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Highlights 14 

• Prioritization, review, and adoption of assessments is subject to inadvertent bias   15 

• Many of the factors introducing bias are analogous to "p-hacking" in science broadly 16 

• This compromises the interpretation of risk metrics based on probability statements 17 

• Bias may be comparable to differences between commonly-applied uncertainty buffers 18 

• Solutions/mitigations proposed for p-hacking broadly have analogs for use here 19 

 20 

Abstract 21 

The broader scientific community is struggling with a reproducibility crisis brought on by 22 

numerous factors, including “p-hacking” or selective reporting that may increase the rate of false 23 

positives or generate misleading effect size estimates from meta-analyses. This results when 24 

multiple modeling approaches or statistical tests may be brought to bear on the same problem, 25 

and there are pressures or rewards for finding “significant” results. Fisheries science is unlikely 26 

to be immune to this problem, with numerous opportunities for bias to inadvertently enter into 27 

the process through the prioritization of stocks for assessment, decisions about competing 28 

model approaches or data treatments within complex assessment models, and decisions about 29 

whether to adopt assessments for management after they are reviewed. I present a simple 30 

simulation model of a system where many assessments are performed each management cycle 31 

for a multi-stock fishery, and show how asymmetric selection of assessments for extra scrutiny 32 

or re-assessment within a cycle can turn a process generating unbiased advice on fishing limits 33 

into one that is biased high. I show similar results when sequential assessments receive extra 34 

scrutiny if they show large proportional decreases in catch limits compared to a prior 35 

assessment for the same stock, especially if there are only small changes in true stock size or 36 

status over the interval between assessments. The level of bias introduced by a plausible level 37 

of asymmetric scrutiny is unlikely to fundamentally undermine scientific advice, but may be 38 

sufficient to compromise the nominal “overfishing probabilities” used in a common framework for 39 

accommodating uncertainty, and introduce a level of bias comparable to the difference between 40 

buffers corresponding to commonly-applied levels of risk tolerance. 41 

 42 
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1. Introduction 45 

 46 

 While reproducibility has long been a cornerstone of science, in the last decade there 47 

has been an explosion of references to a reproducibility “crisis” (Fanelli 2018). This has led to 48 

alarming suggestions that most published scientific studies are false (Ioannidis 2005), or that 49 

meta-analyses synthesizing average effect sizes across studies may yield misleading results 50 

(Schooler 2011). Other authors have taken more nuanced views suggesting that the problem, 51 

while real, may cause fewer false positives (Jager and Leek 2014) or confound meta-analyses 52 

less (Head et al. 2015) than the worst-case predictions. Nevertheless, reliability and 53 

reproducibility remain major concerns across all fields of science (Baker 2016), with the 54 

potential to affect both the advancement of knowledge and specific policy and management 55 

decisions guided by scientific advice. Recent challenges to reproducibility of hot topics in marine 56 

science (e.g., Clark et al. 2020, Provencher et al. 2020) suggest that fisheries science, which is 57 

often closely linked to economically and culturally impactful policy and management decisions, 58 

is unlikely to be immune to these problems. 59 

 Although some instances of non-reproducible science may reflect data fabrication or 60 

other scientific misconduct (Viglione 2020), this is widely believed to be uncommon relative to 61 

much more prevalent issues resulting from selective reporting of statistically “significant” results, 62 

pressure to publish, and improper application of statistics or experimental design (Baker 2016). 63 

The data and models used in fisheries stock assessments vary by region and stock, but are 64 

often subject to multiple layers of oversight and review, which should make outright data 65 

fabrication or other forms of deliberate misconduct unlikely in systems with robust review 66 

processes. However, I will argue that fisheries science and stock assessments can be, and 67 

likely are, affected by forces analogous to other sources of the reproducibility crisis. 68 

 Much of the lack of reproducibility in the scientific literature may be attributable to “p-69 

hacking” on the part of researchers (Benjamin et al. 2018), and/or selective reporting on the part 70 

of authors and journals that may only, or at least preferentially, publish statistically “significant” 71 

results (Schooler 2011). Statistical “significance” is often established in a frequentist setting via 72 

a null hypothesis testing framework, wherein results are deemed “significant” if a null model 73 

suggests less than a 5% probability (p-value) of generating a pattern at least as strong as the 74 

one observed in the data by chance alone (Wasserstein and Lazar 2016). In “p-hacking”, 75 

multiple statistical tests are performed, but only the “significant” results are retained and 76 

reported, meaning that false positives are likely to be reported at a higher rate than the nominal 77 

value assigned for a single test. This is a particular problem when analysts have large datasets 78 
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with multiple potential predictors and/or response variables (leading to decisions on which to 79 

include and how to weight them) and a variety of plausible statistical model forms to test. 80 

However, even in simpler situations where only a single testing approach is considered, 81 

interpretation of p-values is clouded when additional data are accumulated and tests are 82 

repeated for larger datasets without clear stopping rules (Wicherts et al. 2016).  83 

P-hacking is not necessarily done with ill intent, rather it may reflect an innocent lack of 84 

understanding of statistics (Peng 2015) or the strong ability of post-hoc reasoning to convince 85 

scientists that whatever course of decisions led to the “significant” (and publishable, thus 86 

rewarding) analysis were the correct ones (Simmons et al. 2011). Even when the scientists 87 

performing individual studies do everything right, if journals tend to publish “significant” results 88 

while rejecting inconclusive studies, this may lead to larger mean effects in the published 89 

literature compared to the means that would be concluded from all valid studies performed, 90 

including those that did not produce “significant” results. 91 

 92 

2. P-hacking and selective reporting: parallels in fisheries and stock assessments 93 

 94 

 Stock assessments are fundamental to scientifically informed fisheries management 95 

(Hilborn and Walters 1992, Hilborn et al. 2020) for purposes such as setting allowable catch 96 

limits. These catch limits are often set using control rules intended to maintain population 97 

abundance and spawning output levels near those expected to produce maximum sustainable 98 

yield (Melnychuk et al. 2013, Methot et al. 2014). Stock assessments are also the product of 99 

often-complex models based on imperfectly-measured data and that require numerous choices 100 

on the part of the analysts about data to include versus exclude, how to weight different data 101 

sets, parameters to fix versus estimate, and functional forms to assume (Maunder and Piner 102 

2015, 2017). As a result, stock assessment outputs are unavoidably uncertain (Hilborn and 103 

Walters 1992, Mildenberger et al. 2022), and different but more or less equally defensible 104 

decisions on the part of the analysts (and/or reviewers, who often drive final model form in 105 

conjunction with the original analysts) could lead to different results (Ralston et al. 2011). 106 

 One approach to dealing with this uncertainty that has been adopted in multiple regions 107 

of the United States, and in somewhat similar forms in other countries, is the P*/sigma approach 108 

(Shertzer et al. 2008). This approach assumes that overfishing limits (OFLs) are estimated 109 

without bias, but with uncertainty expressed by assuming a lognormally distributed ratio 110 

between the true OFL and the assessed OFL, where the median is equal to one and the log-111 

scale standard deviation is sigma (see Ralston et al. 2011 and Privitera-Johnson and Punt 112 
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2020a for approaches to estimating sigma). Then, an acceptable biological catch (ABC) is 113 

determined by multiplying the OFL by the P* quantile of the distribution. If all statistical 114 

assumptions were met, this would result in a P* probability that the ABC exceeds the “true” OFL 115 

that would have been estimated given perfect knowledge. When applied to multiple stocks 116 

simultaneously, this implies that a fraction P* of the ABCs established for a multi-stock fishery 117 

would be larger than the OFLs that would have been estimated given perfect knowledge, 118 

loosely analogous to the expectation that 5% of scientific results reported as significant at the 119 

p<0.05 level would be false positives. Just as p-hacking and selective reporting may lead to a 120 

higher than nominal false positive rate in the scientific literature, and over-estimate mean effect 121 

size, it would seem unavoidable that if analogous pressures operate in the analysis and 122 

adoption of assessments of stock status and fishing limits, the interpretation of P* may be 123 

similarly clouded. 124 

 125 

2.1 Scope of the problem 126 

 127 

 I suggest that just like academic scientists may face pressure to produce studies with 128 

p<0.05 that can be published (with resultant career benefits), and journals may be more likely to 129 

publish “significant” results, stock assessors (and the review bodies that can influence the final 130 

structure of stock assessments) may face pressures to produce “favorable” results, and/or 131 

management bodies may be more likely to adopt and use assessments perceived as “less 132 

pessimistic” (Seagraves and Collins 2012).  133 

 134 

2.1.1 Assessment prioritization 135 

 136 

 In most regions, there are far more stocks in need of assessment than there are 137 

resources to assess them. As a result, management agencies in the United States (primarily the 138 

National Marine Fisheries Service that implements many assessments and Fishery 139 

Management Councils that lead development of management responses) have adopted a 140 

comprehensive prioritization process (Methot 2015), which typically considers many factors 141 

(NMFS 2022) including economic and ecological importance, trends in survey data, time since 142 

last assessment, and status at most recent assessment. Of note, although this is only one of the 143 

many factors considered, stocks which were last assessed to be in high status are given the 144 

lowest score for the status component of their overall prioritization score, while stocks recently 145 

assessed to be in poor status are given the highest score – higher even that stocks which lack 146 
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recent (or even any) assessments and with attributes associated with high vulnerability (i.e., 147 

stocks with low productivity and high susceptibility to the fishery [Cope et al. 2011]). This 148 

strategy runs the risk that a new assessment of a low-status stock means a new error in the 149 

inevitably uncertain assessment; thus, a more favorable assessment is not conclusive proof of 150 

better status. When considering repeated assessments of multiple stocks overall, this strategy 151 

could lead to an asymmetry where there may be more chances to incorrectly reverse an 152 

assignment of poor status than there are to incorrectly re-assign a stock from good status to 153 

poor. At the same time, it may divert resources from other stocks in need of assessment where 154 

an assessment might do more to address important management uncertainties (Cadrin et al. 155 

2015). 156 

 Given limited resources for assessments and the large number of species/stocks to 157 

assess, stock assessment analysts have also developed “data-moderate” approaches that 158 

consider fewer types of input data, have less flexibility in choices among alternative 159 

assumptions, and have fewer model structure alternatives (e.g., Rudd et al. 2021), with the 160 

hope of increasing throughput. When this approach was first proposed to the Pacific Fishery 161 

Management Council (PFMC), it was suggested that the output of a “data-moderate” 162 

assessment might be acceptable for use in management if it returned a favorable estimate of 163 

stock status but not be used as the basis for determining that a stock was overfished (PFMC 164 

2013), or that there be an option for an “out-of-cycle” assessment to provide a second estimate 165 

of status before adopting an overfished status from a data-moderate assessment (NMFS 2013). 166 

Such an asymmetric standard of proof, especially when confounded with the lack of priority 167 

given to re-assessing stocks with favorable assessment outputs, seems likely to introduce bias 168 

at the level of the suite of stocks subject to the same management process, such as all the 169 

stocks in a Fishery Management Plan (FMP).  170 

 171 

2.1.2 Conduct of assessments and reviews 172 

 173 

 Once a stock has been chosen for assessment, stock assessment analysts still face 174 

numerous decisions about the specific datasets to include as well as the treatment of putative 175 

“outliers” within accepted datasets, the weightings applied to different data sources, potential 176 

use of priors, parameters to fix versus estimate, and various functional forms. Assessments are 177 

typically subjected to review panels where data treatments and other modeling choices are 178 

scrutinized and alternatives are explored. In the vast majority of cases, the model endorsed at 179 

the end of the review process has some differences from the initially proposed base model, 180 
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reflecting the combined deliberations of the assessors and reviewers. Ideally, the reviewers 181 

would be guided solely by scientific considerations, but just as with academic scientists 182 

(Simmons 2011), there is the potential for conscious or subconscious considerations leading to 183 

post-hoc reasoning to support the outcome perceived as likely to be most palatable to 184 

managers at the next step in the review and adoption process. There may also be incentives to 185 

be more critical of proposed model changes that reduce status, or to be less likely to 186 

recommend ultimate acceptance of an assessment yielding low status. These pressures may be 187 

most acute when the reviewers are drawn from bodies whose members are dependent on 188 

managers or politicians for their appointment or renewal (Crosson 2013). 189 

 190 

2.1.3 Adoption of assessments for management 191 

 192 

 Following the initial peer review, adoption of stock assessments by Fishery Management 193 

Councils in the United States comes after review by a Scientific and Statistical Committee 194 

(SSC). Ideally, the SSC would apply equal standards of proof for acceptance of any 195 

assessment, but consciously or subconsciously they may apply extra scrutiny to assessments 196 

outputting poor status, although assessments yielding unexpectedly positive outcomes have 197 

also faced extra scrutiny. Once the SSC has endorsed an assessment, although Councils “may 198 

not exceed” the fishing level recommendations of the SSC, the Council must act to formally 199 

adopt the assessments recommended by the SSC, and this does not always happen (Crosson 200 

2013, Nies 2022). Councils are intended to represent the public interest, but with an emphasis 201 

on the fishing industry. For example, as of 2022 the 72 appointed seats on U.S. Fishery 202 

Management Councils consisted of 29 representatives of commercial fishing interests, 25 203 

representatives of recreational fishing interests, and 18 representatives of "other" interests 204 

(NMFS 2021), which can include tribal fishery representatives and individuals formerly more 205 

closely associated with a fishing interest. This in itself is of course not a definitive basis for 206 

concluding that Councils are more likely to reject a “pessimistic” assessment and accept an 207 

“optimistic one”, but suggests that it could be a reasonable expectation. Indeed, in response to 208 

concerns expressed about increased and repeated scrutiny of poor-status assessments by the 209 

PFMC in 2021 (SSC 2021), a voting Council member stated that from the perspective of a 210 

manager and/or Council member, it is logical to expect that more attention will be given to more 211 

pessimistic assessments, consistent with the need to instill confidence for managers and 212 

stakeholders that the results are robust (SSC 2022, p. 13), suggesting that managers do indeed 213 

apply different standards of proof depending on management implications and may not 214 
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appreciate the parallels with p-hacking or the potential biases introduced by shifting standards 215 

of proof. 216 

 217 

2.2 Quantifying the problem 218 

 219 

 To quantify the likely magnitude of bias that might be introduced by various approaches 220 

to selecting assessments remanded for further scrutiny, revised, and/or re-assessed on a very 221 

short timeline (i.e., before another year is added to the assessment), I developed a simple 222 

simulation model. As with any model, it requires numerous simplifying assumptions, and does 223 

not incorporate all of the potential qualitative sources of bias described above. Nevertheless, I 224 

hope it is useful in demonstrating the potential scope of the problems introduced by asymmetric 225 

scrutiny during the review and adoption steps of the stock assessment process.  226 

I simulated a system in which a large number of stocks are assessed in each 227 

assessment cycle, with the assumption that (prior to any additional selective scrutiny at the 228 

review and adoption stage) assessments are uncertain but median-unbiased. I then examined 229 

the distributional properties of the outputs of the full suite of assessments after a selected 230 

subset of assessments had been re-done within the same cycle, with the assumption that the 231 

redone assessments were also median unbiased, exploring various scenarios for the degree of 232 

independence between the initial and redone assessment. I also explored a scenario where 233 

sequential assessments are performed for a stock, and the degree of scrutiny applied to the 234 

assessment done at the later timestep depends on the proportional difference in OFL compared 235 

to the outcome of the assessment from the first timestep (Section 2.2.3). 236 

 237 

2.2.1 Model structure – assessments redone in same year 238 

 239 

 Following the assumptions at the heart of the P*/sigma approach, I assumed that for the 240 

initial version of each assessment: 241 

 242 

1) log (
𝑂𝐹𝐿𝑡𝑟𝑢𝑒

𝑂𝐹𝐿𝑎𝑠𝑠𝑒𝑠𝑠𝑒𝑑
) = 𝜖𝑠 + 𝜖𝑎  243 

 244 

where 245 

 246 

2) 𝜖𝑠~𝑁𝑜𝑟𝑚𝑎𝑙(0, 𝜎𝑠) 247 
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 248 

represents persistent errors for a given stock (arising from underlying issues in the primary data, 249 

assumptions shared across all candidate models [e.g., assumptions about steepness (Thorson 250 

et al. 2019) or natural mortality (Hamel 2014)], and if applicable persistent assessor and/or 251 

reviewer effects – and how all of these interact with the biology of the stock in question), and 252 

 253 

3) 𝜖𝑎~𝑁𝑜𝑟𝑚𝑎𝑙(0, 𝜎𝑎) 254 

 255 

represents assessment-specific errors arising from choices about datasets used, data 256 

weightings, and selection of model assumptions from within the general scope of acceptable 257 

assumptions. 258 

 259 

To preserve the assumption that if all assessments are performed only once,  260 

 261 

4) log (
𝑂𝐹𝐿𝑡𝑟𝑢𝑒

𝑂𝐹𝐿𝑎𝑠𝑠𝑒𝑠𝑠𝑒𝑑
)~𝑁𝑜𝑟𝑚𝑎𝑙(0, 𝜎) 262 

 263 

I used the equation for variance of a sum of random variables (assuming independence, which 264 

may be reasonable given how the respective errors were defined, but potentially problematic if 265 

certain features of the data lead to a tendency to select certain modeling options) to obtain 266 

 267 

5) 𝜎𝑎 = √𝜎2 − 𝜎𝑠
2. 268 

 269 

 To simulate an assessment cycle that assesses N total stocks, I simulated the 270 

distribution of true versus assessed OFLs by drawing vectors of length N for ϵs and ϵa across 271 

various values of σs (chosen such that anywhere from 0% to 100% of the variance of 272 

assessment outputs was driven by assessment-specific factors) while holding σ constant at 0.5 273 

(and thus determining σa via equation 5), then exponentiated the sum of these vectors. 0.5 is 274 

the default value of sigma applied by the PFMC for “category 1” assessments, the most data-275 

rich and complex models used (PFMC 2022). To simulate a distribution of true versus assessed 276 

OFLs after some stocks were re-assessed, I retained all draws of ϵs, and all draws of ϵa for 277 

stocks that were not re-assessed, while drawing new values of ϵa for re-assessed stocks. I then 278 

exponentiated the summed vectors as before. For realistic values of N, stochastic variation from 279 
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run-to-run is expected to predominate, thus I chose N=2,000,000 to approximate the asymptotic 280 

expectation. I focused on P* values of 0.45 and 0.40, as they are the most commonly used by 281 

the PFMC. 282 

I explored various scenarios for the selection of assessments to be redone within a 283 

single assessment cycle: 1) selecting x% of assessments at random (exploring varying levels of 284 

x), 2) assuming skillful selection of problematic assessments by including the x/2% highest and 285 

x/2% lowest ratios of true versus assessed OFLs, or 3) assuming skillful selection of 286 

problematic assessments aimed only at the pessimistic ones by including the x% highest ratios 287 

of true:assessed OFLs. 288 

  289 

2.2.2 Model outputs for within-cycle scrutiny 290 

 291 

 As expected, redoing assessments at random does not change the FMP-wide 292 

distribution of ratios between true and assessed OFLs (compare Figure 1a versus Figure 1b). If 293 

inaccurate assessments are skillfully selected regardless of the direction of error, the median 294 

ratio remains fixed at 1.0 (i.e., there is still no bias at the FMP-wide level) while the distribution 295 

narrows (but remains symmetric while no longer lognormal) and sigma becomes smaller (Figure 296 

1c). If the least accurate assessments with errors in the direction of poor status are redone, the 297 

median ratio drops below 1.0 (indicating FMP-wide bias) and the distribution becomes non-298 

symmetric (Figure 1d). The degree of bias introduced increases with the fraction of 299 

assessments redone and with the fraction of variance in assessment outputs attributable to 300 

assessment-specific factors (Figure 2). Note that this FMP-wide bias occurs even though the 301 

individual assessments and re-assessments are assumed to provide unbiased estimates. 302 

  303 
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Figure 1. Example outputs showing the ratio between true and assessed overfishing limits 304 

(OFLs) for the initial set of unbiased assessments (a), after redoing some assessments within-305 

cycle at random (b), redoing the least accurate assessments within-cycle regardless of the 306 

direction of error (c), or redoing (within-cycle) the assessments with the largest errors in the 307 

direction of low status (d). Q45 and Q40 denote the 45th and 40th quantiles, respectively. 308 

 309 

  310 
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Figure 2. Median ratio between the true and assessed OFL following the skillful selection of 311 

assessments with the largest proportional errors in the direction of low status to be redone 312 

within a single assessment cycle.  313 

 314 

These changes in the distribution of true versus assessed OFLs in the skillful selection 315 

scenarios for redoing assessments lead to changes in the multiplier needed to result in a 316 

specified probability that the ABC calculated by applying the multiplier to the assessed OFL will 317 

be higher than the true OFL. In the base case of lognormal distribution with sigma=0.5, a buffer 318 

Q45=0.945 results in the expectation that the ABC will be greater than the true OFL 45% of the 319 

time. If assessments are skillfully selected to redo, but without attention to the direction of error, 320 
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a slightly larger multiplier (i.e., reduced buffer between ABC and OFL) can be used to achieve 321 

the same expectation (Figure 3a), although the change in multiplier is small. In contrast, skillfully 322 

selecting the most pessimistic assessments to be redone requires larger changes in the 323 

multiplier to preserve the nominal probability of ABCs exceeding the true OFL, and the multiplier 324 

needs to be decreased (Figure 3b). Even larger changes in the multiplier are required to 325 

achieve a nominal 40% probability of ABCs exceeding the true OFL (Figure 3c), which requires 326 

a multiplier of 0.881 in the base case where no assessments are redone.  327 

  328 
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Figure 3. Multiplier required to achieve a 45% (Q45, panels a and b) or 40% (Q40, panel c) 329 

probability that the ABC obtained by applying the multiplier to the assessed OFL is larger than 330 

the true OFL, under skillful and symmetric selection of the least accurate assessments to be 331 

redone within an assessment cycle (a) or under skillful selection of the most pessimistic 332 

assumptions to be redone within an assessment cycle (b and c). Note that the contour spacings 333 

are different in panel a versus b and c.  334 

 335 

  336 
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2.2.3 Responses to changes between consecutive assessments 337 

 338 

 So far, my quantitative analysis focused on actions taken within a single assessment 339 

cycle, such that both the original and redone assessment are estimating status for the same 340 

terminal year and setting catch limits for the same management year(s). It may also be the case 341 

that managers and reviewers would give extra scrutiny to an assessment of a stock that differed 342 

substantially in its status estimate or OFL determination compared to the previous assessment 343 

of that stock, although such changes could be unsurprising given long intervals between 344 

assessments or significant changes in the environment or management affecting the stock. 345 

 To simulate a system where consecutive assessments of the same stock are compared 346 

and unexpected changes may trigger further scrutiny of the more recent assessment, I assumed 347 

a set of OFLs was determined for a suite of stocks in both timestep 1 and timestep 2. In 348 

timestep 1 I assumed the ratios between true and assessed OFLs were determined as in 349 

equation 1, but with ϵa subscripted by timestep to reflect its potential to vary between timestep 1 350 

and timestep 2: 351 

6) log (
𝑂𝐹𝐿𝑡𝑟𝑢𝑒,1

𝑂𝐹𝐿𝑎𝑠𝑠𝑒𝑠𝑠𝑒𝑑,1
) = 𝜖𝑠 + 𝜖𝑎,1. 352 

 I assumed that the dynamics of the stock between timestep 1 and timestep 2 changed 353 

the true OFL by a proportion given by a lognormal distribution: 354 

7) log (
𝑂𝐹𝐿𝑡𝑟𝑢𝑒,2

𝑂𝐹𝐿𝑡𝑟𝑢𝑒,,1
) = 𝜕, 355 

where 356 

8) 𝜕~𝑁𝑜𝑟𝑚𝑎𝑙(0, 𝜎𝑑) 357 

and σd represents the variability in stock dynamics. For each stock, the proportional difference 358 

between assessed OFLs in timestep 2 and timestep 1 is 359 

9) log (
𝑂𝐹𝐿𝑎𝑠𝑠𝑒𝑠𝑠𝑒𝑑,2

𝑂𝐹𝐿𝑎𝑠𝑠𝑒𝑠𝑠𝑒𝑑,,1
) = 𝜕 + 𝜖𝑎,2,𝑖𝑛𝑖𝑡𝑖𝑎𝑙 − 𝜖𝑎,1 360 

where ϵa,2,initial  is the assessment-specific error associated with the initial iteration of the 361 

timestep 2 assessment (with the “initial” subscript reflecting the potential that some timestep 2 362 

assessments will be redone), noting that ϵs affects the assessed OFLs in both timesteps equally 363 

and so it drops out of the comparison. 364 

 For the initial set of timestep 2 assessments,  365 

10) log (
𝑂𝐹𝐿𝑡𝑟𝑢𝑒,2

𝑂𝐹𝐿𝑎𝑠𝑠𝑒𝑠𝑠𝑒𝑑,2,𝑖𝑛𝑖𝑡𝑖𝑎𝑙
) = 𝜖𝑠 + 𝜖𝑎,2,𝑖𝑛𝑖𝑡𝑖𝑎𝑙 366 
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and I simulated scenarios where the timestep 2 assessments with the largest proportional 367 

changes in OFL compared to timestep 1 (as determined in equation 9) were redone, resulting in 368 

new errors: 369 

10) log (
𝑂𝐹𝐿𝑡𝑟𝑢𝑒,2

𝑂𝐹𝐿𝑎𝑠𝑠𝑒𝑠𝑠𝑒𝑑,2,𝑟𝑒𝑑𝑜𝑛𝑒
) = 𝜖𝑠 + 𝜖𝑎,2,𝑟𝑒𝑑𝑜𝑛𝑒 370 

and explored the distribution of the ratio between true and assessed OFLs given different levels 371 

of σd and different proportions of assessments being redone within timestep 2. I explored 372 

scenarios where the x% of largest proportional decreases in OFL or the x/2% of largest 373 

proportional changes in either direction led to re-assessment. For these simulations, I held σa 374 

constant at either 0.447 (80% of total variance given σ=0.5) or 0.225 (20% of total variance) to 375 

reduce the dimensionality of the simulations. Given the meta-analytic approach to estimating σ  376 

based on repeated assessments (Ralston et al. 2011, Privitera-Johnson and Punt 2020b), it is 377 

likely that estimates of σ are dominated by assessment-specific factors, with intrinsic factors 378 

largely constant across assessments and so not revealed by comparison of sequential 379 

assessments. Therefore, the larger value of σa may be more appropriate, since σa likely drives 380 

current estimates of σ. 381 

 Applying extra scrutiny to large proportional decreases in OFL from one assessment to 382 

the next can yield similar biases to redoing assessments within-cycle if the changes in true 383 

stock size/status between assessment periods is small relative to the error in assessments 384 

(compare Figure 4 to Figure 2, comparing Figure 4a to the part of Figure 2 where a large 385 

proportion of variance is assessment-specific and 4b to the part of Figure 2 where a small 386 

proportion of variance is assessment-specific). As the variation in true stock size/status between 387 

assessment periods becomes larger, the bias introduced is less (Figure 4) and results become 388 

more similar to picking assessments to be redone at random, because when changes in true 389 

stock size/status between assessments are large, assessment error has relatively little effect on 390 

the probability of observing a large overall change in the estimated OFL. As expected, redoing 391 

assessments that show large proportional changes in OFLs regardless of the direction of 392 

change does not introduce a bias (results not shown, but are produced by the code available 393 

online). Implications for appropriate uncertainty buffers or multipliers are similar to the effects on 394 

bias, requiring larger buffers in the case of directional scrutiny and having minimal effects on 395 

appropriate buffers in the case of symmetric scrutiny (results not shown, but are produced by 396 

the code available online). 397 

  398 
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Figure 4. Median ratio between the true and assessed OFL after redoing the second in a pair of 399 

sequential assessments if there was a large proportional reduction in the OFL for the second 400 

assessment compared to the first. In panel a, 80% of the variance associated with assessment 401 

error is due to assessment-specific factors, whereas in panel b 80% of the variance is 402 

associated with intrinsic factors that do not vary between assessment iterations.  403 

 404 

2.2.4 Caveats and potential extensions 405 

  406 

 The models presented here are admittedly oversimplifications of complicated processes 407 

where there may be no bright line between “redoing” an assessment within a cycle and the 408 

revisions that normally occur during the process of model development and review. Numerous 409 

factors could lead to the expectation that true OFLs would change between assessments 410 

performed at different times, with the direction of change depending on the scenario (e.g., OFL 411 

likely to increase through time for a rebuilding stock, or decrease for a newly-targeted stock 412 

currently assessed to be well above its biomass target). The assumption that first-pass 413 

assessments are median unbiased, or that a single distribution can describe the uncertainty 414 

associated with each assessment, is also a gross oversimplification. Numerous factors could 415 

affect the covariance between estimates from initial and revised assessments, and the 416 

expectation that revised assessments would be median-unbiased is questionable. Requests for 417 

model changes in revised assessments may have anticipated directional effects, or new 418 

research projects may be funded with the anticipation of directional changes in assessment 419 

outcomes (Terceiro 2018, Lynn et al. 2022). Nevertheless, I chose to model a scenario in which 420 
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redone assessments were median unbiased to illustrate the potential for inadvertent bias to be 421 

introduced even when requests for assessment revisions were not made with the intent or 422 

anticipation of driving the results in a particular direction. It may often be the case that proposed 423 

revisions to historical datasets, addition or removal of datasets, changes in data treatments, 424 

and/or revised prior specifications would have predictable effects. These sorts of predictable 425 

biases are not included in my simulations, and might be guarded against by restricting the 426 

opportunities for requesting such changes to early in the assessment process, before results 427 

are known. 428 

In addition, stock assessments output numerous other quantities of scientific and 429 

management importance beyond the OFL, including estimates of status or depletion and 430 

estimates of biological parameters that affect productivity and so influence the projections 431 

needed for multi-year catch advice and for identifying sustainable fishing rates. The uncertainty 432 

in many of these estimates may also be reasonably described by a lognormal distribution (Bi et 433 

al. 2023) amenable to exploration with a similar approach, although there may be less of an 434 

established basis for the value of sigma to assume. I focused on OFLs and ABCs given the 435 

clear frequentist interpretation of P* and a well-established existing framework for using this 436 

approach to characterize uncertainty. However, while incentives associated with p-hacking and 437 

publication of novel results is expected to lead to increased Type I error rates (i.e., false 438 

positives), it might be argued that a tendency to be suspicious of low-status assessments and 439 

favor model variants giving more moderate status could be more akin to increasing the rate of 440 

Type II errors (false negatives or incorrectly rejecting an assessment of poor status). 441 

It is important to realize that full ABCs may not be attained, and thus an ABC higher than 442 

the true OFL does not necessarily mean that biological overfishing will or is likely to occur (i.e., 443 

the fishing mortality rate actually estimated for recent years is often well below the proxy for the 444 

rate expected to produce maximum sustainable yield [e.g., Figure 3.4.1 of Harvey et al. (2022)]). 445 

Thus, even if the calculated P* is lower than the true probability of an ABC exceeding the true 446 

OFL, biological overfishing may still be acceptably unlikely given expected attainment levels. 447 

This might reduce concern about the accuracy of P* calculations, but this complication would be 448 

better addressed through a framework where P* represents the probability that the expected 449 

harvest, as opposed to the ABC, would result in overfishing. Such an approach has not yet been 450 

developed.  451 

Empirically quantifying the degree to which assessments are “redone” prematurely, and 452 

the extent to which low status predicts assessments receiving extra scrutiny, would be a 453 

formidable task requiring extensive review of the grey literature and likely a fair amount of 454 



18 

informed speculation about the motivation underlying incompletely documented decisions. 455 

Silvar-Viladomiu et al. (2021) and Bi et al. (2023) did not detect evidence of bias when 456 

comparing year-specific status estimates between repeated assessments of the same stocks, 457 

but each assessment was the product of a similar process that might exert similar effects on 458 

each iteration of the assessment. In addition, these analyses may not have sufficient power to 459 

detect small biases. Note also that my simulations assumed the re-assessments were 460 

themselves unbiased, and the potential bias arises when considering advice on the managed 461 

suite of stocks as whole rather than an expectation that the redone assessments are 462 

themselves biased. Some reviews of the scientific literature have used techniques like p-curves 463 

to test whether distributions of critical test statistics of published papers have discontinuities at 464 

critical “significance” levels that could be indicative of p-hacking or publication bias (Simonsohn 465 

et al. 2015). A similar approach might be used to examine the frequency of assessments 466 

indicating status just above versus below target or limit reference points, although one might 467 

expect that successful management would naturally lead to discontinuities around such 468 

reference points. Additionally, one could test whether assessments of status just above limits or 469 

targets in the terminal year of an earlier assessment tended to be consistent with updated 470 

perceptions of status for that year based on future assessments (Bi et al. 2023). Future 471 

simulation work could relax the assumption that initial or redone assessments are median 472 

unbiased, model the effects of directed requests for assessment revisions, and/or partition the 473 

assessment-specific error into additional components such as individual assessor effects, 474 

institutional effects, modeling platform effects, and the like. This might be addressed through a 475 

hierarchical modeling framework. 476 

 477 

2.2.5 Likely magnitude of the problem 478 

 479 

 In practice, reviewers and decision makers likely have some skill in identifying less 480 

accurate assessments, but do not have perfect knowledge, suggesting that the outcome in 481 

practice is likely to be somewhere in between the random selection and skillful selection 482 

scenarios. Note that the effects of moderate changes in the fraction of assessments redone or 483 

the proportion of variance attributable to assessment-specific factors can change the multiplier 484 

by amounts comparable to or larger than the changes needed to achieve 45% versus 40% 485 

probability of establishing an ABC higher than the true OFL. The bias in the OFL estimate 486 

introduced by asymmetric scrutiny is larger than can be countered by the default Q45 when as 487 

few as about 10% of assessments are redone if a high proportion of variance in OFL estimates 488 
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is attributable to assessment-specific factors, or about 20% of assessments if 50% of OFL 489 

variance is assessment-specific (Figure 2). If assessments are not redone within-cycle, but 490 

large relative decreases in OFLs between sequential assessments prompt extra scrutiny, this 491 

can introduce comparable levels of bias if the interval between assessments is short relative to 492 

the rate of change in true stock size/status. Thus, these problems may be more acute for long-493 

lived, frequently assessed species and less acute for short-lived, infrequently assessed species. 494 

Overall, these simulations suggest that randomly selecting assessments to be redone 495 

within a cycle is a waste of time and resources. Skillfully and symmetrically selecting 496 

assessments to be redone will not introduce bias, but is likely an inefficient use of resources, 497 

given the small changes in suitable multipliers. Redoing only the most pessimistic assessments 498 

within a cycle would introduce a bias that may be comparable in magnitude to the differences 499 

between choice of P*=0.45 versus 0.40. Similar biases could result when applying extra scrutiny 500 

to reductions in OFL or status between consecutive assessments, although the bias is reduced 501 

when changes in true stock size/status over the relevant interval are likely to be large, such as 502 

for infrequent assessment of a short-lived and dynamic stock. Differences on the order of a few 503 

percent may be acceptable relative to other uncertainties in the process, but the selection of 504 

assessments to be redone should be judicious to avoid the introduction of larger biases. 505 

 506 

3. Potential solutions 507 

 508 

 Similar to several broad reviews of the scientific literature, the examples and models 509 

explored here suggest that various processes operating at the analysis and “publication” or 510 

adoption stage for stock assessment science are introducing a bias into fishery-wide OFL 511 

specification, and the rate at which ABCs exceed the OFLs that would have been established 512 

given perfect knowledge is likely higher than the nominal value of P*, similar to how publications 513 

of “significant” results likely have a higher false positive rate than the nominal p-value. While the 514 

magnitude of the bias may not be sufficient to call the scientific or assessment enterprise as a 515 

whole into question, it does seem sufficient to warrant caution and efforts to limit known sources 516 

of bias as much as possible. 517 

For the broader scientific enterprise, several courses of action have been proposed 518 

(Wicherts et al. 2016), most of which have clear analogs in the assessment process. 1) 519 

Analyses should be driven by clear a priori hypotheses that lead directly to a parsimonious set 520 

of candidate explanatory covariates, with objective methods for model and variable selection. 2) 521 

There should be transparency in statistical model selection and significance criteria. 3) Pre-522 
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registration should be considered and employed to the extent possible. At the funding or pre-523 

publication stage, clear statements should be made of the motivation for a study, the 524 

hypotheses it will test, the data to be collected and the analyses to be performed (ideally with a 525 

power analysis indicating sufficient power to detect meaningful effects if present), and the 526 

statistical tests to be performed along with the significance criterion and its justification. If all of 527 

these are satisfactory, publication should be assured regardless of the p-value obtained. 4) 528 

When multiple statistical tests or model formulations are applied to the same dataset, some 529 

adjustments like the Holm-Bonferroni procedure or Šidák correction should be applied. 5) A 530 

more stringent “significance” standard than p<0.05 should be considered for novel findings 531 

(Benjamin et al. 2018). 532 

 The stock assessment prioritization and review process along with the application of the 533 

P*/sigma system for developing ABCs from OFLs offers analogies to all of these 534 

recommendations. 1) At the beginning of each assessment cycle, the species to be assessed, 535 

the spatial boundaries in assessment and management units, the data sources to be considered 536 

for inclusion, and the standards for review should all be specified in advance. 2) Review criteria 537 

should be clearly tied to the strength of scientific evidence, not management implications. 3) 538 

Assessments should not be aborted or rejected for use in management based on a politically 539 

unfavorable outcome. 4) The buffer between the ABC and OFL should be increased beyond 540 

that implied by the nominal choice of P*, based on an approach similar to the models explored 541 

in Section 2.3. Similar adjustments to estimates of depletion and status may also be warranted. 542 

5) Strict standards should be adopted for revising, further reviewing, or rapidly revisiting an 543 

assessment that has been endorsed by scientific reviewers. For example, the SSC of the Mid-544 

Atlantic Council will only reconsider a recommendation if new data are found or an error is 545 

discovered in an assessment (Crosson 2013), and the New England Fishery Management 546 

Council has similar limits on when an SSC recommendation can be remanded (Nies 2022). 547 

There may also be benefits in determining a priori criteria for how large a change would be 548 

required to deem a revised assessment sufficiently different from the initial assessment to revisit 549 

the adoption of the original assessment (SSC 2022), which might be based on evaluating the 550 

magnitude of the difference between two model alternatives relative to the overall level of 551 

uncertainty (Cope and Gertseva 2020).  552 

 553 

 554 

 555 

 556 
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4. Conclusions 557 

 558 

 Overall, there seem to be numerous pathways by which inadvertent bias may be 559 

introduced into the stock assessment prioritization, review, and adoption process; and these 560 

pathways have commonalities in concerns raised about “p-hacking” in the scientific enterprise 561 

more broadly. Fortunately, the broader scientific literature also poses potential solutions or at 562 

least steps to reduce the influence of p-hacking, and many of these steps have direct analogs 563 

that can be applied to reduce the chances of introducing inadvertent bias into the fisheries stock 564 

assessment process. Simply raising awareness of the issue may go a long way toward fostering 565 

more careful work that is less likely to create bias (Peng 2015). 566 
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