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2.1 Dual allele imaging shows the individual Kruppel enhancers drive largely inde-
pendent transcriptional dynamics. (A) Schematic of the endogenous Kruppel
locus with distal (blue) and proximal (orange) shadow enhancers driving Kr
(teal) expression in the central region of the embryo. Known transcriptional
activators of the two enhancers are shown. (B) Schematics of single enhancer
reporter constructs driving expression of MS2 sequence and a yellow reporter.
When transcribed, the MS2 sequence forms stem loops that are bound by
GFP-tagged MCP expressed in the embryos. Proximal embryos have expres-
sion on each allele controlled by the 1.5 kb proximal enhancer at its endoge-
nous spacing from the Kr promoter, while distal embryos have expression on
each allele controlled by the 1.1 kb distal enhancer at the same spacing from
the Kr promoter. Shadow heterozygote embryos have expression on one al-
lele controlled by the proximal enhancer and expression on the other allele
controlled by the distal enhancer. (C). Still frame from live imaging exper-
iment where nuclei are red circles and active sites of transcription are green
spots. MCP-GFP is visible as spots above background at sites of nascent
transcription [72]. (D) The fluorescence of each allele in individual nuclei can
be tracked across time as a measure of transcriptional activity. The graph
shows a representative trace of transcriptional activity of the two alleles in a
single nucleus across the time of nc14. These traces are used to calculate the
Pearson correlation coefficient between the transcriptional activity of the two
alleles in a nucleus across the time of nc14. Correlation values are grouped by
position of the nucleus in the embryo and averaged across all imaged nuclei
in all embryos of each construct. (E) Graph of average correlation between
the two alleles in each nucleus as a function of egg length. 0% egg length
corresponds to the anterior end. Error bars indicate 95% confidence intervals.
The shadow heterozygotes have much lower allele correlation than either ho-
mozygote, demonstrating that the individual shadow enhancers drive nearly
independent transcriptional activity and that upstream fluctuations in regu-
lators are a significant driver of transcriptional bursts. The total number of
nuclei used in calculations for each construct by anterior-posterior (AP) bin
are given in Supplementary file 1. . . . . . . . . . . . . . . . . . . . . . . . . 20
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2.2 Model of enhancer-driven dynamics demonstrates TF fluctuations are required
for correlated reporter activity. To investigate the factors required for the
observed correlated behavior of identical enhancers and largely independent
behavior of the individual enhancers, we developed a simple stochastic model
of enhancer-driven transcription. (A) Schematic of model of transcription
driven by a single enhancer (the bursting TFs model). For each enhancer,
we assume there is a single activating TF, Ti, that appears in bursts of size
ni molecules at a rate β1, which varies by the position in the embryo. TFs
degrade linearly at rate β-1. When present, Ti can bind the enhancer, Ei,
to form a transcriptionally active complex, Ci, at a rate kon and dissociates
at rate koff . This complex then produces mRNA at an experimentally de-
termined rate r that degrades at an experimentally determined rate, α. (B)
The bursting TFs model is able to recapitulate the experimentally observed
pattern of allele correlation. We plot the correlation between the two alleles
in a nucleus as a function of egg length. Simulated data is created using the
lowest energy parameter set for each enhancer. The data shown is the aver-
age of five simulated embryos that have 80 transcriptional spots per AP bin.
In B and C, simulated data are shown by solid lines, experimental data are
shown by dotted lines. (C) The constant TFs model fails to recapitulate the
experimentally observed pattern of allele correlation. Without TF fluctua-
tions, both heterozygous and homozygous embryos display independent allele
activity. Error bars and shaded regions in B and C represent 95% confidence
intervals. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

2.3 Single enhancer models recreate observed transcriptional bursting properties.
To investigate whether our model is accurately simulating our experimental
system, we compared the transcriptional burst properties produced by model
simulations of transcription to those observed experimentally (see Figure 2—
figure supplement 3 for description of burst properties). (A) Graphs of average
values of transcriptional burst properties, total mRNA produced during nc14,
burst frequency, burst duration, and burst size associated with the proximal
enhancer as a function of egg length. In A and B, simulated data are rep-
resented with solid lines and experimental data are shown with dotted lines.
(B) Graphs of average values of transcriptional burst properties as in A, asso-
ciated with the distal enhancer. For both the proximal and distal enhancers,
our model is largely able to recapitulate the experimentally observed tran-
scriptional burst properties associated with each enhancer. (C) The median
and CV values of the model parameters for the proximal enhancer in the top
10 performing parameter sets. (D) The median and CV values of the model
parameters for the distal enhancer in the top 10 performing parameter sets.
Explanations of model parameters are given in the Materials and methods.
Error bars represent 95% confidence intervals. . . . . . . . . . . . . . . . . . 27
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2.4 Incorporating a common TF into the model yields nonzero heterozygote allele
correlations. To determine whether the observed nonzero heterozygote cor-
relation can be explained by common TF activity, we incorporated into our
model a TF that can bind to both the proximal and distal enhancers. (A)
Schematic of a model that includes an additional TF denoted T ∗ which can
bind to both the proximal and distal enhancers. The production of T ∗ occurs
at a rate ω1 which varies across the embryo in a similar manner to β1. T ∗

degrades linearly at a rate ω−1 and appears in bursts of size n∗. The presence
of both the enhancer-specific TF Ti and the common TF T ∗ are necessary
to initiate transcription. (B) The addition of a common TF does not hinder
the model from recapitulating the experimentally observed burst properties of
single enhancer constructs. Simulated data is created using the second-best
parameter set for each enhancer. The data shown is the average of five sim-
ulated embryos that have 80 transcriptional spots per AP bin. In B, C, and
D simulated data are shown by solid lines, experimental data are shown by
dotted lines. (C) The addition of the common TF T ∗ consistently produces
nonzero heterozygote allele correlations. However, some of the best param-
eter sets do not conserve the experimental relationship between homozygote
and heterozygote correlations. Other parameter sets do not match the ex-
perimental data well, suggesting that the model accepts a narrower range of
parameter combinations than the bursting TF model. Error bars in B and C
represent 95% confidence intervals. . . . . . . . . . . . . . . . . . . . . . . . 28

2.5 mRNA production and decay rates can be directly estimated from experimen-
tal data. The mRNA degradation parameter α and production parameter r
were measured directly from fluorescence data without any input from the
model. (A) To estimate α, we used adjacent measurements of fluorescence
intensity to approximate the slope at each point in the fluorescence traces.
These values are compared with an exponential rate of mRNA decay (see
Materials and methods) and the resulting predicted values are shown in the
histogram. Periods of mRNA production have negative α values and periods
of decay have positive values. The histogram shows a distinct peak for α > 0,
which provided us with an estimate of α ≈ 1.95. (B) A similar computational
approach was used to calculate values of r from fluorescence data (see Materi-
als and methods). We calculated different values of r for each bin to account
for differences in transcriptional efficiency across the length of the embryo due
to factors that are not explicitly included in the model. For example, different
combinations of TF bound to the enhancer may give rise to different mRNA
production rates. Different values of r were found for the proximal and distal
enhancers. Notice that distal r values shown correspond to the distal enhancer
at the proximal location. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
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2.6 Activity of Kr shadow pair is less correlated with Bcd levels than is activity of single

distal enhancer. To assess whether fluctuations in enhancer activity across time are

associated with fluctuations in TF levels, we simultaneously measured Bcd levels

and enhancer-driven transcription in individual nuclei. (A) To track Bcd levels and

enhancer activity in the same nuclei, we crossed flies expressing a Kr enhancer-MS2

transgene to flies expressing Bcd-GFP and MCP-mCherry. In the resulting embryos,

Bcd levels can be measured by GFP fluorescence and enhancer reporter activity can

be measured by mCherry fluorescence. (B) Schematic of the enhancer reporters used

for simultaneous tracking of TF levels and enhancer activity. As in Figure 1, the

transcribed MS2 sequence forms stem loops that are bound by MCP, which is here

tagged with mCherry. (C) Bcd-GFP expression forms a gradient from the anterior

to posterior of the embryo, whereas the Kr enhancer reporters drive expression

in the center region of the embryo. The magnified section of the embryo shows

a still frame from live imaging indicating nuclei (green) and active transcription

spots (red). (D) Bcd levels and enhancer activity can be simultaneously tracked

in individual nuclei. Graph shows a representative trace of Bcd-GFP levels (in

green) and distal enhancer transcriptional activity (in red) in a nucleus across the

time of nc14. (E) Activator TF levels regulate enhancer activity, so to assess the

sensitivity of our enhancer constructs to input TF fluctuations, we compare the

levels of nuclear Bcd-GFP to the slope of MS2 fluorescence across the time of nc14.

Positive slope values indicate an increase in enhancer activity, while negative values

indicate a decrease in enhancer activity. The graph shows nuclear Bcd-GFP levels

(as in D), in solid green line, and MS2 slope values (of the MS2 trace shown in D), in

dashed red line, across the time of nc14. Horizontal grey line indicates a slope value

of 0. (F) Changes in the shadow pair’s activity are significantly less correlated with

Bcd-GFP levels than are changes in the distal enhancer’s activity. Shown are violin

plots of the distribution of correlation values between Bcd-GFP levels and MS2

slopes in individual nuclei for either the shadow pair or distal enhancer. Circles

correspond to the correlation values of individual nuclei and the horizontal lines

indicate the median. This correlation is significantly higher for the distal enhancer

than it is for the shadow pair (median r values are 0.18 and 0.14, respectively. p-

Value=6.1×10−3 from Kruskal-Wallis pairwise comparison.) The total number of

nuclei used in calculations for each construct by AP bin are given in Supplementary

file 2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
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2.7 Shadow enhancer pair produces lower expression noise than duplicated en-
hancers. To investigate whether the shadow enhancer pair drives less noisy
expression, we calculate the coefficient of variation (CV) associated with the
shadow enhancer pair or either duplicated enhancer across time of nc14. (A)
The shadow enhancer pair displays lower temporal expression noise than ei-
ther duplicated enhancer. Graph is mean coefficient of variation of fluores-
cence traces across time as a function of embryo position. The grey rectangle
in A and B highlights the region of endogenous Kr expression (boundaries
where 33% maximal expression occurs). (B) The shadow enhancer pair shows
the lowest expression noise, but not the highest expression levels, indicating
that the lower noise is not simply a function of higher expression. Graph is
average total expression during nc14 as a function of embryo position. Error
bars in A and B represent 95% confidence intervals. Total number of tran-
scriptional spots used for graphs are given in Supplementary file 3 by construct
and AP bin. (C) Violin plot of distribution of CV values at AP bin of peak
expression for each enhancer construct (corresponding to 50% egg length for
shadow pair and duplicated proximal, 52.5% egg length for duplicated distal),
horizontal bar indicates median. Y-axis limited to 99th percentile of the con-
struct with highest expression noise (duplicated proximal). The shadow pair
drives significantly lower expression noise than either duplicated enhancer (p-
Value=1.5×10−6 for duplicated distal and shadow pair. p-Value=2.0×10−44

for duplicated proximal and shadow pair). p-Values were calculated using
Kruskal Wallis pairwise comparison with Bonferroni multiple comparison cor-
rection. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

x



2.8 The two enhancer model recapitulates low expression noise associated with
the shadow enhancer pair. To assess whether the separation of input TFs
mediates the lower expression noise driven by the shadow enhancer pair, we
expanded our model to incorporate two enhancers driving transcription. (A)
Schematic of the two enhancer model. We assume that when two enhancers
control a single promoter, either or both can loop to the promoter and drive
transcription. We defined model parameters as in Figure 2, and only allowed
the kon and koff values to vary from the single enhancer model. (B) To under-
stand the effect of adding a second enhancer, we examined how the kon and
koff values vary from those in the single enhancer model. We plotted the dis-
tribution of the values for kon and koff for each enhancer in the three different
constructs measured. The distribution shows the values derived from the 10
best-fitting parameter sets, and the black star in each column indicates the
kon or koff value from the corresponding single enhancer model. In general,
the koff values increased relative to the single enhancer model, and the kon val-
ues decreased, indicating that the presence of a second enhancer inhibits the
activity of the first. (C) Graph of average coefficient of variation of simulated
(solid lines) or experimental (dotted lines) transcriptional traces as a function
of egg length. The model is able to recapitulate the lower expression noise
seen with the shadow enhancer pair with no additional fitting, indicating that
the separation of TF inputs to the two enhancers is sufficient to explain this
observation. Error bars of simulated data and shaded region of experimental
data indicate 95% confidence intervals. . . . . . . . . . . . . . . . . . . . . . 45
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2.9 Shadow enhancer pair achieves lower total noise by buffering global and allele-
specific sources of noise. To determine how the shadow enhancer pair produces
lower expression noise, we calculated the total noise associated with each
enhancer construct and decomposed this into the contributions of covariance
and inter-allele noise. Covariance is a measure of how the activities of the two
alleles in a nucleus change together and is indicative of global sources of noise.
Inter-allele noise is a measure of how the activities of the two alleles differ and
is indicative of allele-specific sources of noise. (A) The shadow enhancer pair
has lower total noise than single or duplicated enhancers. Circles are total
noise values for individual nuclei in AP bin of peak expression for the given
enhancer construct. Horizontal line represents the median. The y-axis is
limited to 75th percentile of the proximal enhancer, which has the largest
noise values. The shadow enhancer pair has significantly lower total noise
than all other constructs. (B) The shadow enhancer pair displays significantly
lower covariance than either single or duplicated enhancer and significantly
lower inter-allele noise than both single enhancers and the duplicated proximal
enhancer. The left half of each violin plot shows the distribution of covariance
values of nuclei in the AP bin of peak expression, while the right half shows
the distribution of inter-allele noise values. Horizontal lines represent median.
The y-axis is again limited to the 75th percentile of enhancer with the largest
noise values, which is duplicated proximal. The lower covariance and inter-
allele noise associated with the shadow enhancer pair indicates it is better
able to buffer both global and allele-specific sources of noise. (C) p-Value
table of Kruskal-Wallis pairwise comparison of the total noise values of each
enhancer construct. p-Value gradient legend applies to C and D. (D) p-Value
table of Kruskal-Wallis pairwise comparison of covariance (on left) and inter-
allele noise (on right) values for each enhancer construct. Bonferroni multiple
comparison corrections were used for p-Values in C and D. Total number of
nuclei used in noise calculations are given in Supplementary file 1. . . . . . . 51
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2.10 Shadow enhancer pair maintains lower total noise across temperature pertur-
bations. To test the ability of each enhancer construct to buffer temperature
perturbations, we measured the total expression noise associated with each
for embryos imaged at 17◦C or 32◦C. (A) The shadow enhancer pair displays
significantly lower total noise than the single or duplicated proximal enhancer
and the single distal enhancer at 17◦C. Circles are total noise values for indi-
vidual nuclei in AP bin of peak expression for the given enhancer construct and
horizontal bars represent medians. The y-axis is limited to 75th percentile of
construct with highest total noise at 17◦C (single proximal). (B) The shadow
enhancer pair has significantly lower total noise than all other constructs at
32◦C. The y-axis is limited to 75th percentile of the enhancer construct with
highest total noise at 32◦C (duplicated proximal). (C) Temperature changes
have different effects on the total noise associated with the different enhancers.
The median total noise value at the AP bin of peak expression at the three
measured temperatures is shown for each enhancer construct. Within each en-
hancer, the median total noise values are shown left to right for 17◦C, 26.5◦C,
and 32◦C. (D) p-Value table of Kruskal-Wallis pairwise comparison of the to-
tal noise values of each enhancer construct at 17◦C. p-value gradient legend
applies to D and E. (E) p-Value table of Kruskal-Wallis pairwise comparison of
the total noise values of each enhancer construct at 32◦C. Bonferroni multiple
comparison corrections were used for p-Values in D and E. . . . . . . . . . . 53

3.1 Simulation of enhancer models and calculation of transcriptional noise and
fidelity. (A) Drosophila embryo where the region of Kruppel expression has
been highlighted [1]. (B) Cartoon depicting a reaction network model of
Kruppel shadow enhancers [1]. (C) Sample stochastic traces of mRNA from
simulations of the model in (B) and their average over time E[R] which esti-
mates the mean mRNA concentration. The values of E[R] and the standard
deviation σR can also be approximated by moment closure techniques and be
used to estimate the transcriptional noise and fidelity of the modeled enhancer
system. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

3.2 Two different models and their corresponding reaction networks. . . . . . . . 82
3.3 Under additive assumptions, transcriptional fidelity is independent of binding

site and enhancer numbers, while noise is only dependent on binding site
numbers. (A) Different enhancer models used in the simulations. Each model
has different total binding sites for T1, total binding sites for T2, distribution of
binding sites, and number of enhancers. (B) Simulations for the models in (A)
show that fidelity and noise are independent of the number of enhancers and
the distribution of binding sites. Fidelity is also independent of total binding
site numbers, while the noise remains dependent on the total binding sites for
each TF. The bar graph on the right shows the fidelity and noise values for
two different configurations of TF binding sites among two enhancers. (C)
Noise calculated as functions of the total binding sites for T1 or T2. As the
total number of binding sites increases, the noise generally decreases. . . . . 83
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3.4 Transcriptional fidelities with respect to T2 for enhancers that behave addi-
tively, subadditively, and superadditively. The fidelity trends with respect to
T2 for all models in Figure 3.3A do not differ significantly from those corre-
sponding to the fidelities with respect to T1. . . . . . . . . . . . . . . . . . . 84

3.5 Fitted rates of mRNA transcription for single and duplicated models sug-
gest that a single enhancer is sufficient to saturate polymerase loading rates.
The polymerase loading rates r1 and r2 were fitted for the 4 models shown
above according to the same methodology described in Waymack et al. [1].
Parameter fittings were done directly on the raw mRNA transcriptional data
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Gene regulation is required for proper organismic development, functioning, and reproduc-

tion. Many gene regulatory systems focus on modulating distinct features such as transcrip-

tional noise, fidelity to transcription factors (TFs), or ultrasensitivity in gene expression.

These processes generally take place before the initiation of transcription and include the

remodeling of chromatin topologies. Chromatin regulation partly involves unpacking the

tightly bound heterochromatin as a prerequisite for transcriptional enzymes to access ge-

netic regions. Levels of chromatin density respond ultrasensitively to TFs which results in

sharp boundaries between heterochromatin and euchromatin. Viable mechanisms for this

ultrasensitivity have been proposed but typically rely on cooperative assumptions which can

lead to unbounded chromatin expansion. Downstream from this event, the chromatin needs

to be properly structured for enhancers to be in close contact with their respective promot-

ers. These groups of enhancers, commonly denoted as shadow enhancers, have been shown

to buffer against environmental stress but the mechanisms underlying this function remain

unclear. Here, we present a series of stochastic and deterministic chemical reaction network

models that provide sufficient conditions for shadow enhancers and chromatin remodeling to

achieve their regulatory targets. We developed a model of the Kruppel shadow enhancers to

show that separation of TFs between enhancers is sufficient for achieving lower expression

noise. Additional models were generated to determine how shadow enhancer numbers po-

xxii



tentially modulate transcriptional noise and fidelity. Separately, a model of the chromatin

that does not rely on cooperative interactions between nucleosomes is shown to achieve ul-

trasensitive gene expression. By limiting complexity, we show that our chemical reaction

network models convey clear mechanisms by which TFs, shadow enhancers, and nucleosome

interactions can be used to optimize these transcriptional properties.
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Chapter 1

Introduction

Quantitative models of biological systems are becoming ever more relevant in order to trans-

late experimental data into clear mechanisms underlying observed phenomena. Several as-

pects of gene regulation have been modeled in this fashion in order to understand how

complex networks of interacting proteins can give rise to specific phenotypes. A commonly

used type of model is that of chemical reaction networks (CRNs) which aim to capture the

dynamics of each chemical species within a system. While originally conceived for the study

of chemical engineering, CRNs have found their way into biochemistry with a high degree

of versatility [4, 5]. This is in part due to the ubiquitous prevalence of molecular biology as

a way to explain cellular phenomena in a mechanistic rather than descriptive way. CRNs

have amassed a large suite of analytical and computational methods for calculating or ap-

proximating the behavior of their target systems [4, 6]. This places CRNs in an ideal spot to

model the biochemical mechanisms that optimize for distinct metrics of RNA transcription.

Ultimately, a mechanistic understanding of gene regulation can lead to the development of

pharmaceutical approaches for correcting deviations in control that can result in disease or

death [7].
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In this dissertation, we focus on two gene regulatory systems that are driven by or made

possible by chromatin regulation. One such mechanism is the regulation of chromatin density

as a way to determine whether or not a gene is expressed. Another is the regulation via

shadow enhancers, which are regions of DNA located in separate parts of the genome, but

which come together via a special chromatin structure in order to regulate a gene. Each of

these two mechanisms is devoted independent chapters of this dissertation, in which their

specific properties are studied.

We postulate that the above systems aim to optimize certain measurable properties of the

transcription of the genes they regulate. For instance, for shadow enhancers in developmental

systems we optimize for minimizing noise and maximizing fidelity of signal transduction [8,

9, 10]. In the case of gene regulation through chromatin remodeling, we assume that ul-

trasensitivity of the dose response should be maximized [11]. These are likely a subset of

the many performance criteria in the system, but they illustrate the issues involved. We try

to minimize the complexity of each system in order to highlight the proposed biochemical

mechanisms in each case.

While CRNs are most commonly modeled deterministically, experimental data from single

cells is intrinsically noisy. We incorporate this noise by using stochastic models where low

numbers of molecules interact with each other discretely, using the stochastic master equa-

tion. This allows to incorporate important elements of the dynamics, as well as taking into

account useful additional experimental data, and even optimizing for network topologies that

minimize noise in certain circumstances.
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1.1 Shadow enhancers

Enhancers are regions of the DNA that are bound by proteins known as transcription factors

(TFs) and loop with the promoter in order to regulate transcription. The regulation of

development by enhancers is critical for the health of many organisms, including humans [12,

13, 14, 15, 16, 17]. Furthermore, the majority of developmental genes have been found to

be regulated by multiple enhancers [18, 10, 19, 20]. While much remains unknown about

the link between enhancers and disease, a recent survey found that a large swath of human

genes associated with disease may be regulated by shadow enhancers [20].

The set of enhancers that regulate a specific gene at a partially or fully overlapping location

and time have been denoted as shadow enhancers [21]. This name was originally meant

to indicate enhancers which are located farther away from the promoter than a so-called

primary enhancer [22]. For some time, these shadow enhancers were thought to be redundant

due to their overlapping activity with the primary enhancer [22]. However, later evidence

suggested that shadow enhancers can increase robustness of gene expression under stressful

environmental conditions [9, 8, 10]. Thus the name “shadow enhancers” was revised to

incorporate all enhancers regulating a given gene as described above [21].

1.1.1 Regulation of transcriptional noise by shadow enhancers

While shadow enhancers emerged as regulatory elements that can buffer against environ-

mental stress, it still remained unclear which mechanisms underlying shadow enhancers

were responsible for this effect. In work by Waymack et al. [1], a mechanism to explain this

increase in gene expression robustness was proposed. The authors hypothesized that shadow

enhancers were more effective at buffering noise associated with their TFs than single or

duplicated enhancers. This followed, it was argued, from having distinct kinds of TFs bind-
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ing to each of the enhancers. Hence, perturbations in a TF would be limited in their effect

to the subset of enhancers with binding sites for that TF. In order words, by sparing some

enhancers from perturbations in their TF inputs, the resulting downstream effect would be

reductions in the expression noise of an mRNA output.

In Chapter 2, we provided evidence for this idea. First, experimental data was collected

from the transcriptional dynamics of the Kruppel gene which is active during Drosophila

development. Kruppel is an ideal case study for shadow enhancers as it is regulated by

only two shadow enhancers as opposed to other genes that are regulated by over 20 distinct

enhancers [14]. Then, flies with duplicated shadow enhancers were engineered and their

transcriptional data was collected as well. By comparing the expression noise of the wildtype

and duplicated systems, the latter enhancers being bound by the same TFs, it appeared that

having distinct TFs bind to the shadow enhancers may buffer stress during the development

of an organism.

However, due to the complex biochemistry involved in enhancer regulation, it remained dif-

ficult to conclusively show that transcriptional noise can be buffered in this way. Thus, to

complement the experimental evidence for this hypothesis, we developed stochastic CRN

models corresponding to wildtype and duplicated constructs of the Kruppel shadow en-

hancers. These models had TFs as the sole prerequisites for transcription which allowed

for direct measurements of the effect that fluctuations in TFs have on mRNA transcription.

Through parameter fitting, the models were able to qualitatively replicate the experimen-

tal data. Specifically, our models recapitulated the experimentally observed noise resulting

from transcription of Kruppel wild type and duplicated enhancer systems. Ultimately, these

models also led to the same conclusion as the experimental approach: regulation of shadow

enhancers by distinct TFs is sufficient for lowering expression noise when compared to du-

plicate and single enhancer systems.

The observation that shadow enhancers lower expression noise in this manner evoked a
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new question: is it possible to recapitulate the functions of shadow enhancers with a single

enhancer having equivalent kinds of TF binding sites? After all, a single enhancer that

is bound by the same TFs as a group of shadow enhancers should, in theory, also yield

lower noise than the corresponding duplicated enhancers. Nevertheless, the vast majority of

developmental genes are regulated by multiple enhancers [21]. This could initially suggest

that shadow enhancers are strongly favored by natural selection or that they arise from

genetic drift as the result of expected probabilistic outcomes as opposed to evolutionary

pressures. In the former case, the prevalence of shadow enhancers across diverse phyla

would suggest that these enhancers grant a considerable fitness advantage and mutations in

their sequences could result in a wide range of diseases or death. Therefore, determining

whether shadow enhancers confer these advantages would lead to a more comprehensive

understanding of the pathogenicity associated with certain genetic mutations that occur in

many organisms including humans.

1.1.2 Trade-offs between transcriptional properties given by shadow

enhancers

To analyze whether there are properties specific to shadow enhancers and not single en-

hancers, we considered comparing mRNA transcriptional noise and fidelity to TF inputs

between systems varying in enhancer numbers with all else being constant (e.g. binding site

numbers). While the scale of this analysis would be too large to be achieved experimen-

tally in reasonable time, our previously developed model of Kruppel enhancers could provide

an initial step for a modeling approach. This model can be simulated in a fully stochas-

tic fashion and thus is able to capture the nuances in the relationship between TFs and

mRNA expression. Moreover, the validation of this model with live-imaging data of Kruppel

transcription supports the idea of model parameters being within a biologically acceptable

range [1]. Because of these reasons, we expect that similar stochastic models that operate
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in the vicinity of this parameter space could be useful for mapping the potential advantages

of shadow enhancers.

Following this line of thought, the work in Chapter 3 describes the extension of the Kruppel

model in Chapter 2 to incorporate multiple numbers of enhancers and TF binding sites.

Then, by comparing the transcriptional properties of these models, we sought to determine

which features are unique to shadow enhancers and how these properties change as enhancer

numbers vary. An additional consideration is that shadow enhancers interact with their TFs,

their promoters, and between themselves in a variety of ways. For example, some enhancers

behave subadditively, that is, their combined contributions to mRNA expression are less

than the sum of their individual contributions [23]. The mechanisms at play for this behav-

ior remain unclear but enhancer competition for promoter access has been suggested [24].

Fortunately, theoretical models allow for total control, not only of model parameters, but

also of model assumptions. Hence, by this approach, we were able to study the advantages

of shadow enhancers for a wide range of parameters and assumptions while retaining a clear

understanding of the relationship between each variable in the model.

One downside to this approach is that the number of models to be simulated can become

intractable even for small numbers of enhancers and TFs. Moreover, some models can

have several reactions which result in high computational time lengths when simulating

these models stochastically. To counter this, we first developed a computational script for

efficiently generating enhancer systems from a number of assumptions given as inputs. Each

set of input assumptions generates the corresponding CRN which can then be used as an

input to the third party software CERENA (ChEmical REaction Network Analyzer) [6]. The

CERENA toolbox is particularly fitting for this work as it provides a suite of approximation

methods for stochastic dynamics such as the moment closure method. Moment closure

requires only the numerical solution of a closed system of ODEs describing the statistical

moments for each species in the model [25]. This comes at a fraction of the computational

6



cost but at the expense of longer compilation times and potential approximation errors. In

addition, moment closure does not involve doing a large number of simulations unlike other

stochastic approaches where each simulation is different from each other and many samples

are needed for a proper estimation of the moments.

This combination of automated model generation and approximation methods resulted in an

efficient way to explore the space of parameters and model topologies. Under this approach,

we generated most possible models with up to 4 enhancers and 4 binding sites that can be

bound by the TFs we used in our previous Kruppel model. We looked at two metrics that are

of interest during the development of organisms: transcriptional noise and fidelity. Typically,

expression noise should be maintained below a threshold to convey a coherent downstream

output from the upstream signals of TFs. On the other hand, fidelity needs to be above

a certain threshold to convey an output from a given input. The resulting simulations

showed that different additivity levels of shadow enhancers led to distinct outcomes in these

metrics of noise and fidelity. Moreover, they also revealed that additive shadow enhancers

might be the result of genetic drift as opposed to any particular evolutionary pressure.

Overall, this work suggested that shadow enhancers may be the result of spontaneous genome

reorganization events which do not face adverse selection pressures and, in certain cases, may

provide avenues for transcriptional modulation that are not available to single enhancers.

1.2 Chromatin remodeling and ultrasensitive gene ex-

pression

Another important mechanism for regulating the expression of genes within a certain region

is chromatin remodeling. This process works by expanding or compacting the DNA to allow

or prevent the access of transcriptional enzymes to genetic regions. Chromatin remodeling
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involves transitions between high and low density chromatin states which occur in response

to the recruitment of histone acetyltransferases (HATs) by TFs. In previous studies, the

boundaries between these regions have been observed to be sharp, and their disruption has

been associated with disease including several growth defects [26, 27]. Nevertheless, the

specific mechanisms by which chromatin remodeling achieves this so-called ultrasensitive

transitions in response to increasing TF concentrations are not yet understood. In other

words, how is it that the chromatin, in response to TF concentrations, can be fully accessible

to transcriptional enzymes within a well-defined region but remain fully closed within the

neighboring regions?

Aiming to yield sharp boundaries between chromatin density states, previous modeling work

assumed that neighboring modification sites affect one another [11, 28]. In contrast, Chap-

ter 4 presents an alternative approach with independent modification sites that produce

sharp spatial bounds between chromatin density regions. This model relied on the activity

range of HATs and other emergent properties of chromatin architecture to achieve ultra-

sensitive chromatin remodeling. The boundaries between density regions remained sharp

even without the involvement of barrier proteins, and no uncontrolled expansion is possible

beyond the regulated regions. Moreover, a single HAT protein bound at a DNA site was

sufficient to make accessible hundreds of DNA base pairs, a longer range of interaction than

previous models. Two mechanisms allowed for this in our model, namely percolation effects

and multisite histone tail modifications.

Both percolation and multisite histone tail modifications can be inherently ultrasensitive

and contribute to the sharpness between distinct density boundaries caused by chromatin

remodeling [29, 30]. However, to translate the ultrasensitivity from these properties into

chromatin remodeling, it was necessary to stochastically simulate the individual interac-

tions between nucleosomes in the chromatin. That is, we needed to calculate whether an

interaction will take place based on a certain probability. Thus, to stochastically simulate
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chromatin remodeling, we modeled the chromatin as a graph composed of nodes and edges

where nodes corresponded to nucleosomes and edges to nucleosome interactions. The edges

to the graph were assigned with certain probabilities based on acetylation levels and the

graph diameter was used as a proxy for chromatin accessibility. Then, a deterministic CRN

was used to describe the TF recruitment of HATs and the acetylation of individual histone

sites within the nucleosomes. The resulting dose-response of acetylated histones served as

an input to the model and showed that chromatin accessibility can respond ultrasensitively

to TF concentrations under the conditions given.

The ability to model chromatin as a graph allowed for the additional benefit of being able to

map any two or three dimensional structure as a potential chromatin architecture and deter-

mine the corresponding effect of this topology in the process of remodeling. In our work, we

translated a popular model of chromatin architecture, namely the solenoid architecture, into

our own graph-based model [31]. While studying this architecture, we used a deterministic

CRN to calculate the effect of TFs on histone acetylation and noticed that certain out-

puts generated from this network were abnormally sensitive to increasing amounts of input

stimuli. Further investigation suggested that a mechanism akin to sudden saturation of the

dose-responses was causing increases in ultrasensitivity in manners that have not previously

been observed. This observation then inspired the work of Chapter 5.

1.3 Modulation of ultrasensitivity through biochemi-

cally induced saturation

Ultrasensitivity is useful for proper gene regulation when we consider that genes are re-

spondents to upstream chemical signals and amplification of noise and ambiguity from such

signals can be detrimental to the organism [32]. Furthermore, ultrasensitive responses have
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been noted to be crucial for the proper functioning of biochemical switches present in the

cell cycle, cell signaling, and cell fate decisions [33].

Several mechanisms that generate ultrasensitivity have been proposed such as zero-order

ultrasensitivity, multisite phosphorylation, and allostery among others [34]. The ability of

function saturation as a mechanism for increasing ultrasensitivity as described in the end

of Chapter 4 does not appear to have been studied previously. The work in Chapter 5

presents a potential mechanism by which function saturation can be modulated and cause

direct increases in the ultrasensitivity of dose-responses. In particular, we found that a

certain topological property of CRNs known as absolute concentration robustness can give

rise to dose-responses that saturate sharply. We show that a subset of the parameters in the

network can be increased or decreased to directly affect the ultrasensitive behavior of the

response.

We proceeded to extend this saturation framework to functions that are not typically consid-

ered in the context of ultrasensitive behavior. One type of these functions are those without a

well-defined upper bound or saturation point. As such, these functions cannot be assigned a

proper value of the available metrics that are used to quantify ultrasensitivity since a prereq-

uisite for these measurements is saturation. This, in turn, could lead to an initial dismissal

of these functions as ultrasensitive and therefore of biochemical processes that give rise to

these functions. However, processes such as polymerization are described by non-saturating

functions and have been found to have roles in gene regulation [35, 36]. These polymers are

typically important components of biochemical cascades which are used to convey signals

from the extracellular environment into the cell nucleus. In response to these signals, TFs

are understood to be activated which leads to upregulation or downregulation of genome

activity [37]. Hence, it is clear that, when forming part of a biochemical signaling cascade,

this kind of non-saturating functions could increase precision and lower gene expression noise

if they were to increase ultrasensitivity in the composite dose-response of the cascade. As a
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result, by integrating our absolutely robust saturation mechanism with polymerization, we

can give rise to saturated processes which will further increase the ultrasensitivity present

in the composition of all functions forming a biochemical cascade.

In studying non-saturating functions within biochemical cascades, we also wished to de-

termine the extent to which any given cascade can be optimized for ultrasensitivity. For

example, consider the Hill function defined by axn/(xn + k) where n, a, and k are positive

constants. This function, while originally used by A.V. Hill for modeling oxygen transport

through hemoglobin, has become a standard model for a wide-range of ultrasensitive phe-

nomena [38, 39]. Ferrell claimed in one of his works that the Hill coefficient –a well known

measure for ultrasensitivity which equals to n for a Hill function– of the composition of two

Hill functions is bounded above by the product of the Hill coefficients of the functions making

up the composition [40]. However, this result was only suggested by example. In this chapter

we show a formal proof for this result that works for any two arbitrary Hill functions. More-

over, we also prove that the claim by Ferrell does not extend to general sigmoidal functions.

Lastly, we present some formal results concerning the Hill coefficients and sensitivity for any

two general functions. We also provide some general examples of saturated functions and

the Hill coefficients arising from their compositions. Overall, this chapter provides a partial

mathematical foundation for the study of ultrasensitivity in biochemical cascades and how

they might be optimized for precise activation of downstream genes.

1.4 Absolute concentration robustness as an ideal reg-

ulator of biochemical systems

In chapter 5, we relied on absolute robustness as a key property in achieving ultrasensitive

function saturation. This is the ability of a chemical species to converge to the same steady
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state regardless of the initial conditions given to the system. Such a behavior is not only

relevant to our mechanism, but has been used for explaining several biochemical phenomena

that rely upon strong robustness in one of their properties [41]. For example, the ideal

housekeeping gene has been described as that which maintains a constant amount of a given

transcript [42]. Nevertheless, absolute robustness can be difficult to detect in large networks

that rely upon hundreds or thousands of species for signal transduction such as those involved

in gene regulation. Work by Shinar and Feinberg showed sufficient conditions for proving

that a species within a network is absolutely robust [41]. The power of this approach relied

on the nature of such conditions being solely dependent on network topology rather than on

rate parameters. Hence, we could search for submodules within a large biochemical network

that satisfy the topological conditions derived by Shinar and Feinberg. However, it is still

not clear whether the absolute robustness found in these submodules extends to the parent

network of which they are a part of. In the first section of Chapter 6, we present a subset of

conditions under which the steady state of a species within a submodule is equivalent to its

steady state within the parent network. These results allow for a more formal foundation

to the extension of absolute concentration robustness from a submodule to a larger network

which, in conjunction with the result by Shinar and Feinberg, leads to a more efficient way

of inferring sources of robustness in any gene regulatory network.

As we previously noted, certain properties of dose-responses are highly desirable in biochem-

ical processes. For example, high ultrasensitivity is crucial for maintaining the switch-like

behavior of genes and preventing noise in upstream signals from significantly perturbing

gene expression [43]. The second section of Chapter 6 describes a convenient approach to

extend the dose-response properties of one species in the network to another. In particular,

we focus on enabling the ultrasensitivity of one species to be replicated in another one. As a

result, this new species behaves at the same level of ultrasensitivity as the original species.

To achieve this, we relied once again on absolute robustness as a medium for extending the

time-dependent behavior of one chemical species to another. In essence, by introducing a
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new reaction into a network that contains absolutely robust species in the network, we can

tune the dose-response of such a species to be a scaled version of the ultrasensitive dose-

response of another species in the network. We present a basic gene regulatory network

and show that the response of the translated protein can be made as ultrasensitive as a

neighboring trimerization process. While not formally generalized, we expect this approach

to lead to a more comprehensive approach that eventually could include the inheritance of

dose-response properties from a parent network to a submodule in a similar fashion as was

done in the previous section. In addition, procedures of this nature may be well-suited for

building synthetic biological systems that wish to extend a desired biochemical property

from an introduced circuit to the rest of the biological system.

While absolute robustness can be shown to be the case for a given species within a network,

sometimes it is not clear whether the control output associated with such a species is also

absolutely robust. One notable example is that of the EnvZ-OmpR osmoregulatory system

which contains an absolutely robust component [41]. In particular, this component is the

phosphorylated version of OmpR that is in charge of regulating the porin proteins OmpF

and OmpC [44]. These proteins are themselves involved in regulating cell osmolarity by

limiting the amount of solute that enters or leaves the cell. However, while the absolute

robustness of phosphorylated OmpF has been linked to the maintenance of an isotonic cell

under repeated osmotic perturbations, current models do not address the osmoregulation

done by this protein. The last section of Chapter 6 expands a previously developed network

of the EnvZ-OmpR system to include osmoregulation and suggest a potential implementation

of an absolutely robust phosphorylated OmpR leading to absolutely robust isotonicity within

the cell. We expect that an example of such a system will guide future modeling of absolutely

robust controllers to establish concrete links between the absolutely robust species and their

intended biochemical output within the biological system.
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1.5 Mathematical background

1.5.1 Chemical Reaction Networks

Chemical reaction networks are described by a set of reactants, a set of products, and a set

of reactions. As is standard, through this work we assume mass action kinetics which states

that reaction rates are proportional to the product of the concentrations of the reactants.

Consider the following reaction network consisting of reactants A and B alongside their

reaction into the product C at a rate k.

A+B
k

C

Whenever A or B are found in large enough numbers, mass action kinetics dictates that the

concentrations over time for each species in the network can be described by the following

ODEs

d[A]

dt
= −k[A][B]

d[B]

dt
= −k[A][B]

d[C]

dt
= k[A][B].

In this system, the square brackets denote the concentration of the species inside of them.

Approximating concentrations in this manner is considered to be a deterministic approach

to modeling chemical networks since the behavior over time does not involve randomness

whether the system is solved analytically or using numerical approximations.

If the species counts are low, it is more accurate to opt for describing the network by its

master equation rather than a system of ODEs. In particular, the master equation gives the

rate of change of the probability that the system will be at a given state. For the network
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described above, we can construct the master equation by specifying the transitions in state

from all possible reactions as follows

dxa,b,c
dt

= k(a+ 1)(b+ 1)xa+1,b+1,c−1 − kabxa,b,c, (1.1)

where a, b and c correspond to the counts of A, B, and C respectively and x is the state vector

of the network. Equation 1.1 can then be solved analytically to obtain the corresponding

distributions for each species. Alternatively, the Gillespie algorithm can be used to obtain

sample trajectories of species in the network.

1.5.2 Gillespie simulations

The Gillespie algorithm is a well-studied Monte Carlo procedure that yields statistically

correct sample trajectories of chemical species over time [45, 46]. This algorithm specifies

the probability of the system remaining in its current state – in this case, the counts for each

chemical species in the network – depends on an exponential distribution with a rate equal

to the sum of the rate constants of the outgoing reactions times the number of all possible

reactions.

Nevertheless, while the Gillespie algorithm can be rigorously shown to accurately reproduce

instances of the network trajectories over time, it can become computationally expensive

when performed several times. On the other hand, in order to obtain the moments of every

species in the network, moment closure requires only a numerical solution to a system of

ODEs which is considerably cheaper in computational terms than Gillespie simulations.

Naturally, this comes at the expense of having approximation errors in the results. One

additional advantage of moment closure methods is their ability to calculate moments in a

deterministic manner such that multiple simulations are not necessary. To achieve the same

feat using the Gillespie algorithm, a large enough but unclear number of simulations would
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be required.
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Chapter 2

Shadow enhancers can suppress input

transcription factor noise through

distinct regulatory logic

Material in this chapter is adapted from a manuscript by Rachel Waymack, Alvaro Fletcher,

German Enciso, and Zeba Wunderlich [1].

2.1 Introduction

Shadow enhancers are groups of two or more enhancers that control the same target gene

and drive overlapping spatiotemporal expression patterns [22, 47]. Shadow enhancers are

found in a wide range of organisms, from insects to plants to mammals, particularly in

association with developmental genes [18, 10, 48, 49]. While seemingly redundant, the

individual enhancers of a shadow enhancer group have been shown to be critical for proper

gene expression in the face of both environmental and genetic perturbations [8, 10, 9]. Such
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perturbations may exacerbate fluctuations in upstream regulators [50, 51]. Although shadow

enhancers are shown to be pervasive in developmental systems and necessary for robust gene

expression, their precise mechanism of action is still unknown. One proposed mechanism

is that having multiple enhancers controlling the same promoter reduces the effective ‘failure

rate’ of the promoter and ensures a critical threshold of gene expression is reached [52,

53]. An alternative, but not mutually exclusive, possibility is that shadow enhancers ensure

robust expression by buffering noise in upstream regulators. Several studies suggest that

individual enhancers of a shadow enhancer group tend to be controlled by different sets of

TFs, which we call a ‘separation of inputs’ [54, 18, 55]. We hypothesize that this separation

of inputs allows shadow enhancers to buffer against fluctuations in upstream TF levels to

drive more consistent expression levels.

The first evidence that transcription occurred in bursts, as opposed to as a smooth, contin-

uous process, was observed in Drosophila embryos. Electron micrographs showed that even

highly transcribed genes had regions of chromatin lacking associated transcripts in between

regions densely associated with nascent transcripts [56]. As visualization techniques have

improved, it is increasingly clear that transcriptional bursting is the predominant mode of

expression across organisms from bacteria to mammals [57, 58, 59, 60, 61]. These bursts of

transcriptional activity, separated by periods of relative silence, have important implications

for cellular function, as mRNA numbers and fluctuations largely dictate these quantities at

the protein level [62, 63]. Such fluctuations in regulatory proteins, like TFs and signaling

molecules, can propagate down a gene regulatory network, significantly altering the expres-

sion levels or noise of downstream target genes [64]. Many mechanisms that buffer against

expression noise, either inherent or stemming from genetic or environmental variation, have

been observed [65, 66, 67]. For example, organisms use temporal and spatial averaging

mechanisms and redundancy in genetic circuits to achieve the precision required for proper

development [66, 67, 68, 65]. Here, we focus on how shadow enhancers may also establish

and maintain the precise levels of gene expression seen during development, where expression
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patterns can be reproducible down to half-nuclear distances in Drosophila embryos [69, 70,

47].

The Drosophila gap gene Kruppel (Kr) provides a useful system in which to probe the

mechanisms of action of shadow enhancers. During early embryogenesis, Kr expression

is critical for thorax formation, and like the other gap genes in the Drosophila embryo,

has quite low noise [71, 69]. During this time, Kr is controlled by the activity of two

enhancers, proximal and distal [53], that drive overlapping expression in the center of the

embryo (Figure 2.11). We call the two individual enhancers together the shadow enhancer

pair. Previous experiments have shown that each enhancer is activated by different TFs

(Figure 2.1A; [54]). Here, we focus on differences in activation, as the key repressors of

Kr, Knirps and Giant, are likely to regulate both enhancers. By measuring live mRNA

dynamics, we can use the Kr system in Drosophila embryos to assess whether and how

shadow enhancers act to buffer noise and to identify the sources of noise in the developing

embryo.

To test our hypothesis, we measured live mRNA dynamics driven by either single Kr en-

hancer, duplicated enhancers, or the shadow enhancer pair and compared the dynamics and

noise associated with each. We showed that the individual Kr enhancers can act largely

independently in the same nucleus, while identical enhancers display correlated activity. We

constructed a simple mathematical model to describe this system and found that TF fluctu-

ations are necessary to reproduce the correlated activity of identical enhancers in the same

nucleus. The shadow enhancer pair drives lower noise than either duplicated enhancer, and

using the model, we found that this is a natural consequence of the separation of TF inputs.

Additional experiments, including simultaneous measurements of TF levels and expression

and a decomposition of noise sources, further demonstrate that the shadow enhancer pair is

less sensitive to fluctuations in TF levels than is a single enhancer. Additionally, the shadow

enhancer pair is uniquely able to maintain low levels of expression noise across a wide range
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Figure 2.1: Dual allele imaging shows the individual Kruppel enhancers drive largely indepen-
dent transcriptional dynamics. (A) Schematic of the endogenous Kruppel locus with distal
(blue) and proximal (orange) shadow enhancers driving Kr (teal) expression in the central
region of the embryo. Known transcriptional activators of the two enhancers are shown. (B)
Schematics of single enhancer reporter constructs driving expression of MS2 sequence and
a yellow reporter. When transcribed, the MS2 sequence forms stem loops that are bound
by GFP-tagged MCP expressed in the embryos. Proximal embryos have expression on each
allele controlled by the 1.5 kb proximal enhancer at its endogenous spacing from the Kr
promoter, while distal embryos have expression on each allele controlled by the 1.1 kb distal
enhancer at the same spacing from the Kr promoter. Shadow heterozygote embryos have
expression on one allele controlled by the proximal enhancer and expression on the other
allele controlled by the distal enhancer. (C). Still frame from live imaging experiment where
nuclei are red circles and active sites of transcription are green spots. MCP-GFP is visible as
spots above background at sites of nascent transcription [72]. (D) The fluorescence of each
allele in individual nuclei can be tracked across time as a measure of transcriptional activity.
The graph shows a representative trace of transcriptional activity of the two alleles in a
single nucleus across the time of nc14. These traces are used to calculate the Pearson cor-
relation coefficient between the transcriptional activity of the two alleles in a nucleus across
the time of nc14. Correlation values are grouped by position of the nucleus in the embryo
and averaged across all imaged nuclei in all embryos of each construct. (E) Graph of average
correlation between the two alleles in each nucleus as a function of egg length. 0% egg length
corresponds to the anterior end. Error bars indicate 95% confidence intervals. The shadow
heterozygotes have much lower allele correlation than either homozygote, demonstrating that
the individual shadow enhancers drive nearly independent transcriptional activity and that
upstream fluctuations in regulators are a significant driver of transcriptional bursts. The
total number of nuclei used in calculations for each construct by anterior-posterior (AP) bin
are given in Supplementary file 1.
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of temperatures. We suggest that this noise suppression ability is one of the key features

that explains the prevalence of shadow enhancers in developmental systems.

2.2 Individual enhancers in the shadow enhancer pair

act nearly independently within a nucleus

To test our hypothesis that the separation of inputs between Kruppel ’s (Kr) shadow en-

hancers provides them with noise-buffering capabilities, we needed to first test the ability

of each enhancer to act independently. In previous work, we found that the individual en-

hancers in the shadow enhancer pair are controlled by different activating TFs [54]. These

experiments established that the enhancers responded differently to perturbations in key

TFs, indicating that each enhancer uses a distinct regulatory logic. The proximal enhancer

is activated by Hunchback (Hb) and Stat92E, and the distal enhancer is activated by Bicoid

(Bcd) and Zelda (Zld) (Figure 2.1A). Given this separation of inputs, the shadow enhancer

pair could provide a form of noise buffering if variability in gene expression is driven primar-

ily by fluctuations in upstream factors. Conversely, variability in upstream regulators may

be low enough in the developing embryo that these fluctuations are not the primary driver

of downstream expression noise. If this were the case, the separation of inputs is unlikely to

be a key requirement of shadow enhancer function.

To investigate these possibilities, we measured and compared the correlation of allele activity

in homozygous or heterozygous embryos that carry two reporter genes. Proximal homozy-

gotes contained the proximal enhancer driving a reporter, inserted in the same location on

both homologous chromosomes, and distal homozygotes similarly had the distal enhancer

driving reporter expression on both homologous chromosomes (Figure 2.1B). We also made

heterozygous embryos, called shadow heterozygotes, which had one proximal and one distal
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reporter, again in the same location on both homologous chromosomes. To measure live

mRNA dynamics and correlations in allele activity, we used the MS2-MCP reporter system

(Figure 2.1C,D). This system allows the visualization of mRNAs that contain the MS2 RNA

sequence, which is bound by an MCP-GFP fusion protein [73]. In the developing embryo,

only the site of nascent transcription is visible, as single transcripts are too dim, allowing

us to measure the rate of transcription [72, 74]. In blastoderm-stage embryos with two MS2

reporter genes, we can observe two distinct foci of fluorescence corresponding to the two

alleles (Figure 2.1D; Videos 1, 2, 3, 4, 5, 6), in line with previous results that suggest there

are low levels of transvection [75, 76]. To confirm our ability to distinguish the two alleles,

we imaged transcription in embryos hemizygous for our reporter constructs, which only show

one spot of fluorescence per nucleus. Our counts of active transcription sites in homozygous

embryos correspond well to the expected value calculated from hemizygous embryos (Fig-

ure 2.11). Therefore, we are able to measure the correlation of allele activity, although we

cannot identify which spot corresponds to which reporter.

We predicted that if variability in gene expression is driven by fluctuations in input TFs,

we would observe lower correlations of allele activity in shadow heterozygotes than in either

the proximal or distal homozygotes. However, if global factors affecting both enhancers

dominate, there would be no difference in allele activity correlations. During the 1 hr of

nuclear cycle 14 (nc14) we found that allele activity is more than twice as correlated in

both proximal and distal homozygotes than in shadow heterozygote embryos at 47–57%

egg length, which encompasses the central region of Kr expression during this time period

(Figure 1). The difference in our ability to measure allele correlation in the more anterior and

posterior regions of the embryo stems from the slightly different expression patterns driven

by the proximal and distal enhancers (Figures 2.11 and 2.12). The lower allele correlation

in shadow heterozygote embryos indicates not only that the individual member enhancers

of the shadow enhancer pair can act largely independently in the same nucleus, but that

differential TF inputs are likely the primary determinants of transcriptional bursts in this
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system. Notably, heterozygotes still show marginal allele correlation, indicating that some

correlation is induced by either shared input TFs or factors that affect transcription globally.

The independence of individual Kr enhancers allows for the possibility that shadow enhancers

can act to buffer noise by providing distinct inputs to the same gene expression output.

2.2.1 Conversion of integrated fluorescence to mRNA molecules

To put our results in physiologically relevant units, we calibrated our fluorescence measure-

ments in terms of mRNA molecules. As in Lammers et al., 2018 [77], for our microscope, we

determined a calibration factor, α, between our MS2 signal integrated over nc13, FMS2, and

the number of mRNAs generated by a single allele from the same reporter construct in the

same time interval, NFISH, using the hunchback P2 enhancer reporter construct [72]. Us-

ing this conversion factor, we can calculate the integrated fluorescence of a single mRNA

(F1) as well as the instantaneous fluorescence of an mRNA molecule (FRNAP). With our

microscope, FRNAP is 379 AU/RNAP and F1 is 1338 AU/RNAP•min. With these values,

we are able to convert both integrated and instantaneous fluorescence into total mRNAs

produced and number of nascent mRNAs present at a single time point, by dividing by F1

and FRNAP, respectively.

Table 2.1: Summary of relevant parameters.

NFISH 220 mRNA
FMS2 294511 AU
L1 1.275 kb
L2 4.021 kb
velong 1.5 kb/min

The conversion factor α is defined as the ratio of NFISH molecules of mRNA to their respec-

tive integrated fluorescence FMS2 from traversing a genetic construct. Then, the integrated
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fluorescence of a single mRNA molecule is given by

F1 =
1

α
,

=
FMS2

NFISH

,

= 1338 AU ·min ·mRNA−1.

The instantaneous fluorescence of an mRNA molecule can now be calculated as

FRNAP =
F1

telong
, (2.1)

where telong is the time it takes for one RNAp molecule to traverse the genetic construct.

Our particular construct is composed of the MS2 loops and the gene encoding for Hb with

lengths L1 and L2 respectively. Then, letting velong be the speed of an RNA polymerase ,

we have that

telong =
L1 + L2

velong
,

= 3.5306 min.

Substituting this value into equation 2.1 we get that

FRNAP =
1338

3.5306
= 379 AU ·mRNA−1.
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2.3 Transcription factor fluctuations are required for

the observed differences in the correlations of en-

hancer activity

To explore the conditions needed for the two Kr enhancers to act nearly independently

within the same nucleus, we generated a simple model of enhancer-driven dynamics. We

considered an enhancer Ei that interacts with a transcription factor Ti, which together bind

to the promoter to form the active promoter-enhancer complex Ci (Figure 2.2A). When the

promoter is bound by the enhancer, it drives the production of mRNA. Since the MS2 system

only allows us to observe mRNA at the site of transcription, we modeled the diffusion of

mRNA away from the transcription site as decay. The transcription factor Ti is produced in

bursts of ni molecules at a time, and it degrades linearly. For simplicity, the transcription

factor Ti is an abstraction of the multiple activating TFs that interact with the enhancer,

and Ti corresponds to a different set of TFs for the proximal and distal enhancer. This

nonlinear model generalizes the linear model by Bothma et al., 2015 [24] by explicitly taking

into account the presence of TFs.

We estimated some model parameters directly from experimental data and others by fitting

using simulated annealing. The mRNA degradation parameter α and production parameter

r were measured directly from fluorescence data without any input from the model (see Ma-

terials and methods for details). The remaining parameters were first estimated using math-

ematical analysis, then fine-tuned using simulated annealing. We found separate parameter

sets for the proximal and distal enhancers that, when used to simulate transcription, fit the

experimentally measured characteristics of the transcriptional traces, including transcription

burst size, frequency, and duration, as well as the total mRNA produced (Figure 2.3).

We hypothesized that a model that lacks fluctuations in the input TFs could not recapitulate
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Figure 2.2: Model of enhancer-driven dynamics demonstrates TF fluctuations are required
for correlated reporter activity. To investigate the factors required for the observed cor-
related behavior of identical enhancers and largely independent behavior of the individual
enhancers, we developed a simple stochastic model of enhancer-driven transcription. (A)
Schematic of model of transcription driven by a single enhancer (the bursting TFs model).
For each enhancer, we assume there is a single activating TF, Ti, that appears in bursts of size
ni molecules at a rate β1, which varies by the position in the embryo. TFs degrade linearly
at rate β-1. When present, Ti can bind the enhancer, Ei, to form a transcriptionally active
complex, Ci, at a rate kon and dissociates at rate koff . This complex then produces mRNA
at an experimentally determined rate r that degrades at an experimentally determined rate,
α. (B) The bursting TFs model is able to recapitulate the experimentally observed pat-
tern of allele correlation. We plot the correlation between the two alleles in a nucleus as
a function of egg length. Simulated data is created using the lowest energy parameter set
for each enhancer. The data shown is the average of five simulated embryos that have 80
transcriptional spots per AP bin. In B and C, simulated data are shown by solid lines, ex-
perimental data are shown by dotted lines. (C) The constant TFs model fails to recapitulate
the experimentally observed pattern of allele correlation. Without TF fluctuations, both
heterozygous and homozygous embryos display independent allele activity. Error bars and
shaded regions in B and C represent 95% confidence intervals.

26



Figure 2.3: Single enhancer models recreate observed transcriptional bursting properties. To
investigate whether our model is accurately simulating our experimental system, we com-
pared the transcriptional burst properties produced by model simulations of transcription
to those observed experimentally (see Figure 2—figure supplement 3 for description of burst
properties). (A) Graphs of average values of transcriptional burst properties, total mRNA
produced during nc14, burst frequency, burst duration, and burst size associated with the
proximal enhancer as a function of egg length. In A and B, simulated data are represented
with solid lines and experimental data are shown with dotted lines. (B) Graphs of average
values of transcriptional burst properties as in A, associated with the distal enhancer. For
both the proximal and distal enhancers, our model is largely able to recapitulate the exper-
imentally observed transcriptional burst properties associated with each enhancer. (C) The
median and CV values of the model parameters for the proximal enhancer in the top 10
performing parameter sets. (D) The median and CV values of the model parameters for the
distal enhancer in the top 10 performing parameter sets. Explanations of model parameters
are given in the Materials and methods. Error bars represent 95% confidence intervals.
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Figure 2.4: Incorporating a common TF into the model yields nonzero heterozygote allele
correlations. To determine whether the observed nonzero heterozygote correlation can be
explained by common TF activity, we incorporated into our model a TF that can bind to
both the proximal and distal enhancers. (A) Schematic of a model that includes an ad-
ditional TF denoted T ∗ which can bind to both the proximal and distal enhancers. The
production of T ∗ occurs at a rate ω1 which varies across the embryo in a similar manner
to β1. T ∗ degrades linearly at a rate ω−1 and appears in bursts of size n∗. The presence
of both the enhancer-specific TF Ti and the common TF T ∗ are necessary to initiate tran-
scription. (B) The addition of a common TF does not hinder the model from recapitulating
the experimentally observed burst properties of single enhancer constructs. Simulated data
is created using the second-best parameter set for each enhancer. The data shown is the
average of five simulated embryos that have 80 transcriptional spots per AP bin. In B, C,
and D simulated data are shown by solid lines, experimental data are shown by dotted lines.
(C) The addition of the common TF T ∗ consistently produces nonzero heterozygote allele
correlations. However, some of the best parameter sets do not conserve the experimental
relationship between homozygote and heterozygote correlations. Other parameter sets do
not match the experimental data well, suggesting that the model accepts a narrower range
of parameter combinations than the bursting TF model. Error bars in B and C represent
95% confidence intervals.
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Figure 2.5: mRNA production and decay rates can be directly estimated from experimental
data. The mRNA degradation parameter α and production parameter r were measured
directly from fluorescence data without any input from the model. (A) To estimate α, we
used adjacent measurements of fluorescence intensity to approximate the slope at each point
in the fluorescence traces. These values are compared with an exponential rate of mRNA
decay (see Materials and methods) and the resulting predicted values are shown in the
histogram. Periods of mRNA production have negative α values and periods of decay have
positive values. The histogram shows a distinct peak for α > 0, which provided us with an
estimate of α ≈ 1.95. (B) A similar computational approach was used to calculate values
of r from fluorescence data (see Materials and methods). We calculated different values of
r for each bin to account for differences in transcriptional efficiency across the length of the
embryo due to factors that are not explicitly included in the model. For example, different
combinations of TF bound to the enhancer may give rise to different mRNA production
rates. Different values of r were found for the proximal and distal enhancers. Notice that
distal r values shown correspond to the distal enhancer at the proximal location.
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the high correlation of transcriptional activity in homozygotes versus the low correlation in

heterozygotes. To test this hypothesis, we generated another model of TF production. We

call our original model described above bursting TFs. The other model is one in which TF

numbers are constant over time, which we call constant TFs and is equivalent to the model in

Bothma et al., 2015 [24]. If the difference in transcription correlation between homozygotes

and heterozygotes is due to fluctuating numbers of TFs, we expected that the bursting TFs

model will recapitulate this behavior, while the constant TFs model will not. However, if the

constant TFs model is also able to recapitulate the observed difference in correlations, then

the correlations are likely a consequence of the identical enhancers simply being regulated

by the same set of TFs.

For each model, we used the 10 best parameter sets to simulate transcriptional activity in

homozygote and heterozygote embryos and analyzed the resulting allele correlations. We

found that the bursting TFs model always produced results in which both homozygote al-

lele correlations are significantly higher than the heterozygote, which qualitatively mirrors

the experimental observations (Figure 2.2B). None of the best fitting parameter sets for the

constant TF model were able to produce the experimentally-observed behavior and always

resulted in near zero correlations for both the homozygote and heterozygote embryos (Fig-

ure 2.2C). Notably, using the bursting TFs model, all the simulated allele correlations were

lower than the experimentally observed values, for example the simulated heterozygote allele

correlation was near zero, while the experimental value was 0.14 at the embryo’s midpoint.

We hypothesized that this discrepancy was because the model assumes complete indepen-

dence of the proximal and distal enhancer input TFs, while in reality, there may be some

degree of shared inputs, either of known TFs or a general component of the transcriptional

machinery. To test this hypothesis, we generated a model that added a common TF to the

bursting TFs model and attempted to fit the model parameters. Some of the best parameter

sets recapitulated the nonzero correlation of the heterozygote embryos, indicating that a

shared factor may play a role in this system; however, this behavior was inconsistent from
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one parameter set to the next (Figure 2.4). Therefore, we concluded that the simpler burst-

ing TFs model, which consistently recapitulated the key features of the allele correlation

data, was more suitable for subsequent analysis.

In conclusion, in our minimalist model of enhancer-driven transcription, the presence of TF

fluctuations is required for the observed differences in allele correlation. These results also

demonstrate the advantage of using a single generic TF for each enhancer. By abstracting

away TF interactions, we reduced the complexity and number of parameters in the model,

which allowed us to explore the relationship between TF production and allele correlation.

2.3.1 Description of the single enhancer model and associated pa-

rameters

We constructed a model of enhancer-driven transcription based on the following chemical

reaction network,

T + E
kon

koff
C

r
C + R

∅
β1

nT

T
β−1 ∅

R
α ∅

where E is an enhancer that interacts with a transcription factor T , which together bind

to the promoter at a rate kon to form the active promoter-enhancer complex C. When the

promoter is in this active form, it leads to the production of mRNA denoted by R, which

degrades by diffusion from the gene locus at a rate α. Transcription is interrupted whenever
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the complex C disassociates spontaneously at a rate koff. In the bursting TFs model, the

transcription factor T appears at a rate β1 and degrades at a rate β−1 To recapitulate Kruppel

expression patterns, the value of β1 was assumed to be given by

f(x) = c
1√

2πσ2
e−

(x−µ)2

2σ2 , (2.2)

where x is the percentage along the length of the egg and and c is a scaling constant. Since

Kruppel activity peaks near the center of the egg, we chose µ = 50, while c and σ were fitted

along with the other parameters. Lastly, n was assumed to be fixed across the length of the

egg.

We also generated a constant TF model, which is an adaptation of the model in (Bothma et

al., 2015) [24]. This model implicitly assumes that TF numbers are constant and, therefore,

are incorporated into the value of kon as described by the reactions

E
Tkon

koff
C

r
C + R

R
α ∅

In this case, the value for T was fitted for each bin in a similar way to how β1 was fitted;

i.e. the constant number of TFs was assumed to be described by equation (2.2) (values were

rounded to the nearest integer).

To simulate the transcriptional traces, we implemented a stochastic approach. Individual

chemical events such as enhancer-promoter looping take place at random times and are

influenced by transcription factor numbers. Individual trajectories of chemical species over

time were calculated using the Gillespie algorithm (Gillespie, 1976), and these trajectories

are comparable to the experimentally measured transcriptional traces. Since the enhancer
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is either bound or not bound to the promoter, we imposed the constraint that C + E = 1

when simulating model dynamics.

2.3.2 Estimation of model parameters from experimental data

To yield a starting estimate for the kon and koff parameters, we defined the start and end

of a burst as the time when the reactions E
kon

C and C
koff

E occur, respectively.

The length of the ith burst was defined as the range of [bi, pi] where bi corresponds to the

time of the ith instance of the reaction E
kon

C and pi to the time of the ith instance of

the reaction C
koff

E. The time between the ith burst and the i + 1th burst is [pi, bi+1].

The Gillespie algorithm dictates that the time spent in any given state is determined by

an exponentially distributed random variable with a rate parameter equal to the product of

two parts: the sum of rate constants of the outgoing reactions, and the number of possible

reactions. If the enhancer is either bound or unbound, we have that C = 1 or E = 1,

respectively. Therefore, by letting tb be the average time between bursts and td be the

average duration of a burst, we can write

tb = lim
M→∞

1

M

M∑
j=1

(
1

N − 1

N−1∑
i=1

(bi+1j − pij)

)
=

1

konET
≈ 1

kon

,

and

td = lim
M→∞

1

M

M∑
j=1

(
1

N

N∑
i=1

(pij − bij)

)
=

1

koffC
=

1

koff

,

where N is the number of bursts for spot j, bij and pij denote the beginning and end of

burst i in spot j respectively, and M denotes the total number of spots in the egg. The

right-hand sides are given by the expected value of the exponential distribution and the
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assumption that, on average, T is close to 1. While this may not be the case for T , the

assumption provides a convenient upper bound for the average time between bursts which

is likely not to have a much smaller value for a lower bound (a low enough value of tb would

imply nearly constant fluorescence intensity instead of bursts). Finally, the average duration

of a burst td can be calculated directly from the data and used to obtain koff by calculating

1/td. Similarly, the average time between bursts tb is readily available from the data giving

us kon ≈ 1/tb.

We were able to directly estimate mRNA production and degradation rates from the exper-

imental data. To estimate α, we focused on periods of mRNA decay; i.e. periods where no

active transcription is taking place and are thus described by

R′ = −αR,

which in turn can be solved to be

R = ce−tα, (2.3)

where c is a constant of integration. Taking the derivative of equation 2.3 yields

R′(t) = −αce−tα, (2.4)

which corresponds the slope of the decaying burst. We define the interval of decay of the

ith burst as [pi, bi+1]. For some point t0 ∈ (pi, bi+1), let R0 = R(t0) = ce−t0α. Solving this

expression for c gives that c = R0e
t0α. Substituting for c in equation 2.4 evaluated at t0

results in R′(t0) = −αR0e
t0αe−t0α = −αR0. Then, it follows that

α = −R
′(t0)

R0

. (2.5)
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In other words, the rate of decay of mRNA fluorescence can be calculated from any trace by

taking the ratio of the slope during burst decay and its intensity at a given time t0 ∈ (pi, bi+1).

Adjacent measurements of fluorescence intensity from the single enhancer systems were used

to approximate the slope at each point in the traces. Then, equation 2.5 was applied to each

point. A histogram of all calculated values was generated (Figure 2 - figure supplement 3).

In this figure, there was a clear peak, which provided us with an estimate of α ≈ 1.95.

The estimation of r was done for periods of active transcription which are also accompanied

by simultaneous mRNA decay. By noting that C = 1 during mRNA transcription, we can

approximate these periods as the zeroth order process

∅ r
α R

The differential equation associated with this system is given by

R′ = r − αR, (2.6)

and has steady state R∗ = r/α. Equation 2.6 can be solved explicitly for R by choosing

R(t) =
r

α
+ ce−tα,

where c is a constant of integration. For two adjacent measurements at times t1 and t2 we

can write their respective measured amounts of mRNA as

R1 =
r

α
+ c1e

−t1α, (2.7)

and

R2 =
r

α
+ c2e

−t2α. (2.8)
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Solving for c1 and c2 gives

c1 = (R1 −
r

α
)et1α,

and

c2 = (R2 −
r

α
)et2α.

The short term fluctuations of mRNA from R1 to R2 between two adjacent discrete time

points in the stochastic system can be approximated by equations 2.7 and 2.8. This implies

that

(R1 −
r

α
)et1α = (R2 −

r

α
)et2α,

which in turn gives

r = α
R1 −R2e

α∆t

1− eα∆t
.

Therefore, the estimation of r can be computed given two adjacent measurements of fluo-

rescence and the time between them. Finally, a similar approach as done with α was used

to calculate values of r from fluorescence data. However, unlike α, r was calculated for each

bin to account for differences in transcriptional efficiency across the length of the embryo.

2.3.3 Parameter fitting with simulated annealing

Simulations and parameter fitting were done with MATLAB®. Optimization in fitting was

done by minimizing the sum of squared errors (SSE) between the normalized vectors of burst

properties and allele correlations of the experimental and simulated data. In particular, a
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vector y of experimental data was created by concatenating the following vectors: burst size,

integrated fluorescence, frequency, duration, and allele correlation across the length of the

embryo. The vector y was subsequently normalized by dividing each burst property by the

largest element in their respective vectors (except correlation which by definition is unitless

between -1 and 1). A vector x was created in an analogous fashion to y but using simulated

instead of experimental data. However, x was normalized using the same elements that were

used to normalize y. Then, the discrepancy between the experimental and simulated data

was measured by

SSE =
n∑
i=1

(yi − xi)2.

We used a high-performance computing cluster to compute 200 independent runs of parame-

ter fitting with simulated annealing for each model variant. The algorithm requires an initial

guess of the parameter set P0, an initial temperature Γ0, a final temperature Γ′, the number

of iterations per temperature N , and a cooling factor µ. Then, each iteration is as follows:

1. If the current iteration i is such that i > N , then update the current temperature

Γk = µkΓ0 to µk+1Γ0 and set i = 0. Otherwise, set i to i+ 1.

2. Check if Γk < Γ′. If so, return the current parameter set Pj and terminate.

3. Choose a parameter randomly from Pj and multiply it by a value sampled from a

normal distribution with a mean equal to 1. The standard deviation of such distribution

should be continuously updated to be Γk. The result of this step is the newly generated

parameter set Pj+1.

4. Calculate ∆E as the difference in SSE between the data generated by Pj and that

generated by Pj+1. Update Pj to Pj+1 if ∆E < 0 or with probability p < e∆E/Γk where

p is a uniformly distributed random number.
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5. Repeat all steps until termination.

To generate our results, we chose Γ0 = 1, Γ′ = Γ0/10, N = 30, and µ = 0.8. We observed

an improvement in the quality of the fittings by using analysis-derived parameter values as

initial guesses instead of values given through random sampling. The sampled space ranged

from 10−3 to 103 for all parameters except n which was sampled from 100 to 102 and σ which

was randomly chosen to be an integer between 1 and 20. Equal numbers of parameter values

were sampled at each order of magnitude. The analysis in the section above was used to

estimate the parameters in P0. Parameters that were not estimated in the previous section

were given the following initial guesses: n = 10, β−1 = 1, σ = 6, and c = 40. Initial guesses

for c and σ were based on the experimental observation that there is little transcription

outside of 20-80% egg length. Based on this observation, simulations were limited to this

egg length range, as well. For the constant TFs model, both analysis-derived and random

initial parameter values were used to maximize the likelihood of finding any parameter set

capable of recapitulating the observed allele correlation.

2.3.4 Generation of simulated experimental data

Parameter sets resulting from fitting were sorted in ascending order based on their sum

of squared errors, and the 10 lowest error parameter sets are what we called the 10 best

parameter sets. For all figures, we simulated 80 spots per bin and simulated each bin 5 times

to generate error bars. Data for the distal enhancer at the proximal location was used to

reproduce simulated allele correlations in all cases.

Gillespie simulations update the counts of each chemical species at random time intervals.

However, for ease of parameter fitting and to better recapitulate the experiments, we gen-

erated data in two distinct timescales: one consisting of 30 second intervals after which

mRNA counts were recorded, and another consisting of random time intervals generated by
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the algorithm after which chemical counts were updated. The former one was used for all

parameter fitting rounds and generation of figures.

2.4 The shadow pair’s activity is less sensitive to fluc-

tuations in Bicoid levels than is the activity of a

single enhancer

Both the experimental measurements of allele correlation and the computational model sug-

gest that input TF fluctuations are an appreciable source of noise for enhancer activity.

Further, previous experimental work [54] and the low correlation of transcriptional activity

in heterozygotes (Figure 2.1E) indicates that each individual Kr enhancer receives different

TF input signals. This suggests that the shadow enhancer pair will be less sensitive to an

input TF fluctuation than a single enhancer, because the shadow enhancer pair’s activity is

dependent on a broader range of TF inputs. To directly observe the relationship between

input TF levels and enhancer output, we simultaneously tracked Bcd levels and enhancer

activity in individual nuclei (Figure 2.6; Supp. Videos 7–8). We measured this relationship

for both the distal enhancer, which is activated by Bcd, and the shadow enhancer pair, and

predicted that the distal enhancer’s transcription dynamics are more strongly influenced by

fluctuations in Bcd levels.

To allow for tracking of both Bcd levels and enhancer activity, we crossed female flies that

express eGFP-tagged Bcd in the place of endogenous Bcd (called Bcd-GFP from here on [70])

and MCP-mCherry with male flies homozygous for either the shadow pair or distal enhancer

reporter. As the Bcd-GFP transgene was inserted in a Bcd null background, the resulting

embryos should receive roughly WT levels of Bcd. The females flies were heterozygous for

the maternally deposited Bcd-GFP, and therefore, we estimate that roughly half of the Bcd
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Figure 2.6: Activity of Kr shadow pair is less correlated with Bcd levels than is activity of single
distal enhancer. To assess whether fluctuations in enhancer activity across time are associated with
fluctuations in TF levels, we simultaneously measured Bcd levels and enhancer-driven transcription
in individual nuclei. (A) To track Bcd levels and enhancer activity in the same nuclei, we crossed
flies expressing a Kr enhancer-MS2 transgene to flies expressing Bcd-GFP and MCP-mCherry. In
the resulting embryos, Bcd levels can be measured by GFP fluorescence and enhancer reporter
activity can be measured by mCherry fluorescence. (B) Schematic of the enhancer reporters used
for simultaneous tracking of TF levels and enhancer activity. As in Figure 1, the transcribed MS2
sequence forms stem loops that are bound by MCP, which is here tagged with mCherry. (C) Bcd-
GFP expression forms a gradient from the anterior to posterior of the embryo, whereas the Kr
enhancer reporters drive expression in the center region of the embryo. The magnified section of
the embryo shows a still frame from live imaging indicating nuclei (green) and active transcription
spots (red). (D) Bcd levels and enhancer activity can be simultaneously tracked in individual nuclei.
Graph shows a representative trace of Bcd-GFP levels (in green) and distal enhancer transcriptional
activity (in red) in a nucleus across the time of nc14. (E) Activator TF levels regulate enhancer
activity, so to assess the sensitivity of our enhancer constructs to input TF fluctuations, we compare
the levels of nuclear Bcd-GFP to the slope of MS2 fluorescence across the time of nc14. Positive
slope values indicate an increase in enhancer activity, while negative values indicate a decrease in
enhancer activity. The graph shows nuclear Bcd-GFP levels (as in D), in solid green line, and MS2
slope values (of the MS2 trace shown in D), in dashed red line, across the time of nc14. Horizontal
grey line indicates a slope value of 0. (F) Changes in the shadow pair’s activity are significantly less
correlated with Bcd-GFP levels than are changes in the distal enhancer’s activity. Shown are violin
plots of the distribution of correlation values between Bcd-GFP levels and MS2 slopes in individual
nuclei for either the shadow pair or distal enhancer. Circles correspond to the correlation values
of individual nuclei and the horizontal lines indicate the median. This correlation is significantly
higher for the distal enhancer than it is for the shadow pair (median r values are 0.18 and 0.14,
respectively. p-Value=6.1×10−3 from Kruskal-Wallis pairwise comparison.) The total number of
nuclei used in calculations for each construct by AP bin are given in Supplementary file 2.
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proteins were labeled. Given the previous work demonstrating the normal function and

expression levels of tagged Bcd, we expect the Bcd-GFP levels to be a representative sample

of total Bcd [70].

Higher activator TF levels increase enhancer activity. We therefore measured the correlation

of nuclear Bcd-GFP levels to the slope of MS2 signal. When the enhancer is active, MS2

signal has a positive slope, when the enhancer is inactive, slope is negative. If the shadow

enhancer pair is less sensitive than the distal enhancer to fluctuations in Bcd levels, we would

predict higher correlation between Bcd-GFP levels and the activity of the distal enhancer

than that of the shadow enhancer pair. We find that the transcription dynamics driven by the

distal enhancer are indeed significantly more correlated to nuclear Bcd-GFP levels (median

r = 0.18) than the dynamics driven by the shadow pair (median r = 0.14; Figure 2.6F;

p-Value=6.1×10−3), although both correlations are modest (see Discussion). The lower

correlation indicates that transcription driven by the shadow pair is less sensitive to Bcd level

fluctuations than is the distal enhancer. Our modeling recapitulates this finding, showing

that the separated TF inputs of the shadow pair are sufficient to explain the observed

decreased sensitivity to TF fluctuations (median r = 0.14 for the distal enhancer; 0.11 for the

shadow pair; p-Value=2.2×10−2; Figure 2.6G: Our enhancer model recapitulates the lower

correlation between Bcd-GFP levels and enhancer activity seen with the shadow pair than

with the distal enhancer. Graph is as in F, but showing the distribution of correlation values

in simulated nuclei, using 100 nuclei per AP bin. Median r values for simulation are 0.14 for

the distal enhancer and 0.11 for the shadow pair. p-Value=2.2×10−2 from Kruskal-Wallis

pairwise comparison of correlations.). These findings indicate that the shadow enhancer pair

is better able to buffer fluctuations in a single activating TF than a single enhancer, likely

due to the shadow enhancer pair’s separation of TF inputs.
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2.5 The shadow enhancer pair drives less noisy expres-

sion than enhancer duplications

We wanted to further test whether the shadow enhancer pair drives less noisy gene expression

output than a simple enhancer duplication. We compared the noise in expression driven by

the shadow enhancer pair to that driven by two copies of either the distal or proximal

enhancer (Figure 2.7). If the shadow enhancer pair drives lower noise, this suggests that

having two independently acting enhancers is a critical feature of shadow enhancers’ ability

to reduce variability and mediate robustness. Alternatively, if duplicated enhancers drive

similar levels of expression noise, this suggests that enhancer independence is not critical for

shadow enhancer function and that shadow enhancers mediate robustness through a different

mechanism, such as ensuring a critical threshold of expression is met [52, 53].

We tracked transcriptional activity in embryos expressing MS2 under the control of the

shadow enhancer pair, a duplicated proximal enhancer, or a duplicated distal enhancer (Fig-

ure 2.7). To measure noise associated with each enhancer, we used these traces to calculate

the coefficient of variation (CV) of transcriptional activity across nc14. CV is the standard

deviation divided by the mean and provides a unitless measure of noise to allow comparisons

among our enhancer constructs. We then grouped these CV values by the embryo position

of the transcriptional spots and found the average CV at each position for each enhancer

construct. All the enhancer constructs display the lowest expression noise at the embryo

position of their peak expression (Figure 2.7A), in agreement with previous findings of an

inverse relationship between mean expression and noise levels [78] (Figure 2.15). The shadow

enhancer pair’s expression noise is ˜30% or 15% lower, respectively, than that of the dupli-

cated proximal or distal enhancers in their positions of maximum expression (Figure 2.7C).

If the primary function of shadow enhancers is only to ensure a critical threshold of ex-

pression is reached, we would not expect to also see the lower expression noise associated
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Figure 2.7: Shadow enhancer pair produces lower expression noise than duplicated enhancers.
To investigate whether the shadow enhancer pair drives less noisy expression, we calculate
the coefficient of variation (CV) associated with the shadow enhancer pair or either dupli-
cated enhancer across time of nc14. (A) The shadow enhancer pair displays lower temporal
expression noise than either duplicated enhancer. Graph is mean coefficient of variation of
fluorescence traces across time as a function of embryo position. The grey rectangle in A
and B highlights the region of endogenous Kr expression (boundaries where 33% maximal
expression occurs). (B) The shadow enhancer pair shows the lowest expression noise, but not
the highest expression levels, indicating that the lower noise is not simply a function of higher
expression. Graph is average total expression during nc14 as a function of embryo position.
Error bars in A and B represent 95% confidence intervals. Total number of transcriptional
spots used for graphs are given in Supplementary file 3 by construct and AP bin. (C) Violin
plot of distribution of CV values at AP bin of peak expression for each enhancer construct
(corresponding to 50% egg length for shadow pair and duplicated proximal, 52.5% egg length
for duplicated distal), horizontal bar indicates median. Y-axis limited to 99th percentile of
the construct with highest expression noise (duplicated proximal). The shadow pair drives
significantly lower expression noise than either duplicated enhancer (p-Value=1.5×10−6 for
duplicated distal and shadow pair. p-Value=2.0×10−44 for duplicated proximal and shadow
pair). p-Values were calculated using Kruskal Wallis pairwise comparison with Bonferroni
multiple comparison correction.
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with the shadow enhancer pair compared to either duplicated enhancer. Furthermore, this

decreased expression noise is not simply a consequence of higher expression levels, as the

shadow enhancer pair produces less mRNA than the duplicated distal enhancer during nc14

(Figure 2.7C). The lower expression noise associated with the shadow enhancer pair suggests

that it is less susceptible to fluctuations in upstream TFs than multiple identical enhancers.

To explore which factors drive the difference in CVs between the duplicated and shadow

enhancer constructs, we extended our model to have a single promoter controlled by two

enhancers (Figure 2.8A). To do so, we assumed that either or both enhancers can be looped

to the promoter and drive mRNA production. The rate of mRNA production when both

enhancers are looped is the sum of the rates driven by the individual enhancers. We assumed

that some parameters, for example the TF production rates and mRNA decay rate, are the

same as the single enhancer case. We allowed the parameters describing the promoter-

enhancer looping dynamics (the kon and koff values) to differ, depending on the enhancer’s

position in the construct relative to the promoter and whether another enhancer is present.

To fit the kon and koff values, we used the medians of the 10 best single enhancer parameter

sets as a starting point and performed simulated annealing to refine them.

This approach allowed us to examine how the model parameters that describe promoter-

enhancer looping dynamics change when two enhancers are controlling the same promoter.

We compared the koff and kon values for each enhancer in the two enhancer constructs to their

values from the single enhancer model. We generally found that koff values increased and

kon values decreased (Figure 2.8B). The effect is most pronounced in the duplicated distal

enhancer, with large changes to the koff and kon values for the enhancer in the position far

from the promoter (position 2). Given that our model assumes that enhancers act additively

and only allows for changes in the koff and kon values, these observed effects may indicate that

either the presence of a second enhancer interferes with promoter-enhancer looping or that

the promoter can be saturated. Our model cannot distinguish between these two possibilities,
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Figure 2.8: The two enhancer model recapitulates low expression noise associated with the
shadow enhancer pair. To assess whether the separation of input TFs mediates the lower
expression noise driven by the shadow enhancer pair, we expanded our model to incorporate
two enhancers driving transcription. (A) Schematic of the two enhancer model. We assume
that when two enhancers control a single promoter, either or both can loop to the promoter
and drive transcription. We defined model parameters as in Figure 2, and only allowed the
kon and koff values to vary from the single enhancer model. (B) To understand the effect
of adding a second enhancer, we examined how the kon and koff values vary from those in
the single enhancer model. We plotted the distribution of the values for kon and koff for
each enhancer in the three different constructs measured. The distribution shows the values
derived from the 10 best-fitting parameter sets, and the black star in each column indicates
the kon or koff value from the corresponding single enhancer model. In general, the koff values
increased relative to the single enhancer model, and the kon values decreased, indicating that
the presence of a second enhancer inhibits the activity of the first. (C) Graph of average
coefficient of variation of simulated (solid lines) or experimental (dotted lines) transcriptional
traces as a function of egg length. The model is able to recapitulate the lower expression noise
seen with the shadow enhancer pair with no additional fitting, indicating that the separation
of TF inputs to the two enhancers is sufficient to explain this observation. Error bars of
simulated data and shaded region of experimental data indicate 95% confidence intervals.
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but these observations are consistent with our (Figure 2.16) and previous results indicating

that the Kr enhancers can act sub-additively [23]. Additionally, the dramatic changes in

koff and kon values in the duplicated distal enhancer are consistent with a previous assertion

that enhancer sub-additivity is most pronounced in cases of strong enhancers [24].

We used these models to simulate transcription and predict the resulting CVs from the du-

plicated enhancer and shadow pair constructs. In line with experimental data, we found the

model predicts that the shadow pair construct drives lower noise than the duplicated distal

or duplicated proximal enhancer constructs in the middle of the embryo (Figure 2.8C). This

is particularly notable, as we did not explicitly fit our model to reproduce the experimentally

observed CVs. There is only one fundamental difference between the shadow pair and dupli-

cated enhancer models, namely the use of separate TF inputs for the shadow pair. Therefore,

in our simplified model, we can conclude that the separation of input TFs is sufficient to

explain the lower noise driven by the shadow enhancer pair construct.

2.5.1 Description of two enhancer model, parameter estimation,

and fitting

To explore two enhancer systems, we expanded our previous model to include an additional

enhancer. First, we considered duplicated enhancer systems, which consist of either two

proximal or two distal enhancers. Enhancers were denoted by E1 and E2, which correspond

to two identical enhancers that exist in different locations relative to the promoter. They

are activated by the same transcription factors as described by the reactions

T + E1

kon1

koff1

C1
r1

C1 + R

T + E2

kon2

koff2

C2
r2

C2 + R
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∅
β1

nT

T
β−1 ∅

R
α ∅

Without loss of generality, we used E1 to denote the enhancer at the proximal location and

E2 to denote the enhancer at the distal location. This model describes independent enhancer

dynamics; i.e. the behavior of one enhancer does not affect the behavior of the other, and,

as such, both enhancers can be simultaneously looped to the promoter. Consequently, to

account for potential enhancer interference or competition for the promoter, we assumed

distinct kon and koff values for each enhancer in the duplicated enhancer constructs. We also

used distinct values of r for each distal enhancer in the duplicated distal construct since

fluorescence data was available for this enhancer at the proximal and endogenous location.

For proximal enhancers, we assume r1 = r2.

To describe the dynamics of the shadow enhancer pair, we denoted the activators for E1 (the

proximal enhancer) and E2 (the distal enhancer) by T1 and T2 respectively as shown in the

network

T1 + E1

kon1

koff1

C1
r1

C1 + R

T2 + E2

kon2

koff2

C2
r2

C2 + R

∅
β1

n1T1

∅
γ1

n2T2

T1

β−1 ∅
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T2

γ−1 ∅

R
α ∅

The production rate of T2, γ1, was calculated in the same way as production rate of T1, β1,

but differed in the values of c and σ. The two enhancer models were also used to calculate

allele correlation between homozygotes and heterozygotes because a distinction between

the mRNA produced by C1 and C2 was made. This approach works because, e.g., when

considering the homozygote embryos, each single enhancer resides in the same nucleus and

is therefore affected by the same fluctuating TF numbers. In the duplicated enhancer model,

each enhancer E1 or E2 is affected by the same fluctuations in the number of transcription

factor T . An analogous logic applies to the heterozygotes.

To fit the two enhancer models to experimental data, we retained several parameters from

the single enhancer models. Parameters r and α were directly calculated from the data, and,

as such, did not vary across models. We assume that parameters concerning transcription

factors (β1, β−1 γ1, γ−1, n1, and n2) are not affected by the presence of an additional

enhancer. Therefore, in our model, only kon and koff are free to change. To fit the values

of kon1, kon2, koff1, and koff2, we set the other model parameters to the median values of

the 10 best parameter sets in the respective single enhancer model. We then used a similar

simulating annealing approach to fit the kon and koff values. We used the resulting values to

simulate transcriptional traces and to calculate the predicted CV values shown in Figure 2.8.
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2.6 The shadow enhancer pair buffers against intrinsic

and extrinsic sources of noise

To further understand the sources of noise the shadow enhancer pair is able to buffer, we

compared the extrinsic and intrinsic noise associated with the shadow enhancer pair to that

associated with either single or duplicated enhancers. To do so, we measured the transcrip-

tional dynamics of embryos with two identical reporters in each nucleus and calculated noise

sources using the approach of Elowitz et al., 2002. [79] Intrinsic noise corresponds to sources

of noise, such as TF binding and unbinding, that affect each allele separately. It is quantified

by the degree to which the activities of the two reporters in a single nucleus differ. Extrin-

sic noise corresponds to global sources of noise, such as TF levels, that affect both alleles

simultaneously. It is measured by the degree to which the activities of the two reporters

change together. Intrinsic and extrinsic noise are defined such that, when squared, their sum

is equal to total noise2, which corresponds to the CV 2 of the two identical alleles in each

nucleus in our system (see Materials and methods). Because our data do not meet one key

assumption needed to measure extrinsic and intrinsic noise with the two-reporter approach

(see Discussion;Figure 2.17), we use the terms inter-allele noise and covariance in place of

intrinsic and extrinsic noise.

Based on our separation of inputs hypothesis and CV data, we expected the total noise

associated with the shadow enhancer pair to be lower than that associated with the du-

plicated enhancers. We predicted that the shadow enhancer pair will mediate lower total

expression noise through lower covariance, as the two member enhancers are regulated by

different TFs. Given the complexity of predicting inter-allele noise from first principles (Ma-

terials and methods; Figure 2.18), we predicted that constructs with two enhancers will have

lower inter-allele noise than single enhancer constructs but did not have a strong predic-

tion regarding the relative inter-allele noise among the different two-enhancer constructs.
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Comparisons of noise between the single and duplicated enhancer constructs would further

allow us to discern whether reductions in noise are generally associated with two-enhancer

constructs or whether this is a particular feature of the shadow enhancer pair.

Neither the duplicated proximal nor distal enhancers drive significantly lower total noise than

the corresponding single enhancers, indicating that the addition of an identical enhancer is

not sufficient to reduce expression noise in this system (Figure 2.9A). The shadow enhancer

pair drives lower total expression noise than either single or duplicated enhancer, consistent

with the temporal CV data in Figure 2.7. The median total expression noise associated

with the duplicated distal and duplicated proximal enhancers is 1.4 or 2.4 times higher,

respectively, than that associated with the shadow enhancer pair (Figure 2.9A). Note that

for measurements of noise, our distal construct places the enhancer at the endogenous spacing

from the promoter, as we wanted to control for positional effects on expression and noise [23]

(Figure 2.19).

In line with our expectations, the shadow enhancer pair has significantly lower covariance

levels than either single or duplicated enhancer (Figure 2.9B). The shadow enhancer pair

also has lower inter-allele noise than all of the other constructs, though these differences are

only marginally significant (p = 0.13) when compared to the duplicated distal enhancer.

Covariance makes a larger contribution to the total noise for the duplicated distal enhancer

and the shadow enhancer pair, while inter-allele noise is the larger source of noise for the

single distal enhancer and the single or duplicated proximal enhancers (Figure 2.9B).

The lower total noise and covariance of the shadow enhancer pair support our hypothesis

that, by separating regulation of the member enhancers, the shadow enhancer pair can

buffer against upstream fluctuations. The lower inter-allele noise associated with the shadow

enhancer pair warrants further investigation. A simple theoretical approach predicts that

two enhancer constructs will have lower inter-allele noise (Figure 2.18). Given that this is

not universally observed in our data, this suggests that there is still much to discover about
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Figure 2.9: Shadow enhancer pair achieves lower total noise by buffering global and allele-
specific sources of noise. To determine how the shadow enhancer pair produces lower ex-
pression noise, we calculated the total noise associated with each enhancer construct and
decomposed this into the contributions of covariance and inter-allele noise. Covariance is a
measure of how the activities of the two alleles in a nucleus change together and is indicative
of global sources of noise. Inter-allele noise is a measure of how the activities of the two al-
leles differ and is indicative of allele-specific sources of noise. (A) The shadow enhancer pair
has lower total noise than single or duplicated enhancers. Circles are total noise values for
individual nuclei in AP bin of peak expression for the given enhancer construct. Horizontal
line represents the median. The y-axis is limited to 75th percentile of the proximal enhancer,
which has the largest noise values. The shadow enhancer pair has significantly lower total
noise than all other constructs. (B) The shadow enhancer pair displays significantly lower
covariance than either single or duplicated enhancer and significantly lower inter-allele noise
than both single enhancers and the duplicated proximal enhancer. The left half of each
violin plot shows the distribution of covariance values of nuclei in the AP bin of peak expres-
sion, while the right half shows the distribution of inter-allele noise values. Horizontal lines
represent median. The y-axis is again limited to the 75th percentile of enhancer with the
largest noise values, which is duplicated proximal. The lower covariance and inter-allele noise
associated with the shadow enhancer pair indicates it is better able to buffer both global
and allele-specific sources of noise. (C) p-Value table of Kruskal-Wallis pairwise comparison
of the total noise values of each enhancer construct. p-Value gradient legend applies to C
and D. (D) p-Value table of Kruskal-Wallis pairwise comparison of covariance (on left) and
inter-allele noise (on right) values for each enhancer construct. Bonferroni multiple compar-
ison corrections were used for p-Values in C and D. Total number of nuclei used in noise
calculations are given in Supplementary file 1.
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how inter-allele noise changes as additional enhancers control a gene’s transcription.

We showed the Kr shadow enhancer pair drives expression with lower total noise than

either single or duplicated enhancer, yet previous studies have generally found individual

member enhancers of a shadow enhancer set are dispensable under ideal conditions [8, 53,

10]. However, in the face of environmental or genetic stress, the full shadow enhancer group

is necessary for proper development [8, 10, 53]. We therefore decided to investigate whether

temperature stress causes significant increases in expression noise and whether the shadow

enhancer pair or duplicated enhancers can buffer these potential increases in noise.

Similar to our findings at ambient temperature (26.5◦C), the shadow enhancer pair drives

lower total noise than all other tested enhancer constructs at 32◦C (Figure 7B). At 32◦C,

the duplicated distal and duplicated proximal enhancers display 35% or 52%, respectively,

higher total noise than the shadow enhancer pair. At 17◦C, the shadow enhancer pair has

approximately 46% lower total noise than either the single or duplicated proximal enhancer,

21% lower total noise than the single distal enhancer, and is not significantly different than

the duplicated distal enhancer (Figure 2.10A). As seen by the variety of shapes in the tem-

perature response curves (Figure 2.10C), temperature perturbations have enhancer-specific

effects, suggesting input TFs may differ in their response to temperature change. The low

noise driven by the shadow enhancer pair across conditions is consistent with previous studies

showing shadow enhancers are required for robust gene expression at elevated and lowered

temperatures [8, 9].

To calculate the temporal CV each transcriptional spot i, we used the formula:

CV (i) =
standard deviation(mi(t))

mean(mi(t))

where mi(t) is the fluorescence of spot i at time t.
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Figure 2.10: Shadow enhancer pair maintains lower total noise across temperature pertur-
bations. To test the ability of each enhancer construct to buffer temperature perturbations,
we measured the total expression noise associated with each for embryos imaged at 17◦C or
32◦C. (A) The shadow enhancer pair displays significantly lower total noise than the single
or duplicated proximal enhancer and the single distal enhancer at 17◦C. Circles are total
noise values for individual nuclei in AP bin of peak expression for the given enhancer con-
struct and horizontal bars represent medians. The y-axis is limited to 75th percentile of
construct with highest total noise at 17◦C (single proximal). (B) The shadow enhancer pair
has significantly lower total noise than all other constructs at 32◦C. The y-axis is limited
to 75th percentile of the enhancer construct with highest total noise at 32◦C (duplicated
proximal). (C) Temperature changes have different effects on the total noise associated with
the different enhancers. The median total noise value at the AP bin of peak expression at
the three measured temperatures is shown for each enhancer construct. Within each en-
hancer, the median total noise values are shown left to right for 17◦C, 26.5◦C, and 32◦C.
(D) p-Value table of Kruskal-Wallis pairwise comparison of the total noise values of each
enhancer construct at 17◦C. p-value gradient legend applies to D and E. (E) p-Value table
of Kruskal-Wallis pairwise comparison of the total noise values of each enhancer construct
at 32◦C. Bonferroni multiple comparison corrections were used for p-Values in D and E.
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We also decomposed the total noise experienced in each nucleus to inter-allele noise and

co-variance, analogous to the approach of Elowitz et al., 2002 [79].

Inter-allele noise is calculated one nucleus at a time. It is the mean square difference between

the fluorescence of the two alleles in a single nucleus:

η2
IA =

〈(m1(t)−m2(t))2〉
2〈m1(t)〉〈m2(t)〉

where m1(t) is the fluorescence of one allele in the nucleus at time t, and m2(t) is the

fluorescence of the other allele in the same nucleus and the angled brackets indicate the

mean across the time of nc14.

Covariance is the covariance of the activity of the two alleles in the same nucleus across the

time of nc14:

η2
CV =

〈(m1(t)m2(t))〉 − 〈m1(t)〉〈m2(t)〉
〈m1(t)〉〈m2(t)〉

The inter-allele and covariance values are defined such that they sum to give the total

transcriptional noise displayed by the two alleles in a single nucleus.

η2
tot =

〈(m1(t)2 +m2(t)2)〉 − 2〈m1(t)〉〈m2(t)〉
2〈m1(t)〉〈m2(t)〉

This total noise value is equal to the coefficient of variation of the expression of the two

alleles in a single nucleus across the time of nc14.

To determine any significant differences in total noise, covariance, or inter-allele noise val-

ues between the different enhancer constructs, we performed Kruskal-Wallis tests with the
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Bonferroni multiple comparison correction.

2.7 Discussion

Fluctuations in the levels of transcripts and proteins are an unavoidable challenge to precise

developmental patterning [80, 81, 63]. Given that shadow enhancers are common and neces-

sary for robust gene expression [10, 8, 9], we proposed that shadow enhancers may function to

buffer the effects of fluctuations in the levels of key developmental TFs. To address this, we

have, for the first time, extensively characterized the noise associated with shadow enhancers

critical for patterning the early Drosophila embryo. By either tracking biallelic transcription

or simultaneously measuring input TF levels and transcription, we tested the hypothesis that

shadow enhancers buffer noise through a separation of TF inputs to the individual member

enhancers. Our results show that TF fluctuations play a significant role in transcriptional

noise and that a shadow enhancer pair is better able to buffer both extrinsic and intrinsic

sources of noise than duplicated enhancers. Using a simple mathematical model, we found

that fluctuations in TF levels are required to reproduce the observed correlations between

reporter activity and that the low noise driven by the shadow enhancer pair may be a natural

consequence of the separation of TF inputs to the member enhancers. Lastly, we showed

that a shadow enhancer pair is uniquely able to buffer expression noise across a wide range of

temperatures. Together, these results support the hypothesis that shadow enhancers buffer

input TF noise to drive robust gene expression patterns during development.
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2.7.1 Temporal fluctuations in transcription factor levels drive ex-

pression noise in the embryo

When measured in fixed embryos, the TFs used in Drosophila embryonic development show

remarkably precise expression patterns, displaying errors smaller than the width of a single

nucleus [69, 70, 82, 83]. It therefore was unclear whether fluctuations in these regulators

play a significant role in transcriptional noise in the developing embryo. By measuring the

temporal dynamics of the individual Kr enhancers, each of which is controlled by different

transcriptional activators, we show that TF fluctuations do significantly contribute to the

noise in transcriptional output of a single enhancer. Within a nucleus, expression controlled

by the two different Kr enhancers is far less correlated than expression driven by two copies

of the same enhancer, indicating that TF inputs, as opposed to more global factors, are the

primary regulators of transcriptional bursting in this system. Our current findings leave open

the possibility that additional mechanisms, such as differences in 3D nuclear organization

between different reporters, may also contribute to the differences in noise that we see.

We also showed that activity driven by the Kr shadow enhancer pair is less sensitive to levels

of a single TF than is activity driven by an individual Kr enhancer. While prior work has

shown that changes in TF levels precede changes in target transcription [84], the sensitivity

of individual enhancers to changes in TF levels had not been previously quantified. The

correlation between Bcd levels and activity of the distal enhancer is modest, and we expect

that this reflects both the influence of additional TF inputs and nuclear heterogeneity that

causes the local Bcd levels available to the enhancer to differ from total nuclear levels [85].

We suspect that the correlation between the activity of the distal enhancer and Bcd levels in

the microenvironment surrounding the enhancer is higher than what we were able to measure

here. New and emerging technologies will likely allow for live measurements of multiple TF

inputs at higher spatial resolution, enabling further insights into the dynamics of expression

regulation.
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The finding that the Kr shadow enhancer pair is less sensitive to TF levels helps recon-

cile our finding that the individual Kr enhancers are influenced by fluctuations in input

TFs with previous studies showing that endogenous Kr expression patterns are rather re-

producible [82]. Previous work has cited the role of spatial and temporal averaging, which

buffers noisy nascent transcriptional dynamics to generate more precise expression levels.

Shadow enhancers operate upstream of this averaging, driving less noisy nascent transcrip-

tion than either single enhancers or enhancer duplications.

2.7.2 A stochastic model underscores importance of transcription

factor fluctuations

We developed a stochastic mathematical model of Kr enhancer dynamics and mRNA pro-

duction that recapitulates our main experimental results. This model is based on that by

Bothma et al., 2015 [24], but it is expanded to include the dynamics of a TF that regulates

each enhancer. We placed a strong emphasis on the simplicity of this model, for example

by using a single abstract TF for each enhancer. This choice both avoids a combinatorial

explosion of parameters and makes the model results and parameters easier to interpret. One

of the most notable features of the model is that it recreates the differences in noise between

shadow and duplicated enhancer constructs without any additional fitting, indicating that

these differences in the model system are a direct result of the separation of input TFs to

the proximal and distal enhancers.

Future versions of this model can include refinements. For example, in the current model,

we do not include the influence of repressive TFs or consider the multiple modes of action

used by activating TFs. Future experiments and models can also be designed to identify the

mechanism of enhancer non-additivity: changes in promoter-enhancer looping, saturation of

the promoter, or other mechanisms.
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2.7.3 Noise source decomposition suggests competition between

reporters

In our investigation of sources of noise, we decomposed total noise into extrinsic and intrinsic

components as in Elowitz et al., 2002 [79]. In that study, the authors showed that the

activity of one reporter did not inhibit expression of the other reporter, and therefore their

calculations assumed no negative covariance between the reporters’ expression output. In our

system, we found a small amount of negative covariance between the activity of two alleles in

the same nucleus (Figure 2.17). For this reason, we called our measurements covariance and

inter-allele noise. The negative covariance we observed indicates that activity at one allele

can sometimes interfere with activity at the other allele, suggesting competition for limited

amounts of a factor necessary for reporter visualization. The two possible limiting factors are

MCP-GFP or an endogenous factor required for transcription. If MCP-GFP were limiting,

we would expect to see the highest levels of negative covariance at the center of the embryo,

where the highest number of transcripts are produced and bound by MCP-GFP. Since the

fraction of nuclei with negative covariance is highest at the edges of the expression domain

(Figure 2.17), the limiting resource is likely not MCP-GFP, but instead a spatially-patterned

endogenous factor, like a TF.

Currently, the field largely assumes that adding reporters does not appreciably affect ex-

pression of other genes. However, sequestering TFs within repetitive regions of DNA can

impact gene expression [86, 87], and a few case studies show that reporters can affect en-

dogenous gene expression [88, 89]. If TF competition is responsible for the observed negative

covariance between reporters, a closer examination of the effects of transgenic reporters on

the endogenous system is warranted. In addition, TF competition may be a feature, not

a bug, of developmental gene expression control, as modeling has indicated that molecular

competition can decrease expression noise and correlate expression of multiple targets [90].
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2.7.4 Additional functions of shadow enhancers and outlook

There are likely several features of shadow enhancers selected by evolution outside of their

noise-suppression capabilities. Preger-Ben Noon, et al. showed that all shadow enhancers

of shavenbaby, a developmental TF gene in Drosophila, drive expression patterns in tissues

and times outside of their previously characterized domains in the larval cuticle [91]. This

suggests that shadow enhancers, while seemingly redundant at one developmental stage, may

play separate, non-redundant roles in other stages or tissues. Additionally, a recent study

investigating shadow enhancer pairs associated with genes involved in Drosophila embryonic

development found that CRISPR deletions of the individual enhancers result in different

phenotypes, suggesting each plays a slightly different role in regulating gene expression [92].

In several other cases, both members of a shadow enhancer pair are required for the precise

expression pattern generated by the endogenous locus [93, 94, 95, 53, 96]. These sharpened

expression patterns achieved by a shadow enhancer pair may reflect enhancer dominance or

other forms of enhancer-enhancer interaction and are likely another important function of

shadow enhancers [93].

In the case of Kr, the endogenous expression pattern is best recapitulated by the shadow

enhancer pair, with the individual enhancers driving slightly more anterior or posterior

patterns of expression [93] (Figure 2.11). Additionally, the early embryonic Kr enhancers

drive observable levels of expression in additional tissues and time points, but these expres-

sion patterns overlap those driven by additional, generally stronger, enhancers, suggesting

that the primary role of the proximal and distal enhancers is in early embryonic pattern-

ing [97]. Therefore, while we cannot rule out the possibility that the proximal and distal

enhancers perform separate functions at later stages, it seems that their primary function,

and evolutionary substrate, is controlling Kr expression pattern and noise levels during early

embryonic development.
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Here, we have investigated the details of shadow enhancer function for a particular system,

and we expect that some key observations may generalize to many sets of shadow enhancers.

Shadow enhancers seem to be a general feature of developmental systems [18, 10], but the

diversity among them has yet to be specifically addressed. While we worked with a pair of

shadow enhancers with clearly separated TF activators, shadow enhancers can come in much

larger groups and with varying degrees of TF input separation between the individual en-

hancers [18, 10]. To discern how expression dynamics and noise driven by shadow enhancers

depend on their degree of TF input separation, we are investigating these characteristics in

additional sets of shadow enhancers with varying degrees of differential TF regulation. Our

current results combined with data gathered from additional shadow enhancers will inform

fuller models of how developmental systems ensure precision and robustness.

All data generated or analysed during this study are included in the manuscript and support-

ing files. Code for analyzing the transcriptional traces and for creating the computational

models is available on GitHub:

https://github.com/WunderlichLab/KrShadowEnhancerCode

(copy archived at https://github.com/elifesciences-publications/KrShadowEnhancerCode).

Appendix

The work in this appendix was done by Rachel Waymack and Zeba Wunderlich as published

in Waymack et al. [1].
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Figure 2.11: Fraction of nuclei transcribing as a function of embryo position.
The different enhancer constructs display different spatial and temporal patterns of activity.
Shown in all graphs are the fraction of nuclei actively transcribing as a function of embryo
position at each indicated time point into nc14. (A) 10 min into nc14. (B) 20 min into nc14.
(C) 30 min into nc14. (D) 40 min into nc14. Error bars are 95% confidence intervals. We
note that differences in the individual Kr enhancers become more pronounced throughout
progression of nc14. The more anterior pattern driven by the proximal enhancer in the second
half of nc14 mimics the anterior shift previously observed for the Kr expression domain [98,
93]
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Figure 2.12: Expression across time at different embryo positions. The activity levels
of the different enhancer constructs vary both across time and space. Shown in each graph
is the mean fluorescence of all transcriptional traces of the indicated enhancer construct as
a function of time into nc14 at the indicated position in the embryo. The earlier activation
of the shadow pair and distal enhancer compared to the proximal enhancer at 50% and 60%
egg length may stem from the input of the pioneer TF Zelda (Zld) to the distal and shadow
pair. Error bars are 95% confidence intervals.

2.7.5 Generation of transgenic reporter fly lines

The single, duplicated, or shadow enhancers were each cloned into the pBphi vector, up-

stream of the Kruppel promoter, 24 MS2 repeats, and a yellow reporter gene as in Fukaya et

al., 2016 [101]. We defined the proximal enhancer as chromosome 2R:25224832–25226417,

the distal enhancer as chromosome 2R:25222618–25223777, and the promoter as chromo-

some 2R:25226611–25226951, using the Drosophila melanogaster dm6 release coordinates.

The precise sequences for each reporter construct are given in Supplementary file 4. For

the allele correlation experiments, each enhancer was cloned 192 bp upstream of the Kr

promoter, separated by the endogenous sequence found between the proximal enhancer and

the promoter. For transcriptional noise experiments, the distal enhancer was placed at

its endogenous spacing, 2835 bp upstream of the promoter, and the proximal enhancer se-

62



Figure 2.13: Correspondence of observed and expected number of spots. To en-
sure that we can accurately measure two spots of expression in the embryo, we compared
the number of transcriptional spots seen in embryos hemizygous or homozygous for each
construct. Our rationale was that in the absence of transvection, the number of transcrip-
tional spots in homozygous embryos should be twice the number in embryos expressing the
reporter on only one allele. The number of transcriptional spots tracked during nc14 in the
AP bin of maximum expression was counted for all embryos imaged for each homozygous and
hemizygous construct. The graph shows the average of this value for homozygous embryos,
divided by double the value observed in the corresponding hemizygous construct. Assuming
no transvection occurs, this value should be close to 1. The ratio of observed to expected
number of spots is close to one for all our enhancer constructs, indicating we are reliably
able to track the two individual spots of transcription in single nuclei.

Reagent type
(species) or resource

Designation Source or reference Identifiers
Additional

information
Genetic reagent
(Drosophila melanogaster)

ChrII attP site; PBac{y[+]-
attP-3B}VK00002

Bloomington Drosophila
Stock Center

BDSC:9723 FLYB:
FBti0076425

Fly line injected for transgenic reporters

Genetic reagent (D.
melanogaster)

Kr proximal enhancer This paper
Fly line with MS2 expression driven by Kr
proximal enhancer inserted on chromosome
II

Genetic reagent (D.
melanogaster)

Kr distal enhancer This paper
Fly line with MS2 expression driven by Kr
distal enhancer inserted on chromosome II

Genetic reagent (D.
melanogaster)

shadow enhancer pair This paper
Fly line with MS2 expression driven by Kr
shadow enhancer pair inserted on chromo-
some II

Genetic reagent (D.
melanogaster)

duplicated distal enhancer This paper
Fly line with MS2 expression driven by two
copies of Kr distal enhancer inserted on
chromosome II

Genetic reagent (D.
melanogaster)

duplicated proximal enhancer This paper
Fly line with MS2 expression driven by two
copies of Kr proximal enhancer inserted on
chromosome II

Genetic reagent (D.
melanogaster)

endogenous distal enhancer This paper
Fly line with MS2 expression driven by Kr
distal enhancer at endogenous spacing from
promoter, inserted on chromosome II

Genetic reagent (D.
melanogaster)

Bcd-GFP; Bcd-eGFP
Gregor et al., 2007 [70],
Cell

Fly line with mutated endogenous Bcd
(bcdE1) rescued with GFP-tagged Bcd
transgene on X chromosome

Genetic reagent (D.
melanogaster)

MCP-GFP
Garcia et al., 2013 [72],
Current Biology

Fly line expressing MCP-GFP on chromo-
some III and His-RFP on chromosome II

Genetic reagent (D.
melanogaster)

MCP-mCherry Hernan Garcia Lab
Fly line expressing MCP-mCherry as trans-
gene on Chromosome II

Genetic reagent (D.
melanogaster)

hunchback P2 enhancer
Garcia et al., 2013 [72],
Current Biology

Fly line with MS2 expression driven by hb
P2 enhancer on chromosome II

Software, algorithm mRNADynamics
Garcia et al., 2013 [72],
Current Biology

MATLAB pipeline for tracking and
analysing MS2 transcriptional spots

Table 2.2: Key resources table
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Figure 2.14: Visual inspection of burst calling algorithm. To extract the bursting
parameters examined (burst size, frequency, and duration), individual fluorescence traces
were first smoothed using the LOWESS method with a span of 0.1. Our burst calling
algorithm then determined the periods of promoter activity or inactivity based on the slope
of the fluorescence trace. (A) Representative example of smoothing of transcriptional traces.
(B) Representative fluorescence trace of a single spot across the time of nc14. Black open
circles indicate time points where the promoter is switched to being called ‘on’, red filled
circles indicate time points where the promoter is switched to being called ‘off’. (C) A
representative transcriptional trace with shading representing the area under the curve used
to calculate the size of the first burst. This area is calculated using the trapz function in
MATLAB and is done for each burst, from the time point the promoter is called ‘on’ until
the next time it is called ‘on’. (D-F) show additional representative fluorescence traces of
single transcriptional spots across the time of nc14. (D) A trace with shading representing
the area under the entire curve during nc14 used to calculate the total amount of mRNA
produced. This area is calculated using the trapz function in MATLAB and is done from the
time the promoter is first called active until 50 min into nc14 or the movie ends, whichever
comes first. (E) Burst frequency is calculated by dividing the number of bursts that occur
from the time the promoter is first called active until 50 min into nc14 or the movie ends,
whichever comes first. (F) Burst duration is defined as the amount of time between when
the promoter is called active and it is next called inactive.
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Figure 2.15: Temporal CV as a function of mean fluorescence.To investigate the
relationship between our noise measurement of temporal CV and the mean activity of each
construct, we plotted the temporal CV of each transcription spot as a function of its mean
fluorescence. (A) Distal; (B) Proximal; (C) 2x Proximal; (D) 2x Distal; (E) Shadow pair.
With all constructs, we find the general trend that CV decreases with increasing average
expression, flattening out at a baseline noise level specific to each enhancer construct.
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Figure 2.16: Individual Kr enhancers display sub-additive behavior.To assess the
way input from two enhancers is integrated at the Kr promoter, we compared the experimen-
tally observed mRNA production of duplicated enhancers to that predicted from additive
behavior of the single enhancers. (A) The duplicated distal enhancer displays sub-additive
behavior. The solid line is the experimentally observed total mRNA produced by the du-
plicated distal enhancer during nc14 as a function of egg length and the dotted line is that
expected by doubling the total mRNA produced by the single distal enhancer. (B) The
duplicated proximal enhancer also acts sub-additively. The solid line is the experimentally
observed total mRNA produced by the proximal enhancer during nc14 as a function of egg
length and the dotted line is that expected by doubling the total mRNA produced by the
single proximal enhancer. These results, along with the observation that koff values increased
and kon values decreased in our model with the addition of a second enhancer, suggests that
the Kr enhancers compete with each other for interactions with the promoter. Error bars
represent 95% confidence intervals.
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Figure 2.17: Fraction of nuclei with negative covariance of allele activity.To identify
the likely cause of the observed negative covariance between allele activity in some nuclei,
we calculated the fraction of nuclei displaying negative covariance out of all nuclei that
had active reporter transcription. Graphs show the fraction of transcribing nuclei with
negative covariance as a function of egg length for each reporter construct, with a black
circle indicating the position along the embryo of maximal expression for that construct.
(A) Distal; (B) Proximal; (C) 2x Proximal; (D) 2x Distal; (E) Shadow pair. Note that for
all constructs, the highest rates of negative covariance are outside of the region of maximal
reporter expression. MCP-GFP is expressed uniformly along the length of the embryo and
we would therefore expect if MCP-GFP were the limiting factor, we would see the highest
rates of negative covariance in the center of the expression pattern, where the highest number
of transcripts are produced. Instead, the highest rates of negative covariance are seen at the
edges of the Kr expression pattern, suggesting a spatially patterned factor, such as a TF,
may be what is limiting. 67



Figure 2.18: In most cases, two enhancer models drive lower noise than the single
enhancer model. To theoretically explore the behavior of instrinsic noise in one- and
two-enhancer models, we used the formalism of Sanchez et al., 2011; Sánchez and Kondev,
2008 [99, 100]. As described in Materials and methods, the predicted CVs from these models
are estimates for intrinsic noise. (A) We plot the mean expression level versus CV for the
five different enhancer models and one set of parameters, k = l = 1, p=1, γ = 0.1. The single
enhancer model (dark purple) drives the highest CV, indicating that, under the assumptions
of our models, adding an additional enhancer generally lowers intrinsic noise. Except for
XOR model (yellow), all other models produce more mRNA than the single enhancer model.
The other colors are: blue, OR model; green, additive model; brown, synergistic model. (B)
Here, we plot the CV as a function of l, the rate of promoter-enhancer dissociation, for the
five models above and vary l from 0.1 to 10 on a logarithmic scale with k = 1, p=1, γ = 0.1.
With the exception of the XOR model with high l, the single enhancer model drives a higher
CV than the models with two enhancers for the same value of l. These results show that,
under the simplifying assumptions made in these models, the addition of a second enhancer
generally lowers the predicted intrinsic noise. In our experimental data (Figure 6), we only
observe a significant decrease in interallele noise for the shadow enhancer pair compared
to the single distal or single proximal enhancer. Duplications of either the proximal or
distal enhancer do not have significantly lower noise than their respective single enhancer
constructs. Therefore, we expect that the simple addition of an identical enhancer likely
does not fulfill the simplifying parameter assumptions used here and suggests that further
investigation is needed to understand the complexity of the relationship between interallele
noise and the numbers of enhancers controlling a promoter.
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Figure 2.19: Position-dependent effects on distal enhancer. To best mimic the endoge-
nous system, we looked at expression driven by the distal enhancer at its endogenous spacing
from the promoter for our noise calculations. In this construct, we replaced the sequence
of the proximal enhancer with sequence of the same length from the lambda phage genome
predicted to have low number of Drosophila TF binding sites. This increased distance from
the promoter had observable effects on the transcriptional dynamics and noise associated
with the distal enhancer. (A) Comparison of total transcriptional expression mediated by
the distal enhancer at its endogenous spacing or proximal to the promoter. The distal en-
hancer at its endogenous spacing, shown as the solid line, produces significantly more total
mRNA in the center region of expression than the distal enhancer proximal to the promoter,
shown as the dotted line. (B) Comparison of the average number of transcripts produced per
transcriptional burst by each distal enhancer configuration as a function of egg length. (C)
Average burst frequency associated with either distal enhancer configuration as a function of
egg length. (D) Average burst duration associated with either distal enhancer configuration
as a function of egg length. (E) Coefficient of variation of transcriptional activity across nc14
for each distal enhancer configuration as a function of egg length. (F) Total expression noise
associated with either distal enhancer configuration at the AP bin of that construct’s peak
expression. The total noise distribution for the distal enhancer proximal to the promoter is
on the left and that for the distal enhancer at its endogenous spacing from the promoter is on
the right. The distal enhancer at its endogenous spacing displays significantly higher total
noise (p = 0.018) than the distal enhancer proximal to the promoter. Each circle represents
the total noise of an individual nucleus and the horizontal bar marks the median total noise
value. Y-axis limited to the 75th percentile of the construct with the highest total noise
values (distal promoter at endogenous spacing). Error bars in A-E represent 95% confidence
intervals.
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quence was replaced by a region of the lambda genome that is predicted to have few relevant

TF-binding sites. In the shadow enhancer pair or duplicated enhancer constructs, the two

enhancers were separated by the sequence separating the proximal and distal enhancers in

the endogenous locus.

Using phiC31-mediated integration, each reporter construct was integrated into the same

site on the second chromosomes by injection into yw; PBac{y[+]-attP-3B}VK00002 (BDRC

stock #9723) embryos by BestGene Inc (Chino Hills, CA). To produce embryos with biallelic

expression of the MS2 reporter, female flies expressing RFP-tagged histones and GFP-tagged

MCP (yw; His-RFP/Cyo; MCP-GFP/TM3.Sb) were crossed with males containing one of

the enhancer-MS2 reporter constructs. Virgin female F1 offspring were then mated with

males of the same parental genotype, except in the case of shadow heterozygous flies, which

were mated with males containing the other single enhancer-MS2 reporter.

2.7.6 Sample preparation and image acquisition

Live embryos were collected prior to nc14, dechorionated, mounted on a permeable mem-

brane, immersed in Halocarbon 27 oil, and put under a glass coverslip as in Garcia et al.,

2013 [72]. Individual embryos were then imaged on a Nikon A1R point scanning confocal

microscope using a 60X/1.4 N.A. oil immersion objective and laser settings of 40uW for 488

nm and 35uW for 561 nm. To track transcription, 21 slice Z-stacks, at 0.5 um steps, were

taken throughout the length of nc14 at roughly 30 s intervals. To identify the Z-stack’s

position in the embryo, the whole embryo was imaged after the end of nc14 at 20x using the

same laser power settings. Later in the analysis, each transcriptional spot’s location is de-

scribed as falling into one of 42 anterior-posterior (AP) bins, with the first bin at the anterior

of the embryo. Unless otherwise indicated, embryos were imaged at ambient temperature,

which was on average 26.5◦C. To image at other temperatures, embryos were either heated or
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cooled using the Bioscience Tools (Highland, CA) heating-cooling stage and accompanying

water-cooling unit.

2.7.7 Burst calling and calculation of transcription parameters

Tracking of nuclei and transcriptional spots was done using the image analysis Matlab

pipeline described in Garcia et al., 2013. [72] For every spot of transcription imaged, back-

ground fluorescence at each time point is estimated as the offset of fitting the 2D maximum

projection of the Z-stack image centered around the transcriptional spot to a gaussian curve,

using Matlab lsqnonlin. This background estimate is subtracted from the raw spot fluores-

cence intensity. The resulting fluorescence traces across the time of nc14 are then subject

to smoothing by the LOWESS method with a span of 10%. The smoothed traces were used

to measure transcriptional parameters and noise. Traces consisting of fewer than three time

frames were removed from calculations. To calculate transcription parameters, we used the

smoothed traces to determine if the promoter was active or inactive at each time point. A

promoter was called active if the slope of its trace (change in fluorescence) between one point

and the next was greater than or equal to the instantaneous fluorescence value calculated

for one mRNA molecule (FRNAP, described below). Once called active, the promoter is

considered active until the slope of the fluorescence trace becomes less than or equal to the

negative instantaneous fluorescence value of one mRNA molecule, at which point it is called

inactive until another active point is reached. The instantaneous fluorescence of a single

mRNA was chosen as the threshold because we reasoned that an increase in fluorescence

greater than or equal to that of a single transcript is indicative of an actively producing pro-

moter, while a decrease in fluorescence greater than that associated with a single transcript

indicates transcripts are primarily dissociating from, not being produced from, this locus.

Visual inspection of fluorescence traces agreed well with the burst calling produced by this

method (Figure 2.14).
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Using these traces and promoter states, we measured burst size, frequency and duration.

Burst size is defined as the integrated area under the curve of each transcriptional burst,

from one ‘ON’ frame to the next ‘ON’ frame, with the value of 0 set to the floor of the

background-subtracted florescence trace (Figure 2 2.14 panel C). Duration is defined as the

amount of time occurring between the frame a promoter is determined active and the frame

it is next determined inactive (Figure 2.14 panel F). Frequency is defined as the number of

bursts occurring in the period of time from the first time the promoter is called active until

50 min into nc14 or the movie ends, whichever is first (Figure 2.14 panel E). The time of

first activity was used for frequency calculations because the different enhancer constructs

showed different characteristic times to first transcriptional burst during nc14. For these,

and all other measurements, we control for the embryo position of the transcription trace by

first individually analyzing the trace and then using all the traces in each AP bin (anterior-

posterior; the embryo is divided into 41 bins each containing 2.5% of the embryo’s length)

to calculate summary statistics of the transcriptional dynamics and noise values at that AP

position.

All Matlab codes used for burst calling, noise measurements, and other image processing are

available at the Wunderlich Lab GitHub (Waymack, 2020; copy archived at https://github.com/elifesciences-

publications/KrShadowEnhancerCode).

2.7.8 Simultaneous tracking of Bcd-GFP and enhancer activity

To compare the sensitivity of the activity of the shadow pair and distal enhancer to Bcd lev-

els, we tracked the fluorescence of Bcd-GFP and MCP-mCherry in individual nuclei across

the time of nc14. To obtain embryos for simultaneous tracking, we crossed female flies het-

erozygous for Bcd-GFP and MCP-mcherry with male flies homozygous for either the shadow

pair or distal enhancer reporter. Bcd-GFP and MCP-mCherry are maternally deposited and
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thereby allow us to measure levels of Bcd and enhancer activity in individual nuclei of the

resulting embryos. Embryo collection and preparation was performed as described above.

The same microscope, objective, and Z-step profile were used as described above, but laser

settings were switched to 40uW for 561 nm and 35uW for 488 nm. Analysis of transcriptional

activity was performed as described above. Time traces of Bcd-GFP levels in individual nu-

clei were subjected to background correction by subtracting the average fluorescence of the

regions of the image not containing a nucleus at each time point from the raw Bcd-GFP

fluorescence. The resulting Bcd-GFP time traces were then subjected to smoothing by the

MATLAB smooth function, using the LOWESS method with a span of 10%. To measure

the sensitivity of enhancer activity to Bcd levels, we correlated the slope of MS2 traces to

the corresponding Bcd-GFP levels in the same nucleus. Slope was calculated between the

MS2 values at consecutive time points and compared to the Bcd-GFP value at the earlier of

the two time points. This process was done for all time points through 50 min into nc14.
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Chapter 3

Shadow enhancers mediate trade-offs

between transcriptional noise and

fidelity

Material in this chapter is adapted from a manuscript by Alvaro Fletcher, Zeba Wunderlich,

and German Enciso [102].

3.1 Introduction

Enhancers are non-coding regions of the DNA that are bound by transcription factors (TFs)

and interact with the promoter to regulate transcription. Developmental genes are frequently

expressed in multiple tissues or time points and are regulated by multiple enhancers. Until

recently, these enhancers were perceived as modular, with each driving a distinct portion

of a gene’s spatiotemporal expression pattern, and together generating the entirety of a

gene’s expression pattern. However, work in Drosophila revealed the presence of “shadow

74



enhancers” – sets of two or more enhancers that control the same gene and drive identical

or overlapping expression patterns [22]. Similar enhancer groups have been identified in

C. elegans, mice, zebrafish, and humans [12, 13, 14, 15, 16, 17]. Here, we aim to use

theory and computational models to shed light on the regulatory advantages of shadow

enhancers, as well as under what conditions a single enhancer and a set of shadow enhancers

are interchangeable.

On the surface, shadow enhancers appear redundant – they drive overlapping expression

patterns and can often be knocked out without meaningfully affecting phenotype. However,

in multiple loci in both flies and mice, shadow enhancers are essential for driving normal de-

velopment under conditions of stress [103, 8, 104, 10]. For instance, under high temperatures

but not ideal temperatures, deletion of a shadow enhancer for the Drosophila gene snail leads

to abnormal development of the Drosophila embryo. The earliest work describing “shadow

enhancers” designated the enhancer farther away from the promoter as the shadow enhancer

and the promoter-proximal enhancer as the “primary enhancer.” For the purposes of this

work, we use the more recently formulated definition of shadow enhancers, which refers to

the entire group of enhancers regulating the same target gene over space and time [21].

Progress in methods for identifying enhancers genome-wide has revealed the pervasiveness

of shadow enhancers in developmental gene loci. A study revealed that a majority of genes

involved in Drosophila muscle development are controlled by sets of three or more shadow

enhancers, and large-scale data analysis on mouse tissue samples from genomic databases

showed widespread shadow enhancer activity [18, 10, 19]. Meanwhile, in humans, assays

involving enhancer-derived RNAs suggested that approximately 80% of examined genes are

under the regulation of two or more shadow enhancers [20]. Overall, these results and others

suggest that most developmental genes in multi-cellular organisms are regulated by sets of

shadow enhancers.

In addition to ensuring proper development in stressful conditions, shadow enhancers interact
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in multiple ways to fine-tune gene expression. For example, shadow enhancers might be

assumed to behave additively – the sum of their individual mRNA outputs equals that of their

combined output. However some shadow enhancers display subadditive or superadditive

interactions, in which the combined activity of both enhancers is either less or more than

the sum of their individual contributions, e.g. [24, 23]. Shadow enhancers can also repress

one another, creating a composite gene expression pattern that is weaker or more restricted

that either enhancer produces alone [93, 92]. Lastly, by binding distinct sets of input TFs,

shadow enhancers can collectively buffer temporal noise in TF levels, yielding more consistent

gene expression as a function of time [1].

Many of the mechanisms, e.g. synergy and repression, that are observed in shadow enhancers

may also be achieved in single enhancers. This observation leads to the core question of this

chapter: which properties are specific to shadow enhancers and not possible in single en-

hancer regulation? To do so, we focus on two important functions of enhancers. The first

is their ability to faithfully translate an upstream signal, like a difference in TF concentra-

tion, into downstream expression output. This feature is needed to allow output expression

patterns to determine developmental cell fate in response to upstream signals. The second

is their ability to buffer stochastic noise either from random fluctuations in the upstream

signals or from internal enhancer dynamics. This feature is needed to buffer the noise that

inevitably arises from molecular interactions to drive consistent expression patterns. For this

purpose, we construct theoretical models of enhancer systems with different properties and

analyze the resulting dynamics. In addition to exploring a larger number of configurations

and parameter sets than is experimentally practical, we expect this approach to elucidate

the selection pressures that can shape the creation of shadow enhancers and opportunities

for transcriptional modulation that appear in the presence of shadow enhancers.

Previous work on theoretical models of shadow enhancers has proven to be fruitful in pre-

dicting and understanding the behavior of these systems. For example, a simple model
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of hunchback and knirps enhancers by Bothma et al. [24] was used to show that frequent

interactions among enhancers may lead to competition for promoter access and thus give

rise to subadditive behavior. Likewise, a model of hunchback regulation of the even-skipped

enhancers by Staller et al. [105] suggested that two different enhancers can recreate the

same expression patterns with distinct regulatory logic. Grah et al. [106] studied a model

related to the Monod-Wyman-Changeux hemoglobin system [107] in the context of enhancer

regulation and considered several performance metrics. The work by Nousiainen et al. pre-

sented a computational framework for identifying model families that can predict enhancer

activation dynamics in a mechanistic fashion [108]. In this work, we focused our approach

on a set of minimalist reaction network models in which each of the reactions is stochastic,

and the parameters were derived from previous transcriptional data of Kruppel enhancers [1].

Hence, we expect that this fully stochastic approach may capture nuances in the relationship

between TF fluctuations and transcription.

In section 3.2.1, we describe a reaction network model of the Kruppel gene enhancer system.

This is a minimal model that was developed and validated in Waymack et al. [1] that recapit-

ulates the dynamics of enhancer-mediated transcription. We then describe how to use this

model to approximate mean transcriptional output and derive the corresponding noise and

fidelity. Section 3.2.2 describes our approach to generate similar models that differ in their

numbers of enhancers and TF binding sites. By simulating these models, we can compare

the effects of distinct shadow enhancer systems on transcriptional noise and fidelity. Since

shadow enhancers can behave sub- or superadditively, we incorporate this behavior into our

models in Section 3.2.3 and once again perform simulations to determine how the noise and

fidelity are affected. Lastly, in Section 3.2.4, we use our modeling framework to compare

the changes in noise and fidelity resulting from an enhancer duplication and an enhancer

splitting. We consider these events to be potential mechanisms for the origin of shadow

enhancers and study them in this context.
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3.2 Results

3.2.1 The Kruppel enhancer model

As a case study for our work, we use Kruppel, a gene required for early embryonic patterning

in Drosophila. Around two hours post-fertilization, Kruppel is expressed in a stripe around

the middle of the embryo, and this expression pattern is generated by a pair of shadow

enhancers (Figure 3.1A). A minimal version of the Kruppel enhancer system was described

in Waymack et al. [1] using the model in Figure 3.1B. Here, A corresponds to the proximal

enhancer closest to the promoter, while B corresponds to the other, distal enhancer. The

subscripts for A and B alternate between 0 and 1 to denote whether there is a TF bound

to them at a given time. In this model, it is assumed that each enhancer interacts with the

promoter immediately after a TF binds to it. Waymack, et al. measured the dynamic ex-

pression output of Kruppel’s shadow enhancers individually and together. Using these data,

we estimated the model parameters either directly or by using simulated annealing, which

systematically simulates the model over several parameter sets until the difference between

the model output and experimental data falls within an acceptable tolerance (Table 3.1.)

To recapitulate our previously-published experimental data, we stochastically simulated our

model to yield the number of mRNA transcripts over time. Using the parameters in Table 3.1,

simulated mRNA bursts resemble those observed during live transcription in Drosophila em-

bryos (Figure 3.1C) and properties such as the size and duration of bursts were consistent

with those from Kruppel experimental data [1]. Based on this work, the model shown in

Figure 3.1B is used as a description of shadow enhancer dynamics.

One disadvantage of using stochastic simulations to estimate mean mRNA transcription

is the significant computational cost. To do this more efficiently, we use moment closure

methods that create ordinary differential equations (ODEs) describing the first and second

moments of the chemical species [25, 6]. The solution to the ODE for the first moment
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Figure 3.1: Simulation of enhancer models and calculation of transcriptional noise and
fidelity. (A) Drosophila embryo where the region of Kruppel expression has been high-
lighted [1]. (B) Cartoon depicting a reaction network model of Kruppel shadow enhancers [1].
(C) Sample stochastic traces of mRNA from simulations of the model in (B) and their av-
erage over time E[R] which estimates the mean mRNA concentration. The values of E[R]
and the standard deviation σR can also be approximated by moment closure techniques and
be used to estimate the transcriptional noise and fidelity of the modeled enhancer system.
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Table 3.1: Parameter values that were fitted to Kruppel expression data.

Parameter Values
β1 0.33
β−1 2.7
γ1 0.29
γ−1 3.9
koff1 1.8
kon1 0.36
koff2 1.5
kon2 0.19
α 1.96
r1 120
r2 140
n1 4
n2 12

approximates the limit to infinity of the mean mRNA denoted by E[R]. For example, the

top right of Figure 3.1C shows E[R] and the standard deviation σR derived from a finite

number of stochastic traces while the plot below shows the moment closure approximation

of E[R] and σR.

Using the approximations from the moment closure technique, we can now efficiently es-

timate the transcriptional fidelity and noise of our modeled enhancer system. To capture

the transcriptional fidelity, we used the mutual information between mean TF values and

the corresponding levels of gene expression. The mutual information I(R, T1) quantifies the

dependence of mRNA transcription on T1 concentrations, regardless of whether this depen-

dence is linear or not [109]. To study the transcriptional noise, we used the coefficient of

variation (CV) by normalizing the standard deviation of mRNA expression by its mean. The

CV can be obtained as functions of the moments while the transcriptional fidelity is derived

from the probability distributions of a TF and the mRNA. In particular, we have that

CV =
σR
E[R]

,
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while

I(R, T1) =
∑
R

∑
T1

P (R, T1) log
P (R, T1)

P (R)P (T1)
.

When calculating the CV, R is taken to be the mean mRNA produced under a fixed rate of

TF production β1 or γ1. Meanwhile, R in I(R, T1) corresponds to the mean mRNA produced

at different levels of TF production β1.

3.2.2 Models with varying number of enhancers and total binding

sites

Using the Kruppel model as a starting point, we first wanted to explore if transcriptional

fidelity and noise are dependent on TF binding sites being arranged into two distinct en-

hancers. Our previous experimental and computational work found that having two en-

hancers with distinct TF binding sites – T1 in the proximal enhancer and T2 in the distal

enhancer – drove lower expression noise than two enhancers with identical TF binding sites.

From this work, however, it was not clear whether the TF binding sites had to be split among

two enhancers, or whether a single enhancer with sites for both T1 and T2 could achieve the

same noise reduction. It also was not clear if there might be a trade-off between noise and

fidelity.

To explore these questions, we constructed 48 models with up to four enhancers and four

total binding sites, as shown in Figure 3.3A. Each enhancer has a given number of binding

sites for T1 and T2 and every diagram in this figure corresponds to a set of chemical reactions.

For an example of the specific networks associated with two of these diagrams, see Figure 3.2.

We then input each network into the CERENA software (ChEmical REaction Network

Analyzer) [6], which allows us to calculate the ODE equations for the mean and other
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Figure 3.2: Two different models and their corresponding reaction networks.

moments of all chemical species in the network. CERENA uses an array of approximation

methods that allow for a more streamlined implementation of these ODE equations, in

particular several methods of moment closure. The use of this software is significantly faster

as compared with many repeated runs of the Gillespie algorithm [46]. We calculated ODEs

up to the second moments in order to calculate the variance, and we used the method of

zero cumulants for moment closure [110]. The results were found to be generally consistent

with simulations of individual models carried out with the more standard Gillespie algorithm

(Figure 3.1C, right).

To create the reaction equations for all our configurations of interest, we needed to decide

how to assign the model parameters in a way that made the comparisons meaningful. Most

of the parameters, including the kon and koff rates, were assigned the same values that were

found to be consistent with experimental data in Waymack et al. [1] and used in Figure 3.1C.

The rates of transcription for each enhancer state are initially defined using the following

additive scheme. Any enhancer with n bound T1 and m bound T2 will produce mRNA at

a rate nr1 + mr2 where r1 and r2 are the rates of transcription of the Kruppel model in
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Figure 3.3: Under additive assumptions, transcriptional fidelity is independent of binding
site and enhancer numbers, while noise is only dependent on binding site numbers. (A)
Different enhancer models used in the simulations. Each model has different total binding
sites for T1, total binding sites for T2, distribution of binding sites, and number of enhancers.
(B) Simulations for the models in (A) show that fidelity and noise are independent of the
number of enhancers and the distribution of binding sites. Fidelity is also independent of
total binding site numbers, while the noise remains dependent on the total binding sites for
each TF. The bar graph on the right shows the fidelity and noise values for two different
configurations of TF binding sites among two enhancers. (C) Noise calculated as functions
of the total binding sites for T1 or T2. As the total number of binding sites increases, the
noise generally decreases.
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Figure 3.4: Transcriptional fidelities with respect to T2 for enhancers that behave additively,
subadditively, and superadditively. The fidelity trends with respect to T2 for all models in
Figure 3.3A do not differ significantly from those corresponding to the fidelities with respect
to T1.

Figure 3.1B. Similarly, if two or more shadow enhancers are bound to the promoter, the

overall mRNA transcription rate is the sum of the transcription rates for each enhancer.

This way, we have an additive scenario where a single enhancer system with four fully bound

sites of T1 will produce mRNA at the same rate as four independent enhancers that are each

bound by a single T1.

We calculated the transcriptional noise and fidelity for all the models in Figure 3.3A to discern

the effect of different configurations of binding sites and enhancers. The results are shown in

Figure 3.3B, left (Figure 3.4 shows the results for fidelity with respect to T2). The noise does

not appear to change when altering the number of enhancers, as long as the number of binding

sites for T1 and T2 remain constant. Moreover, even after fixing the number of enhancers,

the actual distribution of TF binding sites among the enhancers appears to have no effect on

transcriptional noise (Figure 3.3B, right). The fidelity, on the other hand, remains constant

for all models regardless of enhancers and TF binding site numbers or distributions. One

can conclude that, in this additive regime, there may be negligible selection pressures on the

number of enhancers regulating a gene and the distribution of TF binding sites among these

enhancers.

Though noise does not depend on enhancer number, it does vary with binding site number.

The plots in Figure 3.3C show that enhancers with more binding sites generally lead to lower
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transcriptional noise. This may be because as the number of binding sites increases, there

are more inputs in the system, which can serve to average each other out. Each binding

site can be thought of as akin to a coin toss. When n independent coin tosses are made,

the expected number of heads grows linearly but its standard deviation grows sublinearly,

leading to an overall decrease in the noise.

Not only does transcriptional noise depend on binding site number, but it is also dependent

on binding site identity. Shifting the total number of binding sites T1 + T2 shows non-

monotonic changes in noise (rightmost plot in Figure 3.3C). The leftmost data points at

T1 = 0 correspond to enhancers that are bound exclusively by T2 while the rightmost points

at T1 = 4 correspond to enhancers that are bound exclusively by T1. As T1 sites increase, the

ratio between T1 and T2 binding sites becomes more even and the noise decreases. However,

once enhancers adopt too many T1 sites at the expense of T2 sites, noise begins to increase.

This agrees with previous observations that having a single kind of TF binding site leads to

higher noise in transcription than systems bound by multiple kinds of TF binding sites [1].

In summary, these models demonstrate that when enhancer output combines in an additive

fashion, the fidelity does not depend on the number of enhancers. Noise is sensitive to

the number and identity of binding sites, but not to their arrangement among one or more

enhancers. Thus, the prevalence of shadow enhancers under additive assumptions might be

the result of genome dynamics and genetic drift, as opposed to selection.

3.2.2.1 Proof of equivalence between multiple additive enhancers and a single

enhancer

Here, we present a formal proof showing that two kinds of enhancers with an arbitrary

number of copies yield the same transcriptional output as a single enhancer with an equivalent

number of binding sites. In particular, these enhancers are set to behave additively and

operate under stochastic dynamics. Unlike the systems simulated in Figure 3.3, the systems
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shown here do not take into account transcription factor fluctuations but we expect this

proof to be an initial step for reaching similar conclusions of the systems in Figure 3.3.

Consider a system with n copies of E and m copies of W each having reactions of the form

E
(i)
0

1
1

E
(i)
1

1
R + E

(i)
1

W
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0

1
1

W
(j)
1

1
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1 ∅

for i = 0, 1, . . . , n and j = 0, 1, . . . ,m. We wish to show that the above system is equivalent

to

Z0
1
1

Z1
1

R + Z1

R
1 ∅

such that Z0 =
∑n

i=1E
(i)
0 +

∑m
j=1W

(j)
0 and Z1 =

∑n
i=1E

(i)
1 +

∑m
j=1W

(j)
1 . Then,

Z ′0 =
n∑
i=1

(
−E(i)

0 + E
(i)
1

)
+

m∑
j=1

(
−W (j)

0 +W
(j)
1

)
= Z1 − Z0,

Z ′1 =
n∑
i=1

(
E

(i)
0 − E

(i)
1

)
+

m∑
j=1

(
W

(j)
0 −W

(j)
1

)
= Z0 − Z1,

R′ = −R +
n∑
i=1

E
(i)
1 +

m∑
j=1

W
(j)
1 = −R + Z1.

Hence, the two systems are deterministically equivalent. Now we show that they are stochas-

tically equivalent as well. The master equation for the system with n copies of E and m
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copies of W is

x′i,n−i,j,m−j,k = (i+ 1)xi+1,n−(i+1),j,m−j,k + (n− (i− 1))xi−1,n−(i−1),j,m−j,k

+ (j + 1)xi,n−i,j+1,m−(j+1),k + (m− (j − 1))xi,n−i,j−1,m−(j−1),k

+ (n− i+m− j)xi,n−i,j,m−j,k−1 + (k + 1)xi,n−i,j,m−j,k+1 − ixi,n−i,j,m−j,k

− (n− i)xi,n−i,j,m−j,k − jxi,n−i,j,m−j,k − (m− j)xi,n−i,j,m−j,k

− (n− i+m− j)xi,n−i,j,m−j,k − kxi,n−i,j,m−j,k,

while the master equation for the system with a η copies of Z for η = n+m sites is

z′l,η−l,k = (l + 1)zl+1,η−(l+1),k + (η − (l − 1))zl−1,η−(l−1),k

+ (η − l)zl,η−l,k−1 + (k + 1)zl,η−l,k+1 − 2(η − l)zl,η−l,k

− lzl,η−l,k − kzl,η−l,k.

Define

yl,η−l,k = P (Z0 = l, Z1 = η − l, R = k),

=
∑
i,j≥0
i+j=l

P (Z0 = l, Z1 = η − l, R = k)

=
∑
i,j≥0
i+j=l

xi,n−i,j,m−j,k.

Then, the chemical master equation of this system is

y′l,η−l,k =
∑
i,j≥0
i+j=l

x′i,n−i,j,m−j,k.

Now, to show stochastic equivalence, it suffices to show that y′l,η−l,k = z′l,η−l,k. For a particular
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l, we can write

y′l,η−l,k =
l∑

φ=0

x′φ,n−φ,l−φ,m−(l−φ),k

=
l∑

φ=0

x′φ,n−φ,l−φ,m−l+φ,k

=
l∑

φ=0

((φ+ 1)xφ+1,n−(φ+1),l−φ,m−l+φ,k + (n− (φ− 1))xφ−1,n−(φ−1),l−φ,m−l+φ,k

+ (l − φ+ 1)xφ,n−φ,l−φ+1,m−(l−φ+1),k + (m− (l − φ− 1))xφ,n−φ,l−φ−1,m−(l−φ−1),k

+ (n− φ+m− l + φ)xφ,n−φ,l−φ,m−l+φ,k−1 + (k + 1)xφ,n−φ,l−φ,m−l+φ,k+1

− φxφ,n−φ,l−φ,m−l+φ,k − (n− φ)xφ,n−φ,l−φ,m−l+φ,k − (l − φ)xφ,n−φ,l−φ,m−l+φ,k

− (m− l + φ)xφ,n−φ,l−φ,m−l+φ,k − (n− φ+m− l + φ)xφ,n−φ,l−φ,m−l+φ,k

− kxφ,n−φ,l−φ,m−l+φ,k),

=
l∑

φ=0

((φ+ 1)xφ+1,n−φ−1,l−φ,m−l+φ,k + (n− φ+ 1)xφ−1,n−φ+1,l−φ,m−l+φ,k

+ (l − φ+ 1)xφ,n−φ,l−φ+1,m−l+φ−1,k + (m− l + φ+ 1)xφ,n−φ,l−φ−1,m−l+φ+1,k

+ (n+m− l)xφ,n−φ,l−φ,m−l+φ,k−1 + (k + 1)xφ,n−φ,l−φ,m−l+φ,k+1

− φxφ,n−φ,l−φ,m−l+φ,k − (n− φ)xφ,n−φ,l−φ,m−l+φ,k − (l − φ)xφ,n−φ,l−φ,m−l+φ,k

− (m− l + φ)xφ,n−φ,l−φ,m−l+φ,k − (n+m− l)xφ,n−φ,l−φ,m−l+φ,k

− kxφ,n−φ,l−φ,m−l+φ,k).

Before we proceed, we denote three groups of terms that correspond to different processes.

In particular, we pick the terms z′l,η−l,k
(i) for i = 1, 2, 3 to correspond to TF binding, TF
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unbinding, and mRNA production or degradation respectively. These groups are given by

z′l,η−l,k
(1)

= (l + 1)zl+1,η−(l+1),k − lzl,η−l,k

z′l,η−l,k
(2)

= (η − (l − 1))zl−1,η−(l−1),k − (η − l)zl,η−l,k

z′l,η−l,k
(3)

= (η − l)zl,η−l,k−1 + (k + 1)zl,η−l,k+1 − (η − l)zl,η−l,k − kzl,η−l,k.

Similarly, we can define

x′φ,n−φ,l−φ,m−l+φ,k
(1)

= (φ+ 1)xφ+1,n−φ−1,l−φ,m−l+φ,k + (l − φ+ 1)xφ,n−φ,l−φ+1,m−l+φ−1,k

− φxφ,n−φ,l−φ,m−l+φ,k − (l − φ)xφ,n−φ,l−φ,m−l+φ,k

x′φ,n−φ,l−φ,m−l+φ,k
(2)

= (n− φ+ 1)xφ−1,n−φ+1,l−φ,m−l+φ,k + (m− l + φ+ 1)xφ,n−φ,l−φ−1,m−l+φ+1,k

− (n− φ)xφ,n−φ,l−φ,m−l+φ,k − (m− l + φ)xφ,n−φ,l−φ,m−l+φ,k

x′φ,n−φ,l−φ,m−l+φ,k
(3)

= (n+m− l)xφ,n−φ,l−φ,m−l+φ,k−1 + (k + 1)xφ,n−φ,l−φ,m−l+φ,k+1

− (n+m− l)xφ,n−φ,l−φ,m−l+φ,k − kxφ,n−φ,l−φ,m−l+φ,k,

and

y′l,η−l,k
(1)

=
l∑

φ=0

x′φ,n−φ,l−φ,m−l+φ,k
(1)

y′l,η−l,k
(2)

=
l∑

φ=0

x′φ,n−φ,l−φ,m−l+φ,k
(2)

y′l,η−l,k
(3)

=
l∑

φ=0

x′φ,n−φ,l−φ,m−l+φ,k
(3)
.

To show stochastic equivalence, it suffices to show that y′l,η−l,k
(i) is an equivalent description

to z′l,η−l,k
(i) for i = 1, 2, 3 since

∑3
i=1 y

′
l,η−l,k

(i) = y′l,η−l,k and
∑3

i=1 z
′
l,η−l,k

(i) = z′l,η−l,k. First,
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we show for the TF binding terms that

y′l,η−l,k
(1)

=
l∑

φ=0

(φ+ 1)xφ+1,n−φ−1,l−φ,m−l+φ,k +
l∑

φ=0

(l − φ+ 1)xφ,n−φ,l−φ+1,m−l+φ−1,k

−
l∑

φ=0

φxφ,n−φ,l−φ,m−l+φ,k −
l∑

φ=0

(l − φ)xφ,n−φ,l−φ,m−l+φ,k,

=
l+1∑
φ=0

φxφ,n−φ,l−φ+1,m−l+φ−1,k +
l∑

φ=0

(l − φ+ 1)xφ,n−φ,l−φ+1,m−l+φ−1,k

−
l∑

φ=0

lxφ,n−φ,l−φ,m−l+φ,k,

= xl+1,n−(l+1),l−(l+1)+1,m−l+(l+1)−1,k +
l∑

φ=0

(l + 1)xφ,n−φ,l−φ+1,m−l+φ−1,k

−
l∑

φ=0

lxφ,n−φ,l−φ,m−l+φ,k,

=
l+1∑
φ=0

(l + 1)xφ,n−φ,l−φ+1,m−l+φ−1,k − l
l∑

φ=0

xφ,n−φ,l−φ,m−(l−φ),k,

= (l + 1)
l+1∑
φ=0

xφ,n−φ,l+1−φ,m−(l+1−φ),k − l
l∑

φ=0

xφ,n−φ,l−φ,m−(l−φ),k

= (l + 1)yl+1,η−(l+1),k − lyl,η−l,k.
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Now for the TF unbinding terms we have that

y′l,η−l,k
(2)

=
l∑

φ=0

((n− φ+ 1)xφ−1,n−φ+1,l−φ,m−l+φ,k + (m− l + φ+ 1)xφ,n−φ,l−φ−1,m−l+φ+1,k

− (n− φ)xφ,n−φ,l−φ,m−l+φ,k − (m− l + φ)xφ,n−φ,l−φ,m−l+φ,k),

=
l∑

φ=0

(n− φ+ 1)xφ−1,n−φ+1,l−φ,m−l+φ,k +
l∑

φ=0

(m− l + φ+ 1)xφ,n−φ,l−φ−1,m−l+φ+1,k

− (n+m− l)
l∑

φ=0

xφ,n−φ,l−φ,m−(l−φ),k,

=
l−1∑
φ=0

(n− φ)xφ,n−φ,l−φ−1,m−l+φ+1,k +
l∑

φ=0

(m− l + φ+ 1)xφ,n−φ,l−φ−1,m−l+φ+1,k

− (n+m− l)
l∑

φ=0

xφ,n−φ,l−φ,m−(l−φ),k,

=
l−1∑
φ=0

(n− φ)xφ,n−φ,l−φ−1,m−l+φ+1,k +
l−1∑
φ=0

(m− l + φ+ 1)xφ,n−φ,l−φ−1,m−l+φ+1,k

− (n+m− l)
l∑

φ=0

xφ,n−φ,l−φ,m−(l−φ),k,

= (n+m− (l − 1))
l−1∑
φ=0

xφ,n−φ,(l−1)−φ,m−(l−1−φ),k − (n+m− l)
l∑

φ=0

xφ,n−φ,l−φ,m−(l−φ),k,

= (η − (l − 1))yl−1,η−(l−1),k − (η − l)yl,η−l,k.
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Lastly, we show that

y′l,η−l,k
(3)

=
l∑

φ=0

((n+m− l)xφ,n−φ,l−φ,m−l+φ,k−1 + (k + 1)xφ,n−φ,l−φ,m−l+φ,k+1

− (n+m− l)xφ,n−φ,l−φ,m−l+φ,k − kxφ,n−φ,l−φ,m−l+φ,k),

= (n+m− l)
l∑

φ=0

xφ,n−φ,l−φ,m−l+φ,k−1 + (k + 1)
l∑

φ=0

xφ,n−φ,l−φ,m−l+φ,k+1

− (n+m− l)
l∑

φ=0

xφ,n−φ,l−φ,m−l+φ,k − k
l∑

φ=0

xφ,n−φ,l−φ,m−l+φ,k,

= (η − l)yl,η−l,k−1 + (k + 1)yl,η−l,k+1 − (η − l)yl,η−l,k − kyl,η−l,k.

Hence the two systems are stochastically equivalent.

3.2.3 Subadditivity and Superadditivity

The results in the previous section showed that the number of additive enhancers does not

affect transcriptional noise and fidelity. In turn, the number of additive enhancers may be

under minimal selection pressure and instead originate through stochastic processes such as

genetic drift. However, shadow enhancers have been observed to behave subadditively and

superadditively – their combined activity either results in a lesser or greater amount of gene

expression than the sum of their independent contributions. To investigate whether different

levels of additivity could result in different fidelity and noise properties, we modified our

models in the previous section to recapitulate this effect.

To capture varying enhancer additivity in our models, we increased or decreased the binding

rates kon and koff to approximate the biochemical mechanisms underlying varying levels of

additivity. We chose this approach to implementing sub- or superadditivity because it was

consistent with previous experimental data [1]. Using this approach, any enhancer model
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Figure 3.5: Fitted rates of mRNA transcription for single and duplicated models suggest that
a single enhancer is sufficient to saturate polymerase loading rates. The polymerase loading
rates r1 and r2 were fitted for the 4 models shown above according to the same methodology
described in Waymack et al. [1]. Parameter fittings were done directly on the raw mRNA
transcriptional data of Kruppel and show minimal differences between the single enhancer
models and their duplicated counterparts.

can be made subadditive by decreasing kon and increasing koff. Similarly, enhancer models

can be made superadditive by increasing the values of kon and decreasing the values of koff.

In addition, we briefly considered the cases where the polymerase loading rates are saturated

by a single enhancer or remain null until all enhancers bound to the promoter (Figures 3.5

and 3.6).

For simplicity, we limited our approach to linearly updating the binding rates with the

number of enhancers such that n enhancers would decrease kon by d1n and increase koff by

d2n for constants d1 and d2 (Figures 3.7A and 3.9A). We selected values of d1 and d2 to

broadly explore the effect of subadditivity while still allowing the moment closure method

to accurately estimate noise and fidelity.

Unlike the additive case, when enhancers interact subadditively, their numbers affect noise

and fidelity (Figure 3.7B, Figure 3.4). Systems with more enhancers achieve larger transcrip-

tional fidelities at the expense of larger transcriptional noise, suggesting that an evolutionary

trade-off between these two properties might be in place. Subadditive enhancers will also
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Figure 3.6: Varying additivity through modulation of polymerase loading rates does not pro-
duce significant changes to the fidelity but can increase or decrease transcriptional noise. A
saturated system yields mRNA at the same rate for any positive number of enhancers bound.
On the other hand, a synergistic system becomes active only when all enhancers are bound
to the promoter. The resulting plots of fidelity and noise corresponding to these systems
show no significant changes to the fidelity with respect to enhancer numbers. Meanwhile,
noise becomes significantly larger for synergistic models and smaller for saturated models as
enhancer numbers increase.
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Figure 3.7: Subadditive enhancers achieve higher transcriptional fidelity at the expense of
higher noise. (A) Subadditivity is implemented in our model by linearly decreasing kon rates
and linearly increasing koff rates. In this case d1, the rate of decrease for kon, was chosen to be
0.04 for T1 and 0.02 for T2. Meanwhile d2, the rate of increase for koff, was chosen to be 0.75 for
both T1 and T2. (B) Systems with more subadditive enhancers achieve higher transcriptional
fidelity while exhibiting higher noise. The distribution and number of binding sites do not
affect the fidelity. Noise is also independent of binding site distribution but varies with
respect to the number of binding sites. (C) Plots showing the relationship between binding
site numbers and transcriptional noise for two subadditive enhancers. Increasing binding
site numbers leads to less noise in gene expression.
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Figure 3.8: Increasing the binding site numbers in systems with three enhancers leads to
decreases in noise. Noise trends with respect to binding site numbers for systems with three
enhancers that operate subadditively and superadditively. Higher binding site numbers lead
to lower transcriptional noise.

produce less mRNA transcripts than their additive counterparts, which could present an

additional trade-off if gene expression output levels need to be above a certain threshold to

achieve a biological function.

Similar to the additive case, binding site numbers in subadditive enhancers do not affect the

fidelity, but they do affect the transcriptional noise. Generally, two-enhancer systems with

more binding sites achieve lower noise (subadditive systems with three enhancers display the

same trends as shown in Figure 3.8). Moreover, systems with binding sites for both T1 and T2

are less noisy than systems with a single kind of binding site (Figure 3.7C). The distribution

of binding sites among enhancers has no effect on the fidelity or the noise. In sum, the

subadditive models are distinct from the additive models in that they show that increasing

enhancers numbers increases transcriptional fidelity at the expense of noise. However, the

relationship between the numbers and types of binding sites and transcriptional noise are

similar between the additive and subadditive cases.

Systems with superadditive enhancers also show decreasing transcriptional noise with in-

creasing numbers of enhancers. However, unlike subadditive enhancers, superadditive sys-

96



tems do not show the same trade off between noise and fidelity – increasing enhancer numbers

cause negligible differences in fidelity (Figure 3.9B, Figure 3.4). We note, however, that su-

peradditivity could lead to the production of excessive amounts of transcript, which incurs

a metabolic cost.

Once again, binding site numbers and distributions in superadditive enhancers do not af-

fect the fidelity. The small deviation in the middle plot of Figure 3.9B could be due to an

approximation error resulting from moment closure to determine expected values of mRNA

transcription. Moreover, superadditive enhancers with more binding sites display lower tran-

scriptional noise as we noted for additive and subadditive enhancers (Figure 3.9C, Figure 3.8).

Overall, these results show that subadditive enhancers face a trade-off between increasing

transcriptional fidelity at the cost of increasing transcriptional noise. Meanwhile, superaddi-

tive enhancers do not face such a trade-off as they do not alter the fidelity while decreasing

expression noise. It is plausible, however, that excessive amounts of transcript produced

by superadditive enhancer present trade-offs elsewhere. In conclusion, varying levels of en-

hancer additivity might allow for modulation of transcriptional properties in ways that are

not available to a single enhancer with the same number of binding sites.

3.2.4 Shadow Enhancer Duplication

While not explicitly stated, the models in Figure 3.3A correspond to a collection of single

enhancers that split into multiple enhancers. Analyzing our results through this lens would

suggest that the splitting of an enhancer into subadditive or superadditive enhancers could

occur based on a need to modulate noise, fidelity, or absolute levels of gene expression. For

additive enhancers, such a split would not face any adverse selection pressures based on

the absence of changes to the mRNA output. However, the mechanisms by which shadow

enhancers come to being remain unclear and the splitting of an enhancer might not be
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Figure 3.9: Superadditive enhancers maintain nearly constant transcriptional fidelity while
achieving lower transcriptional noise. (A) Superadditivity is implemented in our model by
linearly increasing kon rates and linearly decreasing koff rates. In this case d2, the rate of
decrease for koff, was chosen to be 0.4 for T1 and 0.3 for T2. Meanwhile d1, the rate of
increase for kon, was chosen to be 0.01 for both T1 and T2 (B) Unlike in the subadditive
case, enhancer numbers do not appear to have a significant effect on transcriptional fidelity.
Meanwhile, systems with more superadditive enhancers exhibit lower noise. The number
of binding sites has a negligible effect on the fidelity but a more noticeable effect on the
noise. The distribution of binding sites does not affect either the noise or the fidelity all
else being constant. (C) Plots showing the relationship between binding site numbers and
transcriptional noise for two superadditive enhancers. Increasing binding site numbers leads
to less noise in gene expression.
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the only viable route to create shadow enhancers [21]. Hence, to contrast our results with

a different mechanism, we apply our analysis to shadow enhancer systems that arise by

enhancer duplication.

First, we generated models that are repeated duplications of single enhancer models. Car-

toons depicting these models are shown in Figure 3.10A. In some cases, where each enhancer

had multiple binding sites, we had to limit the number of enhancers simulated due to their

large number of reactions and the associated computational costs. Given the experimental

observations of subadditivity with enhancer duplication, we focused our analysis on the dupli-

cation of subadditive enhancers and compared it with the alternative of splitting subadditive

enhancers [1, 23].

Unlike splitting, enhancer duplication not only increases the number of enhancers but also

the number of binding sites (Figure 3.10B). For this reason, the number of binding sites

for each model in the plots of Figure 3.10C is shown as a product of the binding sites

per enhancer times the number of enhancers. These plots show that the duplication of

subadditive enhancers does not significantly affect transcriptional noise while it does increase

transcriptional fidelity. The effect of duplication on transcriptional noise is consistent with

the experimental measurements of the Kruppel enhancers [1]. These results are in contrast

to those observed in Figure 3.7B where splitting subadditive enhancers displayed an increase

in fidelity at the expense of increasing transcriptional noise.

Ultimately, enhancer duplication shows the potential for increasing transcriptional fidelity

while simultaneously reducing expression noise, albeit with the additional metabolic cost of

increasing RNA output. The duplication of subadditive enhancers presents distinct trade-offs

from those observed in the splitting scenario and expands the possibilities of transcriptional

modulation from those available for single enhancer systems.
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Figure 3.10: Duplication of subadditive enhancers can increase transcriptional fidelity with-
out causing significant changes to the noise. (A) Single enhancer models and those that
result from repeated enhancer duplications. (B) Plots showing the relationship between to-
tal binding sites and enhancers for the case of enhancer splitting and enhancer duplication.
Splitting does not affect total binding site numbers while it increases enhancer numbers.
On the other hand, duplication increases both enhancer numbers and total binding sites at
different rates. (C) Plots depicting transcriptional fidelity and noise for subadditive versions
of the models in (A). Enhancer duplications increase transcriptional fidelity while the noise
decreases only slightly.
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3.3 Discussion

In this work, we sought to determine the effect of varying the number of shadow enhancers

as well as the nature of their interactions, and to understand whether a single enhancer can

recapitulate their dynamical behavior. To do so, we simulated models with differing numbers

of enhancers and TF binding sites and calculated the transcriptional noise and fidelity for

each model. Sufficiently high fidelity is required for a gene’s expression to meaningfully

reflect changes in upstream signals intended to shape a cell’s fate. On the other hand,

sufficiently low noise is needed for transcription to convey consistent signals of expression in

the face of unavoidable molecular fluctuations. Consequently, a balance is needed between

these properties in order to properly pattern a developing organism.

We began by considering additive enhancers – enhancers which have a combined transcrip-

tional rate equal to the sum of their individual contributions. Our models revealed that the

number of additive enhancers has no effect on transcriptional noise and fidelity. Therefore, in

the case of additive shadow enhancers, there would seem to be no particular pressure to have

multiple shadow enhancers, as opposed to one large enhancer. How might we explain the

preponderance of shadow enhancers in this case? Here, the dynamics of genome evolution

may be at play. If we imagine that a genome contains a single, large enhancer, there are

processes, like transposable element insertions [111, 112] or DNA polymerase slippage [113,

114] that may split this enhancer into shadow enhancers. If these shadow enhancers can

control gene expression similarly to the ancestral single enhancer, as our model suggests,

there would be no particular pressure to remove the intervening sequence. In fact, it may

be entropically more favorable to split an enhancer into shadow enhancers that to merge

shadow enhancers into a single enhancer, given that many more splitting events could lead

to two functional enhancers, while deletion or excision events would have to be a great deal

more specific to avoid removing functional enhancer sequence.
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Many experimental studies have shown that shadow enhancers can interact in a wide range

of manners – sub- and superadditively, as well as repressively [24, 52, 23, 93, 95, 92, 96].

We therefore modified our models to recapitulate this behavior. The resulting simulations

revealed that increasing numbers of subadditive enhancers corresponded to higher levels of

transcriptional fidelity at the expense of higher transcriptional noise. On the other hand, in-

creasing numbers of superadditive enhancers led to insignificant changes in fidelity while sig-

nificantly decreasing expression noise, albeit at the expense of producing increasing amounts

of RNA, which incurs a metabolic cost [115]. This implies that when shadow enhancers in-

teract in more intricate ways, there is a complex landscape of transcriptional noise, fidelity,

and output that selection may act upon to determine the number of enhancers controlling a

gene.

Though there are many hypotheses about the mechanisms that drive enhancers to act sub

or superadditively, like enhancer competition for the promoter or synergy between recruited

TFs and co-factors, we are not yet able to predict how two or more enhancers will inter-

act [24, 116]. Superadditivity and subadditivity may be structural properties that may not

be tunable, but instead are the result of existing constraints for each individual system.

Thus there are likely many mechanisms by which enhancers become non-additive and other

evolutionary trade-offs beyond transcriptional noise and fidelity that elude our simplified

models.

We also wished to examine the impacts on noise and fidelity of different mechanisms that

could result in the creation of shadow enhancers [21, 117]. In particular, we wanted to

contrast the case of an enhancer that splits into multiple enhancers and an enhancer that

duplicates itself. To study enhancer duplication, we adapted our models to this scenario

and noted that repeated duplications of subadditive enhancers induced lower transcriptional

noise alongside minimal changes in transcriptional fidelity. This result was in contrast to

repeated splittings of an enhancer which led to increases in fidelity at the expense of increases

102



in noise. It remains unclear whether splitting or duplication of genomic regions are common

mechanisms for the origin of shadow enhancers and whether they presents additional trade-

offs with respect to genome size. Our analysis was also limited in that it assumes exact

duplications of each enhancer, which is inconsistent with the stochasticity typically involved

in genome duplication [118].

Naturally, our approach was also limited by the constraints we imposed on our models.

Throughout this work, we used parameters that were fitted to experimental data derived

from studying the Kruppel enhancer system. This parameter space, however, may not be

in accordance with the dynamics of other enhancer systems found in Drosophila and other

organisms. We also note that our implementation of subadditivity and superadditivity as-

sumed that binding rates scale linearly with enhancer numbers, which might not be true in

all cases. For instance, enhancers could behave synergistically such that transcription can

only begin when all enhancers are bound to the promoter (Figure 3.6).

Our modeling suggests experiments that could prove useful in further exploring the mech-

anisms of shadow enhancer function. For instance, one could imagine constructing a syn-

thetic system within an embryo to directly test the impact of varying enhancer numbers and

TF binding site distribution on the associated noise and fidelity of the transcriptional out-

put [119, 120]. In addition, a bioinformatic analysis comparing enhancer DNA sequences in

different organisms could be used to determine the relative prevalence of enhancer splitting,

duplication, and other ways of generating new shadow enhancers.

Overall, this work shows that different strategies for shadow enhancer interaction present a

variety of trade-offs. In the additive scenario, increasing the number of enhancers appears

to face no transcriptional trade-offs or advantages. In the subadditive scenario, additional

enhancers could be favored if the benefits of increasing in transcriptional fidelity outweigh

those of increasing noise. On the other hand, superadditive enhancers could supersede a

single enhancer if an excess of mRNA transcript can be tolerated in exchange for decreased
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noise. We also showed that repeated enhancer splittings lead to distinct outcomes in noise

and fidelity than repeated duplications. Ultimately, the preponderance of shadow enhancers

may be due to a combination of genetic drift and to the variety of transcriptional modulation

strategies possible with multiple, but not single enhancers.

3.4 Methods

3.4.1 Description of enhancer models and parameters

The model of Kruppel gene enhancers in Figure 3.1B is described by the following chemical

reaction network.

T1 + A0

kon1

koff1

A1
r1

A1 + R

T2 + B0

kon2

koff2

B1
r2

B1 + R

∅
β1

n1T1

∅
γ1

n2T2

T1

β−1 ∅

T2

γ−1 ∅

R
α ∅.

Here, two enhancers denoted as A and B have a single binding site for their respective TFs

T1 and T2. The subscripts for each enhancer reflect how many TFs are bound to them. For
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example, A0 denotes the enhancer A with no TFs bound while A1 denotes the same enhancer

with a single TF bound. Our modeling framework assumes that a single TF bound to the

enhancer is sufficient for an enhancer-promoter interaction. Once an enhancer is bound to the

promoter, the rates of transcription correspond to a linear combination of the TFs bound to

that enhancer. In this case, since A and B possess only one binding site, the transcriptional

rates are only the single terms r1 and r2. The TFs T1 and T2 appear in clusters of sizes n1

and n2 and dissipate or degrade linearly at rates β−1 and γ−1. These particular properties of

TFs were previously noted to be necessary for recapitulating Kruppel transcriptional data.

Lastly, mRNA denoted by R degrades at a constant rate α. Details about fitting the reaction

rates to experimental data and further justification for the topology of this model can be

found in Waymack et al. [1].

We expanded the reasoning above to construct models for any number of enhancers each

with an arbitrary number of binding sites. In particular, take a set of n enhancers given

by A(1), A(2), . . . , A(n). We denote an enhancer A
(i)
I where I is a vector composed of 0s or

1s with the kth entry being a 1 if there is a TF bound to the kth binding site of A(i) and 0

otherwise. Denote ej as the vector with 0s at all entries except for a 1 at the jth entry and

having the same number of entries as I. Any binding of a TF Tm to the (empty) jth binding

site of A
(i)
I is described by a reaction of the form

A
(i)
I + Tm

konm
A

(i)
I+ej

Similarly, an unbinding of Tm from A
(i)
I is described by the reaction

A
(i)
I

koffm
A

(i)
I−ej + Tm

Suppose the enhancer A
(i)
I is bound by TFs Tl1 , Tl2 , . . . , Tlp where the binding sites for an

arbitrary TF Tlc are located between the entries f
(c)
1 and f

(c)
2 of I. Then any enhancer with
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subscript I will initiate transcription at a rate equal to
∑p

c=1

∑f
(c)
2

d=f
(c)
1

Idrlc where Id is the dth

entry of I. Lastly, any TF Tm appears in clusters of size nm as described by the reaction

∅ nmTm

and degrades at a linear rate. Two concrete examples of this procedure are shown in Fig-

ure 3.2 for enhancer systems that were included in Figure 3.3A.

3.4.2 Estimation of noise and fidelity

The expression noise of any given model was measured by the coefficient of variation (CV)

which itself is calculated as

CV =
σR
E[R]

,

where E[R] is the first moment of mRNA and σR is the standard deviation of mRNA. Here,

the first moment is equivalent to E[R] while the standard deviation σR corresponds to the

second moment centered around the mean, that is, σR = (E[(R−E[R])2])1/2. This expression

for σR can also be manipulated to be a function of the first moment and the second moment

centered around zero to yield σR =
√
E[R2]− (E[R])2.

It can be shown that the derivatives for the mean and variance of any chemical species can

be derived from the master equation. For example, in the system described by equation 1.1,

we can calculate the derivative of the first moment of A by multiplying the left hand side of
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the equation by a and summing over all species,

∑
a,b,c

a
dxa,b,c
dt

=
d

dt

∑
a,b,c

axa,b,c

=
dE[A]

dt

and thus

dE[A]

dt
=
∑
a,b,c

a(k(a+ 1)(b+ 1)xa+1,b+1,c−1 − kabxa,b,c) (3.1)

= k
∑
a,b,c

axa,b,c + k
∑
a,b,c

a2xa,b,c + k
∑
a,b,c

abxa,b,c (3.2)

= kE[A] + kE[A2] + E[AB]. (3.3)

At this point, we can see that derivative of the first moment depends on the second moment

of A, namely E[A2] =
∑

a,b,c a
2xa,b,c. In fact, the derivative of the nth moment of A will

in general depend on the nth + 1 moments. Hence, it is not possible to construct a closed

system of ODEs that would allow us to solve this system and obtain concrete values for the

mean and the variance of A.

One alternative approach, however, is to use moment closure methods that are designed

for estimation of the moments. These methods focus on closing the ODE systems that

include equations such as 3.1. This, in turn, allows such systems to be solved numerically or

analytically. A particular type of moment closure method is known as zero cumulants closure

which, as the name suggests, involves setting equal to 0 all the cumulants with an order

greater than a specified truncation value. The application of zero cumulants closure can be

justified when distributions have low variability and are fairly symmetric [25]. Also, the first,

second, and third cumulants are equivalent to the first, second, and third moments centered

around the mean. For example, an application of zero cumulants closure with truncation

order 1 to the reaction network described by equation 1.1 would amount to setting E[A2] = 0
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in equation 3.1 and setting equal to zero all the second moments present in the derivatives

of E[B] and E[AB]. Ultimately, this approach yields a closed system of ODEs that can be

solved analytically or with numerical algorithms.

To estimate the noise in mRNA expression for all the models in Figure 3.3A, we approximated

the moments for R using zero cumulants closure with a second order truncation. In other

words, we assumed that all cumulants of the specified output with order larger than 2 were

negligible when calculating the moments. However, unlike the simple example shown above,

our models may have several dozen reactions which can make the process of calculating

the moments extremely laborious. Fortunately, the CERENA toolbox provides a suite of

moment closure methods, including zero cumulants closure, that are conveniently arranged

to take reaction networks as inputs [6]. We generated these input files for the 48 models

in Figure 3.3A using a Python script that takes as inputs a number of enhancers and TF

binding sites and generates the corresponding model file for CERENA. Then, using the

moments that were calculated with CERENA, we derived the CV for each of the models.

These measurements of noise as the CV were plotted in Figures 3.3, 3.7, 3.9, and 3.10.

The transcriptional fidelity between T1 and mRNA was estimated using the mutual infor-

mation given by

I(R, T1) =
∑
R

∑
T1

P (R, T1) log
P (R, T1)

P (R)P (T1)
.

Unlike the expression for the CV, R here denotes a vector composed of the mean mRNA

E[R] produced at different levels of T1 production β1. Similarly, T1 is a vector denoting the

mean levels of TF E[T1] for a range of β1 values. The values of β1 used ranged from 0.01 to

1 in increments of 0.05 resulting in 20 distinct values. Thus, R and T1 had 20 entries each

and were obtained from calculations using CERENA in the same fashion as was done for

the noise but under different values of β1. To calculate the distributions P (R), and P (T1)
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we used histograms with one bin per three samples. The number of samples in this case

being the number of entries in R and T1. From these individual histograms, we derived the

joint histogram to approximate P (R, T1). All of these values were then plugged into the

equation above to give the mutual information between R and T1 which we defined as the

transcriptional fidelity with respect to T1 (Figures 3.3, 3.7, 3.9, and 3.10). The same process

was done for calculating the transcriptional fidelity with respect to T2 given by I(R, T2)

(Figure 3.4).

3.4.3 Implementation of sub and superadditivity

The implementation of varying additivity levels was done by modulation of the binding rates

kon and koff as shown in Figures 3.7A and 3.9A. For example, to make the Kruppel model

in Figure 3.3A subadditive, we would proceed as follows. Let k
(1)
on1 and k

(1)
off1

be the rates of

binding and unbinding for T1 to and from a single enhancer. Since the model in Figure 3.3A

has two enhancers, we would set kon1 in this model equal to k
(1)
on1 − 2d1 and koff1 to k

(1)
off1

+ 2d2

where d1 and d2 are positive constants. Then, repeat the same procedure for the binding and

unbinding rates T2 for another set of d1 and d2 values. This way, the TFs will bind to the

enhancers less often leading to an overall decrease in mRNA production. This approach was

found to be sufficient for consistently recapitulating the subadditivity of Kruppel enhancers

observed in the work by Waymack et al [1]. Superadditivity, on the other hand, can be

implemented for the model in Figure 3.3A in a similar way by having kon1 equal to k
(1)
on1 +2d1

and koff1 to k
(1)
off1
− 2d2. The same procedure can also be applied to the binding rates of T2.

In general, any model can be made subadditive according to the following scheme. Take once

again the system with n enhancers given by A(1), A(2), . . . , A(n) as described above. Denote

k
(1)
onm and k

(1)
offm

be the rates of binding and unbinding for some TF Tm to and from a single

enhancer. Then, set konm in the reactions of the form
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A
(i)
I + Tm

konm
A

(i)
I+ej

and koffm in the reactions of the form

A
(i)
I

koffm
A

(i)
I−ej + Tm

equal to k
(1)
on1−nd

(m)
1 and k

(1)
off1

+nd
(m)
2 respectively for some positive constants d

(m)
1 and d

(m)
2 .

Lastly, repeat these steps for all values of m. The same reasoning can be applied when

designing superadditive systems but the signs in the equations of binding rate modulation

need to be flipped, that is, use instead k
(1)
on1 + nd

(m)
1 and k

(1)
off1
− nd

(m)
2 for modifying the

corresponding binding rates. These procedures were implemented for all the models in

Figure 3.3A and the resulting transcriptional noise and fidelity for these modified models was

plotted in Figures 3.7 and 3.9. All calculations and simulations were done using MATLAB

2016b under GCC C/C++ 4.9 in conjunction with the CERENA toolbox [6]. The code is

available at https://github.com/WunderlichLab/TheoreticalEnhancerModels.git.

110

https://github.com/WunderlichLab/TheoreticalEnhancerModels.git


Chapter 4

Non-cooperative mechanism for

bounded and ultrasensitive chromatin

remodeling

Material in this chapter is adapted from a manuscript by Alvaro Fletcher, Ruonan Zhao,

and German Enciso [3].

4.1 Introduction

Chromatin remodeling is used by many organisms as an important form of gene regulation,

expanding or compacting DNA to allow or prevent access to genetic regions. Chromatin

changes between high and low density states respectively known as heterochromatin and

euchromatin, with high density heterochromatin typically silencing gene expression. The

boundaries between these regions have been observed to be sharp, and their disruption has

been associated with conditions such as growth defects [26, 27].
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Much experimental progress has been made in understanding the regulation of sharp bound-

aries between euchromatin and heterochromatin [121, 122, 123, 124]. On the modeling side,

previous work on transitions between chromatin states has mostly relied on cooperative

assumptions to obtain ultrasensitive transitions [125, 28, 126, 11].

Erdel et al. [127] showed that a non-cooperative looping model was able to create an ex-

tended domain of modified nucleosomes. This model makes use of the contact probabilities

between two chromatin segments to determine the rates of histone modification. However

among models of ultrasensitive behavior, cooperativity or allostery is usually assumed. For

instance, work by Sneppen et al. [11] modeled cooperative histone modifications, and it is

ultrasensitive but potentially subject to uncontrolled chromatin expansion beyond the in-

tended boundaries of gene expression. In order to correct for this, more recent work [128]

accounts for spatially bounded chromatin remodeling through the introduction of silencer

elements and barriers. Modeling work by Mirny [28] includes allosteric binding of transcrip-

tion factors which sterically hinders DNA interactions. Additional work includes models of

bounded chromatin modification, such as [127, 129, 130] in which nearest neighbor interac-

tions are used in a cooperative manner, and the work by Jost and Valliant [131] in which

long range interactions are considered for chromatin expansion. For instance, Hodges et

al. [129] focus on the bounded nature of modifications with nucleation, nearest neighbor

cooperativity, and first-order turnover.

In this work, we present an alternative non-cooperative model that produces sharp spatial

bounds and ultrasensitive transitions in response to transcription factors. This approach has

the added advantage of not requiring silencer elements or barriers to prevent uncontrolled

chromatin expansion. We will operate under the hypothesis that histone modifications are

independent from one another. In other words, our model assumes that the modification of

any one histone does not influence the rate of modification for any other histone. Our model

has the potential to complement cooperative models, and it can be particularly helpful in
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circumstances where experimental data indicate a lack of cooperativity.

Unlike Erdel et al. [127], our non-cooperative approach relies on the acetylation range of

HAT proteins [132] and emergent properties of the chromatin architecture. The chromatin

boundaries remain sharp even without the involvement of barrier proteins, and no uncon-

trolled expansion is possible beyond the regulated regions. Moreover, a single HAT protein

bound at a DNA site can make accessible hundreds of DNA base pairs, a longer range of

interaction than steric transcription factor binding. Two mechanisms allow for this in our

model, namely percolation effects and multisite histone tail modifications.

To develop an intuition for the concept of percolation, consider a body of water being pushed

under pressure through porous soil. The water will flow from the top to the bottom of the

soil only if there are sufficiently many connected pores to form a path. As the prevalence of

pores inside the soil increases, it is well known that the probability for a path increases in

an ultrasensitive manner [29]. That is, a small increase in the pore prevalence can lead to a

large increase in the probability of water flow.

The chromatin, despite having a high number of close range interactions, has yet to be studied

in the context of percolation to the best of our knowledge. Unlike the soil, the presence of

linker DNA between the nucleosomes implies that there is always a path between the two

ends of the DNA. To address this issue, we turn to measuring the length of the shortest such

path under different levels of acetylation. We show that the ultrasensitivity derived from the

percolation analysis is conserved by using this measurement. Hence, in a similar way to the

percolation in the soil, the first few nucleosome acetylation events in a high density region of

chromatin will have a limited effect. But once the acetylation events reach a critical number,

they can suddenly lead to a large expansion of the chromatin.

Levels of ultrasensitivity were further increased by multisite effects at the level of histone

tail modification. Each nucleosome has eight different histones and at least eight histone
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tails, some of which in turn may have multiple acetylation sites. While each acetylation

may increase the tendency for nucleosomes to detach from the chromatin, we assume that

a sufficient number of acetylation events must take place between two nucleosomes before

their interaction is affected. This mechanism is based on work of Wang et al. [30] in the

context of multisite protein phosphorylation but applies equally well in this different system.

Ultrasensitivity is increased once again without the need to assume cooperative interactions

between the histone tails, although such interactions could further increase ultrasensitive

responses.

We also include a comparison with an experimental system involving histone acetylation

inhibitor drug mitoxantrone. By including additional reactions in our mathematical model

to account for the presence of this inhibitor, we were able to closely reproduce the exper-

imental dose response relation. A high Hill coefficient of 3.8 indicates that this system is

ultrasensitive, and we postulate that this behavior may be due to the effects described above.

We begin with Section 4.2 by providing background on chromatin architectures and the role

of histone acetylation in chromatin remodeling. In Section 4.3.1, we describe in more detail on

how we represented chromatin as a graph. In particular, we define the shortest path from one

end of DNA to the other as a proxy to measure chromatin density. Section 4.3.2 introduces

the idea of percolation and its relationship to the model. In Section 4.3.3 we outline the

multisite assumptions for nucleosome interactions and demonstrate the ultrasensitive relation

between the probability of acetylation and DNA accessibility. In Section 4.4 we display the

activity domain of a HAT protein [132] and the results of incorporating such data into the

model. Section 4.5 constructs a reaction network in order to derive the probability of histone

acetylation from a transcription factor input. Section 4.6 calculates an ultrasensitive response

in chromatin accessibility as a function of transcription factor concentration. In Section 4.7

we examine the ultrasensitivity of the transcription factor dose response for different model

parameters. Lastly, in Section 4.5 we reproduce data measured experimentally for a similar
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system involving inhibitor drug mitoxantrone.

4.2 Biological Background

The eukaryotic nucleus accommodates large amounts of DNA by packaging it into a form

known as chromatin, which can have different levels of density. DNA is usually wrapped

around histone octamers forming structures known as nucleosomes. When DNA is tightly

packed around the nucleosomes it forms a dense version of the chromatin known as hete-

rochromatin or 30 nm chromatin fiber, named after its diameter when observed under an

electron microscope [133]. For a region of DNA to be actively expressed, the corresponding

chromatin region usually needs to be loosened into a lower density state known as euchro-

matin or 10 nm chromatin fiber. While the shape of the 10 nm fiber is well-characterized

to the point that it has been described as “beads-on-a-string” [134], it still remains unclear

what shape the chromatin takes as a 30 nm fiber when it is compact and the corresponding

DNA regions are silenced [135].

The existence of the 30 nm chromatin structure has been disputed ([136, 137, 138, 139, 140, 141]),

and it has been theorized that 30 nm fibers could consist of an irregular pattern of inter-

digitated 10 nm fibers [142]. Recent research studying gene regulation has uncovered an

important role for so-called enhancers, which are segments of DNA that regulate genes lo-

cated outside of the promoter DNA region. In many cases these enhancer regions regulate

their targets by being physically located near the promoter in their 3D structure. This

indicates that the 3D chromatin structure might be highly regulated and conserved. The

presented work can easily be extended to such a situation, by defining a 3D chromatin struc-

ture interaction graph. Several other models for the shape of the 30 nm fiber have been

proposed, among them the solenoid model and the zig-zag model which themselves can be

modified to form different kinds of models [31, 143].
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It has been hypothesized that heterochromatin is able to remain compact due to interactions

between neighboring nucleosomes [144]. In particular, it is thought that the histone tails,

which extend from the nucleosome center, are able to interact with other histone tails, en-

abling communication between nucleosomes that are far apart relative to their position in the

DNA [145, 146]. Therefore, nucleosomes are partially reliant on the state of their neighbors

for maintaining a particular state of chromatin compaction under certain conditions.

One condition that determines the presence of nucleosome interactions is the acetylation

of the histone tails. Acetylation can weaken the attraction between the positively charged

histones and the negatively charged DNA, thereby breaking nucleosome bonds, loosening the

chromatin, and facilitating the transition from heterochromatin to euchromatin [147, 148,

149, 150, 151]. Once euchromatin is present, the regulatory elements of transcription can

more easily bind to the DNA and start the production of mRNA [152]. This way, high levels

of acetylation around a gene locus are thought to facilitate transcription.

Transcription is regulated to take place at specific regions in order to prevent uncontrolled

global expression of the DNA. This is possible because of transcription factors which selec-

tively bind to chromatin regions that need to be decompressed [153, 154]. These transcrip-

tion factors, once bound to the DNA, recruit histone acetyltransferases (HATs) which then

proceed to acetylate histone tails [155]. This way, only regions that have a specific transcrip-

tion factor binding site will be capable of being decompressed and subsequently expressed

(Figure 4.1).
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Figure 4.1: HAT proteins are recruited by site-specific transcription factors (TFs). Once
bound to the chromatin, HAT proteins acetylate nearby histone tails, which can lead to
chromatin decompression.

4.3 Chromatin Model

4.3.1 Chromatin as a graph

For a mathematical description of the chromatin, we create a 2D graph of nucleosomes

connected by linker DNA and capable of nucleosome interactions, which aims to capture

the 3D structure of different chromatin architectures. The nucleosomes are depicted as red

nodes while the linker DNA and the nucleosome interactions are shown as black and green

edges in Figures 2b and 2d. Importantly, acetylation events tend to reduce the presence of

green edges.

We use two alternative chromatin structures for our analysis, the so-called interdigitation

(Figure 4.2a) and solenoid (Figure 4.2c) models. We choose the solenoid model since

it is perhaps the best-known chromatin model. Moreover, we also use an interdigita-

tion model because of its simplicity and because it is not a traditional 30 nm model.

The latter point is important since the existence of 30 nm fibers in situ has been dis-

puted [136, 138, 137, 139, 140, 141] and the interdigitation model as an arrangement of 10
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nm fibers has been proposed as one of the alternatives to the 30 nm fibers. We note, how-

ever, that our approach can be generalized to any chromatin model by simply changing the

structure of our graph to describe the interactions among histones, even in a non-uniform

fashion.

The nucleosomes in both models have distinct conformations, and each nucleosome has a dif-

ferent set of neighbors. The interdigitation model describes a chromatin where nucleosomes

are arranged in a shape similar to the fingers of two hands being interlocked. In the solenoid

model, nucleosomes are arranged in a 3D spiral shape. Each of these topologies determines

which nucleosome interactions are possible and consequently affects the rate of transitions

between chromatin density states.

Given a graph with a particular set of nucleosome interactions, an important problem is to

quantitatively measure the overall chromatin density, which inversely correlates with gene

activation levels. We estimate chromatin density by calculating the length of the shortest

path from one end of the DNA sequence to the other, also known as the diameter of the

graph. For example, consider an interdigitation graph with nodes arranged in n rows and m

columns. If n is even, the length of the shortest path would be n − 1 under no acetylation

(all green edges present). Meanwhile if n is odd, the length of the shortest path when all

edges are present is n − 1 + m − 1. On the other hand, under complete acetylation (no

green edges present), the shortest path is the length of the entire DNA sequence, that is

nm− 1, regardless of the parity of n. Note that highly acetylated chromatin (euchromatin)

will correspond to larger diameters since nucleosome interactions will be less abundant.

On the other hand, non-acetylated chromatin (heterochromatin) will correspond to smaller

diameters since nucleosome interactions will be more abundant.
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Figure 4.2: (A) The interdigitation architecture has been proposed to describe the 30 nm
chromatin structure. Nucleosomes can interact with their neighbors depending on their
level of acetylation. (B) Interdigitated DNA represented using an abstract graph. Red
nodes correspond to nucleosomes, black edges to linker DNA, and green edges to nucleosome
interactions. The shortest path between the two ends of the DNA (DNA diameter) provides
a convenient way to estimate chromatin density. (C) Solenoid chromatin architecture. (D)
Representation of the solenoid architecture using a similar graph and notation as in (B).
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4.3.2 Percolation Theory

Consider water flowing through the soil to an unconfined aquifer (Figure 4.3a). The water

flows through passages until it reaches the aquifer. To capture this behavior, we can represent

the soil as a two-dimensional graph where the edges between nodes correspond to water

passages between two different locations (Figure 4.3b). From such a graph, one can determine

if a path exists from the top row to the bottom row and determine the shortest path between

these two rows.

We generalize the graph in Figure 4.3b by considering a grid with 9 rows and 5 columns.

Suppose that each edge between two neighboring nodes (vertical or horizontal) is present

with a given probability, independently of each other. Probabilities with high values can be

expected to lead to more edges and highly interconnected graphs while low probabilities can

be expected to create few edges and poorly connected graphs. Such an experiment can be

repeated for distinct probabilities and, for each unique probability, the existence of a path

from the top row to the bottom row is recorded (Figure 4.3c).

In the percolation problem of the soil, a path may or may not exist, depending on the

distribution of pores within the soil. However, our chromatin architecture always has a path

from the top row to the bottom row, which is guaranteed by the presence of linker DNA.

As a consequence, the model of the soil differs from our chromatin architecture. Thus, we

want to use a new metric to describe our problem of chromatin expansion. In order to

resolve this problem, we turn our attention to the diameter of the graph as defined in the

previous section. We show below that if the probability of path existence is replaced with a

measurement of the mean graph diameter, then the same ultrasensitive response is preserved.

For the same random graph as above, the mean shortest path length is calculated after

several simulations for a fixed edge probability. We use a procedure known as Dijkstra’s

algorithm to quickly compute the shortest path [156]. If no path existed, then we record the
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Figure 4.3: (A) Water flows from the soil surface to an aquifer through passages in the soil.
(B) A graph representation of the soil where water passages are shown as edges between
nodes. In this case there exist two paths from the surface (top row) to the aquifer (bottom
row), and the shortest path has length 3. (C) Normalized mean shortest path lengths
and probabilities of path existence for a 9 × 5 graph. Each data point is calculated using
1000 independent simulations for each edge probability. (D) The relationship between mean
shortest path lengths and the probability of path existence.
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length of the longest possible path (36 in this case).

This is akin to the chromatin graphs in Figure 4.2 where having no edges implies the longest

path is the diameter of the graph. After normalizing path lengths to 1, they are plotted

alongside the probability of path existence as in Figure 4.3c.

Notice that both of the graphs in Figure 4.3c observe an ultrasensitive behavior. It has

been proved in the literature that as the size of a square grid grows, the probability of path

existence becomes increasingly and arbitrarily ultrasensitive [29].

In Figure 4.3d we plot the mean shortest path length and the probability of path existence

in the same graph. Notice that there appears to be a linear relationship between the two.

Indeed, suppose M , Q are the mean shortest path length and the probability of path exis-

tence, respectively. The formula M = 1− aQ would imply that if one of these two functions

is ultrasensitive as a function of edge probability, then so is the other.

4.3.3 Formation of Nucleosome Interactions

Nucleosomes can form interactions between them, shown as green edges in Figures 2b and

2d. We assume that nucleosomes placed diagonally from each other cannot interact, and

nucleosomes placed horizontally from each other are already connected by linker DNA (black

edges). Therefore, only vertical neighbors are allowed to form nucleosome interactions.

In the text below we define the concept of nucleosome receptiveness, which broadly speaking

means that a nucleosome has a limited number of acetylated sites. Any two neighboring

nucleosomes are then joined by a green edge if and only if both of the nucleosomes are

receptive.

We assume that there are s acetylation sites in each nucleosome, and we define the nucleosome
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to be receptive if at least k out of these s sites were non-acetylated. We set s = 8 since

there are eight histones in every nucleosome, and we thought of each histone as having

one acetylation site in its tail. In reality, the number of acetylation sites in a nucleosome

could be higher as multiple sites have been identified in the H4, H3, H2A, and H2B histones

[157, 158]. To account for this variability, the model can be given any positive number of

sites s depending on the system being modeled.

Define p to be the probability of acetylation of a given histone site. Unlike in coopera-

tive models, we assume here that histone acetylations are independent from each other.

Therefore, the number W of non-acetylated histone sites in a nucleosome has a binomial

distribution, and the probability of a nucleosome being receptive can be calculated as

P (W ≥ k) = P (W = k) + P (W = k + 1) + ...+ P (W = s),

=
s∑
i=k

(
s

i

)
qips−i,

(4.1)

where q = 1 − p. We also set k = 4, which is consistent with previous work on multisite

modification systems where the probability of transition to another state is given by equa-

tion (4.1) [30]. This work showed that the ultrasensitivity of the resulting dose response

was maximized for k ≈ s/2. Hence, only when sufficient histone sites are not acetylated as

given by equation (4.1) does a nucleosome become receptive and is able to form green edges

with its receptive neighbors. Note that the number of acetylation sites is the same for all

nucleosomes, and it is therefore independent of the number of neighboring nucleosomes.

There is experimental evidence in support of this set of assumptions. Durrin et al [159, 160]

considered different acetylation sites in the tail of histone H4, and when any one of these

sites was shut down (by replacement of the lysine residue with arginine which mimics the

nonacetylated state), no significant effect was measured in gene expression. However when
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Figure 4.4: The mean shortest path length is calculated as a function of the acetylation
probability p using a 4 × 4 solenoid DNA structure as in Figure 4.2d. Mean shortest path
lengths were calculated from 100 independent simulations for each value of p, and this data
was fitted with a polynomial function. Chromatin accessibility was estimated by vertical
translation of this graph.

three or four sites were eliminated in this way, gene expression was significantly decreased.

This experiment effectively estimated the number k = 4 of nonacetylated sites that are

necessary and sufficient to make a histone receptive in our context. If s = 8 and k = 4, then

replacing e.g. two lysine residues with arginine facilitates making a nucleosome receptive, in

effect lowering the values of s and k to s = 6 and k = 2.

Under these conditions, we simulate the acetylation of a 4 × 4 solenoid graph as shown

in Figure 4.2d. The mean shortest path length for several probabilities of acetylation p

are calculated and plot in Figure 4.4a. Once p surpasses an apparent threshold, the mean

shortest path length quickly shifts from its minimum value to its maximum value. Hence,

we expect that the chromatin will exhibit some degree of bimodality as the conditions for p

vary.

To describe the relationship between mean shortest path length and chromatin accessibility,

notice that more nucleosome interactions generally lead to less chromatin accessibility. But

chromatin accessibility is not merely determined by the number of interactions, since inter-
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actions could be clustered around a single small region of the DNA. A better measure of how

accessible the DNA is would include the number of interactions as well as their distribution,

which is described by the graph diameter. Also, if the nodes of a given 2D interaction graph

were allowed to expand by diffusion, the graph diameter would indicate how widely the graph

can spread. This is similar to the situation in the chromatin, which is constantly subject to

diffusion by Brownian motion.

Following the reasoning above, we can provide a formula to calculate the accessibility of

the chromatin by transcriptional enzymes using the mean shortest path lengths. First,

note that, for p = 0, the shortest path length is equal to 5 as shown in Figure 4.4. This

corresponds to chromatin that is fully compact and has interactions between all nucleosome

neighbors. This chromatin has minimal accessibility and we can assign it a value of 0 to

denote this. We assume a linear mapping between mean shortest path length and chromatin

accessibility, and we derive a relationship between them as follows. Let M be the mean

diameter (that is the mean shortest path length), M0 the minimum diameter, and M1 the

maximum diameter. Then the chromatin accessibility A can be described with the formula

A = (M − M0)/(M1 − M0). This amounts to vertically translating and normalizing the

mean shortest path length graph in Figure 4.4a. The resulting graph in Figure 4.4b shows

chromatin that has an accessibility range from 0 (minimally accessible) to 1 (fully accessible)

when p = 0 and p = 1, respectively.

4.4 Spatially-bounded Chromatin Density Regions

To understand the range of acetylation for HAT proteins, we refer to work by Vignali et

al. [132] which studied the SAGA and NuA4 HATs found in Saccharomyces cerevisiae. They

consider an in vitro assay with DNA bound to unacetylated histones, which they stimulate

with HAT molecules. They show that HAT proteins only operate in the presence of transcrip-
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tion factors such as Gal4-VP16. In order to determine the location and extent of histone

acetylation along the DNA, they use a ChIP assay with antibodies specific to acetylated

histones.

Importantly, they found that stimulation by transcription factor Gal4-VP16 results in char-

acteristic distributions of acetylated histones, i.e., that SAGA and NuA4 acetylate the nu-

cleosomes in their vicinity with differing probabilities (Figure 4.5a). In the case of SAGA,

the probability of acetylation decreases as the distance from the HAT binding site increases.

We can use this information together with the data in Figure 4.4b in order to calculate the

chromatin accessibility as a function of base pair location (Figure 4.5b). To do this, we

simply compose the probability of acetylation for SAGA in Figure 4.5a with the function in

Figure 4.4b. In other words, letting chromatin accessibility in Figure 4.4b be denoted by

f(p) and the probability of acetylation p be given by Figure 4.5a such that p = g(b) for any

base pair location b. Then, Figure 4.5b would be given by f(g(b)).

The ultrasensitivity of the function in Figure 4.4b is conserved in this composition where it

creates sharp boundaries between regions of heterochromatin and euchromatin. These results

suggest how a single HAT can decompress a region of the chromatin while maintaining sharp

boundaries in accessibility between chromatin regions. Such accessibility peaks have been

recorded experimentally under certain conditions and the ranges of chromatin expansion are

similar to that of our simulated data [2]. An example of this behavior is shown in Figure 4.5c

from Wang et al. [2]. This study performed ATAC-seq on cells from APP/PS1 mice models

to measure their chromatin accessibility. The resulting average peaks happen to also be

approximately 2000 bp long and in some cases define clear regions of expansion with sharp

boundaries.

Whenever multiple transcription factor binding sites are present, a histone site can poten-

tially be acetylated by one of multiple SAGA proteins. In order to model the effect of multiple

sites interacting with each other, we make the assumption that each bound SAGA acts upon
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Figure 4.5: (A) Data from Vignali et al. [132] showing the percentage of acetylated histones
at each base pair location relative to the binding site of the SAGA and NuA4 HAT proteins.
(B) Chromatin accessibility calculated from a single bound SAGA protein as a function of
base pair location, using (A) and the accessibility data from Figure 4.4b. (C) ATAC-seq
data from APP/PS1 mice as part of an analysis on chromatin accessibility in Alzheimer’s
disease [2].(D) Probability of being acetylated by at least one of three bound SAGA proteins
at a given base pair location (solid line). The probabilities of acetylation from individual
SAGA proteins are marked in dashed lines. Binding sites are separated by 1000 base pairs
each. (E) Levels of chromatin accessibility resulting from three bound SAGA proteins (solid
line), calculated using data from (D) and Figure 4.4b. Levels of accessibility resulting from
individual bound SAGA proteins are marked using dashed lines.
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histones independently of other bound SAGA proteins. Given three separate binding sites,

the probability of a histone site being acetylated by at least one of the three bound SAGA

proteins is equal to 1−(1−p1)(1−p2)(1−p3), where pi = gi(b) corresponds to the probability

of being acetylated by the SAGA protein at the i -th binding site (Figure 4.5D). Moreover,

when multiple SAGA are bound, a larger region of the chromatin can be decompressed.

Specifically, the accessibility is now given by f(1− (1− g1(b))(1− g2(b))(1− g3(b))). If tran-

scription factor binding sites are not too far apart, then a large single region is created that

has consistently high accessibility and a sharp boundary with the rest of the chromatin (Fig-

ure 4.5e). Each of the functions in this figure is calculated by composing the corresponding

function in Figure 4.5d with the function f above.

4.5 Chemical Reaction Network

To estimate the probability p of histone acetylation as a function of transcription factor

concentrations, we construct a chemical reaction network that describes a simplified version

of this process. Denote T to be an abstract representation of a transcription factor. T

binds to a piece of DNA denoted by D to form complex C1. Once C1 is present, it proceeds

to recruit a HAT (denoted by H) and forms complex C2. A non-acetylated histone site S

can be acetylated into A by interacting with C2. Acetylated sites spontaneously go back to

being non-acetylated at a fixed rate, in effect by assuming a constant background amount

of histone deacetylase (HDAC) that is not explicitly modeled in this system. The reaction

network can be summarized as in Figure 4.6a.

This system uses kinetic rate parameters k1, k2, k−1, k−2, α, β as described in the reactions,

with values shown in the Methods section. The system also has total protein concentrations

which do not change over time, such as the total concentration of histone sites Stot = S +A

and the total transcription factor Ttot = T + C1 + C2, as well as Dtot and Htot.
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Figure 4.6: (A) Chemical reactions describing HAT forming a complex with DNA and tran-
scription factor, and reversible histone acetylation. (B) Probability of acetylation p calcu-
lated as a function of total TF concentration Ttot. (C) Modeled relationship between total
transcription factor and levels of chromatin expansion, using (A) and data from Figure 4.4b.
Here k1 = 1, k2 = 1, α = 1, k−1 = 0.2, k−2 = 0.2, β = 0.2, Dtot = 1, Htot = 16, D0 = Dtot,
S0 = Stot, H0 = Htot, and T0 = Ttot. (D) Summary diagram of the different variables involved
in the model, from transcription factor binding input to chromatin accessibility output.

We model this system deterministically using mass action kinetics [161]. Under nonzero

initial conditions, the network eventually converges to a steady state of nonzero acetylated

and nonzero non-acetylated histone sites. Therefore, we can calculate the probability of

acetylation for a histone site. First, we compute the steady state of acetylated sites which

turns out to be

A =
Stotk1k2αDTH

k1k2αDTH + k−1k−2β
,

=
StotDTH

DTH +K
,

where K = k−1k−2β/(k1k2α). Then, dividing A by the total number of sites Stot yields the

probability of acetylation at the steady state

p =
A

Stot

. (4.2)
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We will calculate the value of p as a function of total concentrations and rate parameters in

section 4.5.1.

4.5.1 p as a function of total concentrations and rate parameters

We wish to show that p in equation (4.2) depends only on rate constants and total con-

centrations. First note that the chemical reaction network in section 4.5 can be written by

mass-action kinetics as

dT
dt

= k−1C1 − k1DT

dD
dt

= k−1C1 − k1DT

dC1

dt
= k1DT − k−1C1 − k2C1H + k−2C2

dC2

dt
= k2C1H − k−2C2

dS
dt

= βA− αSC2

Ttot = T + C1 + C2

Dtot = D + C1 + C2

Htot = H + C2

Stot = S + A

(4.3)

At steady state,


k1DT = k−1C1

k2C1H = k−2C2

βA = αSC2

or


K1DT = C1

K2C1H = C2

K3SC2 = A

,
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where K1 = k1/k−1, K2 = k2/k−2, and K3 = α/β. By mass conservation laws in (4.3),

D = Dtot − (C1 + C2)

= Dtot − (Ttot − T )

= T −Q1,

(4.4)

where Q1 = Ttot−Dtot. We can then perform the appropriate substitutions in the expression

for Ttot to obtain

Ttot = T + C1 + C2

= T +K1DT +K2K1DTH.

(4.5)

If C2 ≤ Dtot and Dtot is much less than Htot, then C2 is much less than Htot, and thus

H = Htot − C2 ≈ Htot.

Then, by (4.5),

Ttot

T
≈ 1 +D(K1 +K1K2Htot) = 1 + (K1 +K1K2Htot)(T −Q1). (4.6)

Let f1(T ) = Ttot/T , and f2(T ) = 1 + (K1 + K1K2Htot)(T − Q1). We show that there is a

unique positive solution for T in (4.6).

First note that f1 is a decreasing function for T > 0. Also, the function f2 is a straight

line with slope K1 + K1K2Htot > 0. Therefore, f1 and f2 have a single intersection which

corresponds to a unique, positive solution for T . From equation (4.6), we can write

(K1 +K1K2Htot)T
2 + (1−K1 −K1K2Htot)Q1T − Ttot = 0,
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and solving for T yields

T =
((K1 +K1K2Htot)− 1)Q1 ±

√
(1− (K1 +K1K2Htot))2Q2

1 + 4(K1 +K1K2Htot)Ttot

2(K1 +K1K2Htot)
.

Since T has a unique, positive solution and

((K1 +K1K2Htot)− 1)Q1 ≤ |((K1 +K1K2Htot)− 1)Q1|

=
√

(((K1 +K1K2Htot)− 1)Q1)2

≤
√

(1− (K1 +K1K2Htot))2Q2
1 + 4((K1 +K1K2Htot)Ttot,

then it must be that

T =
((K1 +K1K2Htot)− 1)Q1 +

√
(1− (K1 +K1K2Htot))2Q2

1 + 4(K1 +K1K2Htot)Ttot

2(K1 +K1K2Htot)
.

Solving for A, we have that

A = K3SC2 = K3K2C1HS = K3K2K1DTHS,

which implies

A =
K3K2K1DTHtotStot

1 +K3K2K1DTHtot

=

α
β
k2

k−2

k1

k−1
DTHStot

1 + α
β
k2

k−2

k1

k−1
DTH

=
αk2k1DTHStot

βk−2k−1 + αk2k1DTH
.

Therefore,

p =
A∗

Stot
=

αk2k1DTH

βk−2k−1 + αk2k1DTH
.
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By substituting the above expressions for T , D = T − Ttot + Dtot and H ≈ Htot into the

equation for p, we can obtain p as a function of parameters k1, k−1, k2, k−2, α, β,Htot, Stot, Ttot.

4.6 Ultrasensitive Chromatin Remodeling

Using the chemical reaction formalism above, we can now write the probability of acetylation

as a function of total transcription factor concentration. It is important to note that even

when transcription factor is bound with very high frequency, the probability of acetylation

depends on the balance between histone acetylation and histone deacetylation. In other

words, in the limit as Ttot increases, the probability of acetylation does not converge to 1 in

this system. If the value of p remains low even for very large Ttot, then chromatin will never

decompress per Figure 4.4b.

In particular, whenever there is saturation of T and H, the values of D and C1 become small

enough so that C2 = Dtot and our chemical reaction network reduces to

S
Dtotα

β
A.

Since there is a limited number of binding sites in a given chromatin region, we can expect

that Dtot is small, and we set for simplicity Dtot = 1. Then, the steady of state of A at

saturation of T and H can be written as

Asat =
StotDtotα

Dtotα + β
=
Stotα

α + β
. (4.7)

It is clear that, under these conditions, the rate of acetylation α, the rate of deacetylation β,

and the total number of sites Stot play the only role in determining the number of acetylated

sites at steady state. Since pmax = Asat/Stot, then α and β determine maximum value of
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p when T and H are saturated. From this, we can choose α = 1 and β = 0.2 to obtain

pmax = 1/(1 + 0.2) ≈ 0.83. Under a fixed large value of H, p takes the shape in Figure 4.6b

which in the limit of Ttot approximates our calculation of pmax ≈ 0.83 (see Methods for the

other parameter choices). A large value of pmax implies that, for the function in Figure 4.4b,

the chromatin will decompress for a large enough Ttot.

To determine ultrasensitivity of the mean shortest path length with respect to Ttot, we

compose the functions in Figures 4b and 6b. The plot in Figure 4.6c shows an apparent

ultrasensitive dose-response between total transcription factor concentration and chromatin

expansion. To quantify these levels of ultrasensitivity, we use the Hill coefficient which

in the case of Hill functions xn/(xn + c) corresponds to the parameter n. The higher the

value of n, the more ultrasensitive this function becomes. For general functions, such as

that in Figure 4.6c, we can use the generalized definition of the Hill coefficient derived by

Goldbeter and Koshland [162, 34] with the formula log(81)/(log(EC90/EC10)). Here EC10

and EC90 refer to the input concentrations that produce 10% and 90% of the maximal

response, respectively. It can be shown that applying this formula to the function xn/(xn+c),

one obtains the original Hill coefficient n.

The Hill coefficient of the function in Figure 4.6c was calculated to be 3.7. Typically, Hill

coefficients above 2 are characteristic of ultrasensitive responses [163]. This confirms that our

modeled chromatin can give rise to ultrasensitive responses, thus preventing state transitions

until a critical concentration of transcription factors is present.

To recapitulate how we arrived at this result, we summarize the entire process of acetyla-

tion leading to chromatin remodeling, which is also outlined in Figure 4.6d. First, for a

given transcription factor concentration, determine the probability of acetylation using the

given chemical reaction network (Figure 4.6a). This probability p is then used to calculate

the probability that a nucleosome will be receptive in the chromatin graph (4.1). If two

neighboring nucleosomes are receptive, then a green edge corresponding to a nucleosomal
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interaction should be added between them. This yields a chromatin graph as those in Fig-

ure 4.2b from which a shortest path and associated chromatin accessibility can be derived.

Repeating these steps for different amounts of Ttot ultimately gives a graph similar to the

one in Figure 4.6c and the ultrasensitivity of the chromatin remodeling can be measured by

taking the Hill coefficient of this graph.

4.6.1 Simulated HAT acetylation ranges

Recall that the rate α in our chemical reaction network describes the rate at which sites

become acetylated. To replicate the experimentally measured acetylation profiles for the

SAGA and NuA4 HAT proteins, we assumed that α decreases exponentially as a function

of the distance from the HAT binding site. In particular we set

α = α0e
−c|b|, (4.8)

where α0 is the maximum value of α, c is a constant, and b is base pair location. The

probability of acetylation p in equation 4.2 can then be calculated as a function of base

pair location by appropriately changing the value of α. Plotting these values of p yields

simulated acetylation profiles that resemble their experimental counterparts for SAGA and

NuA4 (Figure 4.7).

4.7 Effects of s, k, and graph sizes on Hill Coefficients

We determine the sensitivity of the Hill coefficient to different parameter values by running

multiple additional simulations. The parameters that we vary include the number of rows

and columns of the DNA interaction grid, as well as the parameters s, k that determine the

nucleosomal interactions.
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Figure 4.7: Probabilities of acetylation with respect to base pair location for rates of acety-
lation α that decrease exponentially from the HAT binding site. Under these conditions,
simulated HAT acetylation profiles can be made to resemble their experimental counter-
parts. Different exponential rates were enough to account for the differences between the
SAGA and NuA4 acetylation profiles. Simulations were done for 16 nucleosomes (each with
8 sites). Parameters were chosen as Dtot = 1, Ttot = 1.5, Htot = 16, k1 = 5, k2 = 5, k−1 = 1,
k−2 = 1, and β = 1. The values of α in equation (4.8) were given by α0 = 25 with values for
c equal to 0.003 and 0.0015 for SAGA and NuA4 respectively. Initial conditions were set to
D = Dtot, S0 = Stot, H0 = Htot, and T0 = Ttot.

We first choose a large value of α relative to β and use equation (4.7) to obtain a pmax

large enough that it guarantees full chromatin decompression for all values of s and k in our

chosen range (Figure 4.8b). The resulting Hill coefficients for each combination of s and k are

displayed as a heat map shown in Figure 4.8a. In this case, Hill coefficients are maximized

whenever k ≈ s/2, with H > 4 for s = 10, k = 6. This suggests that ultrasensitivity in

chromatin remodeling can be maximized by having twice as many sites than the minimum

number of non-acetylated sites required for nucleosome interactions.

For lower values of pmax, the chromatin may not fully decompress for some combinations of

s and k (Figure 4.8d). Hill coefficients appear to be maximized for large values of s and

small values of k (Figure 4.8c), with H > 4.5 for s = 10, k = 2. In this case the maximal

DNA accessibility reaches around 40% of the full expansion. This illustrates a parameter

regime in which a dose response of chromatin expansion is highly ultrasensitive, even though
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Figure 4.8: (A) In a parameter regime where the probability of acetylation p saturates
as a function of Ttot, the Hill coefficient can be higher than 4 for certain combinations of
s, k. (B) Using the same parameters as in (A), DNA accessibility saturates near 100%
for most values of s, k. (C) If the probability of acetylation doesn’t fully saturate, the
maximum Hill coefficient of approximately 4 is found for small k and high s. (D) Using
the same parameters, the values of s, k that optimize ultrasensitivity have low saturation of
DNA accessibility. That is, the DNA response is ultrasensitive but it never fully opens for
increasing TF concentration. For subfigures (C) and (D) we used the same parameters as
in Figure 4.6. Similarly for (A) and (B) with the exception of k−1 = 10−2, k−2 = 10−2 and
β = 10−2, we use the same parameters.
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Figure 4.9: (A) Hill coefficients for different grid sizes of the solenoid model. Higher numbers
of rows and columns tend to increase the ultrasensitivity of the transcription factor dose-
response. (B) Hill coefficients for different grid sizes of the interdigitation model. Higher
numbers of columns raise the ultrasensitivity of the transcription factor dose-response. Pa-
rameters were chosen as in Figure 4.8a.

chromatin is never fully expanded.

We note that these heat maps also separate between the effect of percolation and the nu-

cleosomal interactions to determine the Hill coefficient. Specifically, when s = k = 1 in

Figure 4.8c, nucleosomal interactions are simplified and H ≈ 2 in the solenoid model.

In the same manner as with s and k, we simulate chromatin graphs with different row and

column numbers. The Hill coefficients for the solenoid and interdigitation graphs of dif-

ferent sizes are calculated and shown as heat maps in Figures 8a and 8b respectively. For

the solenoid architecture, the trend appears to be that increasing the number of rows and

columns increases the ultrasensitivity of the response. Note that, in three dimensions, the

number of columns could be interpreted as the magnitude of the solenoid radius. Interdig-

itation architectures, however, tend to become more ultrasensitive solely with increases in

the number of columns. Here, more columns correspond to longer stretches of the chromatin

before each fold in the architecture. Notice also that even numbers of rows tend to lead

to very low Hill coefficients regardless of the number of columns. We believe this to be an

artifact, since in this case the end points of the DNA are located in the same column.
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4.8 Comparison with Experimental Results

Experimental work by Hajihassan and collaborators measured ultrasensitive chromatin ag-

gregation in response to increasing concentrations of the anticancer drug mitoxantrone [164].

This drug is believed to bind to histones and DNA and to prevent the activity of HAT en-

zymes, leading to higher chromatin density. We postulate that the ultrasensitive behavior

they found could be due to the percolation effects described in our work, and we have reca-

pitulated their experimental data using an expanded model of histone acetylation.

Hajihassan et al. created an in vitro extract of rat liver cell chromatin, and they measured

chromatin aggregation under different concentrations of mitoxantrone. Chromatin aggrega-

tion was measured indirectly by determining the light absorbance of the solution at 400 nm

frequency, which is known to measure the turbidity of a solution. In the words of Hajihassan

et al, “Addition of drug to SE-chromatin solution resulted in chromatin aggregation and

precipitation which could be detected by monitoring the absorbance at 400 nm (turbidity).”

The authors found a dose-response between turbidity and mitoxantrone concentration with

a Hill coefficient of approximately 3.6. They conclude that the binding of the drug to DNA

is likely cooperative, however we postulate here a possible alternative explanation.

The ability of mitoxantrone to inhibit HAT in a dose-dependent manner has been previ-

ously documented [165]. We incorporated mitoxantrone into our chemical reaction system

by assuming that it binds to the HAT-DNA complex, forming a new complex in which

HAT is inactive (Figure 4.10a). In this way, mitoxantrone reduces overall levels of histone

acetylation, which decreases chromatin accessibility in an ultrasensitive manner.

In Figure 4.10b, we calculate overall levels of histone acetylation and chromatin accessibil-

ity for different drug concentrations. In order to quantitatively relate chromatin accessi-

bility with normalized turbidity data, we assume a simple linear relationship turbidity =

1− accessibility. Using this relationship we are able to recapitulate the experimental mea-
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Figure 4.10: (A) Expanded chemical reaction network including reversible enzyme inactiva-
tion through mitoxantrone binding to the DNA-HAT complex, forming a new complex C3.
(B) Simulated probability of acetylation p calculated as a function of total mitoxantrone
concentration. (C) Experimental data of chromatin turbidity as a function of mitoxantrone
concentration along with the modeled relationship between using (A) and data from Fig-
ure 4.4b. Here k1 = 0.0005, k2 = 0.031, α = 1.5, k−1 = 1.5, k−2 = 0.18, β = 0.02, k3 = 1.5,
k−3 = 0.0001, Dtot = 1, Htot = 16, Ttot = 50, D0 = Dtot, S0 = Stot, H0 = Htot, T0 = Ttot,
and M0 = Mtot.

surement using our model, and we show that it displays a similar ultrasensitive behavior

with a simulated Hill coefficient of approximately 3.8 (Figure 4.10c).

4.9 Discussion

We develop a theoretical model that uses ideas from percolation theory and nonessential

modification sites in order to create ultrasensitive regulation of chromatin expansion. This

regulation is naturally limited to the regions of transcription factor binding and is not based

on cooperativity of histone acetylation. This results in sharp spatial boundaries between low

and high density regions and ultrasensitive chromatin decompaction in response to HAT-

recruiting transcription factors. Further analysis shows the effect that changing the DNA

configuration has in the resulting ultrasensitive behavior. In particular, that wide and/or

long DNA solenoids have greater Hill coefficients, as do interdigitation structures with long

DNA stretches between folds.
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Overall, our work describes a mechanism for how chromatin accessibility may be able to

respond in an all-or-none manner to the acetylation of histone sites. This response could

be explored experimentally with a ChIP-seq assay to measure the fraction of acetylated

histone sites in a particular chromatin region. Chromatin accessibility, in turn, could be

approximated using ATAC-seq, by proxy through gene expression levels, or through direct

inspection using electron microscopy. These experiments are out of the scope of this paper

and are left for a future publication, for instance using the ENCODE database and comparing

data for single cells or tissues using different assays. We have also predicted a relation

between DNA structure and Hill coefficient which could be tested experimentally.

The ultrasensitive behavior in our model is due in part to a proposed mechanism in which

a critical mass of acetylations between two neighboring histones are required before the

histones alter the interaction with each other and the underlying DNA. Previous modeling

and experimental results show that this critical mass is ideally less than the total number of

acetylation sites, leading to the concept of nonessential sites. Overall, our results suggest that

chromatin features that appear nonessential could play a role in the context of ultrasensitive

remodeling.

An expanded version of our model was able to account for experimental data using an anti-

cancer drug measured by Hajihassan and collaborators [164]. While the actual mechanism

for the observed ultrasensitivity is not yet determined, one possibility is that it may be due

to percolation effects and nonessential interaction histone sites.

In summary, the model calculates the steady state probability p that a histone will be mod-

ified and determines the presence of green edges corresponding to nucleosomal interactions.

The shortest path of the resulting chromatin graph is used to calculate the chromatin ac-

cessibility, which will have different values for different amounts of Ttot. This yields the

dose response of chromatin accessibility as a function of local transcription factor concentra-

tion. The Hill coefficient of this graph represents the level of ultrasensitivity at which the
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chromatin transitions between density states.

A future version of this model could incorporate additional factors that can be biologi-

cally relevant. Perhaps most immediately, the effects of methylation could be incorporated.

Methylation is a covalent modification that prevents acetylation of a given amino acid, and

it therefore blocks DNA expansion. It is often used to silence blocks of DNA in the genome.

In the context of our work, one could include methylation simply by adding methylation

reactions S ⇔ M to the chemical reaction network, with the forward reaction mediated by

an appropriate HMT enzyme.

While we include nucleosome modifications in the model, we do not include the possibility

of nucleosome eviction from the DNA, which would likely alter DNA configuration. Also,

additional DNA interactions resulting from higher order three-dimensional folds may result

in new neighbors between nucleosomes and can be included by adding interactions to the

2D structure graph. Other factors that are known to play a role in chromatin remodeling

are the topology of linker DNA, and the presence of proteins such as the H1 linker histone.

142



Chapter 5

Function saturation as a mechanism

for ultrasensitivity

Material in this chapter is adapted from a manuscript by Alvaro Fletcher and German Enciso.

5.1 Introduction

Ultrasensitivity is colloquially used to describe a response to a stimulus that is initially

small but increases rapidly after a certain input level of the stimulus is reached. Responses

which behave ultrasensitively are studied in the biological sciences as they reduce ambiguity

in bistable systems [166, 167]. In essence, they approximate a binary response whereby a

system can be said to be either ON or OFF without an ambiguous half-ON or half-OFF state.

This way, ultrasensitive responses are able to filter out environmental noise by preventing

insignificant levels of stimuli to elicit a response [168, 169, 170]. These properties are typically

desired in the context of gene regulation and have been found to be crucial for the proper

function of biochemical switches in the cell cycle [171], cell signaling [172], and cell fate
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decisions [173].

Several mechanisms that generate ultrasensitive responses have been proposed such as zero-

order ultrasensitivity [174], multisite phosphorylation [175], and allostery [176] among others.

In this work, we propose an additional mechanism by which ultrasensitivity can be incorpo-

rated and modulated into functions that are not typically able to be considered in the context

of ultrasensitive dose-responses. We show that by having a complementary system which

contains an absolutely robust controller, then the original system can be forced to sharply

saturate at a predetermined point. This critical point can be modulated through the pa-

rameters within the absolutely robust subsystem and made to be more or less ultrasensitive

depending on whether certain parameters are increased or decreased.

Formally, a response is said to ultrasensitive if it is more sensitive than a Michaelis-Menten

response given by

f(x) =
x

x+ k
(5.1)

for some constant k > 0. In order to quantify the sensitivity of a response, it is common to

resort to using the so-called Hill coefficient originally derived from the work on the oxygen

transport of hemoglobin by A.V. Hill [39]. To calculate the Hill coefficient of some function

h, we can simply write

Hh =
ln 81

ln(vh/uh)
,

where Hh denotes the Hill coefficient of h, while uh and vh correspond to the inputs that

generate 10% and 90% of the maximum value of the response. In particular, if we denote

the maximal response to be h∞, then uh = h−1(0.1h∞) and vh = h−1(0.9h∞). We can see
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that the Hill coefficient of the Michaelis-Menten response in equation 5.1 is equal to 1 since

vf
uf

=
0.9

1−0.9
0.1

1−0.1

= 81

and thus Hf = ln 81/ln 81 = 1. Hence, any function h such that Hh ≥ 1 would be considered

ultrasensitive even though, in this work, it will be more useful to consider ultrasensitivity as

continuous range rather than as a binary property of dose-responses. In other words, rather

than assigning a response the property of being ultrasensitive, it will be more pertinent to

compare its Hill coefficient relative to that of other responses.

While many biochemical processes are described by functions that reach a well-defined sat-

uration point and thus can be assigned a proper Hill coefficient, others do not. One notable

example is that of polymerization which gives rise to many kinds of polypeptides, polysaccha-

rides, polynucleotides and proteins. These polymers play crucial roles in building a variety of

biological tissues, cell scaffolding, and gene regulation [177, 178, 35, 36]. However, the dose-

response of the largest polymer with respect to the individual monomers may be described

as a power process of the form xn which does not saturate. As such, one cannot quantify

whether these processes contribute to the ultrasensitivy of some cascading signaling process.

Given that polymerization and other biochemical processes do not appear to achieve proper

saturation, it is then worth considering whether through natural or synthetic approaches

these processes could be made to saturate and tentatively become ultrasensitive.

In this work, we present an example of such an approach that is capable of saturating a

simple polymerization process involving n monomers. To achieve this, we resort to a well-

studied property of chemical reaction networks known as absolute concentration robustness.

Within a certain phase space, a species is said to be absolutely robust if its steady state

depends only on rate constants. In other words, if the steady state of this species does not

depend on the initial conditions of the system nor the steady state of other species. We show
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that the integration of the toy model for absolute robustness with a simple polymerization

process is sufficient for the saturation of the latter. Moreover, we show that the resulting

saturated process is ultrasensitive. In doing so, we suggest that a more general theoretical

and practical approach could be developed for saturation of other processes using absolutely

robust chemical modules.

The prevalence of biochemical signaling cascades across a wide range of organisms suggests

that the saturation of biochemical processes through absolute robustness could be a plausible

mechanism to increase the ultrasensitivity of the composite function describing the cascade.

However, this raises another question, how ultrasensitive can biochemical cascades become?

If our proposed mechanism is implemented in nature, then it is possible that such a mech-

anism could be the consequence of selection pressures. These pressures, in turn, would be

presumed to drive the adoption of our mechanism in response to an unmet upper bound

in ultrasensitivity from the composite response of the cascade. For this reason, determin-

ing how ultrasensitive certain biochemical cascades can become provides an initial step for

understanding whether our mechanism could be found in nature. First, we formally show

the upper bound of the composition of two general Hill functions which confirms previous

observations by Ferrell [166]. Then, we suggest that these same observations do not hold true

for general sigmoid-like functions which initially increase and eventually reach a well-defined

saturation point. We also state some results that apply for all generally increasing functions.

In section 5.1.1 we show an example of our proposed saturation mechanism for the poly-

merization reaction using the toy model for absolute robustness developed by Shinar and

Feinberg [41]. Then, section 5.1.2 formally shows that the ultrasensitivity of the compo-

sition of two general Hill functions cannot exceed the product of the individual functions.

Section 5.2 proceeds to show that this observation does not hold true for all general sigmoid-

like functions while section 5.3 shows some general statements of the ultrasensitivity derived

from composing any two general functions. Lastly, section 5.4 shows some examples of
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composing piecewise saturated functions to show tentative limits to effects of modulated

saturation on ultrasensitivity.

5.1.1 Toy model for function saturation

Consider a biochemical reaction involving n monomers A that link at a rate γ to form a

polymer C. The polymer C can then decompose into n monomers of A at a rate δ. Such a

process can be described by the chemical reactions

nA
γ

δ
C

The concentration of C under deterministic mass-action kinetics can be written as

C ′ = γAn − δC (5.2)

which at steady state yields

C∗ =
γ

δ
A∗n.

We can see that the dose response of the largest polymer C is described by a power function

with respect to its monomers A. As a result, the addition of more monomers will result in

larger amounts of polymer leading to a never saturating concentration of this polymer. In

order to force this polymer to sharply achieve a a saturation point, consider now the toy

model for absolute robustness described by the following reactions

A+B
α

2B

B
β

A
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This chemical reaction network has a mass conservation law given by Ω = A + B. We can

write the concentration of B over time as

B′ = αAB − βB

and solving for A∗ at steady state yields

A∗ =
β

α

whenever Ω ≥ β/α and A∗ = Ω otherwise. Given that A admits a steady state that is

independent of initial conditions, A is said to be absolutely robust. Let A0 and B0 denote

the initial concentrations of A and B in a given system and let B0 = 0 such that Ω = A0. If we

think of the dose response of A∗ with respect to its initial concentration A0, it becomes clear

that A∗ will increase linearly and sharply saturate when A0 ≥ β/α (Figures 5.1A and 5.1B).

As such, the toy model for absolute robustness can also be thought of as a toy model for

function saturation since we can set the level of this saturation by simple modulation of α

or β.

Note that the steady state of A can be derived to be β/α directly from the equation for B′.

It follows that A∗ = β/α even for the system that combines both the polymerization process

above and the toy model for absolute robustness as long as B admits a positive steady state.

This new system is described by

nA
γ

δ
C

A+B
α

2B

B
β

A

and one can show that B admits a positive steady state. Here, the steady state concentrations

148



Figure 5.1: (A) Dose response of A against initial concentrations of A0 in the absolute
robustness toy model with B0 = 0, α = 2, and β = 1. (B) Time trajectories of A for
initial conditions ranging from 0 to 1.5. Once Ω = A0 > β/α, then A∗ = β/α for all
initial conditions. (C) Dose response of A against initial concentrations of A0 in the absolute
robustness toy model that incorporates the polymerization reaction with n = 7 described in
equation 5.2. (D) Dose response of C against initial concentrations of A0 in the same model
as (C). By combining an absolutely robust module with a polymerization module we can
force the concentration of the final polymer to saturate a predetermined level.
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of monomers will saturate regardless of their initial concentration (Figure 5.1C). Moreover,

given that C∗ = A∗n, it follows that C∗ is described by a power process that saturates

at (β/α)n as is evidenced by Figure 5.1D. Hence, we have shown that it is possible to

saturate the concentrations of this polymer and perhaps more general biochemical systems

by incorporating modules that induce absolute robustness in the monomers or subunits of

similar processes that link repeated elements.

5.1.2 Upper bound of Hill coefficient for the composition of two

Hill functions

Take the two Hill functions given by

g(x) =
axn

xn + k1

and

f(x) =
bxm

xm + k2

where a, b, n,m, k1 and k2 are positive constants. Here, the Hill coefficients for f and g are

Hf = m and Hg = n respectively. Denote the Hill coefficient of the composition h(x) =

f(g(x)) to be Hh. We wish to show that Hh ≤ HfHg. The value for Hh is given by

Hh =
ln 81

ln h−1(0.9h∞)
h−1(0.1h∞)

. (5.3)

Knowing that

h(x) =
b
(

axn

k1+xn

)m
(

axn

k1+xn

)m
+ k2
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we can derive that

h∞ = lim
x→∞

h(x) =
amb

am + k2

.

Moreover, the inverse function of h(x) can be calculated to be

h−1(y) =

 k1

(
k2y
b−y

) 1
m

a−
(
k2y
b−y

) 1
m


1
n

.

Thus, equation 5.3 can be expanded using Wolfram Mathematica to show that

Hh =
ln(81)

ln


 k10.9

1
m

(
bk2a

m

(am+k2)(b− 0.9bam
am+k2

)

) 1
m

a−0.9
1
m

(
bk2a

m

(am+k2)(b− 0.9bam
am+k2

)

) 1
m


1
n
 k10.1

1
m

(
bk2a

m

(am+k2)(b− 0.1bam
am+k2

)

) 1
m

a−0.1
1
m

(
bk2a

m

(am+k2)(b− 0.1bam
am+k2

)

) 1
m


− 1
n


. (5.4)

Now denote

α = 0.9

 bk2a
m

(am + k2)
(
b− 0.9bam

am+k2

)
 , (5.5)

and

β = 0.1

 bk2a
m

(am + k2)
(
b− 0.1bam

am+k2

)
 . (5.6)
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Substituting the expressions for α and β into equation 5.4 gives that

Hh =
ln (81)

ln

((
k1α

1
m

a−α
1
m

) 1
n
(
k1β

1
m

a−β
1
m

)− 1
n

) ,
= n

ln (81)

ln

(
k1α

1
m (a−β

1
m )

k1β
1
m (a−α

1
m )

) ,
= n

ln (81)

ln
(
α

1
m

β
1
m

)
+ ln

(
a−β

1
m

a−α
1
m

) ,
= nm

ln (81)

lnα− ln β +m ln a−β
1
m

a−α
1
m

= HfHg
ln (81)

lnα− ln β +m ln a−β
1
m

a−α
1
m

.

Thus, to prove that Hh ≤ HfHg, it suffices to show that

ln (81)

lnα− ln β +m ln a−β
1
m

a−α
1
m

≤ 1,

or

ln (81) ≤ ln

(
α

β

(
a− β 1

m

a− α 1
m

)m)
.

Taking the exponential of both sides gives

81 ≤ α

β

(
a− β 1

m

a− α 1
m

)m

. (5.7)

The expressions for α and β can be further simplified to

α =
9

10
am

+ 1
k2

,
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and

β =
1

10
am

+ 9
k2

.

In turn, the ratio of α and β can be derived to be

α

β
=

81am + 90k2

am + 10k2

,

=
81am + 810k2 − 720k2

am + 10k2

,

=
81(am + 10k2)− 720k2

am + 10k2

,

= 81− 720k2

am + 10k2

.

Substituting for this ratio and replacing α and β with their values in equations 5.5 and 5.6

into inequality 5.7 yields

81 ≤
(

81− 720k2

am + 10k2

)
a−

(
1

10
am

+ 9
k2

) 1
m

a−
(

9
10
am

+ 1
k2

) 1
m


m

.

Denote the right hand side (RHS) of this inequality to be the function Γ(a,m, k2). Taking

the following limit of Γ(a,m, k2) shows that

lim
a→∞

Γ(a,m, k2) = lim
a→∞

(
81− 720k2

am + 10k2

)
a−

(
1

10
am

+ 9
k2

) 1
m

a−
(

9
10
am

+ 1
k2

) 1
m


m

= (81− 0)

(
lima→∞ a− 0

lima→∞ a− 0

)m
= 81.
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Hence, to prove inequality 5.7, it suffices to show that the partial derivative with respect to a

of Γ(a,m, k2) is monotonically decreasing. This is equivalent to showing that the expression

on the right hand side of

∂Γ(a,m, k2)

∂a
=

9mam

(
a−
(

k2a
m

9am+10k2

) 1
m

a−9
1
m

(
k2a

m

am+10k2

) 1
m

)m(
9am+10k2

9
1
m

(
k2a

m

am+10k2

) 1
m−a

+ 9am+90k2

a−
(

k2am

9am+10k2

) 1
m

)
(am + 10k2)2 (5.8)

as calculated using Wolfram Mathematica, is always negative. First, note that the denomi-

nator and the coefficient 9mam of the RHS of equation 5.8 are always positive and irrelevant

in determining whether this expression is positive or negative. Then, substituting

ψ = 9
1
m

(
k2a

m

am + 10k2

) 1
m

and

ω =

(
k2a

m

9am + 10k2

) 1
m

into the RHS of equation 5.8 yields an expression that can be simplified to

∂Γ(a,m, k2)

∂a
=

(ω − ψ)
(
a−ω
a−ψ

)m−1

(a− ψ)2
.

One again, we can discard the denominator of this expression which boils the task of proving

inequality 5.7 down to showing that

(ω − ψ)

(
a− ω
a− ψ

)m−1

< 0. (5.9)
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One can see that ω < ψ follows directly from

ω =

(
k2a

m

9am + 10k2

) 1
m

<

(
k2a

m

am + 10k2

) 1
m

<

(
9k2a

m

am + 10k2

) 1
m

= ψ.

We can show that a− ψ > 0 as follows. First, take the inequality

am + k2 > 0

which holds true as a, m, and k2 are all positive constants. Adding 9k2 to both sides and

raising them to 1/m yields

(am + 10k2)
1
m > 9

1
mk

1
m
2

Multiplying both sides by a and subtracting by 9
1
mk

1
m
2 gives

a(am + 10k2)
1
m − 9

1
mak

1
m
2 > 0

and dividing by (am + 10k2)
1
m results in

a− 9
1
mak

1
m
2

(am + 10k2)
1
m

= a−
(

9amk2

am + 10k2

) 1
m

= a− ψ > 0

From this, it immediately follows that a − ω is also positive and inequality 5.9 is true.

Therefore, inequality 5.7 is also true and implies that Hh ≤ HfHg.
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5.2 Limits to ultrasensitivity by composition of sigmoid-

like functions

In this section we show that results derived in section 5.1.2 do not apply to all sigmoid-like

functions which initially increase and eventually reach a well-defined saturation point. In

other words, given two sigmoid-like functions of the form f(x) and g(x) and their composition

h(x) = f(g(x)) it does not necessarily follow that Hh ≤ HfHg. First, let

f(x) =


x x < c

c x ≥ c

and

g(x) =


0 x < d

a(x−d)
(x−d)+1

x ≥ d

.

It is trivial to show that Hf = 2 for all values of c by noting that f−1(0.9f∞) = 0.9c and

f−1(0.1f∞) = 0.1c where f−1(y) = y is the inverse function of f(x) when x < c. Then taking

the formula for the Hill coefficient of f we see that

Hf =
ln 81

ln 0.9c
0.1c

= 2.

Similarly, one can show that

Hg =
ln 81

ln 9(0.1ad+0.9a)
0.1a+0.9ad

=
ln 81

ln 9(0.1d+0.9)
0.1+0.9d

. (5.10)
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The composition of f(x) and g(x) can be calculated as

h(x) = f(g(x)) =


0 d > x

a(x−d)
(x−d)+1

d ≤ x & a(x−d)
(x−d)+1

< c

c d ≤ x & a(x−d)
(x−d)+1

≥ c.

From this expression, one can derive the Hill coefficient of h(x) to be

Hh =
ln(81)

ln
(

0.8ac
(1.a−0.9c)(1.ad−0.1cd+0.1c)

+ 1
) .

In the case of Hg in equation 5.10, assume that d is fixed and so the denominator of that

expression is constant. As such, the product of

HfHg = 2
ln 81

ln 9(0.1d+0.9)
0.1+0.9d

stays constant and does not depend on c. On the other hand, we have that

lim
c→0

Hh = lim
c→0

ln(81)

ln
(

0.8ac
(1.a−0.9c)(1.ad−0.1cd+0.1c)

+ 1
) =∞.

Hence, while HfHg remains constant, the value of Hh can be made arbitrarily large. There-

fore it does not hold that Hh ≤ HfHg.
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5.3 Ultrasensitivity of the composition of two general

functions

The result of section 5.2 showed that, indeed, it does not necessarily hold that Hh ≤ HfHg

for two sigmoid-like functions. However, in this section, we present a collection of results

concerning the ultrasensitivity derived from composing any two increasing functions f(x)

and g(x). In doing so, we hope that these results will eventually lead to a more general

statement concerning the upper bound for the Hill coefficient h(x) = f(g(x)).

5.3.1 Sensitivity for the composition of two functions

Denote Rf (x) to be the sensitivity of a function f(x) with respect to x which is given by

Rf (x) =
x

f(x)
f ′(x).

Similarly, the sensitivity of f(g(x)) to g(x) is defined by

Rf (g(x)) =
g(x)

f(g(x))
f ′(g(x)).

Lemma 5.1. Let the composition of f and g be h = f(g(x)). The sensitivity of h with

respect to x is given by Rg(x)Rf (g(x)).
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Proof. By definition,

Rh(x) =
x

h(x)
h′(x),

=
x

f(g(x))
f ′(g(x))g′(x),

=
x

g(x)
g′(x)

g(x)

f(g(x))
f ′(g(x)),

= Rg(x)Rf (g(x)).

5.3.2 Hill coefficients and sensitivity

Denote uf and vf to be the EC10 and EC90 of f(x) respectively.

Lemma 5.2. The formula for Hill coefficient of f(x) is given by twice the average of the

sensitivity function Rf (e
t). That is,

Hf = 2

∫ ln vf
lnuf

Rf (e
t) dt

ln vf − lnuf
.

Proof. By definition,

Hf =
ln 81

ln(
vf
uf

)
= 2

ln(0.9f∞)
0.1f∞)

)

ln vf − lnuf
= 2

ln f(vf )− ln f(uf )

ln vf − lnuf
.

Noting that

∫
f ′(x)

f(x)
dx = ln f(x) + c
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we can rewrite the Hill coefficient as

Hf = 2

∫ vf
uf

f ′(x)
f(x)

dx

ln vf − lnuf
.

Doing the substitution x = et in the integral above, we obtain that

Hf = 2

∫ ln vf
lnuf

et f
′(et)
f(et)

dt

ln vf − lnuf
= 2

∫ ln vf
lnuf

Rf (e
t) dt

ln vf − lnuf
.

5.3.3 Upper bounds to the Hill coefficient of a composition

Lemma 5.3. Let f∞ to be the limx→∞ f(x) and h∞ to be the limx→∞ h(x). If h = f(g(x))

under the condition that f∞ = h∞ and Rg(x) ≤ Hg ∀x, then Hh ≤ HfHg.

Proof. If Rg(x) ≤ Hg, then it follows that the average function value of Rg(x) must satisfy

∫ β
α
Rg(x) dx

ln β − lnα
≤ Hg,

for all values of α and β. Since the range of ex is R, we can substitute x with ex in the above

inequality to obtain

∫ β
α
Rg(e

x) dx

ln β − lnα
≤ Hg,
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and specifying values of α = lnuh and β = ln vh we have

∫ ln vh
lnuh

Rg(e
x) dx

ln vh − lnuh
=

ln g(vh)− ln g(uh)

ln vh − lnuh

=
ln g(g−1(f−1(0.9h∞)))− ln g(g−1(f−1(0.1h∞)))

ln vh − lnuh

=
ln f−1(0.9h∞)− ln f−1(0.1h∞)

ln vh − lnuh

≤ Hg.

(5.11)

Given that f∞ = h∞,

ln f−1(0.9h∞)− ln f−1(0.1h∞)

ln vh − lnuh
=

ln f−1(0.9f∞)− ln f−1(0.1f∞)

ln vh − lnuh
,

=
ln vf − lnuf
ln vh − lnuh

,

which can be substituted into (5.11) to yield

ln vf − lnuf
ln vh − lnuh

≤ Hg.

Multiplying both sides by
∫ ln vf

lnuf
Rf (e

t) dt and dividing by ln vf − lnuf gives

∫ ln vf
lnuf

Rf (e
t) dt

ln vh − lnuh
≤

∫ ln vf
lnuf

Rf (e
t) dt

ln vf − lnuf
Hg. (5.12)

Note that substituting et with x in the above left-hand side yields

∫ ln vf
lnuf

Rf (e
t)

ln vh − lnuh
dt =

∫ vf
uf

f ′(x)
f(x)

dx

ln vh − lnuh
.
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In turn, we can substitute x with g(et) such that

∫ vf
uf

f ′(x)
f(x)

dx

ln vh − lnuh
=

∫ ln vh
lnuh

f ′(g(et))
f(g(et))

g′(et)et dt

ln vh − lnuh
,

=

∫ ln vh
lnuh

g(et)f ′(g(et))
f(g(et))

g′(et)et

g(et)
dt

ln vh − lnuh
,

=

∫ ln vh
lnuh

Rg(e
t)Rf (g(et)) dt

ln vh − lnuh
,

=

∫ ln vh
lnuh

Rh(e
t) dt

ln vh − lnuh
,

with the last step resulting from the application of lemma 5.1. Substituting this expression

into the left-hand side of (5.12) and multiplying both sides by 2 gives

2

∫ ln vh
lnuh

Rh(e
t) dt

ln vh − lnuh
≤ 2

∫ ln vf
lnuf

Rf (e
t) dt

ln vf − lnuf
Hg,

which by lemma 5.2 is equivalent to

Hh ≤ HfHg.

Theorem 5.4. Let h = f(g(x)). If Rg(x) ≤ a and Rf (x) ≤ b for a ∈ R, then Hh ≤ 2ab.
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Proof. We have that

Hh = 2

∫ ln vh
lnuh

Rh(e
t) dt

ln vh − lnuh
,

= 2

∫ ln g−1(f−1(0.9h∞))

ln g−1(f−1(0.1h∞))
f ′(g(et))g′(et)et

f(g(et))
dt

ln vh − lnuh
,

= 2

∫ f−1(0.9h∞)

f−1(0.1h∞)
f ′(s)
f(s)

dt

ln vh − lnuh
,

= 2

∫ f−1(0.9h∞)

f−1(0.1h∞)
Rf (e

t) dt

ln vh − lnuh
,

where we performed the substitution s = g(t) in the last step. Denote v̄ = f−1(0.9h∞) and

ū = f−1(0.1h∞). Then, the above expression can be written as

Hh = 2

∫ v̄
ū
Rf (e

t) dt

ln vh − lnuh
,

= 2
ln v̄ − ln ū

ln vh − lnuh

∫ v̄
ū
Rf (e

t) dt

ln v̄ − ln ū
,

= 2
ln g(vh)− ln g(uh)

ln vh − lnuh

∫ v̄
ū
Rf (e

t) dt

ln v̄ − ln ū
,

= 2

∫ ln vh
lnuh

Rg(e
t) dt

ln vh − lnuh

∫ v̄
ū
Rf (e

t) dt

ln v̄ − ln ū
.

Since Rg(e
t) ≤ a and Rf (e

t) ≤ b, it follows that

Hh ≤ 2ab.

Corollary 5.4.1. If Rg(x) ≤ a and Rf (x) ≤ b and ab = HfHg/2, then Hh ≤ HgHf .

Lemma 5.5. Suppose f is an increasing function. If Rg ≤ Hg and
vf
uf
≤ v̄

ū
where v̄ =

f−1(0.9h∞) and ū = f−1(0.1h∞), then Hh ≤ HfHg.
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Proof. Applying the natural logarithm to both sides of

vf
uf
≤ v̄

ū
.

gives

ln vf − lnuf ≤ ln v̄ − ln ū.

Since vh = g−1(f−1(0.9h∞)) and uh = g−1(f−1(0.1h∞)), we can write

ln vf − lnuf ≤ ln g(vh)− ln g(uh).

The right-hand side can be written in terms of the sensitivity of g as

ln vf − lnuf
ln vh − lnuh

≤
∫ ln vh

lnuh
Rg(e

t) dt

ln vh − lnuh
,

where we have also divided each side by ln vh − lnuh. Since Rg(e
t) ≤ Hg, we have that

ln vf − lnuf
ln vh − lnuh

≤ Hg.

Multiplying by ln 81 and dividing by ln vf − lnuf

ln 81

ln vh − lnuh
≤ ln 81

ln vf − lnuf
Hg

or

Hh ≤ HfHg.
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5.3.4 Example application of a sensitivity theorem

Define a piecewise saturated function f(x) at a as


f(x) x < a

f(a) x ≥ a.

(5.13)

We employ the notation f ||a to denote a function that saturates at a as described in equa-

tion (5.13). Now, consider the functions f(x) = xn||a and g(x) = xn||b. We wish to show

that given h(x) = f(g(x)) it follows that Hh ≤ HgHf .

Proof. The Hill coefficient of f(x) = xn||a is Hf = 2n for all values of a. Similarly, Hg = 2m

for all values of b. Meanwhile, the sensitivities of f and g are given by Rf = n and Rg = m in

the intervals [0, a] and [0, b]. Therefore, by theorem 5.5, we have that Hh ≤ 2nm ≤ 4nm =

HgHf .

5.4 Experiments in composing saturated functions

In this section we present calculations of the Hill coefficients for compositions of saturated

and non-saturated functions. This work can be related to the mechanism described in sec-

tion 5.1.1 by suggesting what might be the upper limits to the ultrasensitivity of the com-

posite function resulting from a hypothetical cascade of biochemical signals that incorporate

an absolutely robust module.
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5.4.1 Saturating a standard Hill function

Consider first the composition of f(y) = 2y3/(y3 + 1) with itself yielding

f(f(x)) =
16x9

(1 + x3)3(1 + 8x9

(1+x3)3 )
.

The Hill coefficient of f(f(x)) can be determined to be approximately 6. Now, consider the

function g that saturates as follows

g(y) =


2y3

1+y3 y < ω

2ω3

1+ω3 y ≥ ω

The composition of g and f takes the form

g(f(x)) =


16x9

(x3+1)3

(
8x9

(x3+1)3 +1

) 2x3

x3+1
< ω

2ω3

1+ω3
2x3

x3+1
≥ ω

This time, the Hill coefficient of the composition approaches 18 as ω approaches 0. This

initially suggests that forcing an early saturation of a response 2y3/(y3 + 1) leads to a higher

Hill coefficient of the overall composite response in which it finds itself than otherwise.

The observation above likely follows from noting that forced saturations, as those described

by our mechanism in section 5.1.1, tend to increase Hill coefficients for standard Hill functions

(see Table 5.1). Then, when these forcibly saturated Hill functions denoted by g are composed

with another function such as a non-saturated power function f , the Hill coefficient of the

resulting composition f ◦ g achieves a higher value that appears to be given by Hf◦g = 1
2
nm

where Hf = n and Hg = m. The same does not hold true when the power function is

saturated but not the Hill function (Table 5.2).
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f Hf lima→0Hf ||a

x/(x+ c) 1 2
x2/(x2 + c) 2 4
x3/(x3 + c) 3 6
x4/(x4 + c) 4 8

x 2 2
x2 4 4

Table 5.1: The Hill coefficients of the composition of Hill functions as a approaches 0.

g f Hg Hf Hf◦g
√
x x/(x+ c) 1 1 0.72

x/(x+ c) x2 1 4 1.19
lima→0 x/(x+ c)||a x2 2 4 4

x2/(x2 + c) x2 2 4 2.38
lima→0 x

2/(x2 + c)||a x2 4 4 8
x3/(x3 + c) x2 3 4 3.57

lima→0 x
3/(x3 + c)||a x2 6 4 12

x4/(x4 + c) x2 4 4 4.76
lima→0 x

4/(x4 + c)||a x2 8 4 16
x2/(x2 + c) x3 2 6 2.52

lima→0 x
2/(x2 + c)||a x3 4 6 12

x3/(x3 + c) x3 3 6 3.79
lima→0 x

3/(x3 + c)||a x3 6 6 18
bx/(c+ x) x2||a, b < a 1 4 1.19
bx/(c+ x) lima→0 x

2||a, b > a 1 4 4

Table 5.2: The Hill coefficients of the composition of saturated and non-saturated functions.
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Chapter 6

Notes on absolute concentration

robustness

Material in this chapter was adapted from work by Alvaro Fletcher and German Enciso.

6.1 Introduction

Absolute concentration robustness (ACR) is a property attributed to a chemical species that

converges to a steady state which is independent of initial conditions. The following toy

model for ACR was proposed by Shinar and Feinberg [41] and is given by the reactions

A+B
α

2B

B
β

A
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Mass action kinetics dictates that the concentrations of B over time can be described by the

equation

B′ = αAB − βB

and solving for A∗ at steady state yields

A∗ =
β

α

whenever B admits a positive steady state. Since A∗ depends solely on rate constants, it is

said that A is absolutely robust.

The ability to maintain robustness between inputs and outputs has been shown to increase

fitness in biological systems at various scales from the ability of bacteria to find food to

proper gene regulation that ensures the development of viable organisms [179, 180, 181,

182, 183, 184]. In this context, absolute concentration robustness can be thought of as the

strongest controller available for implementing a constant output in biology. Models of the E.

coli IDHKP-IDH glyoxylate bypass regulation system and the EnvZ-OmpR osmoregulatory

system have actually shown to contain absolutely robust species [41]. The robustness in

these models has also been observed experimentally in these systems [182, 185]. Moreover,

the ideal housekeeping gene has been described as one which can produce transcripts at a

constant rate though this has not been observed with current experimental techniques [42].

It is plausible, however, that a subset of housekeeping genes could be implementing a form of

absolute robustness in their regulatory networks to approach this outcome. Hence, it is clear

that absolute robustness might be implemented within large biological regulatory networks

to achieve nearly perfect control over a target, and it is a network property that could prove

useful in the design of synthetic biological circuits when a fixed output is required from a

complex biochemical substrate.
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In this chapter, we present a collection of results that make use of absolute concentration as a

controller for a given property of some biochemical system. In section 6.2, we present prelim-

inary theoretical results on the extension of absolute robustness from a network submodule

to the larger parent network. This section aims to provide a formal framework by which

absolute robustness could be identified in biochemical components making up a subsystem

and thereby shown to be maintained for the encompassing system. Section 6.3 contains

an example of a potential mechanism that uses an absolutely robust species for creating

a unidirectional dependence over time of one species to another. Lastly, in section 6.4 we

extend the EnvZ-OmpR model presented by Shinar-Feinberg [41] to include an osmoregula-

tory component and show how it can be derived to have absolute robustness from one of the

regulatory species.

6.2 Extension of absolute robustness from submodules

to parent networks

6.2.1 Formal introduction to chemical reaction networks

Definition 6.1. A chemical reaction network is a set {R, C,S} where R is a set of reactions,

C is the set of complexes appearing in R, and S is a set of species that make the complexes

in C.

Given a network N = {R, C,S} with species S = {A1, A2, . . . , Ar, . . . An}, any element of R

has the form

sj1A1 + . . .+ sjnAn
kj−→ tj1A1 + . . .+ tjnAn, (6.1)
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where the left hand side corresponds to the reactants and the right hand side to the products.

The term sji ∈ Z≥0 corresponds to the stoichiometry of the ith species as a reactant of the

jth reaction. Similarly, tji ∈ Z≥0 is the stoichiometry of the ith species as a product of the

jth reaction. The set of complexes C is composed of the elements sj1A1 + . . . + sjnAn and

tj1A1 + . . .+ tjnAn for all values of j. Lastly, kj is the rate constant for the jth reaction.

For the remainder of this article, we will operate under the assumption of mass-action ki-

netics. Let cAr ∈ R≥0 denote the concentration of a species Ar ∈ S and assume there to be

m reactions in R, the dynamics of cAr are then described by

fAr(~c) =
dcAr
dt

=
m∑
j=1

kj~c
~sj(tjr − sjr), (6.2)

where ~sj =

[
sj1 sj2 . . . sjr . . . sjn

]T
, ~c =

[
cA1 cA2 . . . cAr . . . cAn

]T
, and

~c~sj =
n∏
i=1

c
sji
Ai
.

Denote ~tj =

[
tj1 tj2 . . . tjr . . . tjn

]T
. A full description of the network dynamics is

given by

f(~c) =
d~c

dt
=

m∑
j=1

kj~c
~sj(~tj − ~sj). (6.3)

Unless otherwise specified, given a chemical reaction network N = {R, C,S}, we will use m

to denote the number of reactions in R for the remainder of this text. Likewise, the set of

species S will be assumed to have the n species A1, A2, . . . , An.

Definition 6.2. A steady state of a chemical reaction network N is defined by a concentra-

tion vector ~c∗ =

[
c∗A1

c∗A2
. . . c∗An

]
that satisfies f(~c∗) = 0.
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Definition 6.3. A species Ar is said to be absolutely robust if there exists α > 0 such that

for every positive steady state of the network we obtain that c∗Ar = α.

Example 6.1. Consider the following network

A+B
k1

2B

B
k2

A

with T = A + B. By equation 6.2 we can write that c′A = k2cB − k1cAcB and c′B =

k1cAcB − k2cB. Note that A has a steady state equal to k2/k1 while the steady state of B

corresponds to T − k2/k1. The steady state value of A is dependent solely on rate constants

and is said to be absolutely robust.

6.2.2 Submodules within chemical reaction networks

Definition 6.4. Consider a chemical reaction network N = {R, C,S}. Let R̂ ⊆ R. Define

Ĉ to be the set of all complexes in the reactions R̂. Similarly, define Ŝ to be the set of all

species that make up the complexes in Ĉ. A submodule of N is the chemical reaction network

with the set of species Ŝ, the set of complexes Ĉ, and the set of reactions R̂.

For a given submodule N̂ = {Ŝ, Ĉ, R̂} of N , denote the concentration of Ar ∈ Ŝ by ĉAr .

Specifically, ĉAr is the concentration of Ar when N̂ is analyzed in isolation. Moreover, assume

R̂ to be composed of the first q reactions in R. The dynamics of ĉAr will then be described

by

f̂Ar(~c) =
dĉAr
dt

=

q∑
j=1

kj~c
~sj(tjr − sjr). (6.4)
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The dynamics of the entire submodule are given by

f̂(~c) =
d~c

dt
=

q∑
j=1

kj~c
~sj(~tj − ~sj). (6.5)

A steady state of the submodule will be denoted by ~̂c∗ and satisfies f̂(~̂c∗) = 0.

Note 6.2.1. The vector ~c and ~sj in equations (6.4) and (6.5) are the same as described before.

We could go through the motions of restricting these vectors to the species in Ŝ but it will

be convenient to keep them unchanged. From the definition of submodule, we know that

all the species in Ŝ are those that appear in R̂. Therefore, it suffices to set q as the upper

bound of the sums since c
sji
Ai

= 1 for all Ai 6∈ Ŝ when j = 1, 2, . . . , q.

Remark 1. The entries of ~̂c∗ corresponding to species Ai 6∈ Ŝ can be chosen to be any value

by the argument presented in Note 6.2.1.

Example 6.2. Consider the following network

A
k1

X

B
k2

2C

C
k3

D

2D
k4

2A

We can form one submodule from this network with the reactions displaying red arrows and

another submodule with the reactions displaying green arrows.
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6.2.3 Steady state inheritance

Definition 6.5. Consider a chemical reaction network N with a positive steady state ~c ∗. A

submodule N̂ of N is said to have steady state inheritance in N if f̂(~c∗) = 0.

Lemma 6.1. Let A have absolute robustness in a submodule N̂ of N . If N̂ has steady state

inheritance in N , then A is absolutely robust in N .

Proof. Given that a species A is absolutely robust in N̂ , it follows that there exists α > 0

such that for every positive steady state of the submodule we obtain that ĉ∗A = α. Steady

state inheritance dictates that c∗A = ĉ∗A. Therefore, c∗A = α and A has absolute robustness in

N .

Definition 6.6. A species A is said to be I-absolutely-robust if there exists α > 0 such that

fB(~c) = 0 for all B ∈ I implies c∗A = α.

Lemma 6.2. Consider a chemical reaction network N with submodules N1 and N2. Let

S1 = {A1, . . . , Ap} be the set of species in N1, S2 be the set of species in N2, and assume

S1 ∩ S2 = {A1, . . . , Al}. If some species Ar ∈ S1 ∩ S2 is {l + 1, . . . , p}-absolutely-robust in

N1, then Ar is also absolutely robust in N .

Example 6.3. Consider a network containing the submodules

A+B
k1

2B

B
k2

A

and

A
k3

k4
X
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2D
k5

2A

...

where the three dots indicate that this submodule can be of an arbitrary size. Now, suppose

that B does not appear in the green arrow submodule. Note that A is {B}-absolutely

robust since c′B = 0 = k1cAcB − k2cB implies that c∗A = k2/k1. Therefore, by lemma 6.2, A

is absolutely robust in the entirety of the network.

Definition 6.7. The stoichiometry matrix denoted as Γ is defined by [Γ]ij = tji − sji.

Definition 6.8. The ith species in a chemical reaction network is said to have zero stoi-

chiometry in the jth reaction if [Γ]ij = 0.

Lemma 6.3. Suppose that all species in the submodule N̂ have zero stoichiometry for all

reactions in N − N̂ . Then N̂ has steady state inheritance in N .

Proof. Assume without loss of generality that Ŝ is composed of the first p species in S. If

tji − sji = 0 for i = 1, . . . p and j = q + 1, . . .m, then

dcAi
dt

=

q∑
j=1

kj~c
~sj(tji − sji),

for species A1, A2 . . . , Ap. In other words, f̂Ai(~c) = fAi(~c) for i = 1, . . . , p. It follows that

f̂(~c∗) = 0.

Example 6.4. Consider the following network N with the submodules

A+B
k1

3B

B
k2

A

A+B
k3

k4
C
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and

X
k5

Z

2X
k6

2Y

...

and proceed on the assumption that A, B, and C have zero stoichiometry in the green arrow

submodule. One can calculate that c∗Ac
∗
B = k2/k1 and c∗C = k3c

∗
Ac
∗
B/k4 = k3k2

k4k1
. Therefore C

has absolute robustness in the red arrow submodule. By lemma 6.3, the submodule satisfies

steady state inheritance, and by lemma 6.1, C is absolutely robust in N .

6.2.4 Biological Relevance

Consider the network composed of the submodules

A+B
k1

2B

B
k2

A

and

∅
k3A

k4
X

2X
k5

k6
C

D
k7C

k8

Dp
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We can understand X to be a biomolecule that responds to a chemical stimulus in the envi-

ronment. Moreover, X dimerizes to form a complex C. In turn, C catalyzes the conversion

of D to Dp. Specifically, C could be thought as a kinase that phosphorylates D. The system

above is described by the following mass action equations:

X ′ = k3A− k4X − 2k5X
2 + 2k6C,

C ′ = 2k5X
2 − 2k6C,

D′ = −k7CD + k8Dp,

D′p = k7CD −−k8Dp.

By lemma 6.2, A is absolutely robust in the green arrow submodule. Consequently, solving

the equations for X and C at steady state gives that

c∗X =
k3A

k4

=
k2k3

k1k4

and

c∗C =
k5X

k6

=
k5k

2
2k

2
3

k6k2
1k

2
4

.

Lastly, solving that

D∗p =
k8k6k

2
1k

2
4

k7k5k2
2k

2
3

D∗

provides us with means of studying a dose-response of Dp dependent solely on its unphos-

phorylated precursor D.

This model may be applied to study receptor tyrosine kinases (RTKs). The species X could

be considered an activated RTK while A corresponds to the respective ligand. Meanwhile,
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C corresponds to RTK dimerization and D to the inactive form of some relay protein. The

above theory presents a way to build a linear dependence between the active and inactive

form of the relay protein by introduction of particular submodules to the extra-cellular

environment.

6.3 Dose-response mirroring through absolute robust-

ness

6.3.1 Absolutely robust dose-responses

Definition 6.9. A network composed of species {A1, A2, . . . , Ai, . . . , Aj, . . . , An} is said to

have an absolutely robust dose-response of Ai if the concentration of Ai at steady state depends

exclusively and linearly on the concentration of one other species Aj.

In this section, we wish to exemplify a way to modify a given reaction network so that it

obtains an absolutely robust dose-response. In other words, we seek to make the steady

state concentration of a species A denoted by A∗ be linearly dependent solely upon that of

the steady state of another species B denoted by B∗. This process yields a dose-response

of A∗ that will be a scaled mirror version of the dose-response for B∗. Hence, any property

that B∗ has will also be present in A∗. For example, suppose B∗ responds ultrasensitively

to some input I, that is, small amounts of I will elicit no response in B∗ until I reaches a

critical point after which B∗ increases sharply and quickly saturates. Then, since A∗ = cB∗

for some constant c, it follows that A∗ will also respond ultrasensitively to I though with

a different saturation point scaled by c. The mechanism exemplified in this section can be

extended to include multiple species that mirror the dose response of a particular species

potentially reducing the complexity of multiple implementations of certain behaviors such
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as ultrasensitivity in biochemical networks.

6.3.2 Mirroring multisite ultrasensitivity to a gene expression net-

work

In a large biochemical network that contains interacting species A and B, it is most likely

that the steady state A will be non-linearly dependent on B as well as other species in

the network. On the other hand, given this large network, it is unlikely that A will have

an absolutely robust dose response with respect to B since A needs to depend solely and

linearly on B. However, absolute concentration robustness provides a tentative mechanism

by which absolutely robust dose-responses can be implemented within a fixed network of

arbitrary complexity. If a species A is absolutely robust and we are able to identify the

network topology that enables this robustness, then we can do specific modifications to this

topology and obtain the absolutely robust dose-response of A with respect to any species

regardless of the other interactions that A might have in the network. Here, we show an

example of how a topology that gives rise to an absolutely robust species can be modified to

obtain an absolutely robust dose response of a protein with respect to another fully bound

multisite protein. The latter protein responds ultrasensitively to an enzyme and we prove

that the former protein mirrors this ultrasensitivity at a scale.

Consider first the following gene expression network

X1
k2

X1 + X2

X2

γ2 ∅

X1

γ1 ∅
...
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where X1 might be thought of as mRNA that gets transcribed into a protein X2 at a rate

k2. The concentrations of both mRNA and the protein degrade linearly at rates γ1 and γ2

respectively. The three dots are meant to imply that additional reactions involving X1 and

X2 are taking place in the network. Suppose that this system requires that the protein X2

has an ultrasensitive dose-response that is exclusive to another component in the network.

As it stands, X2 depends linearly on X1 concentrations which, considering X1 corresponds

to mRNA, likely do not give rise to an ultrasensitive X2.

To achieve ultrasensitivity in X2, we turn to the following set of controller reactions proposed

in Briat et al. [186]

∅ µ
Z1

Xl
θ

Xl + Z2

Z1 + Z2

η ∅

Z1
k1

Z1 + X1

Assuming mass-action kinetics, we can write



X ′1 = k1Z1 − γ1X1,

X ′l = k2X1 − γ2Xl,

Z ′1 = µ− ηZ1Z2,

Z ′2 = θXl − ηZ1Z2.

One can verify that Xl = µ/θ at steady state by subtracting the equations for Z ′1 and Z ′2

at steady state which implies that Xl is an absolutely robust species in the above network.

In this network, replacing the reaction ∅ µ
Z1 with Y

µ
Y + Z1 yields that Xl = µ

θ
Y

which does not depend on initial conditions for any other species in the network besides Y .

Thus, the modified network now has an absolutely robust dose-response of Xl with respect
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to Y . We can repeat this exact analysis with a network that has Xl replaced with the protein

X2. The final result will be once again that X2 = µ
θ
Y . Hence, to achieve an ultrasensitive

X2 it suffices to find an ultrasensitive Y .

As a potential candidate for species Y , we look at the multisite modification network de-

scribed by the reactions

S0
a1E

b1
S1

a2E

b2
S2

a3E

b3
S3

where Si corresponds to the multisite protein S having i modified sites. The transition rate

from Si to Si+1 is proportional to the amount of kinase enzyme E. It can be shown that S3

at steady state has the form

S3 = Stot
A3E

3

1 + A1E + A2E2 + A3E3
, (6.6)

where Stot =
∑3

i=0 Si and Ai = a1...ai
b1...bi

. If the rate constants in the multisite system are

chosen to be such that A1 and A2 become negligibly small, then equation (6.6) resembles

the ultrasensitive Hill function with a Hill coefficient of 3. In particular, the steady state of

S3 will respond ultrasensitively to the concentrations of enzymes E.

Now, having Y in our original analysis be replaced by S3 under conditions of small A1 and A2,

and combining the controller reactions, multisite protein reactions and our gene expression

network yields the system
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S3

µ
S3 + Z1

X2
θ

X2 + Z2

Z1 + Z2

η ∅

Z1
k1

Z1 + X1

X1

γ1 ∅

X1
k2

X1 + X2

X2

γ2 ∅

S0
a1E

b1
S1

a2E

b2
S2

a3E

b3
S3

...

As has been shown, the steady state of X2 is given by µ
θ
S3. By definition, the system

possesses an absolutely robust dose response of X2 with respect to S3. The fully bound

multisite protein S3 responds ultrasensitively to enzyme E which immediately implies that

X2 will respond ultrasensitively to E as well. Thus, by incorporating an absolutely robust

controller and a multisite modification process into a gene expression network, we were able

to take an arbitrary protein within this network and mirror the ultrasensitivity from one

species to the specified protein. The generalizability of this approach suggests potential

implementations in nature and its simplicity makes a good candidate for the construction of

synthetic biological circuits whenever multiple outputs are required to have a predetermined

behavior..
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6.4 Implementation of absolutely robust osmoregula-

tion in the EnvZ-OmpR system

6.4.1 Introduction to the EnvZ-OmpR system

The EnvZ-OmpR system consists of the sensor kinase EnvZ and the response regulator

OmpR which we denote by E and R respectively. E phosphorylates itself into Ep by binding

and breaking ATP, denoted by T . Ep catalyzes the transfer of its phosphoryl group to R,

giving rise to Rp. Moreover, when E is bound to ATP forming ET , it dephosphorylates Rp.

The EnvZ-OmpR can be succinctly described by the following reactions

E
k1

k2
ET

k11N0
Ep

Ep + R
k3

k4
EpR

k5
E + Rp

ET + Rp
k6

k7
ETRp

k8
ET + R

presented in work by Shinar et al.[183]. The components of the EnvZ-OmpR system aim to

regulate cell osmolarity with respect to its environment. If medium osmolarity is low and

cell osmolarity is high, then the solvent such as water rushes through the semi-permeable

membrane of the cell. In this case, E exhibits high phosphatase activity which leads to low

concentrations of Rp. This leads to Rp binding to high affinity activator sites of the ompF

gene and upregulates its transcription. In turn, osmolarity inside the cell is lowered. On the

other hand, if medium osmolarity is high and cell osmolarity is low, then the solvent within

the cell escapes into the medium. In this case, E autophosphorylates at a higher rate thereby

increasing the amount of Rp. In turn, Rp binds to low affinity activator sites of the ompC

gene as well as low affinity suppressor sites of ompF. The suppression of ompF causes cell

osmolarity to rise faster. Ultimately, the underlying mechanisms for osmoregulation rely on

increasing or decreasing the amounts of the porin proteins OmpF and OmpC in a manner
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that responds adequately to osmotic pressure in the environment [187]. The details by which

OmpF and OmpC regulate osmotic pressure are not yet fully understood but their functions

have been attributed to their differing pore sizes [188]. In any case, the reaction network

model shown above does not account for the osmoregulatory function of the EnvZ-OmpR

system. As such, it is unclear whether this network can maintain isotonicity inside the cell

in response to environmental perturbations.

In this section, we present a model that incorporates osmolarity and displays absolutely

robust isotonicity in the face of osmotic perturbations. We take osmolarity inside the cell

to increase at a constant rate possibly due to ions and such particles crossing the semi-

permeable cell membrane. Moreover, we assume that the larger size of OmpF pores allows

for more efficient release of excess solute into the medium and leads to reductions in cell

osmolarity. On the other hand, we assume that the smaller pores of OmpC exist solely for

cell maintenance; i.e. for the cell to be able to exchange essential to life particles while in

a high osmolarity medium. Ultimately, when the cell is in a high osmolarity medium, it

achieves isotonicity by limiting the amount of exiting solute through OmpF while passively

letting solute in the medium across its membrane through OmpC.

6.4.2 An osmoregulatory EnvZ-OmpR reaction network model

In the EnvZ-OmpR reaction network shown above, the phosphorylated version of OmpR Rp

displays absolute concentration robustness. This property of Rp was previously speculated

to play a role in maintaining cell isotonicity but this has not been formally incorporated

into a model. Here, we sought to extend the presented EnvZ-OmpR network to carry out

osmotic pressure regulation while partially conserving the robustness Rp in the original model

as a means to obtain absolutely robust isotonicity. This way, barring extreme depletions of

certain biochemical species, the cell will always return to a fixed set point in osmotic pressure
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after being temporarily perturbed.

First, we introduce the porin protein OmpF, denoted as F , and incorporate it into the model.

We simplify the antagonistic relationship between F and Rp by setting the transcriptional

rate of F to be inversely proportional to the concentration of Rp. We also denote the

osmolarity inside and outside of the cell by N and N0 respectively. As mentioned before, N

passively increases at a constant rate while F prevents it from becoming exceedingly large by

accelerating the rate of internal osmolarity reduction. Furthermore, we set increases in the

external osmolarity N0 to accelerate phosphorylation of EnvZ which subsequently suppresses

F and causes osmolarity inside the cell to rise at a faster rate. The extended version of the

EnvZ-OmpR model that includes osmoregulation is thus given by the following reactions

E
k1

k2
ET

k11N0
Ep

Ep + R
k3

k4
EpR

k5
E + Rp

ET + Rp
k6

k7
ETRp

k8
ET + R

∅
k10/Rp

k9
F

∅ α
βF

N

Under mass action kinetics, the new model is described by the following system of differential
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equations,



ET ′ = k1E − k2ET − k11N0ET − k6ET ·Rp + k7ETRp + k8ETRp,

E ′ = k2ET + k5EpR− k1E,

E ′p = k11N0ET − k3EpR + k4EpR,

R′ = k4EpR− k3Ep ·R + k8ETRp,

EpR
′ = k3Ep ·R− k4EpR− k5EpR,

ETR′p = k6ET ·Rp − k7ETRp − k8ETRp,

R′p = k5EpR− k6ET ·Rp + k7ETRp,

F ′ = k10/Rp − k9F,

N ′ = α− βFN.

The total number of species that have an attached phosphoryl group is given by

P = Ep +Rp + ETRp + EpR.

Taking the derivative of both sides, substituting the equations for E ′p, R
′
p, ETR

′
p, EpR

′ above,

and setting P ′ at steady state such that P ′ = 0 yields the equation

k11N0ET − k8ETRp = 0. (6.7)

Moreover, the equation for ETR′p above at steady state is the following

k6ET ·Rp − k7ETRp − k8ETRp = 0,

and solving for ETRp gives

ETRp =
k6ET ·Rp

k7 + k8

. (6.8)
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Assuming ETRp admits a positive steady state, we can substitute equation 6.8 into equa-

tion (6.7) to obtain

Rp =
k7 + k8

k6

(
k11N0

k8

)
. (6.9)

Hence, in this new system, Rp remains robust to all species except to the external osmolarity

N0. However, this is necessary for the system to properly respond to changes in osmolarity.

In contrast to osmolarity, osmotic pressure is a direct result of differences between osmolarity

inside and outside the cell. As such, we take N/N0 to be a general indicator of osmotic

pressure within the cell. If the cell is isotonic to its environment, then we would expect that

N/N0 is a constant value. In our system, we have that internal osmolarity changes according

to the equation

N ′ = α− βFN = 0,

and so at steady state the osmolarity becomes

N =
α

βF
. (6.10)

Moreover, when F ′ = 0 at steady state, we can derive the equation

k10

Rp

− k9F = 0,

which gives that

F =
k10

k9Rp

. (6.11)

Substituting equation 6.11 into equation 6.10 gives the internal osmolarity as a function of
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Rp, specifically

N =
αk9Rp

βk10

.

Finally, substituting Rp as given in equation 6.9 yields that

N

N0

=
k11k9(k7 + k8)α

k8k6k10β
, (6.12)

proving that osmotic pressure in this system is absolutely robust, that is, it will converge to

the same value regardless of perturbations to the osmotic concentrations.

To observe the effect of absolutely robust osmoregulation in action, we performed a deter-

ministic simulation of the model and plotted osmotic pressure over time with a perturbation

at the halfway point (Figure 6.1). At first, the system deviates from its initial high osmotic

pressure by rapidly reducing pressure and subsequently approaching an isotonic steady state

of 1. Then, at time = 30 the system is suddenly perturbed by a sharp reduction in osmotic

pressure. However, the system is able to once again return to the original set point in osmotic

pressure due to its absolutely robust topology with respect to N/N0.
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Figure 6.1: Osmotic pressure in our extended EnvZ-OmpR model is absolutely robust and
returns to its original set point after environmental perturbations. A deterministic simu-
lation showing osmotic pressure over time in our extended EnvZ-OmpR model. At first,
osmotic pressure adjusts to approach isotonicity corresponding to a steady state of 1. After
a perturbation is introduced at the halfway point, isotonicity is lost but the system once
again returns to isotonicity due its absolutely robust topology with respect to N/N0.
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Chapter 7

Discussion

Gene expression can be controlled through distinct regulations of the chromatin topology

that range from the organization of shadow enhancers to the remodeling of chromatin density

regions. Each of these strategies can be framed in the context of optimizing for certain

properties of gene expression. For example, when taken in this context, shadow enhancers

with distinct binding sites might be conserved across many organisms due to their ability of

minimizing expression noise compared to enhancers that are built differently [1]. Similarly,

chromatin remodeling can be taken to be a mechanism for optimizing ultrasensitive dose-

responses to gene-activating TFs which, in turn, leads to lesser noise in gene expression by

preventing small fluctuations in upstream signals from turning on genes [3]. In particular,

when we take any gene regulatory mechanism as potentially optimizing a feature of gene

transcription, these mechanisms are good candidates to be modeled using computational and

mathematical approaches. In doing so, we can attempt to distill which features of the system

are sufficient or necessary for optimizing properties of interest. The ramifications of this

modeling approach ultimately lead to a more comprehensive interpretation of experimental

results, insights that transcend the limitations of our experimental tools, and the generation

of a new set of hypotheses that are able to guide future experimentation.
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In this work, we have focused on modeling gene regulation using CRNs under stochastic

dynamics. CRNs are a well-studied modeling approach that has been increasingly used to

understand biological systems in recent decades. The wide use of these networks has led

to the development of multiple mathematical and computational methods to calculate or

approximate the behavior of each species in the network over time [4]. Moreover, the ability

to model each network under stochastic dynamics makes them suitable as a framework

for understanding gene regulation which typically involves low counts of gene-regulatory

elements, switch-like behavior, and second-order moment experimental data [189, 190].

We primarily worked on two gene regulatory systems that precede transcription and arise

from regulation of chromatin topology, namely, shadow enhancers as mediators of promoter

activation and chromatin remodeling as a modulator of chromatin accessibility under histone

acetylation. These two systems reside at the scale of the genome which lies beyond what

our current imaging techniques can identify with enough detail in order to derive the dy-

namics of each regulatory element. Furthermore, each system operates under low numbers

of such regulatory elements. In particular, many Gap genes in Drosophila genes such as

hunchback, Kruppel, and knirps are regulated by only 2 shadow enhancers while the average

Saccharomyces cerevisiae gene has around 1.4kb which should span approximately 10 nu-

cleosomes [191, 192, 193]. Hence, shadow enhancers and the chromatin are ideal candidates

for computational and mathematical modeling and their dynamics are highly suitable for a

stochastic approach. Using CRNs to describe these systems allowed for simulated outputs of

the gene expression properties that they aim to modulate within a context of being regula-

tory systems. Under this framework, we were able to derive a set of conditions in each model

that are sufficient for recapitulating experimental data and for modulation that can lead to

further optimization of such properties. We expect that these results will eventually lead

to the development of new experiments that can further uncover the functions of enhancers

under stress and elucidate mechanisms for chromatin remodeling and architecture.
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7.1 Shadow enhancers can suppress input TF noise

through distinct regulatory logic

In Chapter 2 we described a particular system of two enhancers that are known to regulate

the transcription of the Kruppel gene in Drosophila. This system was used as a basis to

argue that shadow enhancers lead to lower noise in gene expression than duplicated or single

enhancers by having distinct TF binding sites from one another. To prove or disprove

this hypothesis, real-time transcriptional data was collected from embryos containing the

wildtype shadow enhancers as well as duplicated enhancers and single enhancers. Using

this data, the noise in transcription can be calculated for each of these enhancer constructs.

Since duplicated enhancers share all their TFs, it follows that equivalent measures of noise

between the constructs would disprove the original hypothesis. However, the experimental

data showed that the wildtype shadow enhancers displayed the lowest expression noise thus

suggesting that TF separation between enhancers could be a plausible explanation for the

observed noise buffering effects.

Nevertheless, enhancers operate inside a cell nucleus that is crowded with a platitude of differ-

ent regulatory proteins and genomic regions that interact in a three-dimensional space [194].

Moreover, current imaging techniques do not allow for concurrent tracking of real-time dy-

namics of mRNA and several regulating TFs. Hence, it is difficult to conclude that TF

separation is a sufficient condition for lowering expression noise. However, to provide further

evidence for this hypothesis, we designed a CRN to model the Kruppel shadow enhancers.

This model was designed to have the minimal amounts of components required to reca-

pitulate the enhancer dynamics described by the real-time mRNA experimental data. As a

result, by abstracting away all unnecessary complexity, the only drivers of transcription were

the TFs themselves. In other words, no other regulatory element besides the fluctuating TFs

could activate gene expression. Hence, by also designing models for the duplicated shadow
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enhancers that are based upon the same network topology and assumptions, we were able

to compare the measurements of noise between these models and determine whether TF

separation alone is indeed sufficient for buffering noise from upstream inputs. In the end,

the models also suggested that wildtype shadow enhancers appear to buffer transcriptional

noise better than duplicated enhancers through the separation of their TFs.

7.2 Shadow enhancers mediate trade-offs between tran-

scriptional noise and fidelity

After having developed a Kruppel enhancer model that can partially recapitulate the dynam-

ics of transcription inside a Drosophila embryo, we wished to use such a model to answer

another question: can the transcriptional properties of shadow enhancers be recapitulated

by a lesser number of enhancers that are bound by an equivalent set of TFs? Chapter 3

presented an attempt to answer these questions by modifying the Kruppel model in Chap-

ter 2 to include various numbers of enhancers and binding sites. This time, due to the sheer

number of models and simulations, stochastic dynamics for each model were approximated

and subsequently summarized as transcriptional noise and fidelity. These two properties are

of relevance when considering that making a viable organism likely requires that expression

noise during development not be above a certain threshold while fidelity remains above an-

other one. By examining this array of network models that were derived from our previously

validated Kruppel model, we were able to conclude that shadow enhancers, when they behave

additively, might be the result of mere genetic drift as opposed to active selection pressures.

On the other hand, sub or superadditive enhancers were noted to cause certain trade-offs in

transcriptional modulation of noise and fidelity suggesting that they might widen the fitness

landscape in ways that are not possible for a single enhancer.

193



7.3 Non-cooperative mechanism for bounded and ul-

trasensitive chromatin remodeling

The work in Chapter 4 focused on chromatin remodeling under histone acetylation. The

purpose of this process is to permit or restrict access of transcriptional enzymes to certain

regions of DNA by relaxing or constricting certain regions of the chromatin. This is car-

ried out by modifications to the histone tails such as acetylation, which typically opens the

chromatin, and methylation which has the opposite effect [147, 148, 149, 150, 151]. Chro-

matin remodeling has been noted to create sharp boundaries between high and low density

chromatin that ultimately allow precise expression or activation of genetic regions without

ambiguity and with high tolerance to noise from upstream signals [121, 122, 123, 124]. To

achieve this type of regulation, chromatin accessibility needs to respond ultrasensitively to

TFs in charge of recruiting HATs [11]. Ultimately, however, it is still not fully understood

how chromatin remodeling can achieve this level of ultrasensitivity and yield sharp bound-

aries between chromatin regions

In order to understand how ultrasensitive chromatin remodeling might operate, we presented

a graph-based model of the chromatin in Chapter 4. Previous modeling has showed potential

avenues for achieving ultrasensitive chromatin remodeling but usually relying on coopera-

tive assumptions which can lead to defects such as uncontrolled chromatin expansion [11,

127, 129, 130]. In our model, we relied solely on emergent properties of the chromatin and

stochastic multisite modifications which proved sufficient for recapitulating ultrasensitive

chromatin remodeling without the need for cooperativity. A CRN of histone tail acety-

lation was used to show that the model responds ultrasensitively to TF concentrations in

charge of HAT recruitment. Overall, the model suggested that sharp boundaries between

chromatin accessibility regions and ultrasensitive TF dose-responses may be emergent from

topological features of the chromatin architecture and nonessential modification sites which
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could potentially complement previous approaches that have focused solely on biochemical

modifications.

7.4 Function saturation as a mechanism for ultrasen-

sitivity

Finally, chapter 5 did not focus on any particular gene regulatory mechanism but on a

property which many of these mechanisms aim to optimize: ultrasensitivity. The ability

to respond ultrasensitively to a variety of chemical and environmental signals is desired in

gene regulation due to a reduction in ambiguity or noise in the state of system [166, 167].

By constructing ultrasensitive responses, we can prevent insignificant fluctuations in the

input to affect the corresponding output. Many examples of ultrasensitive mRNA regulation

have been noted by which the surpassing of a given threshold causes sharp transitions into

a different but usually active state [168, 169, 170]. There exist several mechanisms for

achieving biochemical ultrasensitivity [34, 195, 171, 174, 175, 176], and in this chapter we

proposed an additional one. In particular, we showed that by introducing absolutely robust

species into polymerization networks we can give rise to saturated processes. This was

significant as polymerization is typically not considered in the context of ultrasensitivity as it

cannot achieve a saturation point. However, polymerization plays many roles in biochemical

processes and has been linked to gene regulatory processes [35, 36]. We expect that these

results can be used to explain the ultrasensitivity achieved by composite processes that form

biochemical cascades as well as guide the design of synthetic biological circuits that aim to

optimize ultrasensitive behavior.
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7.5 Model limitations and future work

As is the case with all modeling, however, CRNs and our stochastic approach suffer from

certain drawbacks. The fundamental assumption of mass action kinetics underlying our

modeling approaches typically relies on the assumption of well-mixed chemical species inside

a some form of vat [196, 5]. The fundamental constraint that this assumption imposes is that

nuances in spatial dimensions are not taken into account. However, biochemical species inside

cell nuclei interact in a three-dimensional space where the concentrations of such species

can highly vary across the space of interest [194]. Hence, to counter this lack of spatial

dimensionality, we limited both our enhancer and chromatin CRN models to reasonably

small neighborhoods of interactions. In the case of enhancers, our models were assumed to

operate in the vicinity of the promoter which allowed us to approximate TF fluctuations by

introduction of nonconservative reactions rather than having to track individual TFs across

space. Meanwhile, our chromatin model limited regions of interest to 16 nucleosomes which,

in conjunction with saturation of HATs and TFs, was tentatively sufficient to neglect the

spatial dimensions of the chromatin structure when calculating dose-responses with respect

to TFs. Nevertheless, there are biochemical processes that cannot be modeled without

spatial dimensions. For this reason, we expect that our modeling approaches can be made

complementary with models that perhaps sacrifice detail at the level of histone modifications

in exchange for more detail at the level of nucleosome remodeling, which is an inherently

spatial process. Integration of both of these approaches would likely be the next logical step

in modeling gene regulatory systems at the scale of the nucleus.

In addition to the results obtained so far, the models developed in this work have generated

a wide range of questions that still remain to be answered. The Kruppel model in Chapter 2

was made to recapitulate data from different enhancers constructs to determine differences

in noise expression between them. However, the observation that shadow enhancers may act

as expression noise buffers was first done in the context of environmental stress, in partic-
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ular, temperature. Therefore, given the simplicity of our model, it would be of interest to

understand how the model needs to be adapted in order to recapitulate the already available

data of Kruppel gene expression under stressful temperatures [1]. These adaptations could

happen at the level of the network topology or the parameters themselves and potentially

generate complementary hypotheses for the observed reductions in expression noise to the

one developed in this chapter.

Another feature that could be incorporated in our enhancer model is that of repressors and

their respective interactions with activators. In our model we implicitly assumed that en-

hancers are only bound by activating TFs but in reality many of these proteins also repress

gene activity [197]. Naturally, it would be of interest to include these repressors into our

network and determine the corresponding effects on noise when compared to additional en-

hancers. In addition, several modifications could be made to the model to further incorporate

known biochemical elements that are involved in enhancer-mediation of transcription albeit

at the expense of losing the simplicity of the network which greatly facilitated the original

analysis. This and similar modifications could be significant for explaining the quantitative

discrepancy between the simulated and experimental noise and allele correlation measure-

ments. As before, this understanding could pinpoint the specific workings that favor shadow

enhancers as gene regulatory systems.

The models generated in Chapter 3 proved useful in determining the selection pressures or

lack thereof that act on shadow enhancers. Nevertheless, there is still is a need to explore

whether the predictions of such models can hold to experimental observations. As was shown

in Chapter 2 it is possible to engineer flies that possess duplicated enhancers. By generat-

ing a series of these flies with up to 4 Kruppel enhancers one could begin by determining

whether predictions of decreasing noise with enhancer numbers under our duplication scheme

are true. Measuring fidelity in wildtype organisms is challenging, however, recent develop-

ments in synthetic biology might permit the incorporation of these circuits into Drosophila
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embryos [119, 120]. Then, the activating inputs can be varied in these enhancers systems

thereby allowing for an estimation of transcriptional fidelity as was done for our models.

Ultimately, this would at least provide a fair test to the predictions made by our models

which, if true, would set them in a stronger foundation to be applied to different enhancer

systems.

We modeled the chromatin in Chapter 4 and showed that independent nucleosome interac-

tions with multisite interactions and a topology prone to percolation effects were sufficient for

achieving ultrasensitivity in chromatin remodeling. However, our comparison to experimen-

tal data was limited to using a pharmaceutical inhibitor of HATs as a proxy for acetylation

in our chromatin accessibility dose-response. To further validate our chromatin model, the

ideal scenario would involve measuring chromatin accessibility and histone acetylation levels

within a given cell. This is typically achieved through techniques as ChIP-Seq and ATAQ-Seq

but it is not possible to perform these assays concurrently on the same individual cell as far

as we are aware. Hence, while validation of this model might not be possible at the moment,

we expect that further progress of these techniques in this direction would eventually allow

the level of data collection described. Once validated, our model could be used to understand

chromatin remodeling sensitivity across organisms and uncover the still unclear architecture

of the chromatin by comparison of dose-responses between distinct 3D configurations of the

model.

Our new mechanism for ultrasensitivity that allowed for saturation of multiple functions was

presented in Chapter 5. However, while promising, this mechanism still needs to be applied

to concrete biochemical regulators and cascades. Given that polymerization and similar

processes play a large role in cellular chemistry, we suggest that finding such cases would

be doable given that there are measurements of dose-responses from which Hill coefficients

can be derived. Nevertheless, as was the case in Chapter 4, we might find ourselves limited

in finding such data outside the context of using pharmaceuticals as proxies for biologically
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derived regulators. Hence, once again, we would suggest that incorporation of synthetic

biological circuits into well-studied bacterial models such as E. Coli could suggest whether

our saturation mechanism is compatible with other regulators inside the cell [198].

7.6 Conclusions

We have discussed different processes that lead to gene regulation and developed models to

explain the underlying mechanisms behind them. For example, we showed that TF separa-

tion between enhancers and nonessential acetylation sites in the chromatin may modulate

different aspects of transcription such as noise and ultrasensitivity. However, it is plausible

that such mechanisms might be generalizable to other gene regulatory processes. In the

following paragraphs we discuss how regulation by enhancers and chromatin enzymes could

affect each other and suggest ways by which the mechanisms underlying one system might

be implemented in the other.

In Chapter 2 we provided evidence that TF separation between enhancers has a buffering

effect on upstream TF noise. It is plausible that this mechanism can be generalized and

implemented within other gene regulatory mechanisms such as chromatin remodeling. For

example, the existence of different kinds of acetylation enzymes could play a role in reducing

unintended expansion of chromatin regions. By potentially having different kinds of modi-

fication enzymes, the chromatin could limit the effect of upstream perturbations on histone

acetylation enzymes in order to yield the expected transcriptional output. Meanwhile, Chap-

ter 3 showed that increases in TF binding sites led to lower noise in gene expression. As we

explained in Chapter 4, HAT enzymes are first recruited by TFs to subsequently acetylate

a chromatin neighborhood. An increase in TF binding sites could tentatively lower noise

in upstream HAT expression and, consequently, require lower levels of ultrasensitivity for

proper chromatin remodeling.
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Conversely, the mechanisms discussed that underlie chromatin remodeling may be applied

in further inquiry of the workings of shadow enhancers. In Chapter 4 we made mention

of nonessential modification sites as key features for higher ultrasensitivity. The concept

of nonessential sites as boosters for ultrasensitivity has been proven for general theoretical

constructs [30], and, as such, it could be an additional mechanism that enhancers with

multiple binding sites could use for increasing the ultrasensitivity of the gene they regulate.

Specifically, if nonessential TF binding sites are present within enhancers, then, a critical

concentration of TFs would be needed to activate the enhancers while small fluctuations in

TFs due to noise would not have this effect.

As we discussed in Chapter 4, longer stretches of the chromatin correspond to higher levels of

ultrasensitivity in chromatin remodeling while in chapter 3 we showed that larger numbers

of enhancers can decrease transcription noise under certain assumptions. Supposedly, a

larger number of enhancers that regulate a gene would require unpacking larger swaths of

the chromatin. Therefore, by having more enhancers, the ultrasensitivity of expression for

a given gene could increase as the chromatin that contains it is itself more ultrasensitive

with respect to acetylation. These assumptions are plausible as shown by the work of Zhang

et al. in Figure 7.1 where the three dimensional distance between DNA regions and the

Mir9-2 promoter is shown to be minimized at the locations of the enhancers [199]. It can

be reasonably speculated that a considerable region of the chromatin needs to be unpacked

in order for the DNA to freely fold in the optimal pattern that allows these enhancers to

maximally approach the promoter. Thus, in conjunction with our results from Chapter 4,

unpacking a large swath of chromatin with more enhancers would yield higher ultrasensitivity

than smaller regions with lesser enhancers.

Shadow enhancers and chromatin remodeling are both gene regulatory mechanisms where

the latter might be upstream from the former and vice-versa thereby creating a network

of feedback loops. TFs are proteins that are also the result of gene expression. A kind of
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Figure 7.1: A plot showing the predicted distance in three-dimensional space between DNA
regions and the non-coding mRNA gene Mir9-2 [199]. The horizontal axis shows base pair
locations and the vertical axis the three dimensional distance to Mir9-2. This computa-
tional analysis by Zhang et al. accurately predicted the location of enhancers that regulate
Mir9-2 (highlighted in yellow and labeled in the x axis) by finding the minima within three-
dimensional chromatin interaction data [199]. The data suggests that a swath of the chro-
matin is folding in particular manner in order to bring all these enhancers in the proximity
of the Mir9-2 promoter.
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TF was mentioned in Chapter 4 to recruit HAT enzymes in order to acetylate and loosen a

chromatin region. It is plausible to say, then, that whenever the TFs in charge of chromatin

modifications are less noisy, then the ultrasensitivity required for chromatin expansion does

not have to be as high. Regulation of the TF genes by multiple shadow enhancers could be

a tentative mechanism for lowering chromatin remodeling noise. Conversely, enhancers are

regions of DNA wrapped around chromatin that need to be expanded for them to be active

and organized in the proper higher order structures that minimize promoter distance. While

shadow enhancers might buffer noise from their TFs, it is clear that a robust chromatin

remodeling process is also needed for enhancers to optimally regulate gene expression. In

summary, these ideas suggest that a unified CRN model of enhancers and the chromatin

could be used for understanding the feedback loops between these two systems. The work

done here is a tentative foundation for the development of such models of a similar style to

that by Nousiainen et al [108].

Chapter 5 proposed that ultrasensitivity can be modulated by altering dose-response sat-

uration levels through absolutely robust species. This could be implemented in shadow

enhancers through forced saturation of their TFs. By doing so, we would raise the ultra-

sensitivity of the expression of TF that are required for enhancer activation which, in turn,

could give rise to ultrasensitive enhancer activation. It might follow that the ultrasensitivity

of the regulated gene would also increase as either all shadow enhancers are active or they are

not. In the case of chromatin remodeling, the effect of forced saturation on the proportion of

acetylated histones was actually displayed in Figure 4.8 of Chapter 4 where modulation of a

single parameter led to earlier saturation of the DNA accessibility dose-response. In partic-

ular, the Hill coefficient increased to a value of nearly 5 for the lowest saturation measured.

While the mechanism at play here does not appear to be the one described in Chapter 5,

there is no apparent reason why the same behavior in Figure 4.8 could not be implemented

using absolute robustness as described in this mechanism. It would likely suffice to comple-

ment the absolutely robust toy model with the acetylated histones A shown in the network
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in Figure 4.6. As we have suggested, the mechanism in Chapter 5 may be implemented in

multiple gene regulatory systems due its generality and straightforward incorporation with

the original network.

This dissertation has shown that stochastic and deterministic CRNs are well-suited to the

study of chromatin regulation. Moreover, the large suite of mathematical and computational

tools provided by the study of CRNs has proved to be useful for efficiently simulating systems

at the genetic level and distilling the properties that allow for such systems to optimize given

metrics of gene expression. By identifying the most relevant components in the network and

abstracting away the less relevant, we can efficiently and sometimes analytically determine

how the system will react to changes in the environment which may manifest as topological

changes to the network or updated parameter values. Ultimately, having this family of models

applied to the regulation of cellular biochemical processes may accelerate our understanding

of genes and their interaction with a constantly changing environmental substrate.
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mal enhancer function”. In: Proceedings of the National Academy of Sciences 117.50

(Dec. 15, 2020). Publisher: Proceedings of the National Academy of Sciences, pp. 31614–

31622. doi: 10.1073/pnas.2006731117. url: https://www.pnas.org/doi/10.

1073/pnas.2006731117 (visited on 06/29/2022).

219

https://doi.org/10.1371/journal.
https://doi.org/10.1371/journal.
https://doi.org/10.1371/journal.
https://doi.org/10.1016/j.cell.2016.05.025
https://
https://doi.org/10.1016/j.cub.2010.07.043
https://www.sciencedirect.com/science/article/pii/S0960982210009450
https://www.sciencedirect.com/science/article/pii/S0960982210009450
https://doi.org/10.1371/journal.pgen.1006441
https://doi.org/10.1073/pnas.1413877112
https://www.pnas.org/doi/10.1073/pnas.1413877112
https://www.pnas.org/doi/10.1073/pnas.1413877112
https://doi.org/10.1073/pnas.2006731117
https://www.pnas.org/doi/10.1073/pnas.2006731117
https://www.pnas.org/doi/10.1073/pnas.2006731117


[107] Jean-Pierre Changeux. “Allostery and the Monod-Wyman-Changeux model after 50

years”. In: Annual Review of Biophysics 41 (2012), pp. 103–133. issn: 1936-1238. doi:

10.1146/annurev-biophys-050511-102222.

[108] Kari Nousiainen, Jukka Intosalmi, and Harri Lähdesmäki. “A Mathematical Model
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