the magnitudes of the cross sections are differ-
ent, with the S(1s) cross section being approximately 2.5
time smaller than the S(2s) cross section, which is pre-
sumably due to the fact that the S(1s) core has a much
smaller radial extent than the S(2s) orbital. However, the
shapes of the two cross sections are very similar. Both
show nearly the same shape resonance around 55 eV in
photoelectron energy, which is due to the adiabatic po-
tential corresponding to a partial wave of ` = 9 (see [20]
for more details). The β parameters are almost identi-
cal, which indicates that the differential cross sections
will also differ roughly by a normalization constant. The

fact that the β parameters are nearly the same was also
found by Toffoli et al. [27]. We note that in an atomic
system the expected value of β for ionization from an s
orbital, excluding relativistic effects and assuming that
other shells of degenerate atomic orbitals are fully occu-
pied, is β = 2 [28]. Thus all of the structure seen in the
β parameters in Fig. 11 must be due to scattering of the
photoelectron by the other parts of the molecule. The
fact that the (1s)−1 and (2s)−1 photoelectron asymme-
try parameters are so similar indicates that scattering of
the photoelectron by the framework of F atoms must be
nearly the same in these two cases.

45 eV 50 eV

52 eV 54 eV

60 eV 65 eV

FIG. 12. Calculated MFPADs corresponding to different pho-
toelectron energies (shown in the insets), for the SF6 pho-
toionization from the S(2s) orbital, with a linearly polarized
field along one of the main molecule axis.

Considering the static-exchange calculation for the
S(2s), Fig. 12 shows several MFPADs corresponding to
different energies around the 55 eV shape resonance for
a fixed polarization direction along the main molecular
axis. These MFPADs would be almost the same as the
S(1s) MFPADs at the same photoelectron energies, but
with a different normalization factor. For energies well
below the resonance, the photoelectron also has a high
probability to be emitted in several directions other than
the polarization one. But, when the energy increases
and goes through the resonance, the angular distribution
changes dramatically to being strongly peaked along the
polarization direction consistent with the high, l = 7,
decay channel for the shape resonance in this system.[20]

In order to describe the photoionization from the F K-
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FIG. 13. Total MFPADs corresponding to a fixed polariza-
tion direction along the principal molecular axis, for several
photoelectron energies (shown in insets) around the shape res-
onance peak displayed on the top-left panel, obtained adding
up the 6 SF6 photoionization channels that leave the parent
ion with a localized 1s hole on each fluorine atom.

edge in SF6, we stretched one of the S-F bonds slightly
from equilibrium, resulting in one molecular orbital that
consists exclusively of the 1s orbital on that fluorine and
five others, degenerate and delocalized. This modifica-
tion of the molecular structure changes the point group
symmetry from Oh to C4v, and summing the results of six
such calculations, given that in each calculation the hole
is located in a different fluorine atom (either stretching
the different bonds or properly rotating the matrix ele-
ments), produces the result to be expected if no core-hole
localization is observed, as shown previously for CF4.
The total cross section, and several MFPADs for a fixed
polarization along the main molecular axis are shown in
Fig. 13. The cross section computed with the single-
center Schwinger method, required a very high maximum
angular momentum ` = 195 in order to converge the re-
sult to the one computed with the overset grid. Dividing
the cross section into the two photoelectron continuum
components, it is clear that the resonance around 19 eV
is due to the a1 component, whilst the e component only
contributes as a flat background at energies near the res-
onance. In addition to the resonance shown in Fig. 13,
we find at least two additional shape resonances in the
F(1s) ionization, one at 55 eV in the a1 symmetry, which
is very similar to the resonance seen in the 1s and 2s ion-

ization of S seen above, and a resonance at 5 eV in the
e continuum. Analyzed in terms of a Fano resonance
line shape [29], the cross section has a large q ≈ 60 with
a large background cross section that is not coupled to
the resonance. In such a situation, one expects that the
transition amplitudes will be symmetric about the peak
in the cross section. This symmetry is seen in Fig. 13
with the MFPADs corresponding to 17 eV and 22 eV
which are nearly symmetrically displaced from the peak
in the cross section which occurs at 19.2 eV. The ioniza-
tion along the polarization direction is enhanced at the
resonant energy indicative of the shape of the MFPAD
due to the resonance, whereas away from the resonance,
e.g. at 35 eV, broader MFPADs are found.

V. SUMMARY

Our results show that the coupled-channel calcula-
tions, with channels defined using delocalized symme-
try orbitals for equivalent core holes in the parent ions,
can be reproduced with a single-channel calculation by
transforming the degenerate delocalized orbitals into lo-
calized equivalent hole states. This transformation makes
the coupling between different channels almost negligi-
ble. This observation would suggest that the model with
localized holes states for a system with symmetry equiv-
alent atoms provides the best zeroth-order picture for
core ionization in these systems. The approach proposed
here for core photoionization calculations is related to the
one-center non-orthogonal configuration interaction with
single substitutions (1C-NOCIS) method which has been
proposed for the study of metastable core-excited states
[30]. In the NOCIS method non-orthogonal configura-
tions based on localized orbitals provide a superior refer-
ence basis in which to describe electron correlation in an
isolated molecule, while here such configurations provide
a better reference from which to describe channel cou-
pling in the presence of the photoelectron, which is also
an electron correlation effect. The one center version for
core excitation, 1C-NOCIS, limits the configuration in-
teraction wave function to include a single core-hole state
much as our one-channel localized hole photoionization
calculations only include a single core hole state.

The extension of the overset-grid approach to pho-
toionization, together with the approach to core ioniza-
tion of equivalent atoms that allows it to be treated in
single-channel calculations, have proven to be success-
ful, and can be used in combination with momentum
imaging experiments to explore the question of core-hole
localization in larger symmetric molecules such as hex-
afluorobenzene (C6F6) and the other symmetric fluori-
nated benzenes. Extension of the idea of using local-
ized core holes to simplify core ionization calculations
is currently being pursued for the Cl 2p ionization of
CCl4, for which experimental recoil frame angular distri-
butions have been measured [31] in a manner similar to
the measurements that revealed core hole localization in
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CF4 [10]. For core ionization of symmetry nonequivalent
atoms, the Hartree-Fock orbitals are naturally localized
on those atoms and the single-channel static-exchange
approximation should also be sufficient.

The localization of core holes in a core ionization cal-
culation is presented here as a better choice for the ion-
state basis set because it minimizes the coupling matrix
elements between the different ionization channels. At
geometries where the atoms are symmetry equivalent, the
canonical Hartree-Fock orbitals are in general delocalized
over the symmetry equivalent atoms. When construct-
ing single-configuration ion state wave functions, by re-
moving an electron from one of the initial state orbitals,
the Hamiltonian matrix elements between the different
resulting (N −1)-electron ion states are equal to the ma-
trix elements of the Fock operator between orbitals from
which the electrons have been removed. In the case of
the canonical Hartree-Fock orbitals all such off-diagonal
matrix elements are zero. In contrast, when a unitary
transformation is performed on the orbital basis to ob-
tain localized orbitals, the resulting ion states are now
connected by non-zero Hamiltonian matrix elements due
to the fact that the Fock operator is not diagonal in the
new set of orbitals. Note that the Hamiltonian matrix el-
ements between the different localized ion states are pro-
portional to the orbital energy splitting of the delocalized
canonical orbitals from which the localized orbitals are
constructed. Thus in the absence of the photoelectron,
localizing the hole states induces non-zero Hamiltonian
matrix elements between the ion states, although those
matrix elements will be small if the canonical orbitals
that are being mixed are nearly degenerate. Thus, the
utility of core-hole localization approach is based on two
facts, the small Hamiltonian matrix elements between
the localized ion states and the dramatic reduction of the
continuum-continuum inter-channel coupling. These two
effects are also essential prerequisites to the observation
in the photoionization of systems with weakly interacting
equivalent core holes, where the lifetime with respect to
asymmetric fragmentation is short compared to the hole-
hopping time, that the hole does appear to be initially
localized at one site, e. g. in the case of (1s)−1 ionization
of Ne dimer [32, 33].
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Appendix A: Matching to Coulomb boundary
conditions

To construct the photoionization amplitude in Eq.(6)

A(k) = 〈Ψ0|n̂ · µ|Ψ(−)
k 〉, (A1)

written here for a single channel for simplicity, we require

the partial wave expansion of Ψ
(−)
k (r) with Coulomb

boundary conditions. Applying the overset-grid ap-
proach for neutrals [18] unchanged, we effectively solve

for Ψ
(−)
k by cutting off the interaction potential at the dis-

tance r0 that marks the limit of the central grid beyond
the subgrids and beyond all but the Coulomb potential
in the interaction of the continuum electron with the ion.
We can change those boundary conditions after the fact
by matching to Coulomb boundary conditions at r0. To
perform that matching we first note that the electron-ion
scattering wave function with Coulomb boundary condi-
tions can be formally expanded in partial waves as

Ψ
(−)
k =

(
2

π

)1/2

×
∑

l,m,l0,m0

il0e−iηl0

kr
ψ

(−)
l,m,l0,m0

(r)Yl,m(r̂)Y ∗l0,m0
(k̂)

(A2)

with

ψ
(−)
l,m,l0,m0

(r)→ Fl0(k, r)δl,l0δm,m0
+ T SR

lm,l0m0
H

(−)
l (k, r)

(A3)

where T SR
lm,l0m0

is the T -matrix due to the short range

potential in V = V SR−Z/r where Z is the residual charge
of the ion (not necessarily equal to one), and l0,m0 labels
the regular Coulomb function which is the incoming wave
in the asymptotic form and the Coulomb functions satisfy

Fl(k, r)→ sin

(
kr +

Z

k
ln 2kr − πl

2
+ ηl

)
H

(−)
l (k, r)→ exp

[
−i
(
kr +

Z

k
ln 2kr − πl

2
+ ηl

)]
(A4)

The dipole matrix element in Eq.(A1) can be written
in terms of this single-center expansion of the scattering
wave function as

A(k) =

(
2

π

)1/2 ∑
l0,m0

il0e−iηl0Al0,m0
Y ∗l0,m0

(k̂) (A5)
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with

Al0,m0 ≡ 〈Φ0|n̂ · µ|
∑
l,m

ψ
(−)
l,m,l0,m0

(r)

kr
Yl,m(r̂)〉. (A6)

We can see that photoionization amplitude is determined
by the partial wave amplitudes Al0,m0

corresponding to
angular momenta that contribute to the asymptotic part
of the electron-ion scattering wave function, which are
the “incoming waves” in the asymptotic form in Eq.(A3).
That is in general a much smaller number of partial waves
than would be necessary in a single-center expansion of
the complete electron-ion scattering wave function.

That observation allows us to use the free-particle
Green’s function in the Born-Arnoldi iterates, (G0V )n,
in Eq.(8) to solve the complex Kohn equations up to ra-
dius of the central grid, r0, where by doing so we will
have applied the boundary conditions

ψ̃
(−)
l,m,l0,m0

(r0) = ĵl(kr0)δl,l0δm,m0
+ T̃lm,l0m0

ĥ
(−)
l (kr0)

(A7)

at the point r0, where the tilde on ψ̃
(−)
l,m,l0,m0

(r0) denotes
that this is the wave function solved with short range
boundary conditions at r0 and the tilde on T̃lm,l0m0 indi-
cates the variational T matrix computed using the com-
plex Kohn variational expression for the cutoff poten-
tial. Therefore at r0 the radial wave functions from such
a calculation are combinations incoming and outgoing
Coulomb functions

ψ̃
(−)
l,m,l0,m0

(r0)

= Fl(k, r0)αlm,l0 m0 +H
(−)
l (k, r0)βlm,l0 m0 .

(A8)

The matrices αl,m,l0,m0
and βl,m,l0,m0

can be calculated
simply from matching the value and derivative of the
wave function, denoting ∂/∂r by primes, we first define

W
H

(−)
l

(fl) =
H

(−)′

l fl − f
′

lH
(−)
l

H
(−)′

l Fl − F ′lH
(−)
l

∣∣∣∣
r0

=
−1

k

(
H

(−)′

l fl − f
′

lH
(−)
l

) ∣∣
r0

(A9)

where we used the Wronskian of the Coulomb functions.
Then using the corresponding expression for Fl, we easily
find that

αlm,l0m0
= W

H
(−)
l

(ĵl)δl,l0δm,m0
+ T̃lm,l0m0

W
H

(−)
l

(ĥ
(−)
l )

(A10)

βlm,l0m0 = WFl
(ĵl)δl,l0δm,m0 + T̃lm,l0m0

WFl
(ĥ

(−)
l ).

(A11)
Note that αl,m,l0,m0

and βl,m,l0,m0
are written in terms

of two quantities that only depend on the value of r0

and k and the variational T̃ so that both α and β are
variational.

Now if we define the right inverse of the matrix α by∑
l′,m′

αlm,l′m′ α
−1
l′m′,l0 m0

= δl,l0δm,m0 , (A12)

we can transform (rotate) the outgoing waves so that
they have Coulomb boundary conditions∑

l′0,m
′
0

ψ̃
(−)
l,m,l′0,m

′
0
(r0) α−1

l′0 m
′
0,l0 m0

= Fl(k, r0) δl,l0δm,m0 +H
(−)
l (k, r0)T SR

lm,l0 m0

T SR
lm,l0 m0

≡
∑
l′0,m

′
0

βlm,l′0 m′0 α
−1
l′0 m

′
0,l0 m0

.

(A13)

A similar expression for the photoionization ampli-
tudes can be written in terms of the dipole matrix ele-
ments calculated with ψ̃ using cutoff-potential boundary
conditions,

Ãl0,m0
= 〈Φ0|n̂ · µ|

∑
l,m

ψ̃
(−)
l,m,l0,m0

(r)

kr
Yl,m(r̂)〉 (A14)

can be transformed directly using

Al0,m0
=
∑
l′0,m

′
0

Ãl′0,m′0(r0) α−1
l′0 m

′
0,l0 m0 (A15)

and these transformed amplitudes are the ones that ap-
pear in Eq.(A6) for the correct photoionization ampli-
tudes.

Appendix B: Kohn Variational Principle for
photoionization amplitude

From the discussion in Appendix A, we can conclude
that a variational estimate of the transition matrix ele-
ments Al0,m0

can be obtained if we can compute the vari-

ational T̃lm,l0m0 and a variational estimate of the transi-

tion moment with the cutoff potential Ãl′0,m′0 . It has been
shown [22] that the complex Kohn variational method
can be used to compute a transition moment involving
a scattering state. In particular, a variational expression
for Ã(k) can be written as

ÃS(k) = 〈Ψ0|n̂ · µ|Ψ̃(−)t
k 〉+ 〈f̃ (+)t|n̂ · µ|Ψ̃(−)t

k 〉 (B1)

where Ψ̃(−)t is a variational trial function to Ψ̃(−) and
f̃ (+)t is a variational trial function for f̃ (+) which is the
solution of the equation(

Ĥ − E
)
|f̃ (+)〉+ (n̂ · µ)|Ψ0〉 = 0. (B2)

Then as long as

f̃ (+)t −−−→
r→∞

∑
l′m′

ĥ
(+)
l′ (r)Zl′m′Yl′m′(r̂) (B3)
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Eq. (B1) is indeed variational.

One can then show that if Ψ̃
(−)t
k and f̃ (+)t are writ-

ten as linear variational functions with the same basis
functions, the expression in Eq. (B1) can be written as

ÃS(k) = 〈Ψ0|n̂ · µ|Ψ̃(−)S
k 〉 (B4)

where Ψ̃(−)S is the linear trial function where the expan-
sion coefficients yield a stationary T matrix.

Appendix C: Orthogonality constraints required for
open shell targets

A crucial element needed to apply the present pho-
toionization calculation scheme, is to enforce the orthogo-
nality between the occupied orbitals of the target |φi〉 and

the electronic scattering states |ψ(−)
klm〉, which we achieve

introducing a pseudopotential Ṽ . Defining the projector
operator Q over all the occupied orbitals:

Q =

n∑
i

|φi〉〈φi|, (C1)

we restrict the Schrodinger equation for the scattering
states to the constrained form

(1−Q)(Ĥ − E)(1−Q)|ψ(−)
klm〉 = 0. (C2)

Developing the LHS of (C2) and substituting Ĥ =

T̂ +V , we end up expressing the constrained Schrodinger
equation as:

(T̂ + Ṽ − E)|ψ(−)
klm〉 = 0, (C3)

where the effective potential Ṽ , known as a Phillips-
Kleinman pseudopotential [34, 35], is given by

Ṽ = V −Q(Ĥ − E)− (Ĥ − E)Q+Q(Ĥ − E)Q. (C4)

It is important to notice that, the way we have intro-
duced the orthogonality constraints through a modified
effective potential Ṽ , ensures that the Krylov basis de-
fined in Eq. (8) is also orthogonal to the occupied orbitals,
without losing the Padé approximant feature of the trial

function ψ
(±)t
klm (r) in Eq. (7). Due to the fact that the

aforementioned Krylov space basis leads to a solution in
a form of Padé approximants (see [18] and the references
therein), a fast convergence rate is achieved.
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