
UC Santa Barbara
UC Santa Barbara Electronic Theses and Dissertations

Title
Facilitating Emerging Non-volatile Memories in Next-Generation Memory System Design:
Architecture-Level and Application-Level Perspectives

Permalink
https://escholarship.org/uc/item/2g6962cg

Author
Chi, Ping

Publication Date
2016

Peer reviewed|Thesis/dissertation

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/2g6962cg
https://escholarship.org
http://www.cdlib.org/

University of California
Santa Barbara

Facilitating Emerging Non-volatile Memories in

Next-Generation Memory System Design:

Architecture-Level and Application-Level

Perspectives

A dissertation submitted in partial satisfaction

of the requirements for the degree

Doctor of Philosophy

in

Electrical and Computer Engineering

by

Ping Chi

Committee in charge:

Professor Yuan Xie, Chair
Professor Kwang-Ting (Tim) Cheng
Professor Malgorzata Marek-Sadowska
Professor Dmitri Strukov
Professor Mary Jane Irwin, Pennsylvania State University
Professor Wang-Chien Lee, Pennsylvania State University

June 2016

The Dissertation of Ping Chi is approved.

Professor Kwang-Ting (Tim) Cheng

Professor Malgorzata Marek-Sadowska

Professor Dmitri Strukov

Professor Mary Jane Irwin, Pennsylvania State University

Professor Wang-Chien Lee, Pennsylvania State University

Professor Yuan Xie, Committee Chair

June 2016

Facilitating Emerging Non-volatile Memories in Next-Generation Memory System

Design: Architecture-Level and Application-Level Perspectives

Copyright c© 2016

by

Ping Chi

iii

This dissertation is dedicated to my parents Yuqin Qiu and

Yijiang Chi, for their love, encouragement, and support

throughout my life.

iv

Acknowledgements

Many people have offered me great help during my journey to pursue a Ph.D. degree.

First of all, I thank Prof. Yuan Xie, my Ph.D. advisor, for his guidance and support

that lead to my academic progress and achievement. He is my role model of a researcher.

I could not show more respect for his enthusiasm and perseverance in academic pursuits,

his broad and insightful vision on our research areas, and his diligent and energetic

working style. Moreover, he is always helpful throughout my Ph.D. study. He provided

me hands-on help when I was in my early years, and encouraged me when I was not

confident of my research ideas. It will always be my honor to have worked with him.

Many professors from University of California Santa Barbara (UCSB) and the Penn-

sylvania State University (Penn State) have given me helpful advice and instructions. I

am grateful to Prof. Kwang-Ting (Tim) Cheng, Prof. Malgorzata Marek-Sadowska, and

Prof. Dmitri Strukov for serving on my dissertation committee at UCSB and providing

me with insightful suggestions on my research work. I reserve my sincere gratitude for

Prof. Wang-Chien Lee and Prof. Mary Jane Irwin who continue serving as my disserta-

tion committee members even after I transferred from Penn State to UCSB. I learned a

lot from Prof. Lee about how to do research since he co-advised my first research project

and revised my first paper submission word by word. Prof. Irwin is my role model of a

successful female researcher. I appreciate her constructive advice on my research work

and also on my career plan, and her encouragement and support that brought me self-

confidence during my entire Ph.D. study. I also thank Prof. Vijaykrishnan Narayanan,

Prof. John Sampson, and Prof. Zhiwen Liu who used to serve on my dissertation com-

mittee at Penn State and gave me useful feedbacks at my early stage. Prof. Narayanan

was always friendly to me. He welcomed me to be seated among his students and encour-

aged us to learn from each other, offering me the opportunity to learn various interesting

v

research topics from his research group.

Moreover, I sincerely thank Dr. Paolo Faraboschi and Dr. Qiong Cai for hosting

my internship at Hewlett-Packard Labs. Their rich research experience and in-depth

knowledge taught me a memorable lesson.

Furthermore, I wish to thank my friends and colleagues at UCSB and Penn State

who have made my life vivid and beautiful over these years. Many senior group members

helped me a lot when I was new to the U.S. and our lab. I am grateful to Guangyu Sun,

Jin Ouyang, Jing Xie, Hsiang-yun Cheng, Qiaosha Zou, Jishen Zhao, Jue Wang, Xiangyu

Dong, Dimin Niu, Yibo Chen, and Matt Poremba. I especially thank Tao Zhang and

Cong Xu, who are my good “mentors” and friends, always generous with their time and

knowledge, helping me on my research projects as well as in my personal life. Also, I

have been very fortunate to work with my nice and brilliant group comrades, Jia Zhan,

Hang Zhang, Kaisheng Ma, Shuangchen Li, Ziyang Qi, Itir Akgun, Peng Gu, Maohua

Zhu, Liu Liu, Dylan Stow, Linuo Xue, and Russell Barnes.

Most importantly, I would like to thank my parents, Yuqin Qiu and Yijiang Chi, who

raised and educated me, and always love me. I also thank my brother, Cheng Chi, and

my entire extended family, for their continuous support.

vi

Curriculum Vitæ
Ping Chi

Education

2016 Ph.D. in Computer Engineering (Expected), University of Califor-
nia, Santa Barbara, USA.

2011 M.S.E. in Electronic Science and Technology, Tsinghua University,
Beijing, China.

2008 B.Eng. in Information Electronics and Engineering, Tsinghua Uni-
versity, Beijing, China.

Publications

[C1] Ping Chi, Shuangchen Li, Cong Xu, Tao Zhang, Jishen Zhao, Yongpan Liu, Yu
Wang, Yuan Xie. “A Novel Processing-in-memory Architecture for Neural Network Com-
putation in ReRAM-based Main Memory”, in Proc. of the 43rd International Symposium
on Computer Architecture (ISCA), June 2016, Seoul, Korea. (To appear.)
[C2] Ping Chi, Shuangchen Li, Yuanqing Cheng, Yu Lu, Seung H. Kang, Yuan Xie. “Ar-
chitecture Design with STT-RAM: Opportunities and Challenges”, in Proc. of Asia and
South Pacific Design Automation Conference (ASP-DAC), Jan. 2016, Macao, China.
Invited paper.
[C3] Shuangchen Li, Ping Chi, Jishen Zhao, Kwang-Ting Cheng, Yuan Xie. “Leverag-
ing Nonvolatility for Architecture Design with Emerging NVM”, in Proc. of Non-Volatile
Memory System and Applications Symposium (NVMSA), Aug. 2015, Hong Kong, China.
Invited paper.
[C4]. Ping Chi, Cong Xu, Tao Zhang, Xiangyu Dong, Yuan Xie. “Using Multi-Level
Cell STT-RAM for Fast and Energy-Efficient Local Checkpointing”, in Proc. of Inter-
national Conference on Computer-Aided Design (ICCAD), Nov. 2014, San Jose, USA.
(Best Paper Award - Front End.)
[C5] Ping Chi, Wang-Chien Lee, Yuan Xie. “Making B+-tree Efficient in PCM-Based
Main Memory”, in Proc. of International Symposium on Low Power Electronics and
Design (ISLPED), Aug. 2014, La Jolla, USA.
[C6] Ping Chi, Cong Xu, Xiaochun Zhu, Yuan Xie. “Building Energy-Efficient Multi-
Level Cell STT-MRAM Based Cache Through Dynamic Data-Resistance Encoding”, in
Proc. of International Symposium on Quality Electronic Design (ISQED), Mar. 2014,
Santa Clara, USA.
[J1] Ping Chi, Wang-Chien Lee, Yuan Xie. “Adapting B+-Tree for Emerging Non-
volatile Memory Based Main Memory”, in IEEE Transactions on Computer-Aided De-
sign of Integrated Circuits and Systems (TCAD). (To appear.)
[J2] Jishen Zhao, Cong Xu, Ping Chi, Yuan Xie. “Memory and storage system de-
sign with nonvolatile memory technologies”, in IPSJ Transactions on System LSI Design
Methodology (TSLDM), 8:2-11, 2015. Invited paper.

vii

Abstract

Facilitating Emerging Non-volatile Memories in Next-Generation Memory System

Design: Architecture-Level and Application-Level Perspectives

by

Ping Chi

As technology scales, the increasing leakage power dissipation and the degraded reli-

ability of conventional SRAM and DRAM technologies cause growing concern. Emerg-

ing non-volatile memory (NVM) technologies have shown great potential to build next-

generation memory systems, by combining low leakage power, good scalability, fast speed,

and high density. As they are maturing, it is important for computer architects to un-

derstand their pros and cons and leverage them in future computer system design.

This dissertation focuses on three types of emerging NVMs, spin-transfer torque RAM

(STT-RAM), phase change memory (PCM), and metal-oxide resistive RAM (ReRAM).

STT-RAM has been identified as the best replacement of SRAM to build large-scale and

low-power on-chip caches and also an energy-efficient alternative to DRAM as main mem-

ory. PCM and ReRAM have been considered to be promising technologies for building

future large-scale and low-power main memory systems. This dissertation investigates

two aspects to facilitate them in next-generation memory system design, architecture-

level and application-level perspectives. First, multi-level cell (MLC) STT-RAM based

cache design is optimized by using data encoding and data compression. Second, MLC

STT-RAM is utilized as persistent main memory for fast and energy-efficient local check-

pointing. Third, the commonly used database indexing algorithm, B+tree, is redesigned

to be NVM-friendly. Forth, a novel processing-in-memory architecture built on ReRAM

based main memory is proposed to accelerate neural network applications.

viii

Contents

Curriculum Vitae vii

Abstract viii

1 Introduction 1

2 Technology Background 5

3 Optimize MLC STT-RAM Cache Design Using Data Encoding and
Data Compression 9
3.1 The Basics of MLC STT-RAM . 9
3.2 Improving Write Energy through Dynamic Data-Resistance Encoding . . 12
3.3 Optimizing Energy and Performance with Data Compression 23

4 Using MLC STT-RAM for Efficient Local Checkpointing 40
4.1 Motivation . 40
4.2 Related Work . 43
4.3 The Basics of Checkpointing . 45
4.4 The Proposed Mechanism . 47
4.5 Evaluation . 53
4.6 Summary . 61

5 Making B+tree Efficient for Emerging NVM Based Main Memory 63
5.1 Motivation . 64
5.2 Related Work . 66
5.3 Cost Model . 67
5.4 Algorithms . 81
5.5 Evaluation . 87
5.6 Summary . 96

ix

6 Accelerating Neural Network Computation in ReRAM Based Main
Memory 98
6.1 Motivation . 98
6.2 The Basics of Using ReRAM for NN Computation 101
6.3 Related Work . 102
6.4 The Proposed Design . 105
6.5 Evaluation . 109
6.6 Summary . 115

7 Conclusion 117

Bibliography 121

x

Chapter 1

Introduction

In contemporary computer architecture design, SRAM based on-chip caches, DRAM

based off-chip main memory, and solid state drive (SSD) and/or hard disk drive (HDD)

based storage, are the major components of the memory hierarchy. The importance of the

memory embodiments increases with the rapid advance in microprocessor performance,

especially for many-core and large-scale computing systems. However, as technology

scales, the conventional SRAM and DRAM technologies suffer from increasing leakage

power dissipation and degraded reliability. Also, as DRAM density increases, the refresh

penalty becomes nontrivial and can result in significant performance degradation [1].

Moreover, NAND flash SSD suffers from the notorious endurance issue.

In recent years, we have seen many emerging non-volatile memory (NVM) technolo-

gies which have better scalability and zero leakage power and have been considered as

promising alternatives to conventional memory technologies. A lot of effort has been

made on the research and development of these NVM technologies by both academia

and industry. Recently, Intel and Micron announced their 3D XPoint technology which

is a new class of NVM and promises 1000× lower latency and higher endurance than

NAND flash. As these emerging memory technologies are maturing, it is important

1

Introduction Chapter 1

for computer architects to understand their pros and cons and leverage them in next-

generation memory system design to improve the performance, power, and reliability of

future computing systems.

This dissertation is one of such efforts. It is focused on three types of emerging NVM

technologies, Spin-Transfer Torque Random Access Memory (STT-RAM), Phase Change

Memory (PCM), and metal-oxide Resistive RAM (ReRAM). It tries to facilitate these

emerging NVM technologies in next-generation memory system design from two perspec-

tives: architecture-level and application-level. STT-RAM, PCM, and ReRAM, all have

non-volatility, low leakage power, asymmetric read and write latency, and asymmetric

read and write energy. STT-RAM can achieve SRAM-similar or DRAM-similar read

latency and read energy under the same capacity, with its cell size between DRAM’s

and SRAM’s. Therefore, it has been identified as a promising replacement of SRAM to

build large-size and low-power on-chip caches and also as an energy-efficient alternative

to DRAM. PCM and ReRAM have higher densities than DRAM, and better endurance

than NAND flash, and can achieve DRAM-similar read latency and read energy. There-

fore, they have been considered as potential candidates to build large-size and low-power

main memory and high-performance storage. The multi-level cell (MLC) technology can

improve their densities. Currently, STT-RAM can achieve 2 bits/cell, while PCM and

ReRAM can achieve 4 or more bits/cell. Besides their nice features, they also have dis-

advantages. For example, they all suffer from long write latency and high write energy.

Although they have better endurance than NAND flash, they still have limited lifetimes.

First, it is necessary to propose solutions to mitigate their disadvantages, such as high

write energy. MLC STT-RAM have even higher write energy than single level cell (SLC).

Based on the observation that the write energy consumption has great value dependency,

a dynamic data-resistance encoding mechanism is proposed to reduce the write energy of

MLC STT-RAM based last level cache (LLC), which encodes more frequent data values

2

Introduction Chapter 1

to more energy-efficient resistance states at runtime. However, this dynamic encoding

technique incurs a slight performance degradation due to the encoding overhead. To

eliminate the performance degradation while to save the write energy, the MLC STT-

RAM cache design is optimized by using data compression. By compressing a cache line

data to half the size, it can be fit into the fast-read and fast-write soft-bit region of series

MLC STT-RAM cells, which requires only one-step read and write operations, avoid-

ing the high energy consumption and long latency of two-step read and write accesses.

Furthermore, by exploiting the saved space from data compression to store more data,

the increased effective cache capacity can improve system performance. The techniques

proposed above are architectural solutions. This dissertation also addresses the chal-

lenges from application-level perspectives. For main memory databases (MMDBs) built

on emerging NVMs, the nice features of NVMs, such as non-volatility, low power, and

high density of PCM and ReRAM, will bring great benefits to the system. However, the

assumptions that have served as the basis to design conventional database algorithms

are changed by the unique characteristics of NVMs such as asymmetric read and write

latency and energy. The widely used database indexing algorithm, B+tree, is redesigned

with the new design goal to reduce more expensive write accesses, even at the cost of

increasing read accesses.

Second, it is beneficial to take advantage of their unique features in system design. For

one example, MLC provides an in-cell multi-versioning opportunity for local checkpoint-

ing, since each cell can store two or more bits. An efficient local checkpointing scheme is

proposed which leverages MLC STT-RAM as main memory. Different from MLC PCM

or MLC ReRAM which adopts the program-and-verify scheme in write operations, MLC

STT-RAM has write schemes that contain two steps at most. In the MLC STT-RAM

main memory design, the working data are mapped to the soft-bits and the checkpoint

data to the hard-bits, so that only one-step write operations are incurred during the en-

3

Introduction Chapter 1

tire execution time including the checkpoint and recovery periods. By replacing the data

transfer between the main memory and the backup storage with the data transfer between

two bits of the memory cells which only requires one-step writes, the proposed scheme

efficiently reduces the performance and energy overhead of local checkpointing. For an-

other example, ReRAM has the analog computation capability with a crossbar structure

besides the data storage capability. It can execute matrix-vector multiplications very

efficiently, and has been widely studied to accelerate neural network (NN) computations

that involve a large amount of matrix-vector multiplications. A processing-in-memory

(PIM) architecture built on ReRAM crossbar main memory is proposed to accelerate NN

computation. In the ReRAM main memory design, a small portion of ReRAM crossbar

arrays are enabled to perform NN computation by additional peripheral circuit support,

and they can work as NN accelerators and also as normal memory. By reducing the

cost of the data movement between the processing units and the off-chip memory in NN

computation, the proposed PIM architecture can improve system performance and en-

ergy efficiency significantly for NN applications. The above two proposals are both novel

architecture design for specific applications.

The remainder of this dissertation is organized as follows. Chapter 2 introduces

the technology background of STT-RAM, PCM and ReRAM. Then, Chapter 3 presents

the proposals to optimize MLC STT-RAM cache design using data encoding and data

compression, and Chapter 4 discusses the project to use MLC STT-RAM for efficient

local checkpointing. Next, Chapter 5 introduces the redesign of the B+-tree algorithm for

emerging NVM based main memory systems. Then, Chapter 6 presents the proposal to

accelerate NN computation in ReRAM based main memory. Finally, Chapter 7 concludes

this dissertation.

4

Chapter 2

Technology Background

This chapter introduces the basics of STT-RAM, PCM, and ReRAM. They are all resis-

tive random access memories, a type of NVM that uses the cell resistance to store the

information by changing it between a high-resistance state (HRS) and a low-resistance

state (LRS). It is known as ReRAM or RRAM for short. However, ReRAM typically

refers to metal-oxide ReRAM, a subset using metal oxides as resistive switches. In this

dissertation, the term “ReRAM” is used for metal-oxide ReRAM in a typical way.

STT-RAM is a new generation of magnetic RAM, using spin-transfer torque to switch

memory states. Figure 2.1 (a) shows a magnetic tunnel junction (MTJ), the key com-

ponent to store the bit information in a STT-RAM cell. An MTJ consists of two fer-

romagnetic layers and one oxide barrier layer (e.g. MgO) that separates them. The

magnetization direction of one ferromagnetic layer (i.e. reference layer) is fixed, called

reference layer; while that of the other ferromagnetic layer (i.e. free layer) can be changed

by applying a large enough spin polarized current through MTJ, either in parallel or anti-

parallel with the fixed direction of the reference layer. “Parallel” indicates MTJ in an

LRS; in contrast, “anti-parallel” means HRS. The magnetization directions of the MTJs

in Figure 2.1 (a) are in-plane, and they can also be made perpendicular [2]. As the

5

Technology Background Chapter 2

technology node scales, perpendicular MTJ based STT-RAM demonstrates better char-

acteristics than in-plane MTJ based STT-RAM. It requires a lower switching current and

can maintain high thermal stability for a longer retention time. STT-RAM adopts the

one-transistor-one-resistor (1T1R) cell structure, as shown in Figure 2.1 (d). It is called

one-transistor-one-MTJ (or 1T1J) cell structure for STT-RAM. Like a DRAM cell, each

STT-RAM cell has an access transistor to prevent the disturbance with other cells.

PCM exploits the unique behavior of phase change material, e.g., chalcogenide glass,

which enters two different states under different heating temperatures and durations [3].

These two states, termed as amorphous state (HRS) and crystalline state (LRS), have

significantly different electrical resistivities, and thus they can represent “0” and “1”,

respectively. Moreover, as this material can achieve several distinct intermediate states,

it has the ability to represent multiple bits in a single cell. Figure 2.1 (b) depicts a PCM

cell. PCM also adopts the 1T1R cell structure as shown in Figure 2.1 (d).

Metal
Programmed

Volume

Metal

Chalcogenide

Resistive Heat-

ing Element

(b) PCM cell

Metal

Metal

Metal

Oxide

Bit Line

Word Line

Source Line

(d) 1T1R cell structure

Free Layer

Barrier

Reference

Layer

MTJ

(a) STT-RAM cell (c) ReRAM cell

Access

Transistor

Figure 2.1: The basics of NVM cell structures (not to scale). (a) STT-RAM cell; (b)
PCM cell; (c) ReRAM cell; (d) 1T1R cell structure.

Figure 2.1 (c) presents the metal-insulator-metal structure of a ReRAM cell. It con-

tains a top metal layer, a bottom metal layer, and a metal-oxide layer in the middle

as resistive switches. There are various oxide materials and metal choices, and the cell

switching behavior depends on their interfacial properties [4]. According to the widely

accepted filamentary model, during a SET operation, nanoscale conductive filaments

(CFs) are formed and the cell is in an LRS; during a RESET operation, the CFs are

6

Technology Background Chapter 2

cut off and the cell is in a HRS. Like PCM, ReRAM can achieve the MLC characteris-

tic by controlling the switching current/voltage to obtain several intermediate resistance

levels. [5]. ReRAM has the 1T1R cell structure as shown in Figure 2.1 (d). To reduce

the cost, ReRAM also supports a cross-point architecture, which eliminates the access

transistor, using a bidirectional diode as a selector or even no selector at all to achieve

the theoretical smallest cell size of 4F 2.

Despite of different materials and technologies, PCM, STT-RAM, and ReRAM have

some common characteristics. First, all have asymmetric read and write performance

and energy. The reason is that the READ current/voltage they use is smaller and with

a shorter duration than WRITE so as not to perturb the cell state. Table 2.1 compares

PCM, STT-RAM, and ReRAM with DRAM. Their write latency is several times longer

than their read latency, and their write energy consumption is several times higher than

their read energy consumption. Second, they all have the write endurance problem, i.e.,

each cell will be worn out after a limited number of writes. PCM suffers from the most

severe endurance issue. ReRAM is two or three orders of magnitude better than PCM

in endurance; Although STT-RAM has the best endurance among these three emerging

NVMs, it is not free of this issue. Moreover, they are all non-volatile and have low idle

power.

Table 2.1: Compare STT-RAM, PCM, and ReRAM with DRAM [6, 7, 8, 9, 10]

DRAM STT-RAM PCM ReRAM

Retention refresh non-volatile non-volatile non-volatile
Density 1× 0.4− 0.8× 2− 4× 2− 4×

Endurance 1016 1012 − 1015 108 1012

Idle power high low low low
Read latency 1× 0.5− 2× 2− 8× 0.5− 10×
Write latency 1× 1− 8× 10− 100× 1− 100×
Read energy 1× 0.5− 2× 2− 6× 0.5− 5×
Write energy 1× 0.5− 10× 5− 50× 0.2− 100×

7

Technology Background Chapter 2

A lot of research studies has been conducted to tackle their challenges and make them

more feasible memory replacements. Some studies improve their lifetime by using wear

leveling strategies [3, 11, 12]. Some deal with the long write latency by using a small

buffer at the architecture level [3]. Reducing redundant writes [13, 11, 14] can improve

both system performance and NVM lifetime.

8

Chapter 3

Optimize MLC STT-RAM Cache

Design Using Data Encoding and

Data Compression

This chapter presents two projects that optimize MLC STT-RAM cache design, one

using dynamic data-resistance encoding and the other using data compression. Before

introducing these two projects, the basics of MLC STT-RAM are given first.

3.1 The Basics of MLC STT-RAM

The cell in Figure 2.1 (a) stores a single logic bit, called single level cell (SLC). To

enhance the density of STT-RAM, multi-level cell (MLC) structures have been proposed,

holding multiple logic bits in a single cell.

There are two categories of MLC MTJ designs, parallel [15] and series [16]. In parallel

MLC MTJs, the free layer has two domains to achieve four resistance states by the

combinations of their magnetization directions, as shown in Figure 3.1 (a); while series

9

Optimize MLC STT-RAM Cache Design Using Data Encoding and Data Compression Chapter 3

MLC STT-RAM stacks two MTJs to represent two logic bits, as shown in Figure 3.2

(a). Parallel MLC requires relatively smaller switching current density and owns higher

tunneling magneto resistance (TMR) ratio. Series MLC is easier to be fabricated. A

recent study demonstrates that series MLC STT-RAM is more feasible than parallel,

because parallel MLC STT-RAM design is only applicable to in-plane MTJ technology

while series design is compatible with advanced MTJ technologies such as perpendicular

MTJ and has overwhelming advantage in read and write reliability [17].

[XX] = [hard, soft]

[00] [01] [10] [11]

Ref-1 Ref-2 (step2)

Ref-0 (step1)

[0X] [1X]

Sensed Voltage

[00] [10]

[01] [11]

IWH (step1)

IWS (step2)

(a) (b) (c)

Barrier

Hard

Domain

Soft

Domain

Figure 3.1: (a) Parallel MLC MTJ structure; (b) 2-step write operation; (c) 2-step
read operation.

Soft

bit

Hard

bit

[XX] = [soft, hard]

[00] [01] [10] [11]

Ref-1 Ref-2 (step2)

Ref-0 (step1)

[0X] [1X]

Sensed Voltage

[00] [01]

[10] [11]

IWH (step1)

IWS (step2)

(a) (b) (c)

MTJ1

MTJ2

Barrier

Barrier

Figure 3.2: (a) Series MLC MTJ structure; (b) 2-step write operation; (c) 2-step read
operation.

Figure 3.1 (a) depicts the parallel MLC MTJ structure. The two domains in the

free layer have different areas so as to represent two logic bits. The bit stored in the

10

Optimize MLC STT-RAM Cache Design Using Data Encoding and Data Compression Chapter 3

soft domain is called soft-bit, and the bit stored in the hard domain is called hard-bit.

For a write operation, the write current passes through both the hard domain and the

soft domain at runtime. However, the hard domain requires a larger switching current

than the soft domain (IC,hard > IC,soft). By encoding LRS as “0” and HRS as “1”, in a

2-bit cell, there are four different levels: “00”, “01”, “10”, and “11”. In parallel MLC,

the most significant bit (MSB) is the hard-bit, and the least significant bit (LSB) is the

soft-bit. Figure 3.1 (b) and (c) illustrate the write and read operations of parallel MLC

STT-RAM. They both have two steps. As shown in Figure 3.1 (b), in a write operation,

first a large current IWH (IWH > IC,hard) is applied to switch both the hard-bit and the

soft-bit; next a smaller current IWS (IC,soft < IWS < IC,hard) is used to flip only the soft-

bit. As shown in Figure 3.1 (c), a read operation based on voltage sensing requires three

reference voltages (Ref-0, Ref-1, and Ref-2) and two comparisons. The MSB (hard-bit)

is first detected by comparing the sensing voltage with Ref-0; then based on the result,

the LSB (soft-bit) is read by comparing the sensing voltage with either Ref-1 or Ref-2.

Figure 3.2 (a) presents the series MLC MTJ structure. The two MTJs have different

areas in order to distinguish two logic bits. The bit stored in the smaller MTJ1 is

called soft-bit, and the bit stored in the bigger MTJ2 is called hard-bit. The same with

the parallel MLC MTJ structure, given a constant critical switching current density,

the hard-bit requires a larger switching current than the soft-bit, i.e. IC,hard < IC,soft.

However, different from the parallel MLC MTJ structure, the soft-bit in series MLC has

a larger resistance, and it is the MSB while the hard-bit is the LSB. Figure 3.2 (b) and

(c) demonstrate the write and read operations of series MLC STT-RAM. They both have

two steps, similar to those of parallel MLC.

Since MLC STT-RAM can promise a higher density than SLC STT-RAM, we have

seen a lot of studies that use it to build large-scale on-chip caches recently [18, 19, 20, 21].

Compared with SLC STT-RAM, MLC STT-RAM has more complex read and write

11

Optimize MLC STT-RAM Cache Design Using Data Encoding and Data Compression Chapter 3

operations, and thus has even longer read and write latencies and consumes even higher

read and write energy, which may degrade system performance and energy efficiency

despite its capacity benefits.

3.2 Improving Write Energy through Dynamic Data-

Resistance Encoding

This section presents a dynamic data-resistance encoding technique for MLC STT-

RAM based cache [22]. First, the write energy model and the existing static data-

resistance encoding algorithm are introduced, and then the dynamic encoding algorithm

is proposed that aims to efficiently reduce the energy consumption in MLC STT-RAM

write operations. Furthermore, the encoder and decoder designs and the modified archi-

tecture of MLC STT-RAM cache bank are presented. Next, after discussing the hardware

overhead, the experimental setup and results are shown before this project is summarized.

This project is focused on energy-efficient parallel MLC STT-RAM, with the assump-

tion that the basic direct data mapping is used for MLC STT-RAM based cache.

3.2.1 Write Energy Model and Data-Resistance Encoding

As described in Section 3.1 and Figure 3.1 (b), a typical write operation of a parallel

MLC STT-RAM cell takes two steps. Figure 3.3 demonstrates the switching currents

required for resistive state transitions of a parallel MLC at 45 nm technology node. The

sign of the current value (in µA) denotes its direction: “positive” means from the free

layer to the reference layer while “negative” means the reverse direction. It is obvious that

changing states or writing data has significantly value-dependent energy consumption,

classified by the following four categories:

12

Optimize MLC STT-RAM Cache Design Using Data Encoding and Data Compression Chapter 3

• A: Neither bit is changed. No write current is required.

• B: Only LSB is flipped, i.e. “00”↔“01” and “10”↔“11”. In this case only a small

write current is needed.

• C: MSB is switched and in the new value MSB and LSB are the same, i.e. “11”(or

“10”)→“00” and “00”(or “01”)→“11”. In this case, a large write current is required

to flip MSB.

• D: MSB is flipped and in the new value MSB and LSB are different, i.e. “00”(or

“01”)→“10” and “11”(or “10”)→“01”. This is the worst case in terms of both

write latency and energy since direct switch is infeasible and a two-step write is

needed. A large current is applied to flip MSB before a small one is employed to

process LSB.

-38.3μA

26.3 μA

-9.1μA

39.3μA

-56.7μA66.4 μA

-56.7μA

66.4 μA

0 0

00

R00 R01

R10 R11

Figure 3.3: The switching currents for parallel MLC STT-RAM state transitions at
45 nm technology node. [19]

In the typical two-step write scheme, many unnecessary state transitions are induced.

To reduce them, a hybrid write scheme has been proposed [18]. A read operation is

conducted first, and based on the values of the original data and new data, the optimized

type of write operation is chosen according to Figure 3.3. In case A if data are not

13

Optimize MLC STT-RAM Cache Design Using Data Encoding and Data Compression Chapter 3

changed, the write operation is completely skipped. In cases B and C, only one step is

needed by applying either a small or large current. In case D, two steps are unavoidable.

This project assumes that the energy-efficient hybrid write scheme is employed in this

project.

The write energy consumption of every state transition with the hybrid write scheme

in parallel MLC STT-RAM at 45 nm technology node is calculated based on the reported

data [15, 18], by assuming that 10 ns pulse duration is applied. The result is shown in

Table 3.1. The last row is the average energy to write each resistance state given that

the possibilities of the original state to be one of the four options are equal. Therefore,

the resistance states “11” and “00” are more energy-efficient in which “11” is the most

energy-efficient one, and “01” and “10” are both high energy consumption states.

Table 3.1: Write energy of every state transition with hybrid write scheme at 45 nm
technology node (in pJ)

To
R00 R01 R10 R11

From

R00 0 0.045 0.185 0.120
R01 0.021 0 0.194 0.128
R10 0.144 0.189 0 0.001
R11 0.164 0.209 0.065 0
Avg. 0.082 0.111 0.111 0.062

By profiling write data in benchmarks, logic state “00” contributes about 37% of

the total write operations, which indicates mapping logic data “L00” to resistance level

“R11” is a beneficial way for saving energy. The optimal encoding is {L00 7→ R11, L01

7→ R10, L10 7→ R01, L11 7→ R00} [19]. However, their data-resistance encoding scheme

is static, in which the mapping is determined by the general write patterns abstracted

from a wide range of benchmarks. In this project, a dynamic data-resistance encoding

technique is proposed which decides the mapping at runtime and turns out to be more

application-specific and energy-efficient.

14

Optimize MLC STT-RAM Cache Design Using Data Encoding and Data Compression Chapter 3

3.2.2 Dynamic Data-Resistance Encoding Algorithm

Given a 64-byte cacheline, 256 2-bit cells in one bank are activated all together for a

write operation. There exists an optimal data-resistance encoding solution that minimizes

the energy consumption of switching original data to new values in a cacheline since the

total 4! = 24 encoding schemes can be enumerated. However, to find the optimal one

is too costly to implement due to the limited on-chip resources. The proposed encoding

algorithm can efficiently reduce write energy with minor overheads.

First, five terms are defined for future discussion, including three resistance states

based on the write energy model (Table 3.1) and two logic states based on their frequen-

cies in a cacheline writing:

• MEES : the most energy-efficient resistance state, i. e. “R11”;

• SEES : the second-most energy-efficient resistance state, i. e. “R00”;

• LEESs : the two least energy-efficient resistance states, including “R01” and “R10”;

• MFLS : the most frequent logic state when writing a cacheline;

• SFLS : the second-most frequent logic state when writing a cacheline.

The key idea of the proposed encoding algorithm is to increase the frequency of

energy-efficient states (i. e. MEES and SEES) and to decrease that of energy-inefficient

states (LEESs) when writing new data to a cacheline. The algorithm ensures that MFLS

in new data is mapped to MEES, and SFLS to SEES. Since the two LEESs have little

difference in energy consumption, it is unnecessary to distinguish them when mapping

the other two logic states to them. Therefore, there are A2
4 = 12 mapping types, and

thus four additional bits (that is, two 2-bit cells) are needed to record the mapping type

code for each cacheline. The algorithm also avoids using energy-inefficient LEESs in

15

Optimize MLC STT-RAM Cache Design Using Data Encoding and Data Compression Chapter 3

mapping type codes, so “0101”, “0110”, “1001” and “1010” are excluded. The mapping

type lookup table demonstrates the encoding algorithm, as shown in Table 3.2. The area

overhead to store the mapping type code in each cacheline is about 0.78% of the area

of MLC STT-RAM arrays, given the cacheline size being 64 bytes. Additionally, the

storage overhead of the mapping type lookup table is negligible.

Table 3.2: The mapping type lookup table.
Type Mapping MFLS Mapping SFLS Mapping the other two
Code to MEES to SEES logic states to LEESs

00 00 L007→ R11 L017→ R00 L107→ R01 L117→ R10
00 01 L007→ R11 L107→ R00 L017→ R01 L117→ R10
00 10 L007→ R11 L117→ R00 L017→ R01 L107→ R10
00 11 L017→ R11 L007→ R00 L107→ R01 L117→ R10
01 00 L017→ R11 L107→ R00 L007→ R01 L117→ R10
01 11 L017→ R11 L117→ R00 L007→ R01 L107→ R10
10 00 L107→ R11 L007→ R00 L017→ R01 L117→ R10
10 11 L107→ R11 L017→ R00 L007→ R01 L117→ R10
11 00 L107→ R11 L117→ R00 L007→ R01 L017→ R10
11 01 L117→ R11 L007→ R00 L017→ R01 L107→ R10
11 10 L117→ R11 L017→ R00 L007→ R01 L107→ R10
11 11 L117→ R11 L107→ R00 L007→ R01 L017→ R10

3.2.3 Encoder and Decoder Design

The data flows of the encoder and decoder are shown in Figure 3.4 (a) and (b). To

write data to a MLC STT-RAM cacheline, the original data are first stored in the write

buffer. Then the number of each 2-bit logic state in the original data is counted by the

encoder to determine which mapping type is selected by searching the mapping type

lookup table. At last the data are encoded by parallel 2-bit 4-to-1 multiplexers (MUX)

whose modes are controlled by the mapping type code, before they are written to the

corresponding cacheline. For example, if MFLS in the original data is “10” and SFLS is

“00”, the mapping type with code “1000” is chosen as the mapping type lookup table

16

Optimize MLC STT-RAM Cache Design Using Data Encoding and Data Compression Chapter 3

11 Counter

01 Counter

Type Code
MLC STT-MRAM

Cacheline
Encoded Data

MUX

00 01 10 11

Write

Buffer
Original Data

Write Data from Higher-Level Cache

Encoder

Mapping

Type Lookup

Table
00 Counter

10 Counter

Type Code
MLC STT-MRAM

Cacheline
Encoded Data

MUX

00 01 10 11

Read Buffer Original Data

Read Data to Processor

Decoder

(a) Encoder

(b) Decoder

Figure 3.4: The data flow diagrams of the encoder and the decoder: (a) in write op-
erations, data from higher-level cache are encoded before written to MLC STT-RAM
cache; (b) in read operations, data in MLC STT-RAM cache are decoded before read
out.

indicates, and the data are encoded in accordance with the rule: {L107→R11, L007→R00,

L017→R01, L117→R10}. Since different mapping types may be chosen at each time based

on data values, the data-resistance encoding is dynamic.

The data flow of the decoder is simpler, as Figure 3.4 (b) shows. To read a MLC

STT-RAM cacheline, the data are just decoded by parallel 4-to-1 multiplexers under the

control of its type code.

17

Optimize MLC STT-RAM Cache Design Using Data Encoding and Data Compression Chapter 3

With additional components (the encoder and the decoder), the MLC STT-RAM

cache bank architecture needs to be modified, illustrated in Figure 3.5. In a write opera-

tion, write data must be encoded before enter the write driver; in a read operation, data

can be read out only after the decoding.

Encoder

MLC STT-MRAM

Cache Array

Column Decoder

R
o

w
 D

eco
d

er

... ...
..
.
..
.

MLC STT-MRAM

Write Driver

Decoder

Write Buffer Read Buffer

Address

Read_EN

Write_EN

Input Data Output Data

Figure 3.5: MLC STT-RAM cache bank architecture design with encoder and decoder.

3.2.4 Overhead Estimation

The hardware overhead of the encoder and decoder (as shown in Figure 3.4) is evalu-

ated. Mishra and Akashe have designed a high-performance and low-power 4-to-1 MUX

by using the CMOS transmission gate logic (TGL) in 45 nm technology, which operates

at up to 200 Gb/s with the power dissipation of 1.887 nW and the area of 6.175 µm2 [23].

Based on their reported data, the encoder and the decoder in the proposed technique

18

Optimize MLC STT-RAM Cache Design Using Data Encoding and Data Compression Chapter 3

is estimated to consume about 0.000012 pJ and 0.000010 pJ extra energy per cacheline

access respectively. The total area overhead is 0.007 mm2, which is negligible to the area

of MLC STT-RAM arrays (it is reported that a 45nm 64MB SLC STT-RAM chip can

have an area of 3.06 mm2 with device-architecture co-optimization [24]). The encoding

process would induce delay to the original write latency. The decoding process is fairly

simple and fast. Later, the experimental results will show that the small extra delay from

the encoder and the decoder has insignificant impact on overall performance.

3.2.5 Experimental Methodology

A pin-based multi-core x86 simulator, Sniper [25], is used in the experiments. The

core and memory configurations are summarized in Table 3.3. A CMP is modeled with

four 4-issue, out-of-order cores running at 2GHz. Each core has private 32KB I-L1 and

32KB D-L1 caches, which are 4-way associative SRAM. Each core has an 8MB L2 cache,

which is 16-way associative MLC STT-RAM with asymmetric read and write latencies.

In addition, cacheline size is set to 64 bytes and write-back policy is employed. The

capacity of DRAM main memory is 4GB in the simulation. There is one channel, one

rank and eight banks in the DRAM main memory, and close-page policy is adopted.

Table 3.3: Baseline configurations in the simulation.

Processor
4-core CMP, x86, 2GHz, out-of-order, 4-issue,
128-entry reorder buffer

L1 cache
private, 32KB I-L1 & 32KB D-L1 SRAM, LRU,
64B line, 4-way, 2-cycle access, write back

L2 cache
private, 8MB MLC STT-RAM, LRU, 64B line,
16-way, 5-cycle read, 37-cycle write, write back

Main memory
4GB DRAM, 300-cycle access latency,
1 channel, 1 rank, 8 banks, close-page

Thirteen workloads are evaluated from SPEC CPU2006 benchmarks [26] including

both integer and floating point applications. Four copies of each benchmarks were si-

19

Optimize MLC STT-RAM Cache Design Using Data Encoding and Data Compression Chapter 3

multaneously executed on four cores in the simulations. For each workload, the cache

is warmed up with the initial 10M instructions and simulated using the next 500M in-

structions. There are different read and write access numbers across these workloads, as

shown in Figure 3.6. mcf , gromacs and xalancbmk can be categorized as write-intensive

applications, while bwaves, libquantum and gobmk are read-intensive benchmarks.

0

10

20

30

40

50

60

70

80

90

100

P
er

ce
n

ta
g

es
 o

f
R

ea
d

 a
n

d
 W

ri
te

A
cc

es
s

N
u

m
b

er
s

(%
)

Write

Read

Figure 3.6: The percentages of read and write access numbers.

3.2.6 Experimental Results

By dynamically mapping resistance and logic states, the ratios of energy efficient

states (including MEES and SEES) should increase compared with the static encoding

scheme [19]. Figure 3.7 presents the result. As expected, the increasing percentages

vary a lot across different applications, from 2.5% (zeusm) up to 25.2% (bwaves). The

average (gmean) is 11.5% among the thirteen evaluated workloads, with four above 15%,

five between 8% and 15% and four below 8%. Such dramatic variance comes from the

great dissimilarity of data that are written in those applications. In lbm, libquantum,

milc, and zeusmp, the ratios of energy-efficient states are already as large as over 65%,

and in most write operations, L00 and L11 are the dominant proportion of write data. In

such cases, the dynamic encoding algorithm would probably suggest the same mapping

20

Optimize MLC STT-RAM Cache Design Using Data Encoding and Data Compression Chapter 3

method as the static encoding scheme does. Therefore, there is limited improvement in

these applications. In astar, bwaves, gemsFDTD and bzip2, write data have varying

patterns, and dynamic encoding has the flexibility to handle such cases, and thus shows

better results than the static mapping.

40

45

50

55

60

65

70

75

80

85

P
er

ce
n

ta
g

es
 o

f

E
n

er
g

y
-e

ff
ic

ie
n

t
S

ta
te

s
(%

)

static

dynamic

Figure 3.7: Percentages of energy-efficient states (including MEES and SEES) in static
data-resistance encoding and dynamic encoding.

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

W
ri

te
 E

n
er

g
y

 C
o

n
su

m
p

ti
o
n

(N
o
rm

a
li

ze
d

 t
o

 S
ta

ti
c

E
n

co
d

in
g
)

static

dynamic

Figure 3.8: Write energy reduction of dynamic data-resistance encoding compared
with static encoding.

Figure 3.8 shows write energy reduction by the dynamic data-resistance encoding

compared with the static scheme. From Figure 3.8, there is 12.4% on average (gmean)

and up to 25.4% (bwaves) decrease in total write energy consumption, which is in accor-

21

Optimize MLC STT-RAM Cache Design Using Data Encoding and Data Compression Chapter 3

dance with the increase trend of the percentages of energy-efficient states in Figure 3.7.

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 10 20 30 40 50 60 70 80 90 100W
ri

te
 E

n
er

g
y

 C
o

n
su

m
p

ti
o
n

(N
o
rm

.
to

 S
ta

ti
c

E
n

co
d

in
g
)

Execution Percentage (%)

astar

Figure 3.9: Write energy of dynamic encoding over execution time.

0.9

0.91

0.92

0.93

0.94

0.95

0.96

0.97

0.98

0.99

1

IP
C

 R
es

u
lt

(N
o
rm

.
to

 I
d

ea
l

P
er

fo
rm

a
n

ce
)

ideal

dyanmic

Figure 3.10: Performance degradation of dynamic encoding.

Figure 3.9 describes how dynamic encoding overwhelms the static technique in write

energy consumption over execution time. During the execution process of astar, there

are some phases when the dynamic scheme is comparable to static (0%–20%, 50%–65%

and 85%–100%), and there are other phases when the dynamic encoding displays its

advantages over the static scheme (20%–50% and 65%–85%). In the latter phases, the

write data patterns are more random; hence dynamic encoding can achieve more energy

saving by optimizing the data-resistance mapping at runtime.

22

Optimize MLC STT-RAM Cache Design Using Data Encoding and Data Compression Chapter 3

It is also evaluated how much the dynamic data-resistance encoding technique af-

fects the overall performance, as shown in Figure 3.10. Due to the extra delay induced

by the encoder and the decoder, there is 2.3% on average and up to 4.6% degradation

in instructions per cycle (IPC) compared with the ideal case in which there is no time

overhead. From Figure 3.8 and Figure 3.10, the proposed dynamic data-resistance en-

coding technique can efficiently save write energy with very limited negative effect on

performance.

3.2.7 Summary

Previous work has shown that STT-RAM has great potential to replace SRAM as

future cache technology. MLC STT-RAM can provide even higher density than SLC

STT-RAM, and is a promising technology to build large on-chip caches in CMP systems.

However, MLC STT-RAM suffers from high write energy because its write operations are

complex and require very large write currents. This project proposes a dynamic data-

resistance encoding scheme to reduce the write energy consumption in MLC STT-RAM

cache with limited degradation of overall performance. Compared with the optimal static

data-resistance encoding, this dynamic encoding scheme can achieve 12.4% reduction in

write energy consumption with 2.3% degradation of IPC on average.

3.3 Optimizing Energy and Performance with Data

Compression

This section presents the optimized MLC STT-RAM cache design utilizing data com-

pression. It first discusses the data mapping methods for MLC STT-RAM cache, and

then introduces the cache design based on the interleaved mapping method, including the

23

Optimize MLC STT-RAM Cache Design Using Data Encoding and Data Compression Chapter 3

data compression algorithm used and two proposed techniques using data compression.

The overhead estimation of the proposed techniques is presented before the experimental

setup and results. Finally, this project is summarized.

This project is focused on the easily fabricated series MLC STT-RAM. For series

MLC STT-RAM, reading the soft-bit (MSB) takes only one step, and writing the soft-

bit requires only a small switching current which will not flip the hard-bit. Therefore,

series MLC STT-RAM can perform like SLC by working only on the soft-bits, which

improves the access speed but reduces the capacity.

3.3.1 Data Mapping for MLC Based Cache

To adopt MLC STT-RAM for cache, one key design issue is how to map the data bits

of a cache line to MLCs. A straight-forward method is direct mapping (DM), as shown in

Figure 3.11 (a). Given a 64B (512-bit) cache line, it uses 256 2-bit MLCs to hold a line

and each cell stores two adjacent bits. Thanks to its simplicity, DM has been adopted

in some previous work [18, 22]. However, since DM does not differentiate soft-bit and

hard-bit regions, the read and write latencies are the worst-case two-step latencies no

matter which word of a line is accessed.

To take advantage of the fact that soft-bit region is fast, Bi et al. proposed cell

split mapping (CSM) [20] as shown in Figure 3.11 (b), in which a cache line is stored

either in all the soft-bits or in all the hard-bits of the cells. The soft-bit line and the

corresponding hard-bit line are a fast way and a slow way respectively of the same set.

To make best use of fast ways, a data migration mechanism is designed including an

inter-cell swapping scheme and the migration policies. To further improve the access

speed, they also propose an application-aware speed enhancement (ASE) mode for MLC

STT-RAM based caches, in which MLC STT-RAM can work as fast SLC at a set level

24

Optimize MLC STT-RAM Cache Design Using Data Encoding and Data Compression Chapter 3

(a)

(b)

0

1

5102

3

…

… 511

Line 0 Line 1

0

0

1

1

Line 0… …

… …
511

511 Line 1

Bit#

Bit#

0

1

5102

3

…

… 511

(c)

0 2551 …

… 511

Line 0 Line 1

256257

…

…

0 2551

256 257 511

MLC

Soft-bit

Hard-bit

Line

Bit#

Figure 3.11: MLC data mapping methods for a 64-byte (512-bit) cache line: (a) direct
mapping; (b) cell split mapping; (c) interleaved mapping.

of granularity when applications do not benefit much from the large capacity of each set

offered by MLC. Each cache set can dynamically halve or double the number of ways by

switching between MLC mode and ASE mode according to the result of a mode-predictor.

Interleaved mapping (IM) is another data mapping method [21]. As illustrated in

Figure 3.11 (c), the lower half of the data bits of a line are stored in the soft-bit region

while the higher half are put in the corresponding hard-bit region. Based on IM, Wang

et al. proposed a dynamic block size technique (DBS) to optimize MLC STT-RAM

based caches. Each cache set can operate in two modes: large block mode (LBM) and

small block mode (SBM), as shown in Figure 3.12 (a). LBM is a normal mode, utilizing

both the soft-bit region and the hard-bit region to store each line, while SBM uses only

the soft-bit region to store the hot data chunks of a line which has half the size of a

line. Therefore, SBM is faster and consumes less energy than LBM. The dynamic block

size mechanism can reconfigure the block sizes of each cache set at runtime according

to their proposed block size reconfiguration policy. Their experiment results show that,

the dynamic LBM-SBM switching mechanism based on IM surpasses the dynamic MLC-

ASE mode switching mechanism based on CSM [20], achieving about 1% more IPC

25

Optimize MLC STT-RAM Cache Design Using Data Encoding and Data Compression Chapter 3

improvement and 5% more energy saving over the LBM only baseline.

MLC

Soft-bit

Hard-bit

Fast Set

(SBM)

(a)

Way 0 Way 1 Way [N-1]

0 2551 …

… 511256257

0 2551 …

… 511256257

0 2551 …

… 511256257
… …Slow Set

(LBM)

0 2551 …

…X X X

0 2551 …

…X X X

0 2551 …

…X X X
… …

Cache Set

(OMT)

(b)

Way 0 Way 1 Way [N-1]

0 2551 …

…X X X

0 2551 …

…X X X
… …0 2551 …

… 511256257

Cache Set

(CAT)

(c)

Way 0 − 1 Way 2 − 3 Way [2N-2] − [2N-1]

0 2551 …

…0 1
… … 0 2551 …

… 511256257255

0 2551 …

…0 1 255

Compressed Line

Figure 3.12: (a) The previous dynamic block size technique (DBS); (b) the proposed
overhead minimized technique (OMT); (c) the proposed capacity augmented technique
(CAT).

3.3.2 Design Overview

In the MLC STT-RAM cache design, the interleaved mapping method (Figure 3.11

(c)) is adopted for data mapping. However, unlike the previous work using dynamic

block sizes [21], this work fixes the data block size, and employs data compression to fit

a compressible line into only the soft-bit region or the hard-bit region of the cells.

Two techniques based on data compression are proposed. One is the Overhead Mini-

mized Technique (OMT) as shown in Figure 3.12 (b), in which a compressible line is put

only into the soft-bit region and the corresponding hard-bit region is not used so that the

change of the cache management and the modification of the tag arrays are minimized.

The other is the Capacity Augmented Technique (CAT) as shown in Figure 3.12 (c), in

26

Optimize MLC STT-RAM Cache Design Using Data Encoding and Data Compression Chapter 3

which a compressible line can be put into the soft-bit region as well as the hard-bit region

so that the capacity of the cache is enhanced thanks to data compression. Compared

with the dynamic block size technique (DBS) as shown in Figure 3.12 (a), OMT supports

a finer granularity of fast and slow ways. It does not require one whole cache set to op-

erate in either fast way mode (SBM) or slow way mode (LBM); however, each way in a

cache set can be a fast way as long as the data can be compressed into half the size and

fit into the soft-bit region. Moreover, OMT is more lightweight than DBS by avoiding

the hardware and scheduling overheads of dynamic block size reconfiguration. Compared

with DBS, OMT and CAT provide a larger cache capacity, because the soft-bit region

can store all the data of a line in a compressed fashion and in CAT the left hard-bit

region can be used to store another compressible line.

3.3.3 Data Compression

The effectiveness of the proposed techniques depends on how many cache lines are

compressible. In this work, a line is “compressible” specifically means that it can be

compressed into half its size so that it can be fit into only the soft-bit region or the

hard-bit region. A number of cache compression schemes have been proposed which

exploit various data compression methods to expand the effective cache capacity. For

example, Zero-Content Augmented caches represent zero-value lines in a very compact

way [27]. Also, Frequent Value Compression [28] and Frequent Pattern Compression [29]

have been proposed and utilized in cache designs. Additionally, Base-Delta-Immediate

(B∆I) Compression [30] has been widely adopted as a practical data compression method

for on-chip caches thanks to its high compression ratio, low decompression latency, and

modest hardware complexity. Huffman coding based statistical compression has also

been explored for cache compression [31].

27

Optimize MLC STT-RAM Cache Design Using Data Encoding and Data Compression Chapter 3

The proposed techniques for MLC STT-RAM cache design do not rely on any specific

compression method. This project takes the state-of-the-art B∆I compression as an

example, and integrate it into the cache design. B∆I compression leverages the fact

that the values within a cache line have a low dynamic range, and therefore presents a

cache line using one or multiple base values and an array of differences (“deltas”) whose

combined size is smaller than the original cache line [30]. Two bases are used, one of

which is default zero, according to the suggested best option. Assuming that the cache

line size is 64 bytes, the B∆I encoding is defined in Table 3.4.

Table 3.4: B∆I encoding.
Name Base ∆ Size Encoding

Zeros 1B 0B 1B 00
Base8-∆1 8B 1B 17B 01
Base8-∆2 8B 2B 25B 10
No Compression N/A N/A 64B 11

The compressor consists of three compression units: one zero compression unit, one

8-byte-base 1-byte-delta (Base8-∆1) compression unit, and one 8-byte-base 2-byte-delta

(Base8-∆2) compression unit. Therefore, the encoding needs 2 bits, as shown in Ta-

ble 3.4, and they are attached to the corresponding tag for each cache line. All these

compression units operate in parallel, and a selection logic chooses the optimal one if

multiple compression options are available for a cache line. In the previous B∆I com-

pressor design [30], it contains other B∆I compression units of different base and delta

sizes, e.g. 8-byte-base 4-byte-delta, 4-byte-base 1-byte-delta, and so on. The reasons why

only Base8-∆1 and Base8-∆2 are chosen are: i) they can compress a cache line into half

the size; ii) they can achieve almost the best compression ratio of B∆I compression; and

iii) the hardware overhead is greatly reduced. In Table 3.4, the compressed cache line

size for Base8-∆1 is 17 bytes, including one 8-byte base, eight 1-byte deltas, and one byte

each bit of which indicates the base for each segmentation (or delta) is either the default

28

Optimize MLC STT-RAM Cache Design Using Data Encoding and Data Compression Chapter 3

zero base or the other base. Similarly, the compressed cache line size for Base8-∆2 is 25

bytes.

A 3-level cache hierarchy as described in Table 3.5 is simulated, and the data in the

last level cache are profiled over the SPEC CPU2006 benchmarks. Figure 3.13 shows the

percentages of the compressible lines and the breakdowns of the compression schemes

across 15 selected benchmarks. On average, 42% of the target cache line data are com-

pressible. From the breakdown results it can be found that, for some benchmarks such

as zeusmp and GemsFDTD, more lines are compressed by the “Zeros” scheme encoded

as “00”, and for some other benchmarks such as milc and lbm, more lines are compressed

by the B∆I schemes including Base8-∆1 and Base8-∆2 encoded as “01” and “10”.

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1
NoCompr.

Zeros

BΔI

Compressible

Figure 3.13: The profiling results over SPEC CPU2006 benchmarks: the percentages
of compressible lines and the breakdowns of compression schemes.

3.3.4 The Overhead Minimized Technique

As shown in Figure 3.12 (b), with OMT, each way in a cache set can be a fast way

or a slow way, depending on whether the data line can be compressed into half the size.

As mentioned above, a 2-bit compression scheme code is attached to the tag for each

cache line which indicates whether the line is compressed and which compression scheme

29

Optimize MLC STT-RAM Cache Design Using Data Encoding and Data Compression Chapter 3

is used.

Figure 3.14 describes how OMT processes write and read requests. For a write request,

as shown in Figure 3.14 (a), first the input data are processed by the compressor. Then,

based on the compression scheme code, it is determined whether the input data have

been compressed. If yes, the compressed input data are written into the soft-bit region,

and it is a fast and energy-efficient write operation; otherwise, the input data are written

into both the soft-bit and the hard-bit regions, and it is a slow and energy-consuming

write operation. The corresponding compression scheme code in the tag arrays is also

updated. For a read request, as shown in Figure 3.14 (b), first the compression scheme

code in the tag arrays is checked to determine whether the line is compressed or not.

If yes, the compressed data are read out from the soft-bit region through a fast read

operation, and then decompressed by the decompressor according to the compression

scheme code before output; otherwise, the data are read out from both the soft-bit and

the hard-bit regions through a slow read operation, and then output.

Compressor

Can the input data

be compressed to

a half line?

Write request

Write the soft-bit region

(fast write)

Write both the regions

(slow write)

Decompressor

Is the line

compressed?

Read request

Read the soft-bit region

(fast read)

Read both the regions

(slow read)

Output data

Output data

Yes No

Yes No

(a) (b)

Figure 3.14: The algorithms of OMT to process (a) a write request and (b) a read request.

3.3.5 The Capacity Augmented Technique

As presented above, OMT takes advantage of data compression to reduce the ac-

cess latency and energy to MLC STT-RAM. However, it does not leverage the capacity

30

Optimize MLC STT-RAM Cache Design Using Data Encoding and Data Compression Chapter 3

benefits from data compression. Therefore, CAT is proposed, which increases the cache

capacity by using the saved hard-bit regions to accommodate more compressible lines of

data. As shown in Figure 3.12 (c), two compressible lines can reside in the soft-bit region

and the hard-bit region of the cells simultaneously. Therefore, the maximum number of

ways that each cache set can hold doubles.

To fully utilize the capacity benefits requires doubling the tags, which incurs a con-

siderable overhead. To reduce the tag overhead, the maximum number of ways of each

cache set can be limited. According to the profiling results of the percentage of com-

pressible lines as shown in Figure 3.13, increasing the tags by 50% is a reasonable choice.

A simple tag-data mapping based on the conventional one is proposed, in which the

original tags are directly mapped to the original data positions while the added tags can

be mapped to any hard-bit region of the cache set. Therefore, each added tag needs to

store its data position. For example, it requires 4 additional bits per added tag to store

16 possible hard-bit region positions in an originally 16-way cache. Moreover, the cache

replacement policy needs to be modified since some ways are compressed while others are

not. The very simple least recently used (LRU) policy is applied, which chooses the LRU

compressed line or the LRU in-compressed line for replacement according to whether the

incoming line is compressible or not. The study of more intelligent cache policies are left

for the future work.

3.3.6 Overhead Estimation

The hardware overhead of the proposed techniques using data compression include

the compressor and the decompressor. The B∆I compressor and decompressor are im-

plemented using Verilog, and synthesized with Synopsys Design Compiler at 45nm tech-

nology node. The estimated area cost is 0.0018mm2, which is negligible to the entire

31

Optimize MLC STT-RAM Cache Design Using Data Encoding and Data Compression Chapter 3

chip area. Besides the compressor and decompressor overhead, OMT and CAT also in-

cur some tag overheads. As discussed above, OMT has very small tag overhead, only

2-bit compression scheme code for each cache line; CAT uses 50% more tags to support

a larger effective cache capacity.

Data compression also increases the cache access latency and energy. With the system

simulation configurations (as shown Table 3.5), compression increases the read latency

by 1 cycle, and decompression increases the write latency also by 1 cycle. Moreover,

compressing a cache line consumes 0.003nJ on average, and decompressing a cache line

consumes 0.001nJ on average.

3.3.7 Experimental Methodology

In this project, the evaluation is based on the gem5 full system simulator [32] with

modification to the cache implementation to simulate the architectural design. The mod-

ification to gem5 includes an asymmetric cache read/write latency model and integrated

(de)compression unit. The processor and memory configurations are summarized in Ta-

ble 3.5. Both single-core and four-core systems are simulated with DDR3-1600 as the

referenced memory model.15 benchmarks from the SPEC CPU2006 benchmark suite are

chosen for single-core simulation. In addition, 10 benchmarks with a wide range of differ-

ent compression ratio are selected and mixed into 10 groups of 4 for multi-programmed

workload simulation as shown in Table 6.1. The accesses per kilo instructions (APKI)

is used as a metric to measure the access behavior of LLC, and the APKIs of different

workloads are listed in Table 6.1. In the simulation, one billion instructions are fast-

forwarded before 5 billion instructions are executed. Note that at least one benchmark

with high compressibility is selected for each multi-programmed workload.

Four STT-RAM LLC designs are compared:

32

Optimize MLC STT-RAM Cache Design Using Data Encoding and Data Compression Chapter 3

Table 3.5: Processor and Memory Configurations.

Processor 1-/4-core, alpha ,4GHz, out-of-order, 8-issue
L1 cache private, 32KB I/D, 64B line, 4-way
SRAM 2-cycle latency
L2 cache private, 256KB, 64B line, 8-way
SRAM 5-cycle latency
L3 cache shared, 64B line, 16-way
STT-RAM 4MB SLC, 8MB MLC
Main memory 8GB, DDR3-1600, 64bit I/O, 8 banks
DRAM tCL-tRCD-tRP-tWR: 11-11-11-12

Table 3.6: Evaluated workloads.
No Benchmark APKI No Benchmark APKI
1 GemsFDTD 19.38 mix1 4,5,11,15 13.59
2 astar 0.96 mix2 3,6,8,13 9.69
3 bwaves 16.66 mix3 5,11,14,15 10.17
4 bzip2 9.52 mix4 4,6,8,13 10.77
5 dealII 1.73 mix5 3,9,11,14 13.39
6 gobmk 2.92 mix6 4,5,8,15 9.89
7 h264ref 1.92 mix7 3,6,9,13 23.73
8 hmmer 4.52 mix8 3,5,8,11 9.56
9 lbm 55.63 mix9 4,6,13,15 25.69
10 leslie3d 11.97 mix10 3,4,5,14 10.68
11 milc 9.42
12 sjeng 0.60
13 soplex 18.52
14 tonto 0.73
15 zeusmp 11.50

• SLC: the SLC STT-RAM cache.

• MLC: the baseline conventional MLC STT-RAM cache.

• OMT: the proposed MLC cache design with overhead-minimized technique.

• CAT: the proposed MLC cache design with capacity-augmented technique.

The STT-RAM LLC configurations are summarized in Table 3.7, where the circuit-level

parameters of latency, energy, and leakage power are generated from NVSim [33].

33

Optimize MLC STT-RAM Cache Design Using Data Encoding and Data Compression Chapter 3

Table 3.7: STT-RAM LLC Parameters.
SLC MLC OMT

Read latency (cycle) 13 19 S: 14, H: 20
Write latency (cycle) 49 90 S: 50, H: 95
Read energy (nJ) 0.415 0.424 S: 0.427, H: 0.579
Write energy (nJ) 0.876 1.859 S: 1.084, H: 2.653
Leakage power (mW) 80.8

3.3.8 Experimental Results

Energy Results

Figure 3.15 shows the energy consumption normalized to MLC design for single-

programmed workloads and multi-programmed workloads respectively. As indicated,

SLC design has the lowest energy consumption due to its one-step operation. As shown

in Figure 3.15 (a), the OMT scheme reduce system energy by 32.0% on average and up to

70.0% for benchmarks with high compressibility and APKI, e.g. zeusmp and GemsFDTD.

Figure 3.15 (b) shows that the energy consumption for multi-programmed workloads is

further reduced by 39.4% on average. This is because applications running on a multi-

core system cause more accesses on LLC. Fortunately, OMT avoids compressible cache

lines being written into the hard-bit region, which leads to significant energy savings.

While CAT design reduce energy by 19.3% on average, since energy saving is traded

for potential better performance. Only dynamic energy is considered because the major

difference of energy consumption comes from dynamic cache accesses and different cache

designs share the similar peripheral circuit.

A major source of energy saving is the write energy reduction from two-step operation

to one-step soft-bit only operation. In Figure 3.16, the Fast Write Ratio is the percentage

of saved one-step write accesses over total write accesses on LLC and demonstrate that

the proposed cache design avoids on average 54.5% of normal two-step writes to one-step

34

Optimize MLC STT-RAM Cache Design Using Data Encoding and Data Compression Chapter 3

(a)

(b)

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

N
o

rm
al

iz
ed

 E
n

er
g

y
 t

o
 M

L
C SLC OMT CAT

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

N
o

rm
al

iz
ed

 E
n

er
g

y
 t

o
 M

L
C SLC OMT CAT

Figure 3.15: Energy results normalized to MLC for: (a) single-programmed and (b)
multi-programmed workloads.

programming for shared LLC.

Performance Results

The Instruction Per Cycle (IPC) is used as the metric to evaluate system performance,

and the overall throughput (
∑

IPC) is employed for multi-programmed workloads. First,

the effectiveness of MLC design over SLC design is demonstrated. As shown in Fig-

ure 3.17 (a), for single-programmed simulation, the SLC design with half of the capacity

than MLC design incurs on average 2.8% performance degradation compared with the

35

Optimize MLC STT-RAM Cache Design Using Data Encoding and Data Compression Chapter 3

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

F
as

t
A

cc
es

s
R

at
io

Fast Write Ratio Fast Read Ratio

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

F
as

t
A

cc
es

s
R

at
io

Fast Write Ratio Fast Read Ratio

(a)

(b)

Figure 3.16: Fast access ratio results for: (a) single-programmed and (b) multi-pro-
grammed workloads.

baseline MLC design. While the performance benefit of employing MLC design differs

among different applications. Compared with SLC design, the system performance of

some benchmarks, e.g. omnetpp and hmmer, actually degrades due to the increased ac-

cess latency of MLC design, and these benchmarks have a smaller working set on LLC

and cannot take much advantage of the increased cache capacity. On the other hand, Fig-

ure 3.17 (b) shows that for multi-programmed workloads, the performance of SLC design

degrades by 12.1% on average, which comes from the heavier pressure on LLC. Therefore,

even though the SLC design consumes the lowest energy, it potentially degrades system

performance due to the reduced capacity.

36

Optimize MLC STT-RAM Cache Design Using Data Encoding and Data Compression Chapter 3

(a)

(b)

0.95

0.96

0.97

0.98

0.99

1

1.01

1.02

1.03

N
o

rm
al

iz
ed

 I
P

C
 t

o
 M

L
C

SLC OMT CAT

0.7

0.75

0.8

0.85

0.9

0.95

1

1.05

1.1

1.15

1.2

N
o

rm
al

iz
ed

 I
P

C
 t

o
 M

L
C

SLC OMT CAT

0.6

Figure 3.17: IPC results normalized to MLC for: (a) single-programmed and (b)
multi-programmed workloads.

The proposed OMT design has the system performance benefit of larger capacity en-

abled by MLC structure over SLC design. Compared with the baseline MLC design, OMT

reduces the energy consumption but incurs no performance degradation. Slightly perfor-

mance improvement (up to 2.5%) is observed for OMT design since a certain amount of

read/write accesses to hard-bit region are eliminated. The performance improvement is

insignificant because the target cache is the level-3 cache, which is insensitive to write

latency, and the optimization on read latency only has limited impact on system perfor-

mance. However, it is demonstrated that on average 22.5% (38.2% for single-programmed

workloads) of total read accesses are optimized to one-step operation as the Fast Read

37

Optimize MLC STT-RAM Cache Design Using Data Encoding and Data Compression Chapter 3

Ratio results show in Figure 3.16. Better performance improvement is expected when

OMT is applied at higher level of cache hierarchy or when the system is loaded with

cache intensive workloads.

Figure 3.17 shows that the CAT design improves system performance by 0.5% for

single-programmed benchmarks and by 6.1% for multi-programmed benchmarks, both

on average. The effectiveness of the CAT design relies on both compressibility and APKI

of different workloads. For workloads with high compressibility and APKI, e.g. mix7 and

mix9, it is observed that the performance is improved by over 10.0%. The effective cache

capacity is increased when equipped with CAT since the saved hard-bit region can store

additional cache lines. Consequently, it reduces memory accesses and improves system

performance. While other workloads show little impact on performance, which is due to

either low compressibility or insensitive access latency impact on LLC.

3.3.9 Summary

MLC STT-RAM has been widely studied as a replacement of SRAM for constructing

large-scale and energy-efficient on-chip cache. However, the two-step read/write accesses

of MLC cause energy overhead and system performance degradation. This project pro-

poses two techniques leveraging data compression to optimize series MLC STT-RAM

based LLC design. The OMT technique avoids slow and energy-inefficient two-step ac-

cesses on both hard-bit and soft-bit regions to one-step accesses on soft-bit region only

by applying data compression. The CAT technique increases the effective cache capacity

by fitting a second compressible cache line into the saved hard-bit region of STT-RAM

cells. The experimental results on the evaluated multi-programmed workloads show that,

the cache design with OMT reduces the dynamic energy consumption of LLC by 39.4%

on average without performance degradation, while the cache design with CAT improves

38

Optimize MLC STT-RAM Cache Design Using Data Encoding and Data Compression Chapter 3

system performance by 6.1% and reduces the dynamic energy consumption by 19.3% on

average.

39

Chapter 4

Using MLC STT-RAM for Efficient

Local Checkpointing

This chapter presents a project that utilizes MLC STT-RAM for fast and energy-efficient

local checkpointing [9]. It is organized as follows. First, the motivation of this project is

introduced, and then the related work and the basics of checkpointing. Next, the details

of the proposed checkpointing mechanism is presented, where MLC STT-RAM is utilized

as main memory for efficient local checkpointing. Next, the experimental methodology

and evaluation results are shown before this project is summarized.

4.1 Motivation

In modern large-scale computing systems, high reliability, availability and service-

ability (RAS) have been mandatory. However, it becomes more and more challenging

to sustain sufficient RAS quality as the node count keeps increasing. Although each

component has been designed for a long mean time to failure (MTTF), the entire sys-

tem encounters a failure every few days or even several hours [34]. As the exascale

40

Using MLC STT-RAM for Efficient Local Checkpointing Chapter 4

era approaches, the MTTF of future large-scale systems is predicted to be only a few

minutes [35].

As a well-known error recovery mechanism, checkpointing has been widely used to

protect those systems from unexpected failures [36]. In the typical organization of a

contemporary supercomputer as shown in Figure 4.1, the process nodes usually deploy

DRAM as their main memory, and access the global storage via the I/O nodes. The

global storage is permanent storage, usually built with NAND flash based solid state

drives (SSDs) or conventional hard disk drives (HDDs), but DRAM is volatile memory

and hence vulnerable to errors. One state-of-the-art checkpointing approach is to save

the entire process address space to the non-volatile global storage periodically. However,

the limited data transfer bandwidth between DRAM and the global storage and the

centralized checkpointing topology prevent the performance scaling in future large-scale

computing systems. As the application size grows and the system failure rate increases,

larger-size and more frequent checkpoints are required, and consequently a significant

portion of execution time will be spent writing checkpoints. For instance, checkpointing

may incur over 50% performance overhead in a petaFLOPS system [37].

Interconnect

...

...

... ...

Process Nodes I/O Nodes

...

Global Storage

Figure 4.1: The typical organization of a contemporary supercomputer [36].

To address the scalability issue, local/gloabl hybrid checkpointing [38] and multi-level

41

Using MLC STT-RAM for Efficient Local Checkpointing Chapter 4

checkpointing [39] have been proposed as scalable solutions, which combine frequent

and fast local checkpoints to local storage with less frequent and slow global/remote

checkpoints to global storage. The effectiveness of these approaches is determined by how

many failures can be recovered from fast local checkpoints. In fact, most transient errors

affect only the failure node, and the system can be simply recovered by rebooting the

failure node with its local checkpoint. Dong et al. made an estimation for a petaFLOPS

system that 83.9% of failures only need local checkpoints [38].

To achieve better performance and higher power efficiency in local checkpointing,

some recent work has proposed to utilize the emerging non-volatile memories (NVMs),

such as PCM and STT-RAM, as the local storage of each process node thanks to their

non-volatility, fast random read access and zero standby leakage power [38, 40].

This project proposes to leverage MLC STT-RAM as the main memory for fast local

checkpointing. MLC opens up an inherent multi-versioning opportunity for checkpoint-

ing since each cell can store both the working data and the checkpoint data simultane-

ously [41]. Consequently, the system can be easily recovered from the local checkpoint

by moving data within memory cells, which substantially eliminates the data transfer

overhead between main memory and backup storage. Previous work has also considered

using MLC PCM for in-memory local checkpointing [41]. However, MLC PCM write

operations adopt the program-and-verify (P&V) technique, which iteratively apply par-

tial set pulses and verify if a specified precision criterion is met [42], to achieve desirable

intermediate resistance levels. Due to the P&V process, MLC PCM has even longer

write latency, higher write energy, and lower program throughput than SLC PCM; hence

using MLC PCM as main memory would significantly degrade system performance. Dif-

ferent from MLC PCM, writing MLC STT-RAM is relatively simple, taking two steps at

most [18]. This proposal takes advantage of the unique characteristics of MLC STT-RAM

write operations and ensures that only one-step writes occur during the entire execution

42

Using MLC STT-RAM for Efficient Local Checkpointing Chapter 4

time (including checkpoint and recovery). The evaluation results demonstrate the great

potential of using MLC STT-RAM as main memory for fast and energy-efficient local

checkpointing.

4.2 Related Work

Prior work has leveraged NVMs, such as PCM, as local storage/memory in each

process node to reduce the checkpoint overhead [38, 40]. They are used to save local

checkpoints, and also to store their neighbor nodes’ global/remote checkpoints. Figure 4.2

(a) depicts the typical structure of a process node in a contemporary supercomputer,

which employs DRAM as its main memory; Figure 4.2 (b) illustrates the node structure

leveraging SLC PCM as local storage or extended memory.

In local/global hybrid checkpointing proposed by Dong et al. [38], PCM is used

as local storage. The state of each node is backed up in their own persistent storage

periodically, and after several local checkpoints, a global checkpoint is created in the

background to the global storage or the neighbors’ local storage. In NVM-checkpoint

proposed by Kannan et al. [40], NVM (PCM) is used as extend memory, but is not di-

rectly exposed to applications. Specialized NVM interface is provided for applications to

write checkpoints, and OS-level support is given to manage the data movement across the

DRAM/NVM boundary. Their experimental results showed that both the hybrid check-

pointing and NVM-checkpoint can efficiently reduce the checkpoint overhead by utilizing

PCM-based local storage/memory. Nevertheless, the checkpoint latency is still limited

by the bandwidth of writing checkpoints from DRAM to PCM. Although the sophisti-

cated PCM-DIMM design and the novel 3D-PCM scheme (deploying PCM directly atop

DRAM) can overcome the limited data transfer bandwidth between DRAM and PCM,

the real bottleneck is PCM’s low program/write throughput due to its high write power

43

Using MLC STT-RAM for Efficient Local Checkpointing Chapter 4

and long write latency. In this work, MLC STT-RAM is leveraged as the persistent main

memory in each process node, which provides higher write throughput than PCM. The

proposed node structure is shown in Figure 4.2 (c). During local checkpointing, data are

transferred within memory cells, from one bit of each cell to another bit, and no data

movement is required between different memories. Therefore, the checkpoint overhead

can be significantly reduced.

CPU

Caches

DRAM

Memory

CPU

Caches

MLC STT-RAM

Memory

(a) (b) (c)

Network Interface Network Interface

PCM

CPU

Caches

DRAM

Memory

Network Interface

Figure 4.2: (a) The typical structure of a process node; (b) the process node structure
leveraging PCM as local storage/memory [38, 40]; (c) the process node structure
proposed in this project.

The idea of using a multi-level cell for local checkpointing has been presented by Yoon

et al. in a patent [41], which gives an example that working data are stored in a first

level and checkpoint data are stored in a second level. However, they broadly consider all

desired types of MLC NVMs, including flash, PCM and STT-RAM, but did not focus on

a specified memory technology. In this work, MLC STT-RAM is leveraged as persistent

main memory and take advantage of its unique features that other memory technologies

do not have to design an efficient local checkpointing. Furthermore, a more complete

solution is provided, and its performance and energy consumption are evaluated.

44

Using MLC STT-RAM for Efficient Local Checkpointing Chapter 4

4.3 The Basics of Checkpointing

Error recovery mechanisms can be classified into forward error recovery (FER) and

backward error recovery (BER), and BER is also called checkpointing or rollback recov-

ery [43]. FER prepares a system for possible future errors, by taking extra tasks with

redundant hardware. Triple-modular redundancy (TMR) is the most popular example,

in which three systems perform the same process simultaneously and output a single

result through majority-voting. Checkpointing attempts to restore a system to an ear-

lier error-free state (i.e. a recovery point) after an error occurs by recording recovery

information during execution. Checkpointing requires less hardware redundancy than

FER. However, it is associated with three overheads: the performance overhead during

error-free execution, the storage overhead for recovery information recording, and the

recovery overhead to retrieve lost work.

Prvulovic et al. designed a taxonomy [43] that classifies checkpointing schemes ac-

cording to three characteristics: how to achieve checkpoint consistency (globally or lo-

cally), how to separate checkpoint from working data (fully or partially), and where to

store checkpoint (in external storage or in internal memory). Their categorization can

be extended with one more feature: the transparency to applications (transparent or

application-initiated) [40]. To avoid the overhead of specialized NVM interface and OS

support in NVM-checkpoint, the lightweight local/global hybrid checkpointing is adopted

to evaluate the proposed MLC STT-RAM based local checkpointing mechanism in this

work. The utilized hybrid checkpointing is located in the design space of checkpointing

as below.

Global or Local Consistency. Global checkpointing requires all the process nodes

to synchronize to generate a global checkpoint periodically [44]. In local checkpointing,

each process node creates their own checkpoints either in a coordinated way [45] or in

45

Using MLC STT-RAM for Efficient Local Checkpointing Chapter 4

an uncoordinated fashion [46]. Coordinated schemes require the nodes that have been

interacting with each other to generate their own checkpoints at the same time, while

uncoordinated schemes do not. In the hybrid checkpointing, each process node maintains

its local checkpoint coordinately and a global checkpoint is periodically generated from

an existing local one.

Safe External or Internal Storage. The checkpoint can be stored either in safe

external storage (usually disk arrays) [46], or in safe main memory or internal storage [47].

In-memory checkpointing is faster than in-disk checkpointing, but requires more hardware

support to assure the data safety and fault-tolerance. In the hybrid checkpointing, both

the internal storage (MLC STT-RAM) and external storage (global storage) are employed

as the safe backup.

Full or Partial Separation. Full separation means that the checkpointing data is

completely separated from working data [45]. For example, it can be achieved by simply

copying the entire memory state to another place. With regards to the fact that there

may be not much change between two sequential checkpoints, incremental checkpointing

has been studied to reduce the checkpointing overhead [48]. Other optimizations to

reduce the copying size have been explored, such as memory exclusion [49]. On the other

hand, partial separation keeps the checkpointing and working data as the same one, and

uses buffering, renaming or logging schemes to record state modifications since the last

checkpoint. Even though it can reduce the storage overhead, partial separation increases

performance or recovery overhead. The hybrid checkpointing employs full separation,

and either the entire copying or incremental checkpointing can be applied.

Transparent or Application-initiated. Transparent checkpointing simply saves

the entire process address space, and thus does not require application developers to ex-

plicitly handle failures in their algorithm design [50]. Application-initiated checkpointing

requires application developers to identify which data to be stored in their code, and

46

Using MLC STT-RAM for Efficient Local Checkpointing Chapter 4

hence can reduce the storage overhead [40]. In the hybrid checkpointing, transparent

checkpoints are preferred since the advantages of MLC STT-RAM can be fully utilized

and there is no need to restructure the code of applications.

4.4 The Proposed Mechanism

The proposed checkpointing mechanism is presented in this section. This section first

introduces the MLC STT-RAM main memory design, and then describes the local check-

pointing scheme using MLC STT-RAM. The overall hybrid checkpointing mechanism is

explained, before finally the storage overhead is discussed.

4.4.1 MLC STT-RAM Main Memory

Recent work has evaluated SLC STT-RAM as a feasible main memory alternative, and

demonstrated that with optimized write operations, STT-RAM can provide comparable

performance to equal-capacity conventional DRAM and reduce energy consumption by

60% [7]. This work utilizes MLC STT-RAM as the main memory of each process node.

Although MLC STT-RAM offers the opportunity of a higher memory capacity than SLC

STT-RAM within the same area constraint, it may degrade performance and increase

energy consumption since it has more complex write operations. From Section 3.1, we

know that for MLC STT-RAM (either parallel or series), writing soft-bits is fast and

energy-efficient, because it requires a small write current and finishes in one step; writing

“00” or “11” is also a one-step operation but requires a larger write current; the other

cases which have to take two steps are the worst ones in terms of both write latency and

energy. When writing a memory row or even a small portion of it, it is most likely that

at least one cell requires two steps; therefore, the memory system performance would

degrade compared with using SLC STT-RAM. In the MLC STT-RAM main memory

47

Using MLC STT-RAM for Efficient Local Checkpointing Chapter 4

design, the soft-bit of each cell is used as operated memory to keep working data, and

the hard-bit is employed to store a checkpoint for the soft-bit. Therefore, during error-

free execution, only soft-bits are updated; during checkpoint and recovery, only values

“00” and “11” are written. This design ensures that only one-step write operations occur

throughout the entire execution time.

The bank organization of the MLC STT-RAM main memory design is shown in Fig-

ure 4.3. Different from conventional STT-RAM bank organization, the sense amplifiers

and write drivers are controlled by the “Mode” signal. They can work in four modes: 1)

normal read, 2) normal write, 3) checkpoint, and 4) recovery. Since the operated memory

is soft-bits, in normal read or write mode, only the soft-bits of memory cells are read out

or updated. In checkpoint mode, first the soft-bits of memory cells (working data) are

sensed, and then values of “00” or “11” are written to the cells according to the values

of their soft-bits. In recovery mode, first the hard-bits of memory cells (checkpoint data)

are sensed, and then values of “00” or “11” are written to the cells according to the values

of their hard-bits. The data flow of the mode control of sense amplifiers and write drivers

is shown in Figure 4.4. To clearly illustrate different modes, duplicated sense amplifiers

and write drivers are drawn; but in reality, the same sense amplifier and write driver are

used to handle both the hard-bit and the soft-bit of a cell.

4.4.2 Local Checkpointing

Figure 4.5 presents an example to illustrate the proposed local checkpointing mecha-

nism using MLC STT-RAM as main memory. As shown in Figure 4.5, each cell contains

two bits: the upper one is the soft-bit which stores the working data; and the lower one

is the hard-bit which stores the checkpoint data. At Checkpoint i, both the working and

checkpoint data values are “0101...0101”. The subsequent writes (from i1 to im) only

48

Using MLC STT-RAM for Efficient Local Checkpointing Chapter 4

Row MLC STT-

RAM Array..
.
..
.

Data Out

Buffer

Data In

Buffer

Column Select Stage 2

Word Line

Bit Line Source Line

Address

Column

Address

Sense Amplifiers &

Write Drivers

MTJ(s)
Access

Transistor

00: Normal Read

01: Normal Write

10: Checkpoint
① Soft bits are sensed

② Values of “00” or “11”

are written

11: Recovery
① Hard bits are sensed

② Values of “00” or “11”

are written

Cell

Column Select Stage 1

Mode

Control

Figure 4.3: The bank organization of MLC STT-RAM main memory. The sense
amplifiers and write drives are controlled by the “Mode” signal which has four different
states.

Hard

-Bit

Soft

-Bit

Sense Amplifier Write Driver

Write Driver Sense Amplifier

Mux

Input Data

Data Output

Normal Write

or Recovery

Recovery

Normal Read

or Checkpoint

Checkpoint

Recovery
Mode Control

Figure 4.4: The data flow diagram of the mode control of sense amplifiers and write drivers.

work on the soft-bits with small write currents, and the hard-bits will not change under

those small write currents. At Checkpoint i+1, first the dirty cache data will be dumped

into the operated memory (soft-bits), and then the checkpoint data (hard-bits) should be

updated by mirroring the current working data. This internal data transfer between the

two bits of each cell can be accomplished by the sense amplifiers and write drivers working

in checkpoint mode as described in Figure 4.3. With the data comparison write property,

49

Using MLC STT-RAM for Efficient Local Checkpointing Chapter 4

many unnecessary writes can be saved at bit level, and incremental checkpointing can

be implemented naturally without other hardware of software overheads. Therefore, it is

quite lightweight to create local checkpoints by using MLC STT-RAM as main memory,

and the efficiency of the scheme derives from the unique features in MLC STT-RAM

write operations.

soft-bit0 1 0 1 0 1 0 1... ...

... ...0 1 0 1 0 1 0 1

0 0 0 0 1 1 1 1... ...

... ...0 1 0 1 0 1 0 1

1 1 0 0 0 1 1 0... ...

... ...0 1 0 1 0 1 0 1

1 1 0 0 0 1 1 0... ...

... ...1 1 0 0 0 1 1 0

hard-bit

soft-bit

hard-bit

soft-bit

hard-bit

soft-bit

hard-bit

Checkpoint i:

Checkpoint i+1:

Write i1:

Write im:

...

...

...

...

τ : local

checkpoint

interval

Figure 4.5: An example to illustrate the proposed local checkpointing mechanism
using MLC STT-RAM.

4.4.3 The Overall Hybrid Checkpointing

The lightweight local/global hybrid checkpointing [38] is adopted in this work to

achieve high RAS for large-scale computer systems. MLC STT-RAM is utilized as main

memory and a local checkpoint is recorded in the hard-bits of memory cells. The global

checkpoints can be saved in the global storage which is managed by the I/O nodes as

shown in Figure 4.1, or in the local storage of the neighbor nodes. If they choose the

second way, each process node should possess their own local storage to store the global

checkpoints of their neighbors. The local storage can be built with flash, HDD or PCM.

The local/global hybrid checkpointing is demonstrated in Figure 4.6, and the param-

eters are explained in Table 4.1. During error-free execution, as shown in Figure 4.6

50

Using MLC STT-RAM for Efficient Local Checkpointing Chapter 4

(a), after every local checkpoint interval (τ), each process node makes a local checkpoint

which takes a variable time δL. At the end of every global checkpoint interval, a global

checkpoint is created after a local checkpoint which takes δG. All the process nodes

do their checkpointing in a coordinated way. Two parameters are critical to balance

checkpoint overhead against recovery overhead in the hybrid checkpointing mechanism:

the local checkpoint frequency and the local/global checkpoint ratio (i.e. how many lo-

cal checkpoints are made during a global checkpoint interval). The effects of those two

parameters have been studied in depth by Dong et al. [36]. With this efficient local check-

pointing mechanism using MLC STT-RAM, the local checkpoint time overhead (δL) and

energy consumption can be reduced.

δL
τ δG

τ δL
τ δL

τ δL
τ δG

τ δL
τ

global checkpoint interval

(a) error-free execution

δL
τ δG

τ δL
τ...

error detected

RL
τ δL δG

τ δL
τ

(b) an error is detected, and recovered by a local checkpoint

δL
τ δG

τ δL
τ...

error detected

RL
τ δL δG

τ δL
τ

(c) an error is detected, and recovered by a global checkpoint

Figure 4.6: The time-lines of error-free execution and recovery from an error by a
local or global checkpoint in the hybrid local/global checkpointing [38].

Figure 4.6 (b) and (c) show the time-lines of recovery by a local and a global check-

point respectively when errors are detected. It is assumed that the error detection latency

has an upper bound of a few cycles. Many types of faults can cause a system failure,

e.g. software bugs, human misoperations, network congestions, hardware damages, etc.

51

Using MLC STT-RAM for Efficient Local Checkpointing Chapter 4

Table 4.1: Hybrid Checkpointing Parameters

τ the local checkpoint interval
δG the global checkpoint time
δL the local checkpoint time
RG the global checkpoint recovery time
RL the local checkpoint recovery time

In this work, errors can be classified into two categories: those that can be recovered by

a local checkpoint, and those that have to be recovered by a global checkpoint. With a

transient error, it is probable to restore the system from a local checkpoint. However,

with a permanent error, the process node might have to be replaced, and a global check-

point may be able to recover the system. In the checkpointing mechanism, the latest

checkpoint version is stored locally, and multiple checkpoint versions can be maintained

in global storage.

When rolling back to a local checkpoint as shown in Figure 4.6 (b), it needs to load

all the local checkpoint data to the operated memory. With the proposed checkpointing

mechanism using MLC STT-RAM as main memory, it only requires to copy the hard-

bits of the memory cells in the process address space to their soft-bits, which can be

simply accomplished by the sense amplifiers and write drivers working in recovery mode

as described in Figure 4.3. This internal data transfer between the two bits of each cell is

quite lightweight, compared to moving data from local PCM storage to DRAM memory.

Therefore, the checkpointing mechanism can also reduce the recovery time from a local

checkpoint (RL) and its energy consumption.

Recovering by a global checkpoint suffers from extra rollback overhead compared

with recovering by a local checkpoint, as displayed in Figure 4.6 (c). On one hand,

loading a global checkpoint is more costly; on the other hand, more lost work needs to be

retrieved from a global checkpoint. Therefore, the effectiveness of the local/global hybrid

checkpointing depends on how many failures can be recovered by local checkpoints. For

52

Using MLC STT-RAM for Efficient Local Checkpointing Chapter 4

a petaFLOPS system, it has been estimated that 83.9% of failures can be recovered by

local checkpoints [38].

4.4.4 Storage Overhead Discussion

The proposed checkpointing mechanism uses the hard-bit of each cell to save a check-

point for the soft-bit in the MLC STT-RAM main memory. Therefore, the actual usable

memory capacity is half the total capacity of MLC STT-RAM. However, it has been

considered reasonable to reserve a 1 : 1 capacity ratio for checkpoint storage and op-

erated memory [38]. Since not all the working data necessarily need a checkpoint, to

better utilize the memory capacity, future work may try to divide the MLC STT-RAM

main memory into two regions, either statically or dynamically, in which one region is

reliability-oriented, and the other is capacity-oriented. The reliability-oriented region is

used as in this work; whereas in the capacity-oriented region, both bits of a cell can

be exploited to store the working data and no local checkpoint is required. Therefore,

the density advantage of MLC STT-RAM can be better used, and the actual available

memory capacity can be increased.

4.5 Evaluation

In this section, the experimental methodology and the evaluation results are pre-

sented.

4.5.1 Experimental Methodology

Gem5 simulator [32] is used as the simulation platform. Two local checkpointing

mechanisms are evaluated, one leveraging MLC STT-RAM as main memory (denoted

53

Using MLC STT-RAM for Efficient Local Checkpointing Chapter 4

by MLC STT-RAM), and the other utilizing DRAM as main memory and PCM as

local storage (denoted by DRAM-PCM). The processor and memory configurations of

a process node are summarized in Table 4.2. Both single-core and 4-core processors

are simulated, and DDR3-1600 is used as the reference memory model. Unlike DRAM,

STT-RAM does not need refresh operations due to its non-volatility, and because its

read operation is non-destructive, there is no need to rewrite data after reading. It is

conservatively assumed that MLC STT-RAM has the same read latency with DRAM,

and its one-step write takes 10 ns extra latency vs. DRAM. Table 4.3 lists the workloads

used in the evaluations. For single-core simulation, fifteen benchmarks from the SPEC

CPU2006 suite are selected [51], including both integer and float point applications.

Additionally, the single benchmarks are mixed and assigned to a 4-core processor for

multi-programmed simulation.

Table 4.2: Processor and memory configurations

Processor 1-core/4-core, x86, 2GHz, out-of-order, 8-issue
L1 cache private, 32KB I/D-L1, 64B line, 4-way, 2-cycle latency
L2 cache shared, 4MB, SRAM, 64B line, 16-way, 20-cycle latency

Memory
4 GB, DDR3-1600, 800 MHz, 64 bit I/O, 8 banks
DRAM: 10 ns read/write latency, 12.8 GB/s peak I/O bandwidth
MLC STT-RAM: 10 ns read latency, 20 ns one-step write latency

The performance overhead of local checkpointing is calculated as the sum of two

parts: the time to flush all the dirty data in cache to main memory, and the time to copy

all the working data in the process address space to the checkpoint storage, as shown in

Equation 4.1. The amount of dirty data in cache and the process address space in the

operated memory can be tracked by gem5, and the actual data transfer bandwidth is

assumed to be 80% of the peak bandwidth (BW) on average. The experimental results

indicate that the first term in Equation 4.1 is negligible compared to the second term

54

Using MLC STT-RAM for Efficient Local Checkpointing Chapter 4

Table 4.3: Evaluated workloads
No Application Mix Applications
1 astar mix1 1,2,3,4
2 bwaves mix2 5,6,7,8
3 cactusADM mix3 9,10,11,12
4 gcc mix4 13,14,15,1
5 GemsFDTD mix5 3,4,5,6
6 gromacs mix6 7,8,9,10
7 h264ref mix7 1,3,5,7
8 lbm mix8 2,4,6,8
9 leslie3d mix9 9,11,13,15
10 mcf mix10 10,12,14,2
11 milc
12 namd
13 omnetpp
14 sjeng
15 soplex

even when the local checkpoint interval is as small as 1s.

Timecheckpoint =
Datadirty−in−cache

BWoperated−memory × 80%
+

Datain−operated−memory

BWcheckpoint−storage × 80%
. (4.1)

The peak data transfer bandwidth from DRAM to PCM (BWDRAM−PCM) and that

from soft-bits to hard-bits (BWsoft−hard) in MLC STT-RAM are estimated as follows.

For a fair comparison, it is assumed that PCM and MLC STT-RAM have the same

chip configuration and chip power budget with DRAM. Therefore, they have the same

write current limitation of ∼168 mA for all the eight banks per chip as modern DDR3

DRAMs [52]. Given that the write (reset) current of PCM is 300 µA per bit and the

write (set) latency is 150 ns [13], a PCM chip could only write 560 bits (168 mA / 300

µA per bit) at a time, and the write bandwidth per chip is 0.467 GB/s (560 bits / 150

ns), which is far lower than DRAM’s (e.g. 8.53 GB/s for DDR3-1066 and 12.8 GB/s for

DDR3-1600). Since there are eight chips per rank, the total write bandwidth of PCM

55

Using MLC STT-RAM for Efficient Local Checkpointing Chapter 4

can be 3.73 GB/s. Obviously, BWDRAM−PCM is limited by the write bandwidth of PCM.

The one-step write bandwidth of MLC STT-RAM can be calculated in a similar way,

given that the write (hard transition) current of MLC STT-RAM is 266 µA per bit and

the one-step write latency is 10 ns [18]. The estimated BWsoft−hard of MLC STT-RAM

is 63.16 GB/s, about 17× of BWDRAM−PCM .

4.5.2 Experimental Results

Performance Overhead in Error-Free Execution

First the performance overheads of the two local checkpointing mechanisms are eval-

uated with a medium local checkpoint interval τ = 5s. The results of a single-core

process node running a single application are displayed in Figure 4.7. The checkpoint

overhead of each application depends on the total amount of checkpointing data to be

written every τ . Some applications require larger address space and consequently have

more checkpointing data, like bwaves, cactusADM and GemsFDTD, as shown in Fig-

ure 4.7. The average performance overheads of the two mechanisms are both small. The

DRAM-PCM mechanism encounters 1.65% performance overhead on average, and the

MLC STT-RAM mechanism incurs only 0.097%. However, as the numbers of cores and

running applications increase, more memory space is required, and more checkpointing

data need to be written accordingly. The performance overheads in a multiprogrammed

4-core process node are evaluated, and the results are shown in Figure 4.8. The average

performance overhead of the DRAM-PCM mechanism is 7.79%, whereas it is only 0.46%

with the MLC STT-RAM mechanism. Therefore, the efficiency of the proposed local

checkpointing mechanism leveraging MLC STT-RAM as main memory is revealed when

the core count of a process node is increased.

To reduce the recovery overhead, smaller τ is preferred in local checkpointing. The

56

Using MLC STT-RAM for Efficient Local Checkpointing Chapter 4

0

0.4

0.8

1.2

1.6

2
P

er
fo

rm
a
n

ce
 O

v
er

h
ea

d

D
u

ri
n

g
 E

rr
o
r-

F
re

e
E

x
ec

u
ti

o
n

 (
%

)
DRAM-PCM

MLC STT-RAM

6.00 3.58 5.71 2.87

Figure 4.7: Performance overhead of local checkpointing during error-free execution
in a single-application and single-core process node with τ = 5s.

0

2

4

6

8

10

12

14

mix1 mix2 mix3 mix4 mix5 mix6 mix7 mix8 mix9 mix10 average

P
er

fo
rm

a
n

ce
 O

v
er

h
ea

d

D
u

ri
n

g
 E

rr
o

r-
F

re
e

E
x

ec
u

ti
o

n
 (

%
)

DRAM-PCM

MLC STT-RAM

Figure 4.8: Performance overhead of local checkpointing during error-free execution
in a multiprogrammed 4-core process node with τ = 5s.

performance overheads of the two mechanisms with τ = 1s are also evaluated, and

the results of single-core and 4-core simulations are presented in Figs. 4.9 and 4.10,

respectively. In a single application and single-core process node, the average performance

overhead of MLC STT-RAM is 0.26%, and it becomes 0.90% in a multi-programmed 4-

core node. Compared to the results of τ = 5s, the checkpoint overheads increase but

are still quite small. However, limited by the write bandwidth of PCM, the average

performance overheads of the DRAM-PCM mechanism for a single-core node and for

57

Using MLC STT-RAM for Efficient Local Checkpointing Chapter 4

a 4-core node are increased to 4.49% and 15.2%, respectively. Therefore, as the local

checkpointing interval τ decreases, the advantage of the MLC STT-RAM mechanism

becomes more apparent.

0

1

2

3

4

5

P
er

fo
rm

a
n

ce
 O

v
er

h
ea

d

D
u

ri
n

g
 E

rr
o
r-

F
re

e
E

x
ec

u
ti

o
n

 (
%

)

DRAM-PCM

MLC STT-RAM

14.4 8.64 15.0 11.1

Figure 4.9: Performance overhead of local checkpointing during error-free execution
in a single-application and single-core process node with τ = 1s.

0

3

6

9

12

15

18

21

24

mix1 mix2 mix3 mix4 mix5 mix6 mix7 mix8 mix9 mix10 average

P
er

fo
rm

a
n

ce
 O

v
er

h
ea

d

D
u

ri
n

g
 E

rr
o

r-
F

re
e

E
x

ec
u

ti
o

n
 (

%
)

DRAM-PCM

MLC STT-RAM

Figure 4.10: Performance overhead of local checkpointing during error-free execution
in a multiprogrammed 4-core process node with τ = 1s.

58

Using MLC STT-RAM for Efficient Local Checkpointing Chapter 4

Energy Consumption in Local Checkpointing

The energy efficiency of the MLC STT-RAM local checkpointing mechanism is eval-

uated by comparing it with the DRAM-PCM mechanism. The parameters used are from

the reported data in prior work [13, 18], as listed in Table 4.4. For a fair comparison,

the parameters of PCM and MLC STT-RAM are chosen for the same technology node.

In Table 4.4, the read and write energy per bit of PCM and MLC STT-RAM do not

include the energy consumed by peripheral circuitry. For PCM, given that writing zeros

(RESET) and writing ones (SET) have equal possibilities, the average write energy per

bit is (13.5 + 19.2)/2 = 16.35 pJ ; and the energy consumed by peripheral circuitry per

bit for a read or write operation is 0.47 pJ [13]. For MLC STT-RAM, a soft transition

(ST) requires a small write current while a hard transition (HT) requires a larger write

current; therefore, the write energy of ST per bit is lower than that of HT. It is assumed

that MLC STT-RAM has the same peripheral circuitry energy consumption with PCM

for each read and write operation.

Table 4.4: Memory energy parameters [13, 18]

PCM MLC STT-RAM DRAM

read (pJ/bit) 2.00 0.38 1.56

write (pJ/bit)
SET 13.5 ST 1.92

0.39
RESET 19.2 HT 3.192

peripheral (pJ/bit) 0.47 0.47 —

The total memory energy consumption of the DRAM-PCM mechanism consists of

the energy consumed by writing the dirty data in cache to DRAM, and that to copy

data from DRAM to PCM. As to the MLC STT-RAM mechanism, it is composed of

the energy to write the dirty data in cache to the soft-bits of MLC STT-RAM, and

that consumed by mirroring the soft-bits to the corresponding hard-bits. The results

of a single-application and single-core process node and of a multiprogrammed 4-core

59

Using MLC STT-RAM for Efficient Local Checkpointing Chapter 4

process node are presented in Figure 4.11 and Figure 4.12, with τ = 5s. Figure 4.11

displays that, the average memory energy consumption of the DRAM-PCM mechanism

for a single-core process node is 0.024 J , whereas that of the MLC STT-RAM mechanism

is only 0.005 J . As shown in Figure 4.12, for a multiprogrammed 4-core process node,

the average memory energy consumption of the DRAM-PCM mechanism increases to

0.116 J , while that of the MLC STT-RAM mechanism is 0.025 J . Therefore, the MLC

STT-RAM mechanism saves more than three quarters of the memory energy consumed

by the DRAM-PCM mechanism.

0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

0.045

0.05

D
y

n
a

m
ic

 E
n

er
g

y
 C

o
n

su
m

p
ti

o
n

in
 L

o
ca

l
C

h
ec

k
p

o
in

ti
n

g
 (

J
) DRAM-PCM

MLC STT-RAM

0.08 0.053 0.085

Figure 4.11: Memory energy consumption of creating a local checkpoint in a single-ap-
plication, single-core process node with τ = 5s.

Recovery Overhead Analysis

The recovery time from a failure includes three phases: the time of diagnosis in which

human interactions may be required, the time to restore the system to a checkpoint (roll-

back), and the time to retrieve lost work. The first phase is out of the scope of this work.

The rollback time directly depends on the amount of checkpoint data and the local or

global data transfer bandwidth. The third part is determined by the local checkpoint

frequency and the local/global checkpoint ratio. With the efficient checkpointing mecha-

60

Using MLC STT-RAM for Efficient Local Checkpointing Chapter 4

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

mix1 mix2 mix3 mix4 mix5 mix6 mix7 mix8 mix9 mix10 average

D
y

n
a

m
ic

 E
n

er
g

y
 C

o
n

su
m

p
ti

o
n

in
 L

o
ca

l
C

h
ec

k
p

o
in

ti
n

g
 (

J
)

DRAM-PCM

MLC STT-RAM

Figure 4.12: Memory energy consumption of creating a local checkpoint in a multi-
programmed 4-core process node with τ = 5s.

nism using MLC STT-RAM as main memory, the rollback time to a local checkpoint can

be reduced. Furthermore, as indicated by the experiment results, with the MLC STT-

RAM mechanism, local checkpointing encounters negligible overhead even when the local

checkpoint interval (τ) is as short as 1s. Consequently, the average overhead of the third

phase can be significantly reduced.

4.6 Summary

As the number of nodes increases, modern large-scale computing systems are being

challenged by high failure rates. Therefore, smart error recovery mechanisms are urgently

needed to help these systems revive from unexpected errors. In this work, emerging STT-

RAM is embraced into local/global hybrid checkpointing for efficient in-memory local

checkpointing. It leverages MLC STT-RAM as persistent main memory, using the soft-

bit of each cell to store the working data while the hard-bit to save the checkpoint data.

By taking advantage of the unique features of MLC STT-RAM, the proposed mechanism

turns out to be a lightweight and energy-efficient local checkpointing solution. The

experimental results show that, the average performance overhead in a multi-programmed

61

Using MLC STT-RAM for Efficient Local Checkpointing Chapter 4

4-core process node is less than 1% even when the checkpoint interval is 1s, and the

memory energy consumption is less than a quarter of the energy required by the existing

DRAM-PCM mechanism.

62

Chapter 5

Making B+tree Efficient for

Emerging NVM Based Main

Memory

This chapter presents a project that rethinks B+-tree algorithm design for emerging

NVMs whose write accesses are much more expensive than read accesses, including PCM,

STT-RAM, and ReRAM [53, 54]. First, it introduces the motivation of this project,

and then the related work about NVM based system design. Next, it presents a basic

cost model for NVM-based memory systems, and detailed CPU cost and memory access

models for search, insert and delete operations on a B+-tree. Moreover, based on the

models built, the existing NVM-friendly schemes for B+-tree is analyzed. Furthermore,

the new schemes are proposed that effectively adapt B+-tree to exploit the full potential

of the emerging NVMs without suffering from the issues arising in the existing schemes.

Then, the experimental study to compare the proposed B+-tree variants with the state-

of-the-art is conducted, before the conclusion of this project.

63

Making B+tree Efficient for Emerging NVM Based Main Memory Chapter 5

5.1 Motivation

As we know, PCM, STT-RAM, and ReRAM have all been considered as promising

replacements of DRAM for building future main memory systems [3, 7, 10]. Compared

with the modern DRAM technology, they consume near-zero idle power and have better

scalability. Owing to their non-volatility, they are free of refresh penalty, which has

recently been found a big issue of DRAM as its density advances [1]. Additionally, they

can support the durability property that traditional main memory databases (MMDBs)

built upon volatile memory do not facilitate. Moreover, PCM and ReRAM offer a higher

density than DRAM; the multi-level cell (MLC), multi-layer structure, and 3D stacking

technologies can further enhance their density [10]. Therefore, under the same area

constraint, they can provide a larger memory capacity, and can store most or all of the

data in the main memory for many database applications. A previous study has shown

that a 4× increase in the memory capacity reduces the number of page faults by 5×

on average [3]. Although STT-RAM does not have a density advantage, it provides

better read and write performance and energy as well as higher endurance than PCM

and ReRAM [7]. With the continuous advance in these technologies, they are anticipated

for use in building energy-efficient non-volatile main memory systems of the near future.

Although the nice features of PCM, STT-RAM and ReRAM bring great benefits to

MMDBs, new challenges arise due to some of their characteristics. Different from DRAM,

they have asymmetric read/write properties. Their read latencies are comparable to that

of DRAM, but their write latencies are much slower than their corresponding read laten-

cies [8]. In addition, their write operations consume much more energy than their read

operations [8]. They also suffer from endurance issues, and thus it needs to specifically

consider their wear-out problems. These unique characteristics change the assumptions

that have served as the basis in the designs of conventional database algorithms, making

64

Making B+tree Efficient for Emerging NVM Based Main Memory Chapter 5

them suboptimal for the emerging NVM-based main memory systems. Aiming to tackle

this issue, the design of database algorithms is reexamined. As writes are much more

expensive than reads in these emerging NVMs, the new algorithm design goal is to reduce

memory writes, even at the cost of increasing reads.

This project is focused on B+-tree, the widely used index structure in both MMDBs

and disk-resident databases (DRDBs), which designs an NVM-friendly variant of B+-

tree. Previously, Chen et al. proposed unsorted node schemes in their redesign of B+-

tree algorithm for PCM [55]. They showed that, using unsorted nodes instead of sorted

nodes in the tree can effectively reduce the write accesses required for keeping the nodes

in a sorted order. However, according to the analytical results from the proposed cost

model for the operations of B+-tree on NVM-based memory systems, it is found that the

unsorted node schemes suffer from three problems: 1) in insert operations the node splits

are CPU-costly, because sorting the keys in an unsorted node before a split requires

intensive computations; 2) the write accesses in insert operations cannot be reduced

effectively when branching factors and node sizes are both small, because in this case tree

reorganization incurs a lot of writes; 3) the delete operations may waste space significantly

because a node is not deleted until it becomes empty. To address the aforementioned

problems, three schemes are proposed to adapt B+-tree for the emerging NVMs: 1)

the sub-balanced unsorted node scheme which alleviates the computational overhead of

sorting before a split is incurred in insert operations, 2) the overflow node scheme which

can efficiently reduce the write accesses in insert operations when the existing schemes

do not work, and 3) the merging factor scheme which provides more effective trade-offs

among execution time, memory energy consumption, memory space usage, and NVM

endurance in delete operations.

65

Making B+tree Efficient for Emerging NVM Based Main Memory Chapter 5

5.2 Related Work

With their unique characteristics, the read/write costs of emerging NVMs are no

longer aligned with the assumptions of the underlying memory systems that have moti-

vated various system designs, including file system design, operating system (OS) design,

as well as database system design. Condit et al. proposed a new file system based on

the properties of persistent, byte-addressable NVMs [56]. Bailey et al. examined the

implications of fast and cheap NVMs on OS functions and mechanisms [57].

Chen et al. proposed to rethink database algorithms for PCM, which inspires this

work [55]. They present analytical metrics for PCM endurance, energy and latency,

and use them to improve two core databases techniques, B+-tree index and hash joins,

for PCM. Their goal for designing PCM-friendly algorithms is to reduce the number of

writes while maintaining good cache performance. To improve B+-tree index, they used

unsorted nodes instead of sorted nodes in the tree, saving the writes incurred by sorting

a node. The unsorted node schemes are simple and effective. However, they suffer from

some issues that the proposed schemes avoid.

Hu proposed a predictive B+-tree, called Bp-tree, for PCM-based database systems [58].

She uses a small DRAM buffer to maintain a small B+-tree for current insertions, and

predicts future data distribution based on the summary of previously inserted keys in

a histogram. Space is pre-allocated in the memory for data to be accessed in the near

future so as to reduce the data movements caused by node splits and merges. The ap-

proaches proposed in this work are different as the hardware overhead and extra design

efforts are minimized by avoiding the usage of additional DRAM buffer.

66

Making B+tree Efficient for Emerging NVM Based Main Memory Chapter 5

5.3 Cost Model

This section first introduces the basic cost model for NVM-based main memory sys-

tems. Then it analyzes both the CPU costs and the memory behaviors of the original

B+-tree algorithm, formulating the memory access numbers incurred by each operation.

Based on the cost models built, the existing PCM-friendly unsorted node schemes [55]

are analyzed to find out how they reduce the write accesses and what problems they

have.

5.3.1 The Basic Cost Model

For each operation of a B+-tree in MMDB, either search, insert or delete, the execution

time T is comprised of three components, the CPU execution time TCPU including the

access time to the on-chip L1 cache, the access time to all the cache levels except L1

TCache, and the access time to the main memory TMem:

T = TCPU + TCache + TMem. (5.1)

TCPU depends on the computational complexity of the algorithm used to implement

each operation and the performance of the processor. Let I denote the basic instruction

number of the algorithm, CPI denote the average cycle per instruction of the processor

to execute basic instructions which does not include memory access latencies in loads

and stores, and f denote the frequency of the processor. Then,

TCPU = I × CPI/f. (5.2)

For a memory system with l levels of cache, let Mi and Li denote the miss count and

67

Making B+tree Efficient for Emerging NVM Based Main Memory Chapter 5

the access latency of the ith level cache respectively for i = 1, 2, . . . , l. Then,

TCache =
l−1∑
i=1

Mi × Li+1. (5.3)

The miss count of the ith level cache

Mi = Atotal ×
i∏

k=1

Mrk, (5.4)

in which Atotal is the total number of memory accesses, and Mrk is the average miss rate of

the kth level cache. Atotal simply depends on the algorithm to implement each operation.

However, Mrk is determined by a couple of factors, including both the memory access

patterns of the algorithms and the characteristics of the cache hierarchy (e.g. capacity,

associativity, replacement policies and other cache policies of each level).

Till now, the read memory accesses have not been distinguished from write memory

accesses. SRAM and DRAM have similar read and write latency. However, for an

emerging NVM, its write latency is much longer than its read latency. TMem is divided

into two parts, the latency of reading cache lines from the main memory to the last

level cache and the latency of writing cache lines back to the main memory. The second

part can be partially or even completely hidden since writing cache lines back is not in

the critical path. Let Rtotal and Wtotal denote the total read and write access numbers,

then Atotal = Rtotal + Wtotal. Let LrNVM and LwNVM denote the read and write access

latencies of an emerging NVM. Then

TMem = Rtotal × (
l∏

i=1

Mri)× LrNVM + α×Wtotal × (
l∏

i=1

Mri)× LwNVM , (5.5)

in which α describes the average impact of writing cache lines back on TMem, 0 ≤ α ≤

1. Different from the conventional DRAM-based main memory, for an emerging NVM

68

Making B+tree Efficient for Emerging NVM Based Main Memory Chapter 5

in which LwNVM can be several times larger than LrNVM (Table 2.1), writing may

significantly stall the front-end cache line fetches. Therefore, to reduce Wtotal might be

beneficial to performance improvement.

In fact, memory access situations are much more complicated than equation (5.3) and

(5.5) show. For example, a read request and a write request to the same bank will block

each other, that is, the later request has to wait until the previous one gets completed.

Several memory access scheduling schemes have been proposed to improve performance

for DRAM and NVMs [59, 60].

Because emerging NVMs have high write energy and suffer from the endurance prob-

lem, the energy consumption of the NVM-based main memory, EMem, and the total

wear of NVM, Weartotal, are another two concerns in algorithm design, besides the total

execution time T in equation (5.1). To estimate EMem, there are three parts, the read

dynamic energy, the write dynamic energy, and the background energy. Let ErNVM and

EwNVM denote the average energy consumption of a read access and a write access to

NVM, and Ebackground denote the background energy. Then,

EMem = Rtotal× (
l∏

i=1

Mri)×ErNVM +Wtotal× (
l∏

i=1

Mri)×EwNVM +Ebackground. (5.6)

The background energy in NVM is typically much smaller than the read and write dy-

namic energy. From Table 2.1, EwNVM can be several times larger than ErNVM . There-

fore, reducing Wtotal is helpful to save energy.

Each NVM cell has a limited lifetime. Let γ represent the average number of modified

bits per modified cache line, then

Weartotal = γ ×Wtotal × (
l∏

i=1

Mri). (5.7)

69

Making B+tree Efficient for Emerging NVM Based Main Memory Chapter 5

Obviously, reducing Wtotal extends the lifetime of NVM.

5.3.2 B+-Tree Parameters

B+-tree is widely used for indexing in file systems and database management systems.

There are several important parameters in B+-tree algorithm design. It can have different

key types for different applications, e.g. integer or string of a fixed length. Let key size

denote the length of a key in unit of bytes.

Node size (node size) is an important parameter that affects the performance of B+-

tree. Previous work has suggested that the node size that results in the best performance

should be a few times of the cache line size (cacheline size) [61, 62], e.g. 2 cache lines or

4 cache lines. In modern computers, cacheline size is usually 32, 64 or 128 bytes. The

best node size also depends on the branching factor of the tree.

The branching factor (or the order) of a B+-tree is the maximum number of children

that each internal node can have, denoted by b. Then there are at most b − 1 keys and

b pointers in an internal node. The size of a pointer pointer size is usually 4 bytes in a

32-bit machine and 8 bytes in a 64-bit machine. For leaves, it is assumed that a record

is a tuple of <key, pointer>, in which the pointer points to the data value. In this case,

the leaves have the same node structure with the internal nodes. Therefore, there are at

most b− 1 records in a leaf.

Each node also maintains some necessary information in their node structure, e.g. the

number of keys and a flag indicating a leaf or non-leaf node. Let nodeinfo size denote

the space it takes a node to store the information. Then,

b = b(node size− nodeinfo size+ key size)/(key size+ pointer size)c. (5.8)

The height of a B+-tree, denoted by h, indicates how many nodes in a search path,

70

Making B+tree Efficient for Emerging NVM Based Main Memory Chapter 5

which means how many nodes that have to be visited from the root to a leaf. Therefore,

it is quite important to the search performance of a B+-tree. Given the total number of

records that a B+-tree holds, say N , the height of the tree can be estimated with the

branching factor of the tree and another parameter — the full factor of the tree.

Definition 1 The full factor of a B+-tree is the ratio of the average number of children

that each internal node has to the branching factor, denoted by f , 0.5 ≤ f ≤ 1.

For a randomly inserted B+-tree, the experimental results show that 0.75 is a good

estimate of its full factor. It is reasonable to assume that the leaves are similarly full to

the internal nodes. Then the height of a B+-tree can be estimated as:

h = dlogf ·bNe. (5.9)

5.3.3 Search

To search a record (key), a path whose length is the height of the tree is followed,

from the very root to the very leaf. Therefore, h nodes are accessed along the path. For

searching a key within one node, two algorithms are considered: linear search and binary

search.

To search the position of a key in an array of size n with linear search, the maximum

number of iterations is n, and the average performance is n/2. However, with binary

search, the maximum number of iterations is blog2 nc + 1, and the average performance

is log2 n. Let αL and αB denote the CPU time of each iteration in linear search and in

binary search, then TCPU for the two search algorithms can be estimated as shown in

Table 5.1 (in which “L” denotes linear and “B” denotes binary).

Ideally, there are no write involved in search operations. The read access numbers

(in unit of cache lines) of the two algorithms are analyzed as follows. The average usage

71

Making B+tree Efficient for Emerging NVM Based Main Memory Chapter 5

Table 5.1: Analytical Cost Model for A Search Operation
TCPU Search Rtotal Search

L αL × (f · b/2)× h (1 + d f ·node size
cacheline size

e)/2× h

B αB × log2 (f · b)× h (1 + blog2
f ·node size

cacheline size
c)× h

of each node in unit of cache lines is:

k = df · node size

cacheline size
e. (5.10)

For each linear search operation, it is assumed that the probability to access 1 — k cache

lines is the same, and then the average read access number is

Rlinear =
k∑

i=1

1

k
· i = (1 + k)/2 = (1 + d f · node size

cacheline size
e)/2. (5.11)

For each binary search operation, the average read access number is estimated as

Rbinary = blog2 kc+ 1 = blog2

f · node size
cacheline size

c+ 1. (5.12)

The “floor rounding plus 1” is used in equation (5.12), because it needs to consider the

case of k = 1 and the fact that the first cache line must be accessed as some necessary

information (e.g. the number of keys in this node) is stored there.

Table 5.1 also summarizes Rtotal for the two search algorithms. Usually, αB is larger

than αL, e.g., αB = 2αL. From Table 5.1, it can be found that when b is small or

node size is small, linear search might have better performance than binary search.

72

Making B+tree Efficient for Emerging NVM Based Main Memory Chapter 5

5.3.4 Insert

To insert a record to a B+-tree, a search is performed first to determine in which leaf

and to which position the record should be inserted. Within the target leaf, inserting

the record would involve a lot of reads and writes since on average half the number of

records in the node need to be shifted; and if the leaf is full, it needs to be split into two

nodes, and a key needs to be inserted to the parent node; and a split can be propagated

upwards even to the root.

For an insertion to a non-full node, called “a common insertion”, either a leaf or

non-leaf node, the average write access number involved is

Wcomins =

 1, if node size = cacheline size

1 + d f ·node size/2
cacheline size

e, otherwise.
(5.13)

When node size > cacheline size, “1” in equation (5.13) comes from updating the node

length in the first cache line of the node.

For a split in a full node, either a leaf or non-leaf node, the write access number

involved is

Wsplit =
1

2
(d node size/2

cacheline size
e+ d node size/4

cacheline size
e) +

1

2
(d node size/2

cacheline size
e+ 1)

= d node size/2

cacheline size
e+

1

2
(d node size/4

cacheline size
e+ 1).

(5.14)

Each insert operation (inserting a record to a B+-tree) incurs exactly one common

insertion, and zero or a few splits. The average number of splits that an insert operation

73

Making B+tree Efficient for Emerging NVM Based Main Memory Chapter 5

incurs can be calculated by

Psplit =
1

f · b− 1
+

1

(f · b− 1)2
+ · · ·+ 1

(f · b− 1)h
≈ 1

f · b− 2
. (5.15)

Then the average Wtotal for an insert operation is

Wtotal Insert = Wcomins + Psplit ×Wsplit. (5.16)

It is found that all the data that are written are needed to be read first. Therefore,

the estimate of Rtotal for an insert operation is

Rtotal Insert = Rtotal Search +Wtotal Insert. (5.17)

The dominant component of the CPU time for an insert operation is the search part,

so TCPU can by simply estimated as

TCPU Insert = TCPU Search. (5.18)

5.3.5 Delete

The cost analysis of a delete operation is a bit more complicated than that of insert.

Deleting a record from a B+-tree also executes a search first to determine in which leaf

and from which position the record should be deleted. Deleting a key from a node may

incur a borrow or a merge, and a merge can be propagated upwards even to the root.

For “a common deletion”, which does not incur a borrow or merge, from either a leaf

or non-leaf node, half the number of keys in the node on average need to be shifted, so

74

Making B+tree Efficient for Emerging NVM Based Main Memory Chapter 5

the average write access number involved is

Wcomdel =

 1, if node size = cacheline size

1 + d f ·node size/2
cacheline size

e, otherwise.
(5.19)

When deleting a key from a half-full node, if one of its sibling nodes is more than

half full, it will need to borrow a key from it; otherwise, it will merge the node with one

sibling node. For borrowing a key from a right sibling node, it needs to modify at most

two cache lines in the node itself, one for the insertion of the borrowed key to the end,

and the other for updating the node length if they are not in the same cache line. In the

right sibling node, it needs to shift all the keys to the left by one position since the first

key is lent. It also needs to update the parent node by changing one key. It is assumed

that the right sibling node is similar to half full, then the write access number incurred

by borrowing a key from a right sibling node is

Wborrow r =

 3, if node size = cacheline size

3 + d node size/2
cacheline size

e, otherwise.
(5.20)

For borrowing a key from a left sibling node, the write access number incurred is the

same with borrowing a key from a right sibling node:

Wborrow l = Wborrow r = Wborrow. (5.21)

Therefore, Wborrow is used to denote the write access number incurred by borrowing from

either a right or a left sibling node.

For a merge of two half-full nodes, either leaves or non-leaf nodes, the write access

75

Making B+tree Efficient for Emerging NVM Based Main Memory Chapter 5

number involved is

Wmerge =

 2, if node size = cacheline size

2 + d node size/2
cacheline size

e, otherwise.
(5.22)

A merge will result in a common deletion or a borrow in the parent node, or propagate

a merge upwards.

Each delete operation (deleting a record from a B+-tree) incurs 0 or a few merges, and

one common deletion or one borrow. Let Pborrow denote the average number of borrows

that a delete operation incurs and let Pmerge denote the average number of merges that

a delete operation incurs. Then the average Wtotal for a delete operation is

Wtotal Delete = (1− Pborrow)×Wcomdel + Pborrow ×Wborrow + Pmerge ×Wmerge. (5.23)

All the data that are written are needed to be read first. Therefore, the estimate of Rtotal

for a delete operation is

Rtotal Delete = Rtotal Search +Wtotal Delete. (5.24)

The dominant component of the CPU time for a delete operation is still the search

part, so TCPU can be simply estimated as

TCPU Delete = TCPU Search. (5.25)

5.3.6 Analysis of Existing Unsorted Node Schemes

In the insert and delete operations, keeping the keys of the involved node in order

incurs a lot of write accesses. Let’s look at the total write number in an insert operation.

76

Making B+tree Efficient for Emerging NVM Based Main Memory Chapter 5

The first term, Wcomins in equation (5.16), comes from making space for the inserted key

(and pointer) by shifting those keys behind the inserted position. For the total write

number in a delete operation, the first term, Wcomdel in equation (5.23), comes from the

similar way, filling the space of the deleted key by shifting those keys behind the deleted

position. Therefore, the write costs of Wcomins and Wcomdel come from keeping all the

keys in the node in order. To reduce these terms, one efficient solution is to leave the

node unsorted.

Chen et al. proposed three PCM-friendly variants of B+-tree with unsorted node

schemes: 1) unsorted with all the non-leaf and leaf nodes unsorted, 2) unsorted leaf

with sorted non-leaf nodes but unsorted leaf nodes, and 3) unsorted leaf with bitmap

in which each unsorted leaf node uses a bitmap to record valid locations [55]. In the

unsorted scheme, since all the nodes are unsorted, a search incurs a lot of computation

overhead because it has to use linear search in every node of the search path. In the

unsorted leaf scheme, the better one can be chosen from binary search and linear search

in the sorted non-leaf nodes and linear search is used in the only one unsorted target

leaf. Therefore it can achieve similar search performance to the original B+-tree whose

nodes are all sorted. Moreover, since most of the write accesses occur in the leaf nodes,

the unsorted leaf scheme also captures the benefits to reduce the write accesses in the

unsorted leaf nodes. Let’s look at how this unsorted leaf scheme modifies the cost model.

For a search operation, as mentioned above, either linear search or binary search

algorithm can be used in all the h − 1 sorted non-leaf nodes along the search path of

length h; at the end of the path, in the unsorted target leaf node, it has to search keys

one by one. The terms in Table 5.1 can be easily combined to get the cost model for the

search operation of the unsorted leaf scheme.

A “common insertion” to a leaf does not need to shift half the keys on average in the

node; it only attaches the inserted key at the end as the last key. Therefore, at most two

77

Making B+tree Efficient for Emerging NVM Based Main Memory Chapter 5

cache lines are needed to be written, one for the inserted key, and the other for updating

the node length if they are not in the same cache line. Common insertions to non-leaf

nodes have the same cost model with equation (5.13), and only splits incur insertions

into non-leaf nodes. So the probability of a common insertion to a non-leaf node can be

estimated by Psplit in equation (5.15). The Wcomins for the unsorted leaf scheme is

Wcomins usl =


1, if leaf and node size = cacheline size

2, if leaf and node size > cacheline size

Wcomins in eq.(5.13), if nonleaf.

(5.26)

Although the unsorted leaf scheme reduces the cost of “common insertions”, it makes

splits more costly, not only on CPU execution time but also on memory accesses. To

split a full unsorted leaf, it needs to sort the keys first, and then split the sorted leaf to

two nodes as the original sorted B+-tree does. In-place Quicksort is used as the sorting

algorithm, whose average time complexity is O(n log2 n) (actually when the number of

items to be sorted is small, say less than 6, a simple comparison sort is used). Then the

CPU overhead due to a split of the unsorted leaf is

Tsplit leaf usl = αs × (b− 1) log2(b− 1), (5.27)

where αs is the CPU time unit of the sorting algorithm.

The write number incurred by splitting an unsorted leaf can be estimated by

Wsplit leaf usl =
node size

cacheline size
+ d node size/2

cacheline size
e (5.28)

in which the first term denotes the leaf node itself and the second term denotes the new

allocated node. Additional space cost by the sorting algorithm is ignored.

78

Making B+tree Efficient for Emerging NVM Based Main Memory Chapter 5

Psplit leaf describes the weight how Tsplit leaf usl and Wsplit leaf usl affect the total CPU

time and the total write access number. From equation (5.15),

Psplit leaf =
1

f · b− 1
. (5.29)

It can be found that when the branching factor b is small, Psplit and Psplit leaf might be

large enough so that the split costs have considerable impacts on the overall CPU time

and write access number.

It is noticed that Psplit leaf × Tsplit leaf usl is ∼ αs × log2(b − 1), which indicates that

for each insert operation, the CPU overhead is not small to sort a full unsorted node

before its split. The sub-balanced unsorted node scheme is proposed in the next section

to reduce such costs in existing unsorted node schemes.

For small bs and small node sizes, the unsorted leaf scheme might be inefficient to

reduce the write number because the reduction on Wcomins is not significant and splits

might incur more write accesses than the original B+-tree algorithm. Figure 5.1 shows

the relative write access number of the unsorted leaf scheme compared to the original

B+-tree algorithm, according to different branching factors and different node sizes, in

which write number > 1 means the total write access number of the unsorted leaf scheme

is even larger than that of the original B+-tree algorithm. Therefore, from Figure 5.1,

it can be found that when the branching factor b and the node size node size are small,

e.g. b ≤ 10 and node size ≤ 4, the unsorted leaf scheme cannot efficiently reduce the

total write number. The overflow node scheme is proposed in the following section to

cope with such cases with small bs and node sizes.

For the delete operation in the unsorted leaf scheme, a “common deletion” from a

leaf does not need to shift half the keys on average in the node either; it only puts the

last key at the deleted position and decreases the node length. Therefore, at most two

79

Making B+tree Efficient for Emerging NVM Based Main Memory Chapter 5

8

7

6

5

4

3

2

1

0.5

0.6

0.7

0.8

0.9

1

1.1

1.2

1.3

1.4

4

5

6

7

8

9

1
0

1
1

1
2

1
3

1
4

1
5

W
ir

te
 N

u
m

b
e

r

Branching Factor (4-15)

1.3-1.4

1.2-1.3

1.1-1.2

1-1.1

0.9-1

0.8-0.9

0.7-0.8

0.6-0.7

0.5-0.6

Node Size (1-8, in

unit of cachelines)

Figure 5.1: The relative write access number of the unsorted leaf scheme compared to
the original B+-tree algorithm according to different branching factors and different
node sizes .

cache lines are modified in a “common deletion” from a leaf. Therefore, it can reduce

the write accesses incurred by keeping the node in order. To reduce the write accesses

incurred by the other source, tree reorganization, in unsorted node schemes, a node,

either a leaf or non-leaf, will not be deleted unless there is no key in it. However, such

delete algorithm may waste a lot of space when there are a lot of delete operations, and

even degrade the search performance greatly. In the original B+-tree algorithm, to delete

a key from a half-full node, will either borrow a key from or merge with one of its sibling

nodes, which incurs a lot of write accesses. The merging factor scheme is proposed in the

following section which makes a compromise with neither too much space nor too many

write accesses.

80

Making B+tree Efficient for Emerging NVM Based Main Memory Chapter 5

5.4 Algorithms

The goal of this project is to make B+-tree NVM-friendly. Due to NVM’s asymmetric

characteristics between read and write and its limited lifetime, it aims to reduce the

number of write accesses that are involved in insert and delete operations as well as to

keep the new indexing method efficient for search operations. According to the issues

found by the analysis in Section 5.3.6 that the existing unsorted node schemes suffer

from, three schemes are introduced in this section, i.e., the sub-balanced unsorted node

scheme, the overflow node scheme, and the merging factor scheme. They can improve the

performance and reduce the write accesses in the cases where the unsorted node schemes

are inefficient.

5.4.1 Sub-balanced Unsorted Node Scheme

The existing unsorted node schemes sort the keys in a full unsorted node before split

it, and then the two consequent nodes have to be at least half full to keep the tree

balanced. As shown above, the sorting overhead is considerable. In the sub-balanced

unsorted node scheme, the nodes can be less than half full, i.e., unbalanced, after the

split from a full unsorted node. With this scheme, during a split of a full unsorted node,

it only needs to choose a pivot to assign the keys into two nodes, of which one holds the

keys greater than the pivot, and the other holds the rest keys. Since it does not need to

sort all the keys in the full unsorted node before the split, the intensive computation of

sorting is saved.

To choose a good pivot is very important to keep the tree balanced and hence efficient.

However, to choose the perfect pivot, which results in two half-full nodes, is as complex as

to sort the keys, i.e., O(n log2 n). The middle key value, keymiddle = (keymax +keymin)/2,

can be used as the pivot. It requires to find the maximum key (keymax) and the minimum

81

Making B+tree Efficient for Emerging NVM Based Main Memory Chapter 5

key (keymin) in the node first. Experiment results show that keymiddle is usually a very

good choice. The time complexity of this scheme for a split is O(n).

The sub-balanced unsorted node scheme also saves the additional space required by

the sorting algorithm and reduces some memory accesses. In sub-balanced unsorted leaf

scheme, the unbalanced leaf nodes have little impact on the search performance.

5.4.2 Overflow Node Scheme

When the branching factor b and the node size node size are both small (b ≤ 10

and node size ≤ 4 as shown in Figure 5.1), the unsorted leaf scheme cannot reduce the

total write access number at all. The reason is that, when b and node size are small,

an insertion to or a deletion from a node will probably incur a write access to the whole

node, no matter if the node is sorted or unsorted. Moreover, when b and node size are

small, a great portion of write accesses come from tree reorganizations, and the unsorted

node schemes are not able to reduce such write accesses. The overflow node scheme is

designed to reduce the write accesses incurred by tree reorganization operations, i.e.,

splits and merges.

In the original B+-tree, a split of a leaf node would involve write accesses to at least

three nodes: i) the original leaf node which splits, ii) the new leaf node to split to, and

iii) the parent node. The overflow node scheme postpones the update to the parent

node by splitting the leaf node to an overflow node, and later execute several updates

in batches in the parent node after many more splits occur in its child nodes. Because

each update involves a certain number of cache line writes, to execute several updates

together will save a lot of write accesses. Similarly, for delete operations, since a leaf

node can merge with an overflow node which does not require an update to the parent

node, the write accesses are also reduced. The overflow node scheme is different from L.

82

Making B+tree Efficient for Emerging NVM Based Main Memory Chapter 5

Arge’s buffer tree technique which allocates buffers to internal nodes in order to support

batched insertions to the leaves for I/O efficiency [63, 64].

In the overflow node scheme, a leaf node can have one or more overflow nodes, and

all the nodes are sorted. The overflow nodes have the same structure with ordinary leaf

nodes. Here are two important definitions in this scheme.

Definition 2 The overflow depth of a leaf node is the number of overflow nodes it at-

tached; the overflow depth of the overflow nodes are the same with the first leaf node.

For example, if a leaf node has no overflow node, its overflow depth is 0; if a leaf node

has one overflow node, the overflow depths of both the leaf node and the overflow node

are 1. Only when the overflow depth of a leaf node reaches the overflow factor of the

tree, the next split will cause a reorganization of the tree, in which all the overflow nodes

of the leaf node become independent leaf nodes with an overflow depth of 0 and a set of

keys are inserted into the parent node all at once.

In the implementation, the overflow factor of the tree is maintained as a global vari-

able, and the structure of leaf nodes are modified to keep the overflow information for

each leaf node. It adds the overflow depth and an overflow pointer that points to the

following overflow node to the original leaf node structure. The overflow depth costs

1 byte since 255 is large enough for a possible overflow factor. Because all the overflow

nodes of a leaf node has the same overflow depth, only the overflow depth in the 0th

overflow node is updated each time it changes in order to reduce the number of writes.

The overflow pointer is a normal pointer which costs 4 bytes for each leaf node in a 32-bit

machine. For nodesize = 2 cache lines, the space overhead to keep the overflow informa-

tion in a leaf node is (1 + 4)/(64× 2) ≈ 4%, assuming the cache line size is 64 bytes. For

nodesize = 4 cache lines, the overhead is about 2%. This overhead has little impact on

the performance of the algorithm.

83

Making B+tree Efficient for Emerging NVM Based Main Memory Chapter 5

40 70

20 30

12 18

60 70

61 63 65

66 67 69

... ...
... ...

0

1 2

3 4

5

Root

Leaves

Internal

overflow factor = 2

... ...
61 63

64 65

4

6

66 67 69
5

66 67
5

61 63
4

64 65
6

68 69
7

60 63
2

67 70
8

40 65 70
0

...

...

(a) a B+-tree with overflow factor =2; search key 67 (b) insert key 64

(c) insert key 68

leaves overflow

depth

...

Node 3 0

Node 4 1

Node 5 1

... ...

leaves overflow

depth

...

Node 4 2

Node 6 2

Node 5 2

leaves overflow

depth

...

Node 4 0

Node 6 0

Node 5 0

Node 7 0

Figure 5.2: An example of the overflow node scheme (a) a B+-tree with overflow
factor = 2 ; search a record with key 67 (b) insert a record with key 64 to the tree;
then Node 4 splits to a new overflow node Node 6, and its overflow depth becomes 2
reaching the overflow factor (c) insert a record with key 68 to the tree; then Node 5
splits to a new node Node 7, and Nodes 4− 7 become independent leaves, and a set
of keys are inserted to their parent node Node 2; then Node 2 splits to a new node
Node 8, and a key is inserted to its parent node Node 0.

Insert

Figure 5.2 shows an example of the insertion to a B+-tree whose overflow factor is 2.

Figure 5.2(a) is the tree before insertion. It has 6 nodes labeled from 0 to 5, and each

node is able to store up to three keys. Node 4 is a leaf node, and it has an overflow node,

Node 5. Figure 5.2(b) depicts inserting a record with key 64 to the tree. Node 4 splits

to a new overflow node, Node 6, and the overflow depth of Node 4 becomes 2, reaching

the overflow factor of the tree. Figure 5.2(c) presents the result of the next insertion,

inserting key 68 to Node 5. First, Node 5 has to split to a new node Node 7. Second,

84

Making B+tree Efficient for Emerging NVM Based Main Memory Chapter 5

because the overflow depth of Node 5 has already reached the overflow factor, all the four

leaf nodes, i.e., Node 4 − 7, become independent leaf nodes, and their overflow depths

are reset to 0. Third, it needs to send all the index information for each independent

leaf node to the parent node, so Node 2 and a set of three < key, pointer > tuples are

inserted at once. Then Node 2 is full and has to split to a new node, Node 8, and at

last a key needs to be inserted to its parent node, Node 0. From this example, it can

be found that the overflow node scheme has the ability to postpone the insertions to the

parent node incurred by splits and deal with several updates in batches.

Search

It is easy to search a key with the overflow node scheme. Like in the original B+-tree,

the first leaf node or the 0th overflow node can be located that may contain the key. Then

its overflow depth is checked to see if it has overflow nodes. If it has no overflow node,

this leaf node is the only target leaf node that may contain the key, so we can execute

either binary search or linear search within the node to find out the key. Otherwise, the

key is first compared with the last key, also the greatest key, of the leaf node. If the

key is no greater than the last key, this leaf node is the target leaf node; otherwise, the

overflow pointer is followed to locate its overflow node, and then to check if the overflow

node is the target leaf node; and so on. For example, we search key 67 in the B+-tree in

Figure 5.2(a). We first locate the first leaf node that may contain key 67, i.e., Node 4.

As it is found that Node 4 has an overflow node, we compare key 67 with the last key in

Node 4, i.e., key 65. key 67 is greater, so we directly enter the overflow node, Node 5.

Since Node 5 does not have an overflow node, we execute a binary or linear search in

Node 5 to find key 67. With the overflow node scheme, the path to search a key might

be longer, so the overflow node scheme may affect the search performance.

85

Making B+tree Efficient for Emerging NVM Based Main Memory Chapter 5

Delete

The delete operation of the overflow node scheme is similar to the original B+-tree

algorithm. To delete a key, first it needs to find the key in the target leaf node, and

then check if the node is half-full. If not, or the node is the root node, simply delete the

key in the node; otherwise borrow a key from or merge with a neighbor node. In the

original B+-tree, the neighbor node must be a right or left sibling node. In the overflow

node scheme, however, the neighbor node can be either a left or right overflow node, or

a left or right sibling node. In the algorithm, an overflow node is preferred to a sibling

node, because either to borrow a key from or to merge with a sibling node needs to

write the parent node, which incurs an extra write access. Therefore, the overflow node

scheme has the ability to postpone the updates in the parent node involved by a borrow

or merge, thus reducing the write accesses incurred by a deletion from a half-full leaf

node compared with the original B+-tree.

5.4.3 Merging Factor Scheme

In the unsorted node schemes, a node will not be deleted unless there is no key

in it. Such a delete algorithm removes most of the writes that may be involved by

tree reorganizations due to deletions. However, for applications with a large amount of

delete operations, this delete algorithm may waste too much space and even degrade the

performance of the tree.

In the original B+-tree, when a key is deleted from a node, it needs to merge with a

sibling node if they are both half full. However, it seems too early to merge two nodes

when they just become less than half full. On one hand, after a merge, the resulting

node is 100% full, not a stable state since an insertion will cause it to split. On the

other hand, after a split, the resulting two nodes are both half-full, also not a stable state

86

Making B+tree Efficient for Emerging NVM Based Main Memory Chapter 5

since a deletion may cause them to borrow keys or to merge. Therefore, to reduce the

write accesses that may be incurred by such unstable states, the merging factor scheme

is proposed which looses the merging conditions of the original B+-tree. There are two

important definitions in this scheme.

Definition 3 The filling degree of a node is the ratio of the number of keys in the node

to the maximum number of keys that the node can contain.

Definition 4 The merging factor of a B+-tree algorithm is the filling degree when two

neighbor nodes need to merge with each other if a key is to be deleted from one of them.

The filling degree is in the range of [0 − 1], describing a node’s full state, in which

“0” means empty and “1” means full. The merging factor should be in range of [0− 0.5],

and the merging factor of the original B+-tree algorithm is 0.5 and the merging factor of

the unsorted node schemes is 0.

In the merging factor scheme, the merging factor can be defined less than 0.5, in order

to reduce the write accesses caused by early merges. As the merging factor decreases, the

merging condition is loosen, and hence merges occur less frequently so that the involved

write accesses are saved. However, if the merging factor is set too small, the leaves

become sparse or even near empty and thus a lot of space is wasted.

5.5 Evaluation

In this section, first the experimental methodology is introduced, and then the ex-

periment results are presented.

87

Making B+tree Efficient for Emerging NVM Based Main Memory Chapter 5

5.5.1 Experimental Methodology

A pin-based simulator is built to model a 64-bit out-of-order processor and different

NVM-based memory systems. Pin is a dynamic binary instrumentation framework from

Intel, supporting computer architecture analysis for IA-32 and x86-64 instruction-set

architectures [65]. For cache architecture, two levels of cache are modeled, including

separate L1I and L1D cache each of size 32KB, and a large L2 cache of size 2MB. The

cache line size is 64 bytes. For main memory, the simulator is tailored to support PCM,

STT-RAM and ReRAM models. The processor and memory system configurations are

summarized in Table 5.2.

Table 5.2: Simulation Setup

Processor 1-core, x86-64, 2GHz, out of order
Cache L1I, 32KB, 64B line, 4-way, 1 cycle latency

L1D, 32KB, 64B line 4-way, 1 cycle latency
L2, 2MB, 64B line, 16-way, 10 cycle latency

Memory 4GB NVM, 2 ranks, 8 banks
PCM: 50 ns read latency, 500 ns write latency
STT-RAM: 15 ns read latency, 20 ns write latency
ReRAM: 15 ns read latency, 100 ns write latency

5.5.2 Experimental Results

Results for The Unsorted Node Schemes

The unsorted leaf scheme and the sub-balanced unsorted leaf scheme are compared

with the original B+-tree for PCM, STT-RAM and ReRAM based main memory systems

under the insert-, search- and delete-only workloads. The insert-only workload inserts

one million records with random keys to an empty tree; the search-only workload searches

every record of a tree with one million records in a random order; and the delete-only

workload randomly deletes half the records from a tree holding one million records.

88

Making B+tree Efficient for Emerging NVM Based Main Memory Chapter 5

Binary search is used for searching in all the levels of sorted non-leaf nodes, and linear

search is used for searching in the unsorted leaves. The key type used is 16-byte string.

For the insert- and search-only workloads, the node sizes from 2 to 16 cache lines are

evaluated. For the delete-only workload, the node size of 4 cache lines is tested. A tree

with one million records is large enough to cause a high last level (L2) cache miss rate.

The L2 miss rate for the insert- or delete-only workload is 4% − 10% with the increase

of the node sizes; and for the search-only workload, it ranges from 20% to 60%.

Figure 5.3 presents the comparison results for the insert-only workload, and all the

results are normalized to the result of the original B+-tree with node size = 2. Fig-

ure 5.3(a), (b), and (c) show the execution time in PCM, STT-RAM, and ReRAM

based systems, respectively. Compared with the original B+-tree, the execution time of

the unsorted leaf scheme is similar in PCM based system; however, it is increased by

1.2% − 13.8% in STT-RAM based system, and by 1.3% − 10.9% in ReRAM based sys-

tem, among different node sizes. The reason is that, although the unsorted leaf scheme

reduces the write access count significantly as the node size increases as shown in Fig-

ure 5.3(i), the instruction count as well as the read access count rise greatly as shown

in Figure 5.3(g) and (h). Since the unsorted leaf scheme reduces the write access count

by 19.8% − 100% (19.3% − 62.1% if not normalized to the result of the original B+-

tree with node size = 2) when node size ranges from 4 to 16 cacheline size, it reduces

the memory energy consumption a lot, 15.0% − 66.8% for the PCM-based main mem-

ory, 13.8% − 58.8% for the STT-RAM-based main memory, and 15.7% − 72.2% for the

ReRAM-based main memory.

Compared with the unsorted leaf scheme, the proposed sub-balanced unsorted leaf

scheme reduces the execution time by removing the CPU-intensive sorting before splits

in all PCM, STT-RAM, and ReRAM systems. As shown in Figure 5.3(a), the execu-

tion time is decreased to the extent even better than that of the original B+-tree, in

89

Making B+tree Efficient for Emerging NVM Based Main Memory Chapter 5

0.75

0.8

0.85

0.9

0.95

1

1.05

2 4 8 16

E
x
ec

u
ti

o
n

 T
im

e

Nodesize (Cachelines)

PCM

0.75

0.8

0.85

0.9

0.95

1

1.05

2 4 8 16

E
x
ec

u
ti

o
n

 T
im

e

Nodesize (Cachelines)

STT-RAM

0.75

0.8

0.85

0.9

0.95

1

1.05

2 4 8 16

E
x
ec

u
ti

o
n

 T
im

e

Nodesize (Cachelines)

ReRAM

0.75

0.8

0.85

0.9

0.95

1

1.05

2 4 8 16

In
st

ru
ct

io
n

 C
o
u

n
t

Nodesize (Cachelines)

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2 4 8 16

M
em

o
ry

 E
n

er
g
y

Nodesize (Cachelines)

PCM

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2 4 8 16

M
em

o
ry

 E
en

rg
y

Nodesize (Cachelines)

STT-RAM

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2 4 8 16

M
em

o
ry

 E
n

er
g
y

Nodesize (Cachelines)

ReRAM

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2 4 8 16

R
ea

d
 A

cc
es

s
C

o
u

n
t

Nodesize (Cachelines)

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2 4 8 16

W
ri

te
 A

cc
es

s
C

o
u

n
t

Nodesize (Cachelines)

B+-tree Unsorted Leaf Sub-balanced Unsorted Leaf

(a) PCM execution time (b) STT-RAM execution time (c) ReRAM execution time

(g) Instruction count

(d) PCM memory energy consumption (e) STT-RAM memory energy consumption (f) ReRAM memory energy consumption

(h) Read access count (i) Write access count

Figure 5.3: Comparison among B+-tree, the unsorted leaf scheme, and the proposed
sub-balanced unsorted leaf scheme in PCM, STT-RAM, and ReRAM based systems
for an insert-only workload (insert one million records with random keys to an empty
tree). The results are normalized to those of B+-tree with node size = 2.

PCM based system. In STT-RAM and ReRAM based systems, the execution time is

reduced by 1.1% − 5.5% among different node sizes, as shown in Figure 5.3(b) and (c).

Figure 5.3(g) shows that the instruction count is decreases in sub-balanced unsorted leaf

scheme compared with the unsorted leaf scheme. It has similar read and write access

counts and memory energy consumption in PCM, STT-RAM, and ReRAM systems to

the unsorted leaf scheme, as shown in Figure 5.3(h), (i), (d), (e), and (f).

When node size = 2 (b = 6), from Figure 5.3(i), it is found that neither of the two

90

Making B+tree Efficient for Emerging NVM Based Main Memory Chapter 5

unsorted leaf schemes can reduce the write access count. From Figure 5.3(a), (b), (c),

(d), (e), and (f), they cannot reduce the execution time and memory energy consumption

either. That is why the overflow node scheme is proposed for small node sizes and small

bs. As the node size increases, both the two unsorted leaf schemes demonstrate their

efficiency in reducing the write access count and the total memory energy consumption

compared with the original B+-tree; however, in the meanwhile, the read access count

increases.

Figure 5.4 demonstrates how the two unsorted leaf schemes affect the search per-

formance compared with original B+-tree. In this experiment, every record of a tree

with one million records is searched in a random order. The results show that when

node size = 2, 4, 8 (b = 6, 13, 25), the two unsorted leaf schemes incur little or afford-

able performance overhead or memory energy consumption overhead. However, when

node size = 16 (b = 51), compared with B+-tree, they have 9.3% increase in execution

time and 13.3% increase in total memory energy consumption for PCM based system,

15.4% increase in execution time and 15.0% increase in total memory energy consumption

for STT-RAM based system, and 15.1% increase in execution time and 12.2% increase

in total memory energy consumption for ReRAM based system. It is because as the

branching factor increases, the cost (instruction count and read access count) of linear

search in the unsorted leaves becomes higher; when the branching factor is large enough,

the cost of linear search becomes dominant, as shown in Figure 5.4(g) and (h). The write

access count stays stable for the search-only workload, among different node sizes and

different B+-tree schemes as shown in Figure 5.4(i). These results indicate that, although

the unsorted leaf scheme and the sub-balanced unsorted leaf scheme can reduce the write

count more efficiently for larger branching factors in insert operations, they may degrade

the search performance significantly.

For delete operations, the unsorted leaf scheme and the sub-balanced unsorted leaf

91

Making B+tree Efficient for Emerging NVM Based Main Memory Chapter 5

(a) PCM execution time (b) STT-RAM execution time (c) ReRAM execution time

(g) Instruction count

(d) PCM memory energy consumption (e) STT-RAM memory energy consumption (f) ReRAM memory energy consumption

(h) Read access count (i) Write access count

0.5

0.6

0.7

0.8

0.9

1

1.1

2 4 8 16

E
x
ec

u
ti

o
n

 T
im

e

Nodesize (Cachelines)

PCM

0.5

0.6

0.7

0.8

0.9

1

1.1

2 4 8 16

E
x
ec

u
ti

o
n

 T
im

e

Nodesize (Cachelines)

STT-RAM

0.5

0.6

0.7

0.8

0.9

1

1.1

2 4 8 16

E
x
ec

u
ti

o
n

 T
im

e

Nodesize (Cachelines)

ReRAM

0.5

0.6

0.7

0.8

0.9

1

1.1

2 4 8 16

In
st

ru
ct

io
n

 C
o
u

n
t

Nodesize (Cachelines)

0.5

0.6

0.7

0.8

0.9

1

1.1

2 4 8 16

M
em

o
ry

 E
n

er
g
y

Nodesize (Cachelines)

PCM

0.5

0.6

0.7

0.8

0.9

1

1.1

2 4 8 16

M
em

o
ry

 E
n

er
g
y

Nodesize (Cachelines)

STT-RAM

0.5

0.6

0.7

0.8

0.9

1

1.1

2 4 8 16

M
em

o
ry

 E
n

er
g
y

Nodesize (Cachelines)

ReRAM

0.5

0.6

0.7

0.8

0.9

1

1.1

2 4 8 16

R
ea

d
 A

cc
es

s
C

o
u

n
t

Nodesize (Cachelines)

0.5

0.6

0.7

0.8

0.9

1

1.1

2 4 8 16

W
ri

te
 A

cc
es

s
C

o
u

n
t

Nodesize (Cachelines)

B+-tree Unsorted Leaf Sub-balanced Unsorted Leaf

Figure 5.4: Comparison among B+-tree, the unsorted leaf scheme, and the proposed
sub-balanced unsorted leaf scheme in PCM, STT-RAM, and ReRAM based systems
for a search-only workload (search every record of a tree with one million records in
random order). The results are normalized to those of B+-tree with node size = 2.

scheme have shorter execution time than the original B+-tree in PCM, STT-RAM, and

ReRAM based systems when node size = 4, as shown in Figure 5.6. The reason is that,

they remove the CPU-intensive sorting in each delete operation. For the delete-only

workload, when the merging factor mgf = 0.5, the unsorted leaf scheme reduces the

instruction count by 4.8%, and saves the execution time by 3.8%, 4.1%, and 4.1% in

PCM, STT-RAM and ReRAM based systems respectively, compared with the original

B+-tree; the sub-balanced unsorted leaf node scheme reduces the instruction count by

92

Making B+tree Efficient for Emerging NVM Based Main Memory Chapter 5

5.3%, and saves the execution time by 4.5%, 4.6%, and 4.6% in PCM, STT-RAM and

ReRAM based systems respectively. Their read and write access counts, and memory

energy consumptions in PCM, STT-RAM and ReRAM based systems, and memory

space usages are similar to those of the original B+-tree for the delete-only workload

when mgf = 0.5. It also can be found that, when node size = 4, the unsorted leaf

node scheme and the sub-balanced leaf node scheme cannot reduce the write accesses

efficiently in delete operations.

Results for The Overflow Node Scheme

The overflow node scheme is evaluated for the cases of small node sizes and branching

factors in PCM, STT-RAM, and ReRAM based systems. Figure 5.5 presents the results

of the overflow node scheme with overflow factors (ovf) from 1 to 4 when node size = 2

and b = 6. For the insert-only workload, as Figure 5.5(a) shows, the overflow node scheme

reduces the write count by 6.2% − 12.9%, and saves memory energy by 4.0% − 8.3% in

PCM based system, by 3.5% − 7.1% in STT-RAM based system, and by 4.3% − 9.0%

in ReRAM based system, as the overflow factor increases from 1 to 4, without hurting

the performance. This demonstrates the effectiveness of the overflow node scheme to

reduce the write accesses in insert operations. However, for the search-only workload,

the overflow node scheme increases the read access number by 0.4% − 12.2%, as shown

in Figure 5.5(b), and thus incurs about 1.6%−5.2% performance overhead and increases

the total memory energy consumption by 2.0%−8.6% in PCM, STT-RAM, and ReRAM

based systems, with the overflow factor from 1 to 4. Therefore, when considering the

performance and memory energy consumption of both the insert and search operations,

ovf = 1 and ovf = 2 are two good choices.

For delete operations, Figure 5.6 shows the results of the overflow node scheme with

node size = 4 and ovf = 2. Compared with the original B+-tree, it decreases the

93

Making B+tree Efficient for Emerging NVM Based Main Memory Chapter 5

0.8

0.85

0.9

0.95

1

1.05

1.1

PCM Exe.

Time

STT-RAM Exe.

Time

ReRAM Exe.

Time

Instruction

Count

N
o

rm
.

to
 B

+
-t

re
e

0.8

0.85

0.9

0.95

1

1.05

1.1

1.15

 PCM Memory

Energy

STT-RAM

Memory Energy

ReRAM

Memory Energy

Read Access

Count

Write Access

Count

N
o

rm
.

to
 B

+
-t

re
e

Sub-balanced

B+-tree

Unsorted leaf

ovf = 1

ovf = 2

ovf = 3

ovf = 4

0.8

0.85

0.9

0.95

1

1.05

1.1

PCM Exe.

Time

STT-RAM Exe.

Time

ReRAM Exe.

Time

Instruction

Count

N
o

rm
.

to
 B

+
-t

re
e

0.8

0.85

0.9

0.95

1

1.05

1.1

1.15

 PCM Memory

Energy

STT-RAM

Memory Energy

ReRAM

Memory Energy

Read Access

Count

Write Access

Count

N
o

rm
.

to
 B

+
-t

re
e

(a) Insert

(b) Search

Figure 5.5: Comparison results of the overflow node schemes for (a) insert-only and
(b) search-only workloads in PCM, STT-RAM, and ReRAM based systems when
node size = 2 and b = 6 (normalized to the B+-tree results).

write accesses by 16.0% when mgf = 0.5, as shown in Figure 5.6(i), because the write

accesses due to merge and borrow are reduced since a leaf node can borrow keys from and

94

Making B+tree Efficient for Emerging NVM Based Main Memory Chapter 5

merge with an overflow node without updating the parent node. In PCM based system, it

reduces the execution time by 3.2% when mgf = 0.5, as shown in Figure 5.6(a). However,

in STT-RAM and ReRAM based systems, the execution time is similar to that of the

original B+-tree, as shown in Figure 5.6(b) and (c). This is because the write latencies of

STT-RAM and ReRAM are much shorter than that of PCM, and the reductions of write

accesses in STT-RAM and ReRAM based systems have less impact on the execution time

than in PCM based system. Moreover, Figure 5.6(d), (e) and (f) show that, the overflow

node scheme saves memory energy consumption by 13.2%, 12.5%, and 13.7% in PCM,

STT-RAM and ReRAM based systems, respectively. These benefits come at the cost of

21.2% more memory space, as shown in Figure 5.6(j). The reason is that a leaf can be

sparser before incurring a merge since it can borrow keys from either an overflow node

or a neighbor node.

Results for The Merging Factor Scheme

The merging factor scheme is implemented with the merging factor from 0 to 0.5.

The original B+-tree, the unsorted leaf node scheme, the sub-balanced unsorted leaf

node scheme, and the overflow node scheme with ovf = 2, are evaluated in PCM, STT-

RAM, and ReRAM based systems, for a delete-only workload. The results are shown in

Figure 5.6. It can be found that with the decrease of the merging factor from 0.5 to 0,

the write accesses of all the four schemes are decreased (up to ∼ 40%) and so are their

execution time, instruction count, read access count, and memory energy consumption

(decreased by up to ∼ 35%). However, the space usage is increased dramatically (up to

∼ 2.5×). For MMDB applications, space efficiency is also an important goal for algorithm

design. With the merging factor scheme, a proper merging factor can be chosen to make

better trade-offs among execution time, total wear, memory energy and space usage.

95

Making B+tree Efficient for Emerging NVM Based Main Memory Chapter 5

(a) PCM execution time (b) STT-RAM execution time (c) ReRAM execution time

(g) Instruction count

(d) PCM memory energy consumption (e) STT-RAM memory energy consumption (f) ReRAM memory energy consumption

(h) Read access count (i) Write access count

0.75

0.8

0.85

0.9

0.95

1

1.05

B+-tree Unsorted Leaf Sub-balanced ovf = 2

E
x

ec
u

ti
o

n
 T

im
e

PCM

0.75

0.8

0.85

0.9

0.95

1

1.05

B+-tree Unsorted Leaf Sub-balanced ovf = 2

E
x
ec

u
ti

o
n

 T
im

e

STT-RAM

0.75

0.8

0.85

0.9

0.95

1

1.05

B+-tree Unsorted Leaf Sub-balanced ovf = 2

E
x

ec
u

ti
o

n
 T

im
e

ReRAM

0.75

0.8

0.85

0.9

0.95

1

1.05

B+-tree Unsorted Leaf Sub-balanced ovf = 2

In
st

ru
ct

io
n

 C
o
u

n
t

0

0.2

0.4

0.6

0.8

1

1.2

B+-tree Unsorted Leaf Sub-balanced ovf = 2

M
em

o
ry

 E
n

er
g
y PCM

0

0.2

0.4

0.6

0.8

1

1.2

B+-tree Unsorted Leaf Sub-balanced ovf = 2

M
em

o
ry

 E
n

er
g
y STT-RAM

0

0.2

0.4

0.6

0.8

1

1.2

B+-tree Unsorted Leaf Sub-balanced ovf = 2

M
em

o
ry

 E
n

er
g
y ReRAM

0

0.2

0.4

0.6

0.8

1

1.2

B+-tree Unsorted Leaf Sub-balanced ovf = 2R
ea

d
 A

cc
es

s
C

o
u

n
t

0

0.5

1

1.5

2

2.5

3

B+-tree Unsorted Leaf Sub-balanced ovf = 2M
em

o
ry

 S
p

a
ce

 U
sa

g
e

(j) Memory space usage

mgf = 0.5

mgf = 0.4

mgf = 0.3

mgf = 0

mgf = 0.1

mgf = 0.2

0

0.2

0.4

0.6

0.8

1

1.2

B+-tree Unsorted Leaf Sub-balanced ovf=2W
ri

te
 A

cc
es

s
C

o
u

n
t

Figure 5.6: The results of the merging factor scheme in PCM, STT-RAM, and ReRAM
based systems for a delete-only workload (randomly delete half the records from a tree
holding one million records with random keys) with node size = 4 (normalized to the
B+-tree results).

5.6 Summary

Among the emerging NVM technologies, PCM, STT-RAM, and ReRAM, are becom-

ing promising to build future energy-efficient main memory systems. They will benefit

MMDB systems with their nice features. This paper focuses on making B+-tree NVM-

friendly. A new algorithm design goal is to reduce the write accesses that have long

latency, high energy consumption, and endurance issues. In this project, a basic cost

model for NVM-based memory systems is presented which distinguishes writes from reads

96

Making B+tree Efficient for Emerging NVM Based Main Memory Chapter 5

according to NVM’s asymmetric read/write characteristics, and also the CPU costs and

memory accesses for search, insert and delete operations on a B+-tree are formulated.

The model is then used to analyze the existing NVM-friendly B+-tree schemes, i.e., the

unsorted node schemes, and find that they suffer from three problems. Consequently,

three schemes are proposed to address these challenges: 1) the sub-balanced unsorted

node scheme, 2) the overflow node scheme, and 3) the merging factor scheme. Experi-

mental results show that they can provide more algorithm options for making trade-offs

among performance improvement, NVM lifetime extension, memory energy saving, and

space usage reduction under different workloads.

97

Chapter 6

Accelerating Neural Network

Computation in ReRAM Based

Main Memory

This chapter presents a project that accelerates neural network (NN) computation with

a novel processing-in-memory (PIM) architecture, called PRIME (processing in ReRAM

based main memory) [66]. It first introduces the motivation of this project. Then, it

gives the basics of using ReRAM for NN computation, and introduces the related work

about PIM and accelerating NN in hardware. Next, it presents the PRIME architecture

design as well as hardware-software interface design. Furthermore, it shows the evaluation

methodology and results before summarizes this project.

6.1 Motivation

The gap between microprocessor and memory speeds has kept increasing for several

decades. To mitigate this issue, processing-in-memory (PIM) has been proposed since the

98

Accelerating Neural Network Computation in ReRAM Based Main Memory Chapter 6

1990s, which integrates computation logic with main memory [67, 68, 69], storage [70],

and last level cache [71]. In recent years, as the amount of data to process grows exponen-

tially, data movement between the processing units (PUs) and the memory is becoming

one of the most critical performance and energy bottlenecks in various computer sys-

tems. PIM, as a promising solution, again attracts a lot of interest from academia as

well as industry, by leveraging emerging 3D memory technologies to integrate logic with

memory [72, 73, 74, 75].

All the PIM work mentioned above integrates additional logic with memory, which

increases the total cost of memory chips significantly. Recent work demonstrated that

some emerging NVMs, including ReRAM, STT-RAM, and PCM, have the capability of

performing logic and arithmetic operations beyond data storage. This allows the memory

to serve both computation and memory functions, promising a radical renovation of the

relationship between computation and memory. Among them, ReRAM can perform

matrix-vector multiplications efficiently in a crossbar structure, and has been widely

studied to represent synapses in neural computation [76, 77, 78, 79, 80, 81, 82].

Neural network (NN) and deep learning (DL) have the potential to provide optimal so-

lutions in various applications including image/speech recognition and natural language

processing, and are gaining a lot of attention recently. The state-of-the-art NN and

DL algorithms, such as multi-layer perceptron (MLP) and convolutional neural network

(CNN), require a large memory capacity as the size of NN increases dramatically (e.g.,

1.32GB synaptic weights for Youtube video object recognition [83]). High-performance

acceleration of NN requires high memory bandwidth since the PUs are hungry for fetching

the synaptic weights [84]. To address this challenge, recent special-purpose chip designs

have adopted large on-chip memory to store the synaptic weights. For example, DaDi-

anNao [85] employed a large on-chip eDRAM for both high bandwidth and data locality;

TrueNorth utilized an SRAM crossbar memory for synapses in each core [86]. Although

99

Accelerating Neural Network Computation in ReRAM Based Main Memory Chapter 6

those solutions effectively reduce the transfer of synaptic weights between the PUs and

the off-chip memory, the data movement including input and output data besides synap-

tic weights is still a hinderance to performance improvement and energy saving. Instead

of integrating more on-chip memory, PIM is a promising solution to tackle this issue by

putting the computation logic into the memory chip, so that NN computation can enjoy

the large capacity of main memory and sustain high memory bandwidth via in-memory

data communication at the same time.

This project proposes a novel PIM architecture using ReRAM as main memory and

also for efficient NN computation, called PRIME (processing in ReRAM-based main

memory). ReRAM has been previsioned to build the next-generation main memory [10],

and is also a good candidate for PIM thanks to its large capacity, fast read speed, and

computation capability. In the ReRAM main memory design, a small portion of memory

arrays in each bank are enabled to serve as NN accelerators besides normal memory by

specific peripheral circuit design. The circuit, architecture, and software interface designs

allow these ReRAM arrays to dynamically reconfigure between memory and accelerators,

and also to represent various NNs. The current PRIME design supports large-scale

MLPs and CNNs, which can produce the state-of-the-art performance on varieties of NN

applications, e.g. top classification accuracy for image recognition tasks. Distinguished

from all prior work on NN acceleration, PRIME can benefit from both the efficiency of

using ReRAM for NN computation and the efficiency of the PIM architecture to reduce

the data movement overhead, and therefore can achieve significant performance gain and

energy saving. As no dedicated processor is required, PRIME incurs very small area

overhead. It is also manufacture friendly with low cost, since it remains as the memory

design without requirement for complex logic integration or 3D stacking.

100

Accelerating Neural Network Computation in ReRAM Based Main Memory Chapter 6

6.2 The Basics of Using ReRAM for NN Computa-

tion

Artificial neural networks (ANNs) are a family of machine learning algorithms inspired

by the human brain structure. Generally, they are presented as network of interconnected

neurons, containing an input layer, an output layer, and probably one or more hidden

layers. Figure 6.1 (a) shows a simple neural network with an input layer of three neurons,

an output layer of three neurons, and no hidden layers. The output bj is calculated as,

bj = σ(
∑
∀i

ai · wi,j), (6.1)

where wi,j are synaptic weights, σ is a non-linear function, i = 1, 2, 3, and j = 1, 2, 3.

a1

a2

a3

+ b1

+ b2

w1,1

w2,1

w3,1

w1,2

w2,2

w3,2

w1,1

b1

w2,1

w3,1

a1

a2

a3

w1,2

b2

w2,2

w3,2

(a) (b)

Figure 6.1: (a) An ANN with one input/output layer; (b) using a ReRAM crossbar
array for neural computation.

Figure 6.1 (b) shows an example of using a 3× 3 ReRAM crossbar array to execute

the neural networks in Figure 6.1 (a). The input data ai is represented by analog input

voltages on the wordlines. The synaptic weights wi,j are programmed into the cell con-

ductances in the crossbar array. Then the current flowing to the end of each bitline is

viewed as the result of the matrix-vector multiplication,
∑

i ai · wi,j. After sensing the

current on each bitline, the neural networks adopt a non-linear function unit to complete

101

Accelerating Neural Network Computation in ReRAM Based Main Memory Chapter 6

the execution.

Implementing NNs with ReRAM crossbar arrays requires specialized peripheral cir-

cuit design. For example, digital-to-analog converters (DACs) and analog-to-digital con-

verters (ADCs) are needed for analog computing. Also, a sigmoid unit as well as a

substraction unit is required, since matrices with positive and negative weights are im-

plemented as two separated crossbar arrays.

6.3 Related Work

6.3.1 Processing-in-memory (PIM)

PIM is not a new concept, and there has been a lot of work on it since 1990s, e.g.,

IRAM [67, 87, 88, 89] and DIVA [69]. Early efforts explored to integrate simple ALU [90],

vectorization [87], SIMD [68], general processor [91], and FPGA [92] with DRAM. Un-

fortunately, the idea of integrating performance-optimized logic with density-optimized

memory aroused a lot of criticism from the cost-sensitive memory industry [93]. Re-

cently, driven by the data intensive applications and the 3D-stacking technology, PIM

or near data computing (NDC) is resurgent, with lots of industry effort (e.g., IBM [94],

AMD [74], and Samsung [95]). Recent efforts decouple logic and memory designs in dif-

ferent dies, adopting 3D stacked memories with a logic layer that encapsulates processing

units to perform computation [72, 73, 74, 75, 96]. This architecture design is compatible

with the hybrid memory cube (HMC) [97] and high bandwidth memory (HBM) [98].

In this project, the proposed PRIME is a distinct solution from either early or recent

PIM work. Instead of adding logic to memory, PRIME leverages the memory cells them-

selves for computing, and hence the area overhead is very small. The add-on hardware

in PRIME to enable the computing functionality is simple modifications of the existing

102

Accelerating Neural Network Computation in ReRAM Based Main Memory Chapter 6

memory peripheral circuits, which is much more manufacture-friendly than integrating

complex logic into the memory die. Moreover, PRIME does not rely on 3D-stacking tech-

nology, exempt from its high cost and thermal problems. Also, different from previous

work, which is usually focused on database and graph processing applications [75, 73],

PRIME aims at accelerating NN applications.

Recent work also employs NVM technologies (ReRAM, phase change memory, and

spin-transfer torque RAM) to build ternary content addressable memories (TCAMs),

which exploits memory cells to perform associative search operations [99, 100, 101]. How-

ever, to support such search operations, these studies require redesign of NVM cell struc-

tures to enable much larger cell sizes, which inevitably increases the cost of memory.

Compared to previous TCAM designs, PRIME obviates the cost of redesigning mem-

ory cells. Furthermore, PRIME supports much more sophisticated computation than

TCAMs.

6.3.2 Accelerating NNs in Hardware

In the era of big data, machine learning is widely used to learn from and make

predictions on huge amount of data. With the advent of deep learning, some neural

network algorithms such as convolutional neural networks (CNNs) and deep neural net-

works (DNNs) start to show their power and effectiveness across a wide range of appli-

cations [84, 85]. Prior studies [102, 86, 103] strive to build neuromorphic systems with

CMOS-based neurons and synapses, which introduce substantial design challenges due

to the huge area occupied by ten thousands of transistors used to implement numer-

ous neurons and synapses. Alternatively, ReRAM is becoming a promising candidate to

build area-efficient synaptic arrays for NN computation [76, 77, 78, 80], as it emerges

with crossbar architecture. Recently, Presioso et al. fabricated a 12× 12 ReRAM cross-

103

Accelerating Neural Network Computation in ReRAM Based Main Memory Chapter 6

bar prototype with a fully operational neural network, successfully classifying 3× 3-pixel

black/white images into 3 categories [78].

Most prior work exploit ReRAM either as DRAM/flash replacement [104, 105, 10] or

as synapses for NN computation [76, 77, 78, 79, 80, 106]. In this project, PRIME is a

morphable architecture, where ReRAM can work as main memory as well as NN compu-

tation units, by enabling a small portion of the subarrays in ReRAM based main memory

with the NN computation functionality, referred as full function subarrays. When NN

applications are running, PRIME can execute them with the full function subarrays to

improve performance or energy efficiency; while the NN applications are not executed,

the full function subarrays can be freed to provide extra memory capacity.

Distinguished from the existing work on accelerating NNs in hardware, PRIME pro-

poses a PIM solution. There is a lot of previous studies on using ReRAM for NN accel-

eration, from stand-alone accelerator [76], co-processor [77], to many-core or NoC [106]

architecture. There are also many other studies on accelerating NNs on the platforms

of GPU [107, 108, 109], FPGA [110, 111, 112] and ASIC [86, 103, 102, 84, 85]. The

efforts of prior work focus on the co-processor architecture that accesses data from main

memory in a conventional way. However, some NN applications require a high memory

bandwidth to fetch large-size input data or synaptic weights, and the data movement

from memory to processors is energy-consuming. As reported, DRAM accesses consume

95% of the total energy in DianNao design [84]. This project proposes to accelerate NNs

in a PIM architecture, moving the computing resources to the memory side by adapting

a small portion of the subarrays in ReRAM based main memory for NN computation.

It takes advantage of the large internal bandwidth of main memory, and also provides a

more energy efficient solution with minimal data movement.

104

Accelerating Neural Network Computation in ReRAM Based Main Memory Chapter 6

6.4 The Proposed Design

Processing in ReRAM-based main memory, PRIME, is proposed which efficiently

accelerates NN computation by leveraging ReRAM’s computation capability and the PIM

architecture. In this section, both the architecture-level and the system-level designs are

presented.

6.4.1 Architecture Design

Figure 6.2(c) depicts an overview of the PRIME architecture design. While most

previous NN acceleration approaches require additional processing units (PU) (Figure 6.2

(a) and (b)), PRIME directly leverages ReRAM cells to perform computation without

the need for extra PUs. To achieve this, as shown in Figure 6.2(c), PRIME partitions a

ReRAM bank into three regions: memory (Mem) subarrays, full function (FF) subarrays,

and Buffer subarrays.

CPU

Memory

CPU

CPUPU

(a) Processor-Coprocessor Arch.

(b) PIM with 3D integration

(c) PRIME

Buffer subarray

FF subarray

Mem subarray

Mem subarray

Memory (ReRAM)

Memory Mode

Comp. Mode

write synaptic

weights to cell
Step 1: Program

switch peripheral

circuits to compute
Step 2: Configure

switch circuits backStep 4: Wrap-up

computingStep 3: Execute

(d) An example PRIME working flow

M
e
m

o
ry

 M
o

d
e

C
o

m
p
.

M
o

d
e

Mem.
ModeMemory

PU

w1,1

b1

w2,1

w3,1

a1

a2

a3

w1,2

b2

w2,2

w3,2

Store
Data

Store
Weight

Figure 6.2: (a) Traditional shared memory based processor-coprocessor architecture,
(b) PIM approach using 3D integration technologies, (c) PRIME design.

The Mem subarrays only have data storage capability (the same as conventional

memory subarrays). Their microarchitecture and circuit designs are similar to a recent

design of performance-optimized ReRAM main memory [10]. The FF subarrays have

105

Accelerating Neural Network Computation in ReRAM Based Main Memory Chapter 6

both computation and data storage capabilities, and they can operate in two modes. In

memory mode, the FF subarrays serve as conventional memory; in computation mode,

they can execute NN computation. There is a PRIME controller to control the operation

and the reconfiguration of the FF subarrays. The Buffer subarrays serve as data buffers

for the FF subarrays, and they are the memory subarrays that are closest to each FF

subarray. They are connected to the FF subarrays that they serve through private data

ports, so that buffer accesses do not consume the bandwidth of the Mem subarrays.

While not being used as data buffers, the Buffer subarrays can also be used as normal

memory. From Figure 6.2(c), it can be found that for NN computation, the FF subarrays

enjoy the high bandwidth of in-memory data movement, and can work in parallel with

CPU, with the help of the Buffer subarrays.

To enable the NN computation function in FF subarrays, it needs to modify decoders

and drivers, column multiplexers (MUX), and sense amplifiers (SA) in circuit design,

and also needs to add connection units to connect the FF subarrays and the Buffer

subarrays. To minimize the area overhead, the reuse of peripheral circuits is maximized

for both storage and computation in FF subarrays. The goal of the Buffer subarray is

two-fold. First, they are used to cache the input and output data for the FF subarrays.

For example, to fetch data for the FF subarrays, the data are first loaded from a Mem

subarray to the global row buffer, and then they are written from the row buffer to the

Buffer subarray. Second, the FF subarrays can communicate with the Buffer subarrays

directly without the involvement of the CPU, so that the CPU and the FF subarrays

can work in parallel. The adjacent memory subarray to the FF subarrays is chosen as

the Buffer subarray, which is also closest to the global row buffer so as to minimize the

delay.

The current circuit design of the FF subarrays supports the acceleration of MLP

and most layers of CNN. Matrix-vector multiplication is one of the most important

106

Accelerating Neural Network Computation in ReRAM Based Main Memory Chapter 6

operations in MLP and the fully-connected layer and convolution layer of CNN, which

can be implemented by ReRAM crossbar arrays: the weight matrix is pre-programmed in

ReRAM cells; the input vector is the voltages on the wordlines driven by the drivers, and

the output currents are accumulated at the bitlines. Actually, the synaptic weight matrix

is separated into two matrices, one storing the positive weights and the other storing the

negative weights, and they are programmed into two crossbar arrays. A subtraction unit

is then used to subtract the result of the negative part from that of the positive part. For

activation functions, the circuit design support sigmoid and ReLU functions by specific

sigmoid and ReLU units. For the pooling layer, both max pooling and mean pooling are

supported. To implement max pooling, a 4:1 max pooling hardware is adopted which

is able to support n:1 max pooling with multiple steps for n > 4. Mean pooling is

easier to implement than max pooling, because it can be done with ReRAM and does

not require extra hardware. To perform n:1 mean pooling, it simply pre-programs the

weights [1/n, · · · , 1/n] in ReRAM cells, and executes the dot product of the inputs and

the weights to obtain the mean value of n inputs. Currently, PRIME does not support

local response normalization layer (LRN) acceleration. The hardware for LRN is not

added, because state-of-the-art CNNs do not contain LRN layers [113]. When LRN

layers are applied, PRIME requires the help of CPU for LRN computation.

6.4.2 Software-Hardware Interface

Figure 6.3 shows the stack of PRIME to support NN programming, which allows

developers to easily configure the FF subarrays for NN applications. From software pro-

gramming to hardware execution, there are three stages: programming (coding), com-

piling (code optimization), and code execution. In the programming stage, PRIME

provides application programming interfaces (APIs) so that they allow developers to: 1)

107

Accelerating Neural Network Computation in ReRAM Based Main Memory Chapter 6

map the topology of the NN to the FF subarrays, Map Topology, 2) program the synap-

tic weights into mats, Program Weight, 3) configure the data paths of the FF subarrays,

Config Datapath, 4) run computation, Run, and 5) post-process the result, Post Proc. In

this work, the training of NN is done off-line so that the inputs of each API are already

known (NN param.file). Prior work explored to implement training with ReRAM cross-

bar arrays [114, 115, 116, 117, 118, 119], and it can be future work to further enhance

PRIME with the training capability.

Target Code

Segment

Offline Training

Stage 1: Program

NN param. file

Map_Topology();

Program_Weight ();

Config_Datapath();

Run(input_data);

Post_Proc();

Modified Code: Stage 3: Execute Stage 2: Compile

Controller Mat …

ReRAM

FF Subarray

Synaptic Weights Mapping

Datapath Config. Command

Data Flow Ctrl. Command

Figure 6.3: The software perspective of PRIME: from source code to execution.

In the compiling stage, the NN mapping to the FF subarrays and the input data

allocation are optimized. The output of compiling is the metadata for synaptic weights

mapping, data path configuration, and execution commands with data dependency and

flow control. The metadata is also the input for the execution stage. In the execution

stage, PRIME controller writes the synaptic weights to the mapped addresses in the

FF subarrays; then it (re-)configures the peripheral circuits according to the datapath

configuration commands to set up the data paths for computation; and finally, it executes

data flow control commands to manage data movement into or out of the FF subarrays

at runtime.

Since FF subarrays reside in banks, PRIME intrinsically inherits bank-level paral-

lelism to speed up execution. Note that the FF subarrays in different banks have the

same computing configurations. For instance, if a bank is considered as an NPU, PRIME

contains 64 NPUs per bank (8 banks×8 chips) so that 64 images can be processed in

108

Accelerating Neural Network Computation in ReRAM Based Main Memory Chapter 6

parallel. To take advantage of the bank-level parallelism, the OS is required to place one

image in one bank, and evenly distribute images to all banks. As current page placement

strategies expose memory latency or bandwidth information to the OS [120, 121], PRIME

further exposes the bank ID information to the OS, so that each image can be mapped

to a single bank.

6.5 Evaluation

In this section, the PRIME design is evaluated. First, the experiment setup is de-

scribed, and then the performance and energy results are presented and the area overhead

is estimated.

6.5.1 Experimental Methodology

Benchmark

The benchmarks used (MlBench) comprise six NN designs for machine learning ap-

plications, as listed in Table 6.1. CNN-1 and CNN-2 are two CNNs, and MLP-S/M/L

are three MLPs with different network scales: small, medium, and large. Those five NNs

are evaluated on the widely used MNIST database of handwritten digits [122]. The sixth

NN, VGG-D, is well known for ImageNet ILSVRC[113]. It is an extremely large CNN,

containing 16 weight layers and 1.4×108 synapses, and requiring ∼ 1.6×1010 operations.

PRIME Configurations

There are 2 FF subarrays and 1 Buffer subarray per bank (totally 64 subarrays). In FF

subarrays, for each mat, there are 256×256 ReRAM cells and eight 6-bit reconfigurable

SAs; for each ReRAM cell, it assumes 4-bit MLC for computation while SLC for memory;

109

Accelerating Neural Network Computation in ReRAM Based Main Memory Chapter 6

Table 6.1: The Benchmarks and Topologies.
MlBench MLP-S 784-500-250-10

CNN-1 conv5x5-pool-720-70-10 MLP-M 784-1000-500-250-10
CNN-2 conv7x10-pool-1210-120-10 MLP-L 784-1500-1000-500-10

VGG-D

conv3x64-conv3x64-pool-conv3x128-conv3x128-pool
conv3x256-conv3x256-conv3x256-pool-conv3x512
conv3x512-conv3x512-pool-conv3x512-conv3x512
conv3x512-pool-25088-4096-4096-1000

the input voltage has 8 levels (3-bit) for computation while 2 levels (1-bit) for memory.

With the input and synapse composing scheme, for computation, the input and output

data are 6-bit dynamic fixed point, and the weights are 8-bit.

Methodology

PRIME is compared with several counterparts. The baseline is a CPU-only solution.

The configurations of CPU and ReRAM main memory are shown in Table 6.2, including

key memory timing parameters for simulation. Two different NPU solutions are also

evaluated: using a complex parallel NPU [84] as a co-processor (pNPU-co), and using

the NPU as a PIM-processor through 3D stacking (pNPU-pim). The configurations of

these comparatives are described in Table 6.3.

Table 6.2: Configurations of CPU and Memory.
Processor 4 cores; 3GHz; Out-of-order

L1 I&D cache Private; 32KB; 4-way; 2 cycles access;
L2 cache Private; 2MB; 8-way; 10 cycles access;

ReRAM-based 16GB ReRAM; 533MHz IO bus;
Main Memory 8 chips/rank; 8 banks/chip;

tRCD-tCL-tRP-tWR 22.5-9.8-0.5-41.4 (ns)

The above NPU designs is modeled using Synopsys Design Compiler and PrimeTime

with 65nm TSMC CMOS library. The ReRAM main memory and the PRIME system are

modeled with modified NVSim [33], CACTI-3DD [123] and CACTI-IO [124]. Pt/TiO2-

110

Accelerating Neural Network Computation in ReRAM Based Main Memory Chapter 6

Table 6.3: The Configurations of Comparatives.
Description Data path Buffer

pNPU-co
Parallel NPU as co-processor, 16x16 multiplier, 2KB in/out
similar to DianNao [84] 256-1 adder tree 32KB weight

pNPU-pim PIM version of the parallel NPU, 3D stacked to each bank

x/Pt devices [125] with Ron/Roff = 1kΩ/20kΩ and 2V SET/RESET voltage are adopted.

The FF subarray is modeled by heavily modified NVSim, according to the peripheral

circuit modifications, i.e., write driver [126], sigmoid [127], and sense amplifier [128]

circuits. A trace-based in-house simulator is built to evaluate different systems, including

CPU-only, PRIME, NPU co-processor, and NPU PIM-processor.

6.5.2 Experimental Results

Performance Results

The performance results for MlBench are presented in Figure 6.4. MlBench bench-

marks use large NNs and require high memory bandwidth, and therefore they can benefit

from PIM. To demonstrate the PIM advantages, two pNPU-pim solutions are evaluated:

pNPU-pim-x1 is a PIM-processor with a single parallel NPU stacked on top of memory;

and pNPU-pim-x64 with 64 NPUs, for comparison with PRIME which takes advan-

tages of bank-level parallelism (64 banks). By comparing the speedups of pNPU-co and

pNPU-pim-x1, it is found that the PIM solution has a 9.1× speedup on average over

a co-processor solution. Among all the solutions, PRIME achieves the highest speedup

over the CPU-only solution, about 4.1× of pNPU-pim-x64’s. PRIME achieves a smaller

speedup in VGG-D than other benchmarks, because it has to map the extremely large

VGG-D across 8 chips where the data communication between banks/chips is costly. The

performance advantage of PRIME over the 3D-stacking PIM solution (pNPU-pim-x64)

for NN applications comes from the efficiency of using ReRAM for NN computation,

111

Accelerating Neural Network Computation in ReRAM Based Main Memory Chapter 6

because the synaptic weights have already been pre-programmed in ReRAM cells and

do not require data fetches from the main memory during computation. In the perfor-

mance and energy evaluations of PRIME, it does not include the latency and energy

consumption of configuring ReRAM for computation, because it assumes that once the

configuration is done, the NNs will be executed for tens of thousands times to process

different input data.

8
.2

6
.0

4
.0 5
.5 8
.5

1
.7

5
.0

4
2

.4

3
3

.3

5
5

.1

8
8

.4

1
4

7
.5

8
.5

4
5

.3

2
7

1
6

2
1

2
9

3
5

2
7

5
6

5
8

9
4

4
0

5
4

5

2
8

9
9

5
1

0
1

5
8

2
4

1
7

6
6

5

4
4

0
4

3

7
3

2
3

7

1
5

9
6 1

1
8

0
2

1E+00

1E+01

1E+02

1E+03

1E+04

1E+05

CNN-1 CNN-2 MLP-S MLP-M MLP-L VGG gmean

S
p

ee
d

u
p

 N
o

rm
.

to
 C

P
U

pNPU-co pNPU-pim-x1 pNPU-pim-x64 PRIME

Figure 6.4: The performance speedups normalized to CPU-only.

Figure 6.5 presents the breakdown of the execution time normalized to pNPU-co.

To clearly show the breakdown, the results of pNPU-pim with one NPU, and PRIME

without leveraging bank parallelism for computation are evaluated. The execution time

is divided into two parts, computation and memory access. The computation part also

includes the time spent on the buffers of NPUs or the Buffer subarrays of PRIME in

managing data movement. It is found that pNPU-pim reduces the memory access time

a lot, and PRIME further reduces it to zero. Zero memory access time does not imply

that there is no memory access, but it means that the memory access time can be hidden

by the Buffer subarrays.

112

Accelerating Neural Network Computation in ReRAM Based Main Memory Chapter 6

0%

10%

20%

30%

p
N

P
U

-c
o

p
N

P
U

-p
im

P
R

IM
E

p
N

P
U

-c
o

p
N

P
U

-p
im

P
R

IM
E

p
N

P
U

-c
o

p
N

P
U

-p
im

P
R

IM
E

p
N

P
U

-c
o

p
N

P
U

-p
im

P
R

IM
E

p
N

P
U

-c
o

p
N

P
U

-p
im

P
R

IM
E

p
N

P
U

-c
o

p
N

P
U

-p
im

P
R

IM
E

CNN-1 CNN-2 MLP-S MLP-M MLP-L VGG-D

L
at

en
cy

 N
o

rm
.

to
 p

N
P

U
-c

o

Compute + Buffer Memory
100%

Figure 6.5: The execution time breakdown normalized to pNPU-co).

Energy Results

The energy saving results for MlBench are presented in Figure 6.6. Figure 6.6 does

not show the results of pNPU-pim-x1, because they are the same with those of pNPU-

pim-x64. From Figure 6.6, PRIME shows its superior energy-efficiency to other solutions.

pNPU-pim-x64 is several times more energy efficient than pNPU-co, because the PIM

architecture reduces memory accesses and saves energy. The energy advantage of PRIME

over the 3D-stacking PIM solution (pNPU-pim-x64) for NN applications comes from the

energy efficiency of using ReRAM for NN computation.

1
.2

7
.3 9
.4 1
2

.6

1
9

.3

1
6

5
.9

1
2

.1

1
.8

1
1

.2 5
6

.1

7
9

.0

1
2

4
.6

1
8

6
9

.0

5
2

.6

3
3

5

3
8

0
1

1
1

7
4

4

2
3

9
2

2

3
2

5
4

8

1
3

8
9

8
4

1
0

8
3

4

1E+00

1E+01

1E+02

1E+03

1E+04

1E+05

1E+06

CNN-1 CNN-2 MLP-S MLP-M MLP-L VGG gmean

E
n

er
g

y
 S

av
e

N
o

rm
.
to

 C
P

U

pNPU-co pNPU-pim-x64 PRIME

Figure 6.6: The energy saving results normalized to CPU-only.

113

Accelerating Neural Network Computation in ReRAM Based Main Memory Chapter 6

Figure 6.7 provides the breakdown of the energy consumption normalized to pNPU-

co. The total energy consumptions are divided into three parts, computation energy,

buffer energy, and memory energy. From Figure 6.7, pNPU-pim-x64 consumes almost

the same energy in computation and buffer with pNUP-co, but saves the memory energy

by 93.9% on average by decreasing the memory accesses and reducing memory bus and

I/O energy. PRIME reduces all the three parts of energy consumption significantly. For

computation, ReRAM based analog computing is very energy-efficient. Moreover, since

each ReRAM mat can store 256× 256 synaptic weights, the cache and memory accesses

to fetch the synaptic weights are eliminated. Furthermore, since each ReRAM mat can

execute as large as a 256 − 256 NN at one time, PRIME also saves a lot of buffer and

memory accesses to the temporary data. From Figure 6.7, CNN benchmarks consume

more energy in buffer and less energy in memory than MLP benchmarks. The reason is

that the convolution layers and pooling layers of CNN usually have a small number of

input data, synaptic weights, and output data, and buffers are effective to reduce memory

accesses.

0%

25%

50%

75%

100%

p
N

P
U

-c
o

p
N

P
U

-p
im

P
R

IM
E

p
N

P
U

-c
o

p
N

P
U

-p
im

P
R

IM
E

p
N

P
U

-c
o

p
N

P
U

-p
im

P
R

IM
E

p
N

P
U

-c
o

p
N

P
U

-p
im

P
R

IM
E

p
N

P
U

-c
o

p
N

P
U

-p
im

P
R

IM
E

p
N

P
U

-c
o

p
N

P
U

-p
im

P
R

IM
E

CNN-1 CNN-2 MLP-S MLP-M MLP-L VGG-D

E
n
er

g
y
 N

o
rm

.
to

 p
N

P
U

-c
o

Compute Buffer Memory

Figure 6.7: The energy consumption breakdown normalized to pNPU-co.

114

Accelerating Neural Network Computation in ReRAM Based Main Memory Chapter 6

Area Overhead

Given two FF subarrays and one Buffer subarray per bank (64 subarrays in total),

PRIME only incurs 5.76% area overhead. The choice of the number of FF subarrays is

a tradeoff between peak GOPS and area overhead. The experimental results on Mlbench

(except VGG-D) show that the utilities of FF subarrays are 39.8% and 75.9% on average

before and after replication, respectively. For VGG-D, the utilities of FF subarrays

are 53.9% and 73.6% before and after replication, respectively. Figure 6.8 shows the

breakdown of the area overhead in a mat of an FF subarray. There is 60% area increase

to support computation: the added driver takes 23%, the subtraction and sigmoid circuits

take 29%, and the control, the multiplexer, and etc. cost 8%.

6%

11%

15%

8%

23%

29%

8%

60%

decoder (& mux)

drive (WL, BL)

output (SA, etc)

misc (precharge, etc)

Add-on: drivers

Add-on: sigmod, SA, etc

Add-on: contrl, etc

Figure 6.8: The area overhead of an FF subarray.

6.6 Summary

In this project, a novel processing in ReRAM-based main memory design, PRIME, is

proposed which substantially improves the performance and energy efficiency for neural

network (NN) applications, benefiting from both the PIM architecture and the efficiency

of ReRAM based NN computation. In PRIME, part of the ReRAM memory arrays

are enabled with NN computation capability. They can either perform computation

115

Accelerating Neural Network Computation in ReRAM Based Main Memory Chapter 6

to accelerate NN applications or serve as memory to provide a larger working memory

space. The architecture-level and system-level designs are presented in this chapter.

The experimental results show that, PRIME can achieves a high speedup and significant

energy saving for various NN applications using MLP and CNN.

116

Chapter 7

Conclusion

As computation is increasingly limited by data movement and energy consumption, mem-

ory system design becomes more and more important. In conventional computer systems,

SRAM and DRAM are the common embodiments of different levels of the memory hi-

erarchy. However, they are suffering from scalability issues, such as increasing leakage

power and degraded reliability. In recent years, multiple NVM technologies are emerging,

including STT-RAM, PCM, and ReRAM. With their attractive properties, such as good

scalability, low leakage power, fast access speed, and non-volatility, they have been con-

sidered as promising candidates to replace SRAM and DRAM in future memory system

design.

This dissertation is an effort to facilitate STT-RAM, PCM, and ReRAM to build

next-generation memory systems. First, it is necessary to address the challenges due to

their disadvantages, such as high write energy, long write latency, and limited lifetime.

Second, it is beneficial to take advantage of their unique features, such as non-volatility,

multi-level cell (MLC), and computation capability with a crossbar structure, to improve

the system performance, energy consumption, and reliability.

MLC STT-RAM based cache design is studied first which suffers from the high write

117

Conclusion Chapter 7

energy problem. From the write energy model of MLC STT-RAM built, it is found that

the write energy consumption is value-dependent. Based on the observation, a dynamic

data-resistance encoding mechanism is proposed which maps more frequent data values

to more energy-efficient resistance states at runtime. This solution can reduce the write

energy consumption of MLC STT-RAM last level cache (LLC) efficiently, with a slight

performance degradation due to the encoding overhead. To improve the performance

when decreasing the energy consumption, the properties of MLC STT-RAM read and

write operations are exploited. In series MLC STT-RAM, the soft-bit region is fast-read

and fast-write, which involves only one-step read and write operations, while the hard-bit

region has slow and energy-consuming two-step read and write operations. It is proposed

to use data compression to compress a cache line into half its size or less and fit it into

only the soft-bit region. The improved read and write latency and energy overwhelm

the compression overhead, and hence improve the LLC performance and save the energy

consumption. The saved space from data compression is further utilized to store more

data at the cost of more complex cache management, which increases the effective cache

capacity and further improves the LLC performance.

Utilizing the features of MLC STT-RAM read and write operations again, an MLC

STT-RAM main memory design for efficient local checkpointing is proposed. In tradi-

tional large-scale computing systems, the data transfer between DRAM and the backup

storage is the performance and energy bottleneck for checkpointing. MLC opens up an

inherent multi-version opportunity for local checkpointing since each cell can store mul-

tiple bits/versions of data. In the MLC STT-RAM main memory design, the soft-bit

of each cell is used to store the working data and the hard-bit to store the correspond-

ing checkpoint data. Therefore, only one-step write operations are required during the

error-free execution time as well as the checkpoint and recovery periods. The ultra high

inter-cell data transfer bandwidth significantly reduces the performance overhead of local

118

Conclusion Chapter 7

checkpointing. Also, the proposed design achieves high energy-efficiency of creating local

checkpoints.

Next, the impact of the asymmetric read and write properties of PCM, STT-RAM,

and ReRAM, are explored on the indexing algorithm design for main memory databases

built on these NVMs. Since write operations are much more expensive than read for

these NVMs, the new algorithm design goal is to reduce write accesses, even at the cost

of increasing read accesses. A cost model is built, and the CPU costs and the memory

behaviors of the B+-tree algorithm are analyzed. To address the issues of the previous

NVM-friendly redesign, three new schemes are proposed, providing more algorithm op-

tions for making trade-offs among system performance, memory energy consumption,

NVM lifetime, and space usage, under different workloads.

Finally, the analog computation capability of ReRAM crossbar is explored and a

novel processing-in-memory (PIM) architecture built on ReRAM based main memory

is proposed for accelerating neural network (NN) applications. ReRAM crossbar can

perform matrix-vector multiplications very efficiently, and it has been widely studied to

accelerate NN computation since matrix-vector multiplications are commonly used in

NN algorithms, such as multi-layer perceptron (MLP) and convolutional neural network

(CNN). This proposal is based on an existing ReRAM main memory design. In this

design, a small portion of ReRAM crossbar arrays in each bank are enabled to perform

NN computation by additional peripheral circuit support. Those ReRAM arrays can

work in two modes: as NN accelerators or as normal memory. Since memory itself can

compute, this proposal significantly reduces the data movement between the processing

units and the off-chip memory which has been identified as the performance and energy

bottleneck for NN applications. Along with the efficiency of the analog computation of

ReRAM, the proposed PIM architecture can achieve high speedups and energy saving.

In this dissertation, the solutions are from architecture-level and application-level per-

119

spectives. many detailed circuit and software designs are left for future work. Moreover,

checkpointing, database, and NN applications have been investigated in this dissertation.

The unique characteristics of these emerging NVMs will be beneficial to other applica-

tions. Furthermore, these NVMs have only been explored as potential alternatives to

SRAM and DRAM. They are also promising to replace flash as secondary storage. Since

emerging NVMs can implement every level in the memory hierarchy, it is interesting to

build a large flattened memory/storage system with a blurred boundary between main

memory and storage using NVM, which can provide a high density and the flexibility to

dynamically partition main memory and storage.

It is hoped that this dissertation would be useful and inspirational for the research

on emerging NVMs in future computer system design.

120

Bibliography

[1] T. Zhang, M. Poremba, C. Xu, G. Sun, and Y. Xie, CREAM: a
concurrent-refresh-aware DRAM memory architecture, in Proc. of IEEE 20th
international symposium on high performance computer architecture (HPCA’14),
pp. 368–379, Feb., 2014.

[2] S. Ikeda, K. Miura, H. Yamamoto, K. Mizunuma, H. D. Gan, M. Endo, S. Kanai,
J. Hayakawa, F. Matsukura, and H. Ohno, A perpendicular-anisotropy
CoFeB-MgO magnetic tunnel junction, Nature Materials 9 (2010) 721–724.

[3] M. K. Qureshi, V. Srinivasan, and J. A. Rivers, Scalable high performance main
memory system using phase-change memory technology, in Proc. of the 36th
international symposium on computer architecture (ISCA’09), pp. 24–33, June,
2009.

[4] H.-S. Wong, H.-Y. Lee, S. Yu, Y.-S. Chen, Y. Wu, P.-S. Chen, B. Lee, F. T.
Chen, and M.-J. Tsai, Metal–oxide RRAM, Proceedings of the IEEE 100 (2012),
no. 6 1951–1970.

[5] S. Yu, Y. Wu, and H. Wong, Investigating the switching dynamics and multilevel
capability of bipolar metal oxide resistive switching memory, Applied Physics
Letters 98 (2011) 103514.

[6] J. Meza, J. Li, , and O. Mutlu, Evaluating row buffer locality in future non-volatile
main memories, in SAFARI Technical Report No. 2012-002, Dec, 2012.

[7] E. Kultursay, M. T. Kandemir, A. Sivasubramaniam, and O. Mutlu, Evaluating
stt-ram as an energy-efficient main memory alternative, in Proc. of the 2013
IEEE international symposium on performance analysis of systems and software
(ISPASS’13), pp. 256–267, April, 2013.

[8] E. Doller, Phase change memory and its impacts on memory hierarchy,
http://www.pdl.cmu.edu/SDI/2009/slides/Numonyx.pdf (2009).

[9] P. Chi, C. Xu, T. Zhang, X. Dong, and Y. Xie, Using multi-level cell stt-ram for
fast and energy-efficient local checkpointing, in Proceedings of the 2014

121

IEEE/ACM International Conference on Computer-Aided Design, ICCAD ’14,
pp. 301–308, 2014.

[10] C. Xu, D. Niu, N. Muralimanohar, R. Balasubramonian, T. Zhang, S. Yu, and
Y. Xie, Overcoming the challenges of crossbar resistive memory architectures, in
High Performance Computer Architecture (HPCA), 2015 IEEE 21st International
Symposium on, pp. 476–488, Feb, 2015.

[11] P. Zhou, B. Zhao, J. Yang, and Y. Zhang, A durable and energy efficient main
memory using phase change memory technology, in Proc. of the 36th international
symposium on computer architecture (ISCA’09), pp. 14–23, June, 2009.

[12] M. K. Qureshi, J. Karidis, M. Franceschini, V. Srinivasan, L. Lastras, and
B. Abali, Enhancing lifetime and security of PCM-based main memory with
Start-Gap wear leveling, in Proc. of the 42nd annual IEEE/ACM international
symposium on microarchitecture (MICRO’09), pp. 14–23, 2009.

[13] B. C. Lee, E. Ipek, O. Mutlu, and D. Burger, Architecting phase change memory
as a scalable DRAM alternative, in Proc. of the 36th international symposium on
computer architecture (ISCA’09), pp. 2–13, June, 2009.

[14] S. Cho and H. Lee, A simple deterministic technique to improve PRAM write
performance, energy and endurance, in Proc. of the 42nd annual IEEE/ACM
international symposium on microarchitecture (MICRO’09), pp. 347–357, 2009.

[15] X. Lou, Z. Gao, D. V. Dimitrov, and M. X. Tang, Demonstration of multilevel cell
spin transfer switching in MgO magnetic tunnel junctions, Applied Physics
Letters 93 (2008) 242502.

[16] T. Ishigaki, T. Kawahara, R. Takemura, K. Ono, K. Ito, H. Matsuoka, and
H. Ohno, A multi-level-cell spin-transfer torque memory with series-stacked
magnetotunnel junctions, in 2010 Symposium on VLSI Technology, pp. 47–48,
June, 2010.

[17] Y. Zhang, L. Zhang, W. Wen, G. Sun, and Y. Chen, Multi-level cell STT-RAM:
Is it realistic or just a dream?, in 2012 IEEE/ACM International Conference on
Computer-Aided Design (ICCAD), pp. 526–532, Nov, 2012.

[18] Y. Chen, X. Wang, W. Zhu, H. Li, Z. Sun, G. Sun, and Y. Xie, Access scheme of
multi-level cell spin-transfer torque random access memory and its optimization,
in 2010 53rd IEEE International Midwest Symposium on Circuits and Systems,
pp. 1109–1112, Aug, 2010.

[19] Y. Chen, W. F. Wong, H. Li, and C. K. Koh, Processor caches built using
multi-level spin-transfer torque RAM cells, in Low Power Electronics and Design
(ISLPED) 2011 International Symposium on, pp. 73–78, Aug, 2011.

122

[20] X. Bi, M. Mao, D. Wang, and H. Li, Unleashing the potential of MLC STT-RAM
caches, in 2013 IEEE/ACM International Conference on Computer-Aided Design
(ICCAD), pp. 429–436, Nov, 2013.

[21] J. Wang, P. Roy, W. F. Wong, X. Bi, and H. Li, Optimizing mlc-based stt-ram
caches by dynamic block size reconfiguration, in 2014 IEEE 32nd International
Conference on Computer Design (ICCD), pp. 133–138, Oct, 2014.

[22] P. Chi, C. Xu, X. Zhu, and Y. Xie, Building energy-efficient multi-level cell
STT-MRAM based cache through dynamic data-resistance encoding, in Quality
Electronic Design (ISQED), 2014 15th International Symposium on, pp. 639–644,
March, 2014.

[23] M. Mishra and S. Akashe, High performance, low power 200 Gb/s 4:1 MUX with
TGL in 45 nm technology, Applied Nanoscience 4 (2014) 271–277.

[24] C. Xu, D. Niu, X. Zhu, S. H. Kang, M. Nowak, and Y. Xie, Device-architecture
co-optimization of stt-ram based memory for low power embedded systems, in 2011
IEEE/ACM International Conference on Computer-Aided Design (ICCAD),
pp. 463–470, Nov, 2011.

[25] T. E. Carlson, W. Heirman, and L. Eeckhout, Sniper: Exploring the level of
abstraction for scalable and accurate parallel multi-core simulation, in
International Conference for High Performance Computing, Networking, Storage
and Analysis (SC), pp. 1–12, 2011.

[26] J. L. Henning, Spec cpu2006 benchmark descriptions, ACM SIGARCH Computer
Architecture News 34 (2006), no. 4 1–17.

[27] J. Dusser, T. Piquet, and A. Seznec, Zero-content augmented caches, in
Proceedings of the 23rd International Conference on Supercomputing, ICS ’09,
pp. 46–55, 2009.

[28] J. Yang, Y. Zhang, and R. Gupta, Frequent value compression in data caches, in
Proceedings of the 33rd Annual ACM/IEEE International Symposium on
Microarchitecture, MICRO 33, pp. 258–265, 2000.

[29] A. R. Alameldeen and D. A. Wood, Adaptive cache compression for
high-performance processors, in Proceedings of the 31st Annual International
Symposium on Computer Architecture, ISCA ’04, pp. 212–223, 2004.

[30] G. Pekhimenko, V. Seshadri, O. Mutlu, P. B. Gibbons, M. A. Kozuch, and T. C.
Mowry, Base-delta-immediate compression: Practical data compression for
on-chip caches, in Proceedings of the 21st International Conference on Parallel
Architectures and Compilation Techniques, PACT ’12, pp. 377–388, 2012.

123

[31] A. Arelakis et. al., Sc2: A statistical compression cache scheme, in Proceedings of
the 41st Annual International Symposium on Computer Architecture, ISCA ’14,
pp. 145–156, 2014.

[32] N. Binkert, B. Beckmann, G. Black, S. K. Reinhardt, A. Saidi, A. Basu,
J. Hestness, D. R. Hower, T. Krishna, S. Sardashti, R. Sen, K. Sewell, M. Shoaib,
N. Vaish, M. D. Hill, and D. A. Wood, The gem5 simulator, SIGARCH Comput.
Archit. News 39 (Aug., 2011) 1–7.

[33] X. Dong, C. Xu, Y. Xie, and N. Jouppi, NVSim: A circuit-level performance,
energy, and area model for emerging nonvolatile memory, Computer-Aided Design
of Integrated Circuits and Systems, IEEE Transactions on 31 (July, 2012)
994–1007.

[34] B. Schroeder and G. A. Gibson, A large-scale study of failures in
high-performance computing systems, in Proceedings of the International
Conference on Dependable Systems and Networks, DSN ’06, pp. 249–258, 2006.

[35] S. Amarasinghe, D. Campbell, W. Carlson, A. Chien, et. al., Exascale software
study: software challenges in extreme scale systems, .

[36] X. Dong, Y. Xie, N. Muralimanohar, and N. P. Jouppi, Hybrid checkpointing
using emerging nonvolatile memories for future exascale systems, ACM Trans. on
Architecture and Code Optimization (TACO) 8 (2011), no. 2.

[37] R. A. Oldfield, S. Arunagiri, P. J. Teller, S. Seelam, M. R. Varela, R. Riesen, and
P. C. Roth, Modeling the impact of checkpoints on next-generation systems, in
24th IEEE Conference on Mass Storage Systems and Technologies (MSST 2007),
pp. 30–46, Sept, 2007.

[38] X. Dong, N. Muralimanohar, N. Jouppi, R. Kaufmann, and Y. Xie, Leveraging
3D PCRAM technologies to reduce checkpoint overhead for future exascale
systems, in Proceedings of the Conference on High Performance Computing
Networking, Storage and Analysis, SC ’09, pp. 57:1–57:12, 2009.

[39] A. Moody, G. Bronevetsky, K. Mohror, and B. R. d. Supinski, Design, modeling,
and evaluation of a scalable multi-level checkpointing system, in Proceedings of the
2010 ACM/IEEE International Conference for High Performance Computing,
Networking, Storage and Analysis, SC ’10, pp. 1–11, 2010.

[40] S. Kannan, A. Gavrilovska, K. Schwan, and D. Milojicic, Optimizing checkpoints
using nvm as virtual memory, in Parallel Distributed Processing (IPDPS), 2013
IEEE 27th International Symposium on, pp. 29–40, May, 2013.

124

[41] D. H. Yoon, R. Schreiber, P. Faraboschi, J. Chang, N. Muralimanohar, and
P. Ranganathan, Local checkpointing using a multi-level cell, 2013. WO Patent
App. PCT/US2012/035485.

[42] F. Bedeschi, R. Fackenthal, C. Resta, E. M. Donze, M. Jagasivamani, E. C. Buda,
F. Pellizzer, D. W. Chow, A. Cabrini, G. M. A. Calvi, R. Faravelli, A. Fantini,
G. Torelli, D. Mills, R. Gastaldi, and G. Casagrande, A bipolar-selected phase
change memory featuring multi-level cell storage, IEEE Journal of Solid-State
Circuits 44 (Jan, 2009) 217–227.

[43] M. Prvulovic, Z. Zhang, and J. Torrellas, Revive: cost-effective architectural
support for rollback recovery in shared-memory multiprocessors, in Computer
Architecture, 2002. Proceedings. 29th Annual International Symposium on,
pp. 111–122, 2002.

[44] J. S. Plank, K. Li, and M. A. Puening, Diskless checkpointing, IEEE Trans. on
Parallel and Distributed Systems 9 (1998), no. 10.

[45] M. Banâtre, A. Gefflaut, P. Joubert, C. Morin, et. al., An architecture for
tolerating processor failures in shared-memory multiprocessors, IEEE Trans. on
Computers 45 (1996), no. 10.

[46] E. N. Elnozahy and W. Zwaenepoel, Manetho: transparent rollback-recovery with
low overhead, limited rollback, and fast output commit, IEEE Trans. on
Computers 41 (1992), no. 5.

[47] T.-C. Chiueh and P. Deng, Evaluation of checkpoint mechanisms for massively
parallel machines, in Fault Tolerant Computing, 1996., Proceedings of Annual
Symposium on, pp. 370–379, Jun, 1996.

[48] E. N. Elnozahy, D. B. Johnson, and W. Zwaenepoel, The performance of
consistent checkpointing, in Reliable Distributed Systems, 1992. Proceedings., 11th
Symposium on, pp. 39–47, Oct, 1992.

[49] J. S. Plank, Y. Chen, K. Li, M. Beck, et. al., Memory exclusion: Optimizing the
performance of checkpointing systems, Software Practice and Experience 29
(1999), no. 2.

[50] J. Hursey, T. I. Mattox, and A. Lumsdaine, Interconnect agnostic
checkpoint/restart in open MPI, in HPDC, 2009.

[51] J. L. Henning, SPEC CPU2006 benchmark descriptions, SIGARCH Comput.
Archit. News 34 (Sept., 2006) 1–17.

[52] A. Hay, K. Strauss, T. Sherwook, G. H. Loh, et. al., Preventing pcm banks from
seizing too much power, in Micro, 2011.

125

[53] P. Chi, W. C. Lee, and Y. Xie, Adapting b+-tree for emerging nov-volatile
memory based main memory, IEEE Transactions on Computer-Aided Design of
Integrated Circuits and Systems PP (2016), no. 99.

[54] P. Chi, W.-C. Lee, and Y. Xie, Making b+-tree efficient in pcm-based main
memory, in Proceedings of the 2014 International Symposium on Low Power
Electronics and Design, ISLPED ’14, pp. 69–74, 2014.

[55] S. Chen, P. B. Gibbons, and S. Nath, Rethinking database algorithms for phase
change memory, in Proc. of the 5th biennial conference on innovative data
systems research (CIDR’11), January, 2011.

[56] J. Condit, E. B. Nightingale, C. Frost, E. Ipek, B. Lee, D. Burger, and
D. Coetzee, Better I/O through byte-addressable, persistent memory, in Proc. of
the ACM SIGOPS 22nd symposium on operating systems principles (SOSP’09),
pp. 133–146, 2009.

[57] K. Bailey, L. Ceze, S. D. Gribble, and H. M. Levy, Operating system implications
of fast, cheap, non-volatile memory, in Proc. of the 13th USENIX conference on
hot topics in operating systems (HotOS’11), pp. 2–2, 2011.

[58] W. Hu, Redesign of database algorithms for next generation non-volatile memory
technology, Master’s thesis, National University of Singapore, Singapore, 2013.

[59] S. Rixner, W. J. Dally, U. J. Kapasi, P. Mattson, and J. D. Owens, Memory
access scheduling, in Proc. of the 27th international symposium on computer
architecture (ISCA’00), pp. 128–138, 2000.

[60] M. K. Qureshi, M. M. Franceschini, and L. A. Lastras-Montano, Improving read
performance of phase change memories via write cancellation and write pausing,
in Proc. of IEEE 16th international symposium on high performance computer
architecture (HPCA’10), pp. 1–11, Jan., 2010.

[61] S. Chen, P. B. Gibbons, and T. C. Mowry, Improving index performance through
prefetching, in Proc. of the 2001 ACM SIGMOD interational conference on
management of data (SIGMOD’01), pp. 235–246, 2001.

[62] R. A. Hankins and J. M. Patel, Effect of node size on the performance of
cache-conscious B+-tree, in Proc. of the 2003 ACM SIGMETRICS interational
conference on measurement and modeling of computer systems
(SIGMETRICS’03), pp. 283–294, 2003.

[63] L. Arge, The buffer tree: a new technique for optimal I/O-algorithms, in Proc. of
Workshop on Algorithms and Data Structures, (Berlin), pp. 334–345,
Springer-Verlag, 1995.

126

[64] L. Arge, The buffer tree: a technique for designing batched external data
structures, Algorithmica 37 (2003), no. 1 1–24.

[65] S. Berkowits, Pin - a dynamic binary instrumentation tool,
https://software.intel.com/en-us/articles/pin-a-dynamic-binary-instrumentation-
tool
(2012).

[66] P. Chi, S. Li, C. Xu, T. Zhang, J. Zhao, Y. Liu, Y. Wang, and Y. Xie, PRIME: A
novel processing-in-memory architecture for neural network computation in
ReRAM-based main memory, in Proc. of the 43th international symposium on
computer architecture (ISCA’16), June, 2016.

[67] D. Patterson, T. Anderson, N. Cardwell, R. Fromm, K. Keeton, C. Kozyrakis,
R. Thomas, and K. Yelick, A case for intelligent ram, Micro, IEEE 17 (Mar,
1997) 34–44.

[68] D. Elliott, M. Stumm, W. M. Snelgrove, C. Cojocaru, and R. McKenzie,
Computational ram: Implementing processors in memory, IEEE Des. Test 16
(Jan., 1999) 32–41.

[69] J. Draper, J. Chame, M. Hall, C. Steele, T. Barrett, J. LaCoss, J. Granacki,
J. Shin, C. Chen, C. W. Kang, I. Kim, and G. Daglikoca, The architecture of the
DIVA processing-in-memory chip, in Proceedings of the 16th International
Conference on Supercomputing, ICS ’02, pp. 14–25, 2002.

[70] A. De, M. Gokhale, R. Gupta, and S. Swanson, Minerva: Accelerating data
analysis in next-generation ssds, in Proceedings of the 2013 IEEE 21st Annual
International Symposium on Field-Programmable Custom Computing Machines,
FCCM ’13, pp. 9–16, 2013.

[71] S. Kumar, A. Shriraman, V. Srinivasan, D. Lin, and J. Phillips, Sqrl: Hardware
accelerator for collecting software data structures, in Proceedings of the 23rd
International Conference on Parallel Architectures and Compilation, PACT ’14,
pp. 475–476, 2014.

[72] B. Akin, F. Franchetti, and J. C. Hoe, Data reorganization in memory using
3D-stacked DRAM, in Proceedings of the 42nd Annual International Symposium
on Computer Architecture, pp. 131–143, 2015.

[73] J. Ahn, S. Hong, S. Yoo, O. Mutlu, and K. Choi, A scalable processing-in-memory
accelerator for parallel graph processing, in Proceedings of the 42Nd Annual
International Symposium on Computer Architecture, pp. 105–117, 2015.

127

[74] D. Zhang, N. Jayasena, A. Lyashevsky, J. L. Greathouse, L. Xu, and
M. Ignatowski, Top-pim: Throughput-oriented programmable processing in
memory, in Proceedings of the 23rd International Symposium on
High-performance Parallel and Distributed Computing, pp. 85–98, 2014.

[75] S. H. Pugsley, J. Jestes, H. Zhang, R. Balasubramonian, V. Srinivasan,
A. Buyuktosunoglu, A. Davis, and F. Li, Ndc: Analyzing the impact of 3d-stacked
memory+ logic devices on mapreduce workloads, in International Symposium on
Performance Analysis of Systems and Software, 2014.

[76] M. Hu, H. Li, Q. Wu, and G. Rose, Hardware realization of bsb recall function
using memristor crossbar arrays, in Design Automation Conference (DAC), 2012
49th ACM/EDAC/IEEE, pp. 498–503, June, 2012.

[77] B. Li, Y. Shan, M. Hu, Y. Wang, Y. Chen, and H. Yang, Memristor-based
approximated computation, in Low Power Electronics and Design (ISLPED), 2013
IEEE International Symposium on, pp. 242–247, Sept, 2013.

[78] M. Prezioso, F. Merrikh-Bayat, B. Hoskins, G. Adam, K. K. Likharev, and D. B.
Strukov, Training and operation of an integrated neuromorphic network based on
metal-oxide memristors, CoRR abs/1412.0611 (2014).

[79] P. Gu, B. Li, T. Tang, S. Yu, Y. Cao, Y. Wang, and H. Yang, Technological
exploration of rram crossbar array for matrix-vector multiplication, in Design
Automation Conference (ASP-DAC), 2015 20th Asia and South Pacific,
pp. 106–111, Jan, 2015.

[80] Y. Kim, Y. Zhang, and P. Li, A reconfigurable digital neuromorphic processor with
memristive synaptic crossbar for cognitive computing, J. Emerg. Technol.
Comput. Syst. 11 (Apr., 2015) 38:1–38:25.

[81] Z. Chen, B. Gao, Z. Zhou, P. Huang, H. Li, W. Ma, D. Zhu, L. Liu, H.-Y. Chen,
X. Liu, and J. Kang, Optimized learning scheme for grayscale image recognition
in a rram based analog neuromorphic system, in Electron Devices Meeting, 2015.
IEDM’15 Technical Digest. IEEE International, Dec, 2015.

[82] G. Burr, P. Narayanan, R. Shelby, S. Sidler, I. Boybat, C. di Nolfo, and
Y. Leblebici, Large-scale neural networks implemented with non-volatile memory
as the synaptic weight element: Comparative performance analysis (accuracy,
speed, and power), in Electron Devices Meeting, 2015. IEDM’15 Technical Digest.
IEEE International, Dec, 2015.

[83] A. Coates, B. Huval, T. Wang, D. J. Wu, B. C. Catanzaro, and A. Y. Ng, Deep
learning with cots hpc systems, in Proceedings of the 30th international conference
on machine learning, pp. 1337–1345, 2013.

128

[84] T. Chen, Z. Du, N. Sun, J. Wang, C. Wu, Y. Chen, and O. Temam, Diannao: A
small-footprint high-throughput accelerator for ubiquitous machine-learning, in
Proceedings of the 19th International Conference on Architectural Support for
Programming Languages and Operating Systems, ASPLOS ’14, pp. 269–284, 2014.

[85] Y. Chen, T. Luo, S. Liu, S. Zhang, L. He, J. Wang, L. Li, T. Chen, Z. Xu,
N. Sun, and O. Temam, Dadiannao: A machine-learning supercomputer, in
Microarchitecture (MICRO), 2014 47th Annual IEEE/ACM International
Symposium on, pp. 609–622, Dec, 2014.

[86] P. Merolla, J. Arthur, F. Akopyan, N. Imam, R. Manohar, and D. S. Modha, A
digital neurosynaptic core using embedded crossbar memory with 45pj per spike in
45nm, in Custom Integrated Circuits Conference (CICC), 2011 IEEE, pp. 1–4,
2011.

[87] C. Kozyrakis, S. Perissakis, D. Patterson, T. Anderson, K. Asanovic, N. Cardwell,
R. Fromm, J. Golbus, B. Gribstad, K. Keeton, R. Thomas, N. Treuhaft, and
K. Yelick, Scalable processors in the billion-transistor era: Iram, Computer 30
(1997), no. 9 75–78.

[88] D. Patterson, K. Asanovic, A. Brown, R. Fromm, J. Golbus, B. Gribstad,
K. Keeton, C. Kozyrakis, D. Martin, S. Perissakis, R. Thomas, N. Treuhaft, and
K. Yelick, Intelligent ram (iram): The industrial setting, applications, and
architectures, in Computer Design, IEEE International Conference on, pp. 2–7,
1997.

[89] D. Burger, System-level implications of processor-memory integration, in
Proceedings of the 24th International Symposium on Computer Architecture, 1997.

[90] M. Gokhale, B. Holmes, and K. Iobst, Processing in memory: The terasys
massively parallel pim array, Computer 28 (1995), no. 4 23–31.

[91] T. Yamauchi, L. Hammond, and K. Olukotun, A single chip multiprocessor
integrated with DRAM, in Workshop on Mixing Logic and DRAM, held at the
24th International Symposium on Computer Architecture, 1997.

[92] M. Oskin, F. T. Chong, and T. Sherwood, Active pages: a computation model for
intelligent memory, in Computer Architecture, 1998. Proceedings. The 25th
Annual International Symposium on, pp. 192–203, 1998.

[93] R. Balasubramonian, J. Chang, T. Manning, J. H. Moreno, R. Murphy, R. Nair,
and S. Swanson, Near-data processing: Insights from a micro-46 workshop, Micro,
IEEE 34 (July, 2014) 36–42.

129

[94] R. Nair, S. Antao, C. Bertolli, P. Bose, J. Brunheroto, T. Chen, C. Cher,
C. Costa, J. Doi, C. Evangelinos, B. Fleischer, T. Fox, D. Gallo, L. Grinberg,
J. Gunnels, A. Jacob, P. Jacob, H. Jacobson, T. Karkhanis, C. Kim, J. Moreno,
J. O’Brien, M. Ohmacht, Y. Park, D. Prener, B. Rosenburg, K. Ryu,
O. Sallenave, M. Serrano, P. Siegl, K. Sugavanam, and Z. Sura, Active memory
cube: A processing-in-memory architecture for exascale systems, IBM Journal of
Research and Development 59 (March, 2015) 17:1–17:14.

[95] Z. Guz, M. Awasthi, V. Balakrishnan, M. Ghosh, A. Shayesteh, and T. Suri,
Real-time analytics as the killer application for processing-in-memory, in
WoNDP: 2nd Workshop on Near-Data Processing, International Symposium on
Microarchitecture, 2014.

[96] N. S. Mirzadeh, O. Kocberber, B. Falsafi, and B. Grot, Sort vs. hash join revisited
for near-memory execution, in Fifth Workshop on Architectures and Systems for
Big Data (ASBD), International Symposium on Computer Architecture, 2015.

[97] J. Jeddeloh and B. Keeth, Hybrid memory cube new DRAM architecture increases
density and performance, in VLSI Technology (VLSIT), 2012 Symposium on,
pp. 87–88, June, 2012.

[98] D. U. Lee, K. W. Kim, K. W. Kim, H. Kim, J. Y. Kim, Y. J. Park, J. H. Kim,
D. S. Kim, H. B. Park, J. W. Shin, J. H. Cho, K. H. Kwon, M. J. Kim, J. Lee,
K. W. Park, B. Chung, and S. Hong, A 1.2V 8Gb 8-channel 128GB/s
high-bandwidth memory (hbm) stacked DRAM with effective microbump i/o test
methods using 29nm process and tsv, in Solid-State Circuits Conference Digest of
Technical Papers (ISSCC), 2014 IEEE International, pp. 432–433, Feb, 2014.

[99] F. Alibart, T. Sherwood, and D. Strukov, Hybrid cmos/nanodevice circuits for
high throughput pattern matching applications, in Adaptive Hardware and Systems
(AHS), 2011 NASA/ESA Conference on, pp. 279–286, June, 2011.

[100] Q. Guo, X. Guo, Y. Bai, and E. İpek, A resistive tcam accelerator for
data-intensive computing, in Proceedings of the 44th Annual IEEE/ACM
International Symposium on Microarchitecture, MICRO-44, pp. 339–350, 2011.

[101] Q. Guo, X. Guo, R. Patel, E. Ipek, and E. G. Friedman, Ac-dimm: Associative
computing with stt-mram, in Proceedings of the 40th Annual International
Symposium on Computer Architecture, ISCA ’13, pp. 189–200, 2013.

[102] S. K. Esser, A. Andreopoulos, R. Appuswamy, P. Datta, D. Barch, A. Amir,
J. Arthur, A. Cassidy, M. Flickner, P. Merolla, S. Chandra, N. Basilico,
S. Carpin, T. Zimmerman, F. Zee, R. Alvarez-Icaza, J. Kusnitz, T. Wong,
W. Risk, E. McQuinn, T. Nayak, R. Singh, and D. Modha, Cognitive computing
systems: Algorithms and applications for networks of neurosynaptic cores, in The

130

2013 International Joint Conference on Neural Networks (IJCNN), pp. 1–10,
Aug, 2013.

[103] J. Seo, B. Brezzo, Y. Liu, B. Parker, S. Esser, R. Montoye, B. Rajendran,
J. Tierno, L. Chang, D. Modha, and D. Friedman, A 45nm cmos neuromorphic
chip with a scalable architecture for learning in networks of spiking neurons, in
Custom Integrated Circuits Conference (CICC), 2011 IEEE, pp. 1–4, 2011.

[104] M. Jung, J. Shalf, and M. Kandemir, Design of a large-scale storage-class RRAM
system, in Proceedings of the 27th International ACM Conference on
International Conference on Supercomputing, ICS ’13, pp. 103–114, 2013.

[105] C. Xu, P.-Y. Chen, D. Niu, Y. Zheng, S. Yu, and Y. Xie, Architecting 3D vertical
resistive memory for next-generation storage systems, in Proceedings of the 2014
IEEE/ACM International Conference on Computer-Aided Design, ICCAD ’14,
pp. 55–62, 2014.

[106] T. M. Taha, R. Hasan, C. Yakopcic, and M. R. McLean, Exploring the design
space of specialized multicore neural processors, in The 2013 International Joint
Conference on Neural Networks (IJCNN), pp. 1–8, Aug, 2013.

[107] D. C. Cireşan, U. Meier, J. Masci, L. M. Gambardella, and J. Schmidhuber,
Flexible, high performance convolutional neural networks for image classification,
in Proceedings of the Twenty-Second International Joint Conference on Artificial
Intelligence - Volume Volume Two, IJCAI’11, pp. 1237–1242, 2011.

[108] J. Schmidhuber, Multi-column deep neural networks for image classification, in
Proceedings of the 2012 IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), CVPR ’12, pp. 3642–3649, 2012.

[109] A. Coates, B. Huval, T. Wang, D. J. Wu, B. C. Catanzaro, and A. Y. Ng, Deep
learning with cots hpc systems., in ICML (3), vol. 28 of JMLR Proceedings,
pp. 1337–1345, 2013.

[110] S. Sahin, Y. Becerikli, and S. Yazici, Neural network implementation in hardware
using fpgas, in Neural Information Processing, vol. 4234 of Lecture Notes in
Computer Science, pp. 1105–1112. Springer Berlin Heidelberg, 2006.

[111] C. Farabet, C. Poulet, J. Han, and Y. LeCun, Cnp: An fpga-based processor for
convolutional networks, in Field Programmable Logic and Applications, 2009. FPL
2009. International Conference on, pp. 32–37, Aug, 2009.

[112] J.-Y. Kim, M. Kim, S. Lee, J. Oh, K. Kim, and H.-J. Yoo, A 201.4 gops 496 mw
real-time multi-object recognition processor with bio-inspired neural perception
engine, Solid-State Circuits, IEEE Journal of 45 (Jan, 2010) 32–45.

131

[113] K. Simonyan and A. Zisserman, Very deep convolutional networks for large-scale
image recognition, in Proceedings of the International Conference on Learning
Representations (ICLR), pp. 1–14, May, 2015.

[114] F. Alibart, E. Zamanidoost, and D. B. Strukov, Pattern classification by
memristive crossbar circuits using ex situ and in situ training, Nature
communications 4 (2013).

[115] M. Hu, H. Li, Y. Chen, Q. Wu, and G. S. Rose, BSB training scheme
implementation on memristor-based circuit, in Computational Intelligence for
Security and Defense Applications (CISDA), 2013 IEEE Symposium on,
pp. 80–87, 2013.

[116] B. Li, Y. Wang, Y. Wang, Y. Chen, and H. Yang, Training itself: Mixed-signal
training acceleration for memristor-based neural network, in ASP-DAC,
pp. 361–366, 2014.

[117] B. Liu, M. Hu, H. Li, Z.-H. Mao, Y. Chen, T. Huang, and W. Zhang,
Digital-assisted noise-eliminating training for memristor crossbar-based analog
neuromorphic computing engine, in Design Automation Conference (DAC), 2013
50th ACM/EDAC/IEEE, pp. 1–6, 2013.

[118] B. Liu, H. Li, Y. Chen, X. Li, T. Huang, Q. Wu, and M. Barnell, Reduction and
IR-drop compensations techniques for reliable neuromorphic computing systems,
in Computer-Aided Design (ICCAD), 2014 IEEE/ACM International Conference
on, pp. 63–70, Nov, 2014.

[119] M. Prezioso, F. Merrikh-Bayat, B. Hoskins, G. Adam, K. K. Likharev, and D. B.
Strukov, Training and operation of an integrated neuromorphic network based on
metal-oxide memristors, Nature (2014).

[120] B. Verghese, S. Devine, A. Gupta, and M. Rosenblum, Operating system support
for improving data locality on cc-numa compute servers, in Proceedings of the
Seventh International Conference on Architectural Support for Programming
Languages and Operating Systems, ASPLOS VII, pp. 279–289, 1996.

[121] N. Agarwal, D. Nellans, M. Stephenson, M. O’Connor, and S. W. Keckler, Page
placement strategies for GPUs within heterogeneous memory systems, in
Proceedings of the Twentieth International Conference on Architectural Support
for Programming Languages and Operating Systems, ASPLOS ’15, pp. 607–618,
2015.

[122] Y. Lecun, L. Bottou, Y. Bengio, and P. Haffner, Gradient-based learning applied
to document recognition, Proceedings of the IEEE 86 (Nov, 1998) 2278–2324.

132

[123] K. Chen, S. Li, N. Muralimanohar, J. H. Ahn, J. B. Brockman, and N. P. Jouppi,
Cacti-3dd: Architecture-level modeling for 3D die-stacked DRAM main memory,
in Proceedings of the Conference on Design, Automation and Test in Europe,
pp. 33–38, 2012.

[124] N. P. Jouppi, A. B. Kahng, N. Muralimanohar, and V. Srinivas, Cacti-io: Cacti
with off-chip power-area-timing models, in Proceedings of the International
Conference on Computer-Aided Design, pp. 294–301, 2012.

[125] L. Gao, F. Alibart, and D. B. Strukov, A high resolution nonvolatile analog
memory ionic devices, in 4th Annual Non-Volatile Memories Workshop, NVMW
2013, 2013.

[126] C. Xu, D. Niu, N. Muralimanohar, N. P. Jouppi, and Y. Xie, Understanding the
trade-offs in multi-level cell ReRAM memory design, in Design Automation
Conference (DAC), 2013 50th ACM/EDAC/IEEE, pp. 1–6, 2013.

[127] B. Li, P. Gu, Y. Shan, Y. Wang, Y. Chen, and H. Yang, Rram-based analog
approximate computing, IEEE Transactions on Computer-Aided Design of
Integrated Circuits and Systems 34 (Dec, 2015) 1905–1917.

[128] J. Li, C.-I. Wu, S. Lewis, J. Morrish, T.-Y. Wang, R. Jordan, T. Maffitt,
M. Breitwisch, A. Schrott, R. Cheek, H.-L. Lung, and C. Lam, A novel
reconfigurable sensing scheme for variable level storage in phase change memory,
in Memory Workshop (IMW), 2011 3rd IEEE International, pp. 1–4, IEEE, 2011.

133

	Curriculum Vitae
	Abstract
	Introduction
	Technology Background
	Optimize MLC STT-RAM Cache Design Using Data Encoding and Data Compression
	The Basics of MLC STT-RAM
	Improving Write Energy through Dynamic Data-Resistance Encoding
	Optimizing Energy and Performance with Data Compression

	Using MLC STT-RAM for Efficient Local Checkpointing
	Motivation
	Related Work
	The Basics of Checkpointing
	The Proposed Mechanism
	Evaluation
	Summary

	Making B+tree Efficient for Emerging NVM Based Main Memory
	Motivation
	Related Work
	Cost Model
	Algorithms
	Evaluation
	Summary

	Accelerating Neural Network Computation in ReRAM Based Main Memory
	Motivation
	The Basics of Using ReRAM for NN Computation
	Related Work
	The Proposed Design
	Evaluation
	Summary

	Conclusion
	Bibliography

