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RANK-BASED STOCHASTIC DIFFERENTIAL INCLUSIONS AND

DIFFUSION LIMITS FOR A LOAD BALANCING MODEL

RAMI ATAR AND TOMOYUKI ICHIBA

Abstract. In [4], a randomized load balancing model was studied in a heavy traffic asymp-
totic regime where the load balancing stream is thin compared to the total arrival stream.
It was shown that the limit is given by a system of rank-based Brownian particles on the
half-line. This paper extends the results of [4] from the case of exponential service time to
an invariance principle, where service times have finite second moment. The main tool is a
new notion of rank-based stochastic differential inclusion, which may be of interest in its own
right.

1. Introduction

This paper studies a randomized load balancing model under an asymptotic regime intro-
duced by Banerjee, Budhiraja and Estevez [4], where N servers, labeled 1, . . . , N , cater to
N + 1 streams of jobs, labeled 0, . . . , N . For each 1 ≤ i ≤ N , server i caters to stream i, and
stream 0 undergoes randomized load balancing. Specifically, the power-of-choice algorithm is
applied to this stream, in which ℓ out of the N queues are chosen at random and the job is
routed to the shortest among them. In the regime proposed in [4], the load balancing stream
is much thinner than the remaining streams. The motivation to study a thin load balancing
stream stems from the fact that the intensity of this stream, along with the parameter ℓ, de-
termines the communication volume between the dispatcher and servers, which one wants to
keep low in practical applications. In [4], N is fixed, and, denoting the scaling parameter by n,
the server capacity and the arrival rates of streams 1, . . . , N scale like n, whereas the arrival
rate of stream 0 scales like n1/2. Under a critical load condition, it is shown that the N queue
lengths, normalized by n1/2, converge to a system of Brownian particles on the half line, with
rank-dependent drift coefficients. This result thus identifies the minimal order of magnitude
of the load balancing stream intensity at which load balancing has a macroscopic effect on the
system behavior at the diffusion scale.

The treatment in [4] assumes exponential service times. The goal of this paper is to extend
the diffusion limit result to an invariance principle, where service times are only assumed to
possess a second moment. This does not amount to a mere technical improvement of the proof
ideas of [4]. To briefly explain this point, let X̂n

i , 1 ≤ i ≤ N denote the normalized queue
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2 RAMI ATAR AND TOMOYUKI ICHIBA

length process of server i. Let the ranked normalized queue lengths Ŷ n
i , 1 ≤ i ≤ N , be defined

as
Ŷ n
i (t) = X̂n

πt(i)
(t),

for a t-dependent permutation πt of {1, . . . , N} that ensures that, for all t,

Ŷ n
1 (t) ≤ Ŷ n

2 (t) ≤ · · · ≤ Ŷ n
N (t).

The limiting dynamics of X̂n
i is expected to be given in terms of a system of stochastic differ-

ential equations (SDEs) on RN
+ of the form (written here in a slightly simplified manner; see

Section 2.3 for a precise definition and the general form of SDEs treated here),

(1.1) Xi(t) = Xi(0) +Bi(t) +

∫ t

0
bRi(s)ds+ Li(t),

where bi are constants, Ri(t) is the rank of Xi(t) (e.g., Ri(t) = 1 if Xi(t) = minj Xj(t)), Bi

are mutually independent Brownian motions, and Li is a local time term for process Xi at the
origin. In particular, bRi(t) are rank-dependent drift coefficients. If now one lets Yi, 1 ≤ i ≤ N
denote the ranked processes corresponding to {Xi} (by a transformation like the one above for
the normalized queue lengths), one finds that they satisfy a system of SDEs of the form

(1.2) Yi(t) = Yi(0) + B̃i(t) + bit+
1

2
L̃i(t)− 1{i<N}

1

2
L̃i+1(t) + 1{i=1}

1

2
L̃1(t),

where L̃i are local time terms. For background on ranked processes of semimartingales, see [6].

The strategy of the proof in [4] is to work with the approximating processes Ŷ n
i (t) and show

convergence to the unique solution of (1.2). In this technique, one needs to show that the
intersection time ∫ ·

0
1{Ŷ n

i (t)=Ŷ n
i+1(t)}

dt

converges to zero in probability, as n → ∞ for every i = 1, . . . , N−1 (Lemma 4.2 and Corollary
4.3 of [4]), and here the exponential service time assumption is convenient. Estimating it under
more general conditions may be quite challenging.

Our proof strategy is to work with the processes X̂n
i and show that they converge to the

unique solution of (1.1). Because (1.1) itself does not involve multiple local-time terms except
the one for spending time at zero, there is no need to estimate the intersection times. On the
other hand, our approach requires the notion of rank-based stochastic differential inclusions
(SDIs), such as

(1.3) Xi(t) = Xi(0) +Bi(t) +

∫ t

0
βi(s)ds+ Li(t).

Here, βi(t) = bRi(t) at times when all particles are isolated from each other, but a milder
condition is required at times when some of the particles collide. The precise condition is
formulated by requiring {βi(t)} to belong to a set that depends on the current state {Xi(t)}
(see Section 2.3).

Differential inclusions play an important role in the study of non-smooth dynamical systems
in both deterministic [2, 12] and stochastic [1] settings. An intuitive explanation for their
effectiveness here is that while a precise formulation of (1.1) must specify the tie-breaking rule
for how Ri(t) are defined when two particles collide, such details should not matter. In fact,
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a differential inclusion avoids keeping track of such details. When weak limits are taken for
the queueing model, details on tie breaking rules are lost, and one is left with a differential
inclusion which, in its simplest form, is given by (1.3).

For a survey on randomized load balancing algorithms and their recent extensive study in
asymptotic regimes, see [10]. Rank-based diffusions have also been extensively studied in recent
years; see e.g., [3, 5, 9, 11,14,18,19].

1.1. Notation. Throughout the paper, we use the following notation. [N ] = {1, . . . , N},
R+ = [0,∞). ι denotes the identity map on R+. In RN , the Euclidean norm is denoted by
∥ · ∥. For (X, dX) a Polish space, let C(R+, X) and D(R+, X) denote the space of continuous
paths and, respectively, càdlàg paths, endowed with the topology of uniform convergence on

compacts and, respectively, the Skorokhod J1 topology. Let C↑
0 (R+,R+) denote the subset of

C(R+,R+) of nondecreasing functions that vanish at zero. For f : R+ → RN , denote

∥f∥∗t := sup
s∈[0,t]

∥f(s)∥,

wt(f, δ) := sup{∥f(u)− f(s)∥ : u, s ∈ [0, t], |u− s| ≤ δ}.

If v ∈ RN , then vi, i ∈ [N ] denote its coordinates, and vice versa: if vi, i ∈ [N ] are given,
then v denotes (v1, . . . , vN ). The same convention holds for random elements vi and stochastic
processes vi(·). The symbol ⇒ denotes convergence in distribution.

2. Model and main results

2.1. The load balancing model. The model we consider is defined on a probability space
(Ω,F ,P) with the corresponding expectation E. It consists of N + 1 arrival streams, labeled
0, 1, . . . , N , as well as N queues and N servers, labeled 1, . . . , N . For i ∈ [N ], server i serves
jobs in queue i in the order of arrival to the queue. The N queues are fed by the N +1 arrival
streams, where all jobs from arrival stream i ∈ [N ] are routed to queue i, whereas jobs from
stream 0, called the load balancing stream (LBS), are routed to the N queues according to a
randomized load balancing algorithm described below.

The sequence of systems is indexed by n ∈ N. The processes Xn
i , E

n
i , D

n
i and Tn

i , i ∈ [N ],
represent the i-th queue length process, arrival process, departure process and cumulative
busyness process, respectively. Moreover, An

0 denotes the LBS arrival process and An
i the

process counting LBS arrivals routed by the algorithm to server i.

For each n ∈ N, the N + 1 arrival processes En
i and An

0 are mutually independent Poisson
processes of intensities λn

i and λn
0 , respectively. Alternatively, they can be viewed as N + 1

Poisson thinned streams of a single arrival stream, obtained by random selection. These
processes are assumed to have right-continuous sample paths. We have the balance equation

(2.1) Xn
i (t) = Xn

i (0−) + En
i (t) +An

i (t)−Dn
i (t), i ∈ [N ], t ∈ R+,

and, assuming work conservation, the cumulative busyness process is given by

(2.2) Tn
i (t) :=

∫ t

0
1{Xn

i (s)>0}ds, i ∈ [N ], t ∈ R+.
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Note that t− Tn
i (t) , t ≥ 0 , i ∈ [N ] are the cumulative idle time processes.

The load balancing algorithm routes LBS jobs to queues according to their relative lengths.
The precise construction requires the definition of a rank function. Namely, rank : [N ]×RN →
[N ] is defined as

(2.3) rank(i;x) := #{j ∈ [N ] : xj < xi}+#{j ≤ i : xj = xi}, i ∈ [N ], x ∈ RN .

Thus, rank(i;x) is the rank of xi among {xj}, where the tie-breaking rule is that the smaller in-
dex among the ties is preferred. For example, for x = (1, 1, 2, 2, 3) ∈ R5 , one has rank(i;x)5i=1 =
(1, 2, 3, 4, 5), and for x = (1, 1, 3, 2, 2) ∈ R5 , rank(i;x)5i=1 = (1, 2, 5, 3, 4).

Next, a probability vector p = (pr) ∈ [0, 1]N , p1+ · · ·+pN = 1, is given, assumed throughout
to satisfy

(2.4) p1 ≥ p2 ≥ · · · ≥ pN .

The load balancing algorithm routes an LBS job to the queue whose length is ranked r with
probability pr (in particular, shorter queues are preferred). For the construction of this part
of the queueing model, let θk, k ∈ N be IID random variables with the common distribution
P(θ1 = r) = pr, r ∈ [N ]. Then the cumulative number An

i (t) of the LBS arrivals routed to
server i by time t is given by

(2.5) An
i (t) =

∫
[0,t]

1{Rn
i (s−)=θAn

0 (s)}dA
n
0 (s), Rn

i (t) = rank(i;Xn(t)), i ∈ [N ], t ∈ R+.

The most important special cases of this setting are two versions of the well-known power-
of-choice algorithm. Here, upon an LBS arrival, the queue lengths of ℓ out of the N queues,
chosen uniformly at random, are sampled (with or without replacement). The arrival is routed
to the queue that is the shortest among the ℓ queues. The volume of communication between
the servers and the dispatcher is therefore proportional to ℓ. For this reason, in practice, ℓ is
usually chosen much smaller than N .

Under the power-of-choice, the probability pr that an LBS arrival is routed to the queue
whose rank (as defined by (2.3)) is r, is given by

(2.6) pr =
(N − r + 1

N

)ℓ
−
(N − r

N

)ℓ
, and pr =

(
N−r
ℓ−1

)(
N
ℓ

) , respectively r ∈ [N ]

for sampling with and without replacement, respectively. Here,
(
k
j

)
= 0 when j > k. In both

cases,
∑

r pr = 1, and (2.4) hold. Our results are concerned with general p satisfying (2.4),
but the main interest is in the cases (2.6).

Initial conditions. The residual times of jobs that have already been processed at time 0
are assumed to satisfy some mild conditions. Denote the (random) set of queues that at time
0 contains no jobs and, respectively, at least one job, by N n = {i ∈ [N ] : Xn

i (0) = 0} and
Pn = {i ∈ [N ] : Xn

i (0) > 0}. Note that N n and Pn partition [N ] with #N n +#Pn = N .

For i ∈ Pn, let Zn
i (0) denote the initial residual time of the head-of-line job in queue i. For

i ∈ N n, let fictitious jobs be added, having zero processing time. To this end, rather than
specifying Xn(0) as the initial queue length, Xn(0−) is specified (as in (2.1)); and for each
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i ∈ N n, the queue length is set to Xn
i (0−) = 1 and the residual processing time is set to

Zn
i (0) = 0. Note that this results in Xn

i (0) = 0. Note that by adding the fictitious jobs we
attain the following. The first job to enter service after time 0 will have index 1 regardless of
the initial status of the queue (empty or non-empty). The initial condition is thus a tuple

In = ({Xn
i (0−), Zn

i (0), i ∈ [N ]}, N n, Pn),

where (N n,Pn) partitions [N ], and

Xn
i (0−) = 1, Zn

i (0) = 0, i ∈ N n,

Xn
i (0−) ≥ 1, Zn

i (0) > 0, i ∈ Pn.

Service times. Let Φser
i , i ∈ [N ], be Borel probability measures on [0,∞) with mean 1,

standard deviation σser
i ∈ (0,∞), and Φser

i ({0}) = 0. Let Φser,n
i be defined as scaled versions

of these measures, uniquely specified via

(2.7) Φser,n
i [0, x] := Φser

i [0, µn
i x], x ∈ R+.

Here, µn
i > 0 is the service rate of server i in the n-th system. For k ≥ 1, let Zn

i (k) denote
the service time of the k-th job to be served by server i after the head-of-line job at time 0−
(for i ∈ N n this means the k-th job after the fictitious one). It is assumed that, for every i,
Zn
i = (Zn

i (k), k ≥ 1) is an IID sequence with common distribution Φser,n
i .

The potential service process Sn
i , evaluated at t, represents the number of jobs completed

by server i by the time it has worked t units of time. With
∑−1

0 = 0, it is given by

(2.8) Sn
i (t) = max

{
k ∈ Z+ :

k−1∑
j=0

Zn
i (j) ≤ t

}
, t ≥ 0.

The departure processes are, therefore, given by Dn
i (t) = Sn

i (T
n
i (t)). This is the number of

jobs completed by time t by server i.

It is assumed that, for each n, the 2N + 3 stochastic elements

En
i , i ∈ [N ], Zn

i , i ∈ [N ], In, An
0 , {θk},

are mutually independent.

2.2. The scaling and critical load condition. The arrival and service rates are assumed
to satisfy the following. There are constants λi > 0 and λ̂i ∈ R such that

(2.9) λ̂n
i := n−1/2(λn

i − nλi) → λ̂i, as n → ∞, i ∈ [N ],

a constant λ0 > 0 such that

(2.10) λ̂n
0 := n−1/2λn

0 → λ0, as n → ∞,

and constants µi > 0 and µ̂i ∈ R such that

(2.11) µ̂n
i := n−1/2(µn

i − nµi) → µ̂i, as n → ∞, i ∈ [N ].

Each of the queues is critically loaded, namely

(2.12) λi ≡ µi, i ∈ [N ].
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The scaled initial residual time n1/2Zn
i (0) are assumed to satisfy

(2.13) n1/2Zn
i (0) → 0 in probability, i ∈ [N ],

as n → ∞.

Finally, we specify conditions regarding the initial queue lengths Xn
i (0−), representing two

different scenarios. One with initial queue lengths of the order n1/2, and another with queue
lengths of a larger order of magnitude. To state these conditions, let us define

X̂n(0−) = (X̂n
1 (0−), . . . , X̂n

N (0−)), X̂n
i (0−) := n−1/2Xn

i (0−), i ∈ [N ],

and, for a fixed sequence αn satisfying n−1/2αn → ∞,

X̌n(0−) = (X̌n
1 (0−), . . . , X̌n

N (0−)), X̌n
i (0−) := n−1/2(Xn

i (0−)− αn), i ∈ [N ].

It will be assumed that one of the following holds: Either

(IC0) X̂n(0−) ⇒ X0 := (X0,1, . . . , X0,N ), an R[N ]
+ -valued random vector,

or

(ICα) X̌n(0−) ⇒ X0 := (X0,1, . . . , X0,N ), an R[N ]-valued random vector.

The main results of this model are concerned with diffusion-scale versions of the queue length
processes Xn

i (t), t ≥ 0 and cumulative idle time processes t−Tn
i (t), t ≥ 0. In particular, under

(IC0), we will be interested in

(2.14) X̂n
i (t) := n−1/2Xn

i (t), L̂n
i (t) := n−1/2µn

i (t− Tn
i (t)), t ≥ 0, i ∈ [N ],

whereas under (ICα), we will study the behavior of

(2.15) X̌n
i (t) := n−1/2(Xn

i (t)− αn), t ≥ 0, i ∈ [N ],

where the queue lengths are centered around the same constants αn as the initial conditions.

2.3. Rank-based SDE and SDI. We are concerned with a rank-based diffusion defined via
a system of SDEs or SDIs, with and without reflection.

Let constants b := (b1, . . . , bN ) ∈ RN , m := (m1, . . . ,mN ) ∈ RN , σ := (σ1, . . . , σN ) ∈
(0,∞)N be given, and consider rank-based SDE without, and, respectively, with reflection,

Xi(t) = X0,i + σiBi(t) +mit+

∫ t

0
bRi(s)ds,

Ri(t) = rank(i;X(t)),

t ≥ 0, i ∈ [N ].(SDE)

Xi(t) = X0,i + σiBi(t) +mit+

∫ t

0
bRi(s)ds+ Li(t) ≥ 0,

Ri(t) = rank(i;X(t)),∫ ∞

0
Xi(t)dLi(t) = 0,

t ≥ 0, i ∈ [N ].(SDER)

Here, rank is the function defined in (2.3) and Li are the continuous, nondecreasing, adapted
processes, starting from Li(0) = 0, that make the N -dimensional process X(·) stay in the
non-negative orthant RN

+ .
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The precise notions of a solution, in strong and weak form, are standard, but we give
them for completeness. On a given stochastic basis (Ω,F ,F := {Ft, t ≥ 0},P) satisfying the
usual conditions, with an F-Brownian motion B in dimension N , and an initial condition
X0 ∈ F0, a strong solution of (SDER) is an F-adapted process (X,L) with sample paths in

C(R+,RN
+ )× C↑

0 (R+,R+)
N that satisfies (SDER). A weak solution to (SDER) is a stochastic

basis (Ω,F ,F,P) that satisfies the usual conditions, along with processes (X,L,B) defined on
it, satisfying (SDER) a.s., where B is an F-Brownian motion in dimension N , X0 ∈ F0, and

(X,L) is F-adapted, with sample paths in C(R+,RN
+ )× C↑

0 (R+,R+)
N .

With a slight abuse of terminology, we will sometimes say that a tuple (X,L,B), or even
(X,L) is a weak solution, without specifying the stochastic basis (or the Brownian motion).

We say that uniqueness in distribution holds for (SDER) if for any two weak solutions

(X,L,B), (Ω,F ,F,P) and (X̃, L̃, B̃), (Ω̃, F̃ , F̃, P̃), with the same initial distribution, the two

processes (X,L) and (X̃, L̃) have the same distribution. We say that pathwise uniqueness holds

for (SDER), if for any two weak solutions (X,L,B), (Ω,F ,F,P) and (X̃, L̃, B), (Ω,F ,F,P),
with common initial value, the two processes X and X̃ are indistinguishable, that is, P(Xt =

X̃t, t ≥ 0) = 1, and so are L and L̃.

Analogous notions are defined for (SDE) in a similar manner, with X having the sample
path in C(R+,RN ).

Remark 2.1. It is shown by Yamada and Watanabe in [20] that the pathwise uniqueness and
the weak existence of SDE imply the strong existence of the solution and the uniqueness in law.
Following the weak and strong solutions of stochastic system developed by Kurtz in [16], we
claim that the pathwise uniqueness and the weak existence of SDI imply the strong existence
of the solution and the uniqueness in law. Particulary, the pathwise uniqueness and weak
existence of (SDIR) ((SDI), respectively) imply the strong existence of the solution of (SDIR)
((SDI), respectively) and uniqueness in law.

To introduce our notion of a rank-based SDI, let Π denote the set of all permutations of
[N ]. For each π ∈ Π, write bπ for the vector (bπ(1), . . . , bπ(N)). Let us consider a set-valued

map P : RN → 2Π defined by

(2.16) P(x) = {π ∈ Π : xi < xj implies π(i) < π(j) for every i, j ∈ [N ]},

for x ∈ RN . Denote by conv(A) the convex hull of set A ⊂ RN . The SDI without and,
respectively, with reflection, that will be of interest here, are

Xi(t) = X0,i + σiBi(t) +mit+

∫ t

0
βi(s)ds, t ≥ 0, i ∈ [N ],

β(t) = (β1(t), . . . , βN (t)) ∈ conv{bπ : π ∈ P(X(t))} a.e. t ∈ R+,

(SDI)
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and a similar one on the state space RN
+ ,

Xi(t) = X0,i + σiBi(t) +mit+

∫ t

0
βi(s)ds+ Li(t), t ≥ 0, i ∈ [N ],

β(t) ∈ conv{bπ : π ∈ P(X(t))} a.e. t ∈ R+,∫ ∞

0
Xi(t)dLi(t) = 0, i ∈ [N ].

(SDIR)

We call β the rank-dependent drift process. We say that X (respectively, (X,L)) is a solution
to (SDI) (respectively, (SDIR)) if there exist an F-progressively measurable process β so that
(SDI) (respectively, (SDIR)) holds. We extend the notions of weak/strong solution, weak
uniqueness and pathwise uniqueness, given above, to (SDI) and (SDIR).

2.4. Results. A vector b ∈ RN is said to be nonincreasing if the sequence b1, . . . , bN is.

Theorem 2.2. Let data b,m ∈ RN , σ ∈ (0,∞)N be given and assume that b is nonincreasing.
Then pathwise uniqueness and strong existence hold for (SDE), (SDER), (SDI) and (SDIR).

Theorem 2.3. Consider data defined in terms of the load balancing model, as follows

(2.17) br = λ0pr, r ∈ [N ], mi = λ̂i − µ̂i, σi = (λi + µi(σ
ser
i )2)1/2, i ∈ [N ].

i. Assume (IC0). Then (X̂n, L̂n) ⇒ (X,L) in D(R+,RN ) × C(R+,RN ) as n → ∞, where
(X,L) is the solution to (SDIR), equivalently, (SDER), with data (2.17).

ii. Fix a sequence αn with n−1/2αn → ∞ and assume (ICα). Then (X̌n, L̂n) ⇒ (X, 0) in
D(R+,RN ) × C(R+,RN ) as n → ∞, where X is the solution to (SDI), equivalently, (SDE),
with data (2.17).

2.5. Proof outline. The proofs of Theorems 2.2 and 2.3 are intertwined: The existence of
a limit for the queueing model is based on the uniqueness provided by Theorem 2.2, whereas
existence of solutions to both differential inclusions is a consequence of the convergence proved
in Theorem 2.3. The steps are as follows.

1. Pathwise uniqueness of (SDI) and (SDIR). This is shown in Section 3, specifically, in
Proposition 3.1.

2. This automatically gives the pathwise uniqueness of (SDE) and (SDER). See Remark 3.2.

3. Weak convergence of the rescaled queueing model to a solution of (SDIR) and (SDI)
(under (IC0) and (ICα), respectively). This is argued by showing that tightness holds and that
subsequential weak limits satisfy the differential inclusions, which, in view of step 1, imply the
existence of a limit of the entire sequence. This is carried out in Section 4.

4. Step 3 immediately gives weak existence of solutions to both differential inclusions.

5. For (SDI) and (SDIR), the set of times when two or more components Xi meet is shown
to have Lesbegue measure zero. This gives weak existence of solutions to (SDE) and (SDER).
This is proved in Section 5.

6. The Yamada-Watanabe Theorem now gives strong existence for the four equations (SDI),
(SDIR), (SDE) and (SDER) (cf. Remark 2.1). This is also proved in Section 5.
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3. SDI and SDE uniqueness

Proposition 3.1. Pathwise uniqueness holds for (SDI) and (SDIR).

Remark 3.2. Note that every solution to (SDE) is a solution to (SDI). The same holds for
(SDER) and (SDIR). Hence, the above immediately gives the pathwise uniqueness to (SDE)
and (SDER).

Proof. The starting point for this proof is the rearrangement inequality [13], which states that
if ui, i ∈ [N ] is nonincreasing and vi, i ∈ [N ] is nondecreasing, then

(3.1)

N∑
i=1

uivi ≤
N∑
i=1

uπ(i)vi

for any permutation π ∈ Π.

Let two weak solutions (X,L,B) and (Y,M,B), defined on the same stochastic basis, be
given, and let β and γ be the corresponding rank-dependent drift processes. The difference
process V = (V1, . . . , VN ) with Vi(·) := Xi(·)− Yi(·), i ∈ [N ] satisfies

Vi(·) := Xi(·)− Yi(·) =
∫ ·

0
(βi − γi)ds+ Li(·)−Mi(·),

and hence, the squared norm satisfies

1

2
∥V (t)∥2 =

∫ t

0
V (s) · [(β(s)− γ(s))ds+ dL(s)− dM(s)]

=
N∑
i=1

∫ t

0
(Xi(s)− Yi(s))(βi(s)− γi(s))ds+

N∑
i=1

∫ t

0
(Xi(s)− Yi(s))(dLi(s)− dMi(s)).

The proof of pathwise uniqueness for (SDIR) will be complete if one shows that the right-hand
above is non-positive for all t. The second sum is clearly nonpositive because

∫ ·
0 Xi(t)dLi(t) = 0

while
∫ ·
0 Xi(t)dMi(t) ≥ 0, and similarly for the Yi parts in the second sum. Thus, it suffices to

show that

(3.2)
N∑
i=1

(Xi(t)− Yi(t))(βi(t)− γi(t)) ≤ 0, a.e. t ∈ R+.

A similar argument for (SDI), only slightly simpler as it does not involve the boundary terms
L and M , also leads to the conclusion that proving (3.2) suffices. We therefore proceed to
show (3.2) for both (SDI) and (SDIR).

Following the definition of the SDI, let us write

β(t) =
∑
π∈Π

gπ(t)bπ, γ(t) =
∑
π∈Π

hπ(t)bπ, t ≥ 0,

where gπ(t) ≥ 0, π ∈ Π,
∑

π∈Π gπ(t) = 1, and gπ(t) = 0 for π /∈ P(X(t)) and similarly,
hπ(t) ≥ 0, π ∈ Π,

∑
π∈Π hπ(t) = 1, and hπ(t) = 0 for π /∈ P(Y (t)) for t ≥ 0. By the definition

of P(·) in (2.16), we have therefore that for a.e. t, the conjunction of conditions gπ(t) > 0
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and Xi(t) < Xj(t) implies π(i) < π(j). A similar statement holds for hπ(t) and Y (t). Then,
omitting t in the formulas below, we now have

N∑
i=1

(Xi − Yi)(βi − γi) =
N∑
i=1

(Xi − Yi)
∑
π∈Π

[gπbπ(i) − hπbπ(i)]

=

N∑
i=1

(Xi − Yi)
∑

π,σ∈Π
gπhσ(bπ(i) − bσ(i))

=
∑

π,σ∈Π

N∑
i=1

(Xi − Yi)gπhσ(bπ(i) − bσ(i)).

Consider the terms involving only the Xi’s in the above sum, namely∑
π,σ

N∑
i=1

Xigπhσ(bπ(i) − bσ(i)).

To prove nonpositivity of this sum, it suffices to prove that, for any π for which gπ > 0 (that
is, π ∈ P(X)), and for an arbitrary σ ∈ Π,

N∑
i=1

Xi(bπ(i) − bσ(i)) ≤ 0.

Because of the monotonicity: if π(i) > π(j) then Xi ≥ Xj , reordering i’s so that π(i) is
increasing will give that Xi are nondecreasing. It will also give (by the assumption on b) that
bπ(i) is nonincreasing. Hence, the last display follows from the rearrangement inequality (3.1).
Interchanging the roles of X,π, gπ and those of Y, σ, hσ, we also obtain the inequality for Y .
Therefore, we conclude that (3.2) is true. This shows that ∥V (·)∥ ≡ 0 for both (SDI) and
(SDIR). □

4. Diffusion limits

This section provides the main step toward proving Theorem 2.3. In Subsection 4.1, under
condition (IC0), it is shown that (X̂n, L̂n) converge to the unique solution of (SDIR). This
proves Theorem 2.3(i) except for the statement regarding (SDER), which is treated later
in Section 5. Subsection 4.2 assumes (ICα), and, similarly, proves Theorem 2.3(ii) except
the statement on (SDE), whose proof is deferred to Section 5. Most of the work is done in
Subsection 4.1.

4.1. The limit under condition (IC0). In this subsection we prove Proposition 4.1 below.
The proof relies on the uniqueness of (SDIR) proved in the previous section. Let

(4.1) Ên
i (t) = n−1/2(En

i (t)− λn
i t), Ŝn

i (t) = n−1/2(Sn
i (t)− µn

i t),

(4.2) Ân
0 (t) = n−1/2An

0 (t), Ân
i (t) = n−1/2An

i (t),
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(4.3) P̂#,n
i (t) = λ0

∫ t

0
pRn

i (s)
ds,

(4.4) m̂n
i = λ̂n

i − µ̂n
i .

Throughout this subsection, let condition (IC0) hold.

Proposition 4.1. i. The sequence (X̂n, L̂n, Ên, Ŝn, P̂#,n) is C-tight.
ii. If (X,L,E, S, P ) is a subsequential weak limit, then (X,L,B) forms a weak solution to
(SDIR) with the data indicated in Theorem 2.3, and where Bi = σ−1

i (Ei − Si) (with σi as in
(2.17)) and the progressively measurable rank-dependent drift β is the a.e. derivative of P .

iii. Consequently, denoting B̂n
i = σ−1

i (Ên
i − Ŝn

i ), one has (X̂n, L̂n, B̂n) ⇒ (X,L,B), where the
latter is a (weak) solution of (SDIR).

Let the Skorokhod map on the half-line Γ : D(R+,R) → D(R+,R+)
2 be defined by

Γ (y) = (x, z) where x(t) = y(t) + z(t), z(t) = sup
s∈[0,t]

y−(s), t ≥ 0.

Note that if (x, z) = Γ (y) then

(4.5) z(t) ≤ ∥y∥∗t , wt(z, δ) ≤ wt(y, δ), t > 0, δ > 0.

Lemma 4.2. Let (y, x, z) ∈ D(R+,R)×D(R+,R+)
2 satisfy x = y + z. Then the condition z

is nondecreasing and
∫
[0,∞) x(t)dz(t) = 0 (with the convention z(0−) = 0) holds if and only if

(x, z) = Γ (y).

Proof. This is known as Skorokhod’s lemma [8, §8]. □

The tuple

Sn(t) = (En
i (t), A

n
i (t), D

n
i (t), X

n
i (t), T

n
i (t), i ∈ [n], An

0 (t), θAn
0 (t)

)

is used to define the ‘history’ of the system, namely the filtration

Fn
t = σ{In,Sn(s), s ∈ [0, t]}, t ≥ 0.

Let

(4.6) P̂n
i (t) = λ̂n

0

∫ t

0
pRn

i (s)
ds and M̂n

i (t) = Ân
i (t)− P̂n

i (t).

Lemma 4.3. The process M̂n
i is an {Fn

t }-martingale, with optional quadratic variation [M̂n
i ](t) =

n−1An
i (t).

Proof. Clearly An
i and Rn

i , defined in (2.5), are Fn
t -adapted, and An

i (t) is integrable for all t.

Hence, the same is true for M̂n
i . Next, let

tn(k) = inf{t ≥ 0 : An
0 (t) ≥ k}, k = 1, 2, . . . .

These are the stopping times on {Fn
t }. Hence

(4.7) tn(k) ∈ Fn
tn(k)−, k ≥ 1,
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where we recall that for a stopping time τ ,

Fn
τ− = Fn

0 ∨ σ{A : A ∩ {τ < t} ∈ Fn
t , t ≥ 0}

(see [15, I.1.11 and I.1.14]). To show the martingale property, we can write, using
∫ t
0 pRn

i (s−)ds =∫ t
0 pRn

i (s)
ds,

n1/2M̂n
i (t) =

∫
[0,t]

1{Rn
i (s−)=θn

An
0 (s)

}dA
n
0 (s)− λn

0

∫ t

0
pRn

i (s)
ds

=

∫
[0,t]

(1{Rn
i (s−)=θn

An
0 (s)

} − pRn
i (s−))dA

n
0 (s) +

∫ t

0
pRn

i (s−)(dA
n
0 (s)− λn

0ds)

=: Mn
i,1(t) +Mn

i,2(t).

For Mn
i,1, write

An
i (t) =

An
0 (t)∑
k=1

1{Rn
i (t

n(k)−)=θnk }.

The history of the system up to tn(k)−, namely {Sn(t), t < tn(k)}, can be recovered from
the tuple In, (En

i (t), t ∈ R+, i ∈ [N ]), (An
0 (t), t ∈ R+), (Z

n
i (j), j ∈ N, i ∈ [N ]) and finally,

(θnj , j ≤ k − 1). By our assumptions, θnk is independent of this tuple. As a result, it is
independent of Fn

tni (k)−
. Therefore, for 0 ≤ s < t, we have

E[An
i (t)|Fn

s ]−An
i (s) =

∞∑
k=1

E[1{Rn
i (t

n(k)−)=θnk }1{s<tn(k)≤t}|Fn
s ]

=
∞∑
k=1

E[E[1{Rn
i (t

n(k)−)=θnk }1{s<tn(k)≤t}|Fn
tn(k)−]|F

n
s ]

=
∞∑
k=1

E[pRn
i (t

n(k)−)1{s<tn(k)≤t}|Fn
s ]

= E[Cn
i (t)|Fn

s ]− Cn
i (s),

where

Cn
i (t) =

An
0 (t)∑
k=1

pRn
i (t

n(k)−) =

∫
[0,t]

pRn
i (s−)dA

n
0 (s),

showing that An
i − Cn

i = Mn
i,1 is a martingale.

In the expression for Mn
i,2, the integrand is {Fn

t }-adapted and has LCRL sample paths, while

the integrator is a martingale on this filtration. As a result, Mn
i,2 is a local martingale [17,

Theorem II.20]; Using the estimate ∥Mn
i,2∥∗t ≤ An

0 (t) + c shows that it is, in fact, a martingale.

As a result, so is M̂n
i . Finally, the expression for the quadratic variation is straightforward. □

Lemma 4.4. i. One has

X̂n
i = Ûn

i + L̂n
i where Ûn

i (t) = X̂n
i (0−) + Ên

i (t) + Ân
i (t)− Ŝn

i (T
n
i (t)) + m̂n

i t.(4.8)
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Moreover, the sample paths of L̂n
i are in C↑

0 and

(4.9)

∫ ∞

0
X̂n

i (t)dL̂
n
i (t) = 0.

In particular,

(4.10) (X̂n
i , L̂

n
i ) = Γ (Ûn

i ), i ∈ [N ].

ii. One has (Ên, Ŝn) ⇒ (E,S), where the latter is a pair of mutually independent N -

dimensional Brownian motions starting at zero, with zero drift and diffusion coefficients diag(λ
1/2
i )

and diag(µ
1/2
i σser

i ), respectively (where we recall λi = µi).

iii. P̂n
i , L̂

n
i and X̂n

i are C-tight, and M̂n
i → 0 in probability.

Proof. i. By (2.1) and (2.14),

n−1/2Xn
i (t) = n−1/2Xn

i (0−) + n−1/2(En
i (t)− λn

i t) + n−1/2(λn
i − nλi)t+ n1/2λit+ n−1/2An

i (t)

− n−1/2(Sn
i (T

n
i (t))− µn

i T
n
i (t))− n−1/2µn

i T
n
i (t),

and

−n−1/2µn
i T

n
i (t) = −n−1/2(µn

i − nµi)t− n1/2µit+ L̂n
i (t).

Using (2.12), (4.1), (4.2) and (4.4) gives (4.8). The properties of L̂n
i and (4.9) follow from

(2.2). The identity (4.10) follows from Lemma 4.2.

ii. The fact that Ên ⇒ E follows from the central limit theorem for renewal processes [7, §17],
and the fact that, by (2.9) n−1λn

i → λi, for each i. For Ŝn
i , one has to be careful about the

fact that the assumptions about Zn
i (0) differ from those about Zn

i (k), k ≥ 1. By (2.8), Sn
i is

the inverse of

Zn
i (0) +

k−1∑
j=1

Zn
i (j).

In the expression

n1/2(Zn
i (0)− (µn

i )
−1) + n1/2

[(n−1)t]∑
j=1

(Zn
i (j)− (µn

i )
−1),

the first term converges to 0 in probability by (2.13). In the second term, the summands are
IID, and thus its limit in law is a zero drift Brownian motion with diffusion σser

i . Hence again

by [7, §17], (2.11) and the independence of {Zn
i (j)} across i, we have Ŝn ⇒ S. The mutual

independence of E and S follows from that of Ên and Ŝn.

iii. Because λ̂n
0 → λ0, the processes P̂

n
i are all (λ0+1)-Lipschitz, null at zero, for n sufficiently

large. Hence, they are C-tight. Moreover, by Lemma 4.3 and the calculation

E[n−1An
i (t)] = n−1λn

0

∫ t

0
E[pRn

i (s)
]ds ≤ n−1(λ0 + 1)n1/2t,

one has M̂n
i → 0 in probability. By (4.6), this shows that Ân

i are also C-tight.
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In view of the identity (X̂n
i , L̂

n
i ) = Γ (Ûn

i ) and (4.5),

(4.11) L̂n
i (t) ≤ ∥Ûn

i ∥∗t , wt(L̂
n
i , δ) ≤ wt(Û

n
i , δ).

Because Tn
i are 1-Lipschitz and Ŝn

i are C-tight, so are Ŝn
i (T

n
i (·)). We have already shown that

Ên
i and Ân

i are C-tight. Hence, by the convergence in law of X̂n
i (0−) assumed in (IC0) and

the convergence m̂n
i → mi, which follows from (2.9), (2.11) and (4.4), Ûn

i are C-tight. In view

of (4.11) and the fact X̂n
i = Ûn

i + L̂n
i , it follows that L̂

n
i and X̂n

i are also C-tight. □

Proof of Proposition 4.1.

i. The C-tightness of the sequence follows from Lemma 4.4 parts (ii) and (iii).

ii. Consider a convergent subsequence of (X̂n, L̂n, Ên, Ŝn, P̂n, Ûn), with limit (X,L,E, S, P, U),

where E and S are as before. Recall (4.3) and note that one has P̂n
i − P̂#,n

i → 0 in probability.

Also note by the second part of (2.14) and the tightness of L̂n
i , that Tn

i → ι in probability.

This and the C-tightness of Ŝn
i implies that Ŝn

i (T
n
i ) − Ŝn

i → 0 in probability. Hence, letting

Bi = σ−1
i (Ei − Si), one has

Ui(t) = X0,i + σiBi(t) + Pi(t) +mit.

The map Γ is continuous in the topology of uniform convergence on compact. Hence, by (4.10),
(Xi, Li) = Γ (Ui) for i ∈ [N ], and then by Lemma 4.2,

Xi(t) = X0,i + σiBi(t) +mit+ Pi(t) + Li(t),

∫ ∞

0
Xi(t)dLi(t) = 0.

Now, Pi is a.s. Lipschitz and therefore a.s. a.e. differentiable. The existence of a progressively
measurable process that is a.e. the derivative of Pi follows by an argument that was given in
the proof of [1, Theorem 3.4]. We denote this derivative by βi.

The goal now is to prove that (SDIR) is satisfied. By invoking Skorokhod’s representation
theorem, we may assume without loss of generality that convergence holds a.s. In what follows,
fix ω in the full P-measure set where convergence holds.

Fix a time interval [0, t]. The proof will be complete once it is shown that

Leb(G) = t where G = {s ∈ [0, t] : β(s) ∈ conv{bπ : π ∈ Π(X(s))}}.

For ε > 0 let

Πε(x) = {π ∈ Π : xi < xj − 4ε implies π(i) < π(j)}, x ∈ RN ,

Gε = {s ∈ [0, t] : β(s) ∈ conv{bπ : π ∈ Πε(X(s))}}.
Then ε 7→ Πε(x) is setwise increasing, and⋂

ε>0

Πε(x) = Π(x).

As a consequence, ε 7→ Gε is setwise increasing and⋂
ε>0

Gε = G.
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By continuity of measure, it suffices to show that for every ε > 0, Leb(Gε) = t. To this end,
we first show the following.

For every ε > 0 there are δ0 and n0 such that for s ∈ (0, t], n > n0 and δ < δ0,

Rn(θ) ∈ Πε(X(s)), θ ∈ [s, s+ δ].
(4.12)

To show (4.12), let n0 be so large that for all n > n0,

max
i

∥X̂n
i −Xi∥∗t < ε.

Let δ0 > 0 be so small that

max
i

wt(Xi, δ0) < ε.

To show that Rn(θ) is in Πε(X(s)) is to show that whenever Xi(s) < Xj(s) − 4ε, one has

Rn
i (θ) < Rn

j (θ), that is, rank(i; X̂n(θ)) < rank(j; X̂n(θ)). The latter will be guaranteed if

X̂n
i (θ) < X̂n

j (θ) for all θ ∈ [s, s+ δ0]. But

X̂n
j (θ)− X̂n

i (θ) > Xj(θ)−Xi(θ)− 2ε > Xj(s)−Xi(s)− 4ε > 4ε− 4ε = 0.

This proves (4.12).

In view of (4.12), and recalling b = λ0p, we have for s ∈ (0, t] and δ and n as above,

δ−1(P̂#,n(s+ δ)− P̂#,n(s)) = δ−1λ0

∫ s+δ

s
pRn(θ)dθ ∈ conv{bπ : π ∈ Πε(X(s))}.

Since for every x ∈ RN , conv{bπ : π ∈ Πε(x)} is a closed subset of RN , we also have

δ−1(P (s+ δ)− P (s)) ∈ conv{bπ : π ∈ Πε(X(s))}.
For a.e. s, the limit of the lefthand is β(s). This shows Leb(Gε) = t and completes the proof
of part (ii).

iii. The tightness shown in part (i), the fact that limits are supported on solutions to
(SDIR), as shown in part (ii), and the uniqueness stated in Proposition 3.1, imply that the
entire sequence converges in distribution to the unique weak solution of (SDIR). □

4.2. The limit under condition (ICα). The goal here is to prove Proposition 4.5, which is
the analogue of Proposition 4.1. In this subsection, (ICα) is assumed throughout.

Proposition 4.5. i. The sequence (X̌n, Ên, Ŝn, P̂#,n) is C-tight, and L̂n → 0 in probability.
ii. If (X,E, S, P ) is a subsequential weak limit, then (X,B) forms a weak solution to (SDI)
with the data indicated in Theorem 2.3, and where Bi = σ−1

i (Ei − Si) (with σi as in (2.17))
and the progressively measurable rank-dependent drift β is the a.e. derivative of P .
iii. Consequently, denoting B̂n

i = σ−1
i (Ên

i − Ŝn
i ), one has (X̂n, B̂n) ⇒ (X,B), where the latter

is a (weak) solution of (SDI).

Proof. The arguments are very similar to, only somewhat simpler than those given in Sub-
section 4.1. Hence, we only indicate the differences.

Lemma 4.3 holds, and its proof is valid as is, as it has nothing to do with conditions (IC0)
or (ICα). The same is true with respect to Lemma 4.4 parts i and ii.
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Also, in part iii of Lemma 4.4, the statements regarding P̂n
i and M̂n

i and their proof are
valid without any change. As for the remaining content of Lemma 4.4 part iii, we prove instead

(4.13) L̂n
i → 0 in probability, and X̌n

i are C-tight.

To this end, subtract n−1/2αn from both sides of (4.8) to obtain

X̌n
i = Ǔn

i + L̂n
i where Ǔn

i (t) = X̌n
i (0−) + Ên

i (t) + Ân
i (t)− Ŝn

i (T
n
i (t)) + m̂n

i t.(4.14)

Now, Ǔn
i are C-tight because X̌n(0−) converge under condition (ICα), and the remaining terms

in the definition of Ǔn
i are C-tight as already shown.

To prove the claim regarding L̂n
i , note that if L̂n

i (T ) > 0 then there exists a time t ∈ [0, T ]

such that Xn
i (t) = 0 and Ln

i (t) = 0. Therefore, 0 = X̂n
i (t) = X̌n

i (t)+n−1/2αn, hence by (4.14),

Ǔn
i (t) = −n−1/2αn. Thus

P(L̂n
i (T ) > 0) ≤ P(∥Ǔn

i ∥∗T ≥ n−1/2αn) → 0,

where the last statement follows from the tightness of ∥Ǔn
i ∥∗T and the fact that n−1/2αn → ∞.

This proves that L̂n
i → 0 in probability. In view of (4.14), this also shows that X̌n are C-tight,

and (4.13) is proved.

Next, if (X,U) is a limit point of (X̌n, Ǔn), then we have shown that X = U (compare with
(Xi, Li) = Γ (Ui) in the case of Subsection 4.1).

Based on these statements, the completion of the proof of Proposition 4.5 follows closely
that of Proposition 4.1, where, in particular, the satisfiability of (SDI) is completely analogous
to that of (SDIR). □

5. Proof of main results

Going back to the steps listed in subsection 2.5, note that Proposition 3.1 and Remark 3.2
establish steps 1 and 2, and Propositions 4.1 and 4.5 give steps 3 and 4. Steps 5 and 6 are
carried out below, which completes the proof of the main results.

Proof of Theorem 2.3. The convergence to the solution of (SDIR) and (SDI) has already
been shown in Proposition 4.1(iii) and Proposition 4.5(iii), respectively. To prove the theorem,
it remains to show that if (X,L,B) is a weak solution of (SDIR) then it is also a weak solution
of (SDER), and similarly, if (X,B) is a weak solution of (SDI) then it is also a weak solution
of (SDE). To this end, it suffices to show that, a.s., for a.e. t, for every i ̸= j, Xi(t) ̸= Xj(t).

Fix i ̸= j. For the solution X to (SDIR), the difference Xi(t)−Xj(t) is given by

Xi(t)−Xj(t) = X0,i−X0,j+σiBi(t)−σjBj(t)+(mi−mj)t+

∫ t

0
(βi(s)−βj(s))ds+Li(t)−Lj(t)

for t ≥ 0. By Tanaka’s formula, we obtain

|Xi(t)−Xj(t)| = |X0,i −X0,j |+
∫ t

0
sgn(Xi(s)−Xj(s))d(Xi(s)−Xj(s)) + Li,j(t)

for t ≥ 0, where sgn(x) := 1{x>0} − 1{x≤0}, x ∈ R and Li,j(·) is the local time accumulated at

the origin for the semimartingale Xi(·)−Xj(·). Take a nonnegative function ϕ ∈ C2
b (R+) with



17

the nonincreasing, nonnegative second derivative ϕ′′ that satisfies ϕ′′(u) = 1 for u ∈ [0, 1/2],
ϕ′′(u) = 0 for u ≥ 1 and ϕ(u) = ϕ′(u) = 0 for u ≥ 1. Then applying Itô’s formula to
ϕ(ε−1|Xi(t)−Xj(t)|), we obtain

ϕ
(1
ε
|Xi(t)−Xj(t)|

)
− ϕ

(1
ε
|X0,i −X0,j |

)
=

1

ε

∫ t

0
ϕ′
(1
ε
|Xi(u)−Xj(u)|

)
d|Xi(u)−Xj(u)|+

1

2ε2

∫ t

0
ϕ′′

(1
ε
|Xi(u)−Xj(u)|

)
(σ2

i + σ2
j )du

for ε > 0 and t ≥ 0. This implies that∫ t

0
ϕ′′

(1
ε
|Xi(u)−Xj(u)|

)
du =

2ε2

(σ2
i + σ2

j )

(
ϕ
(1
ε
|Xi(t)−Xj(t)|

)
− ϕ

(1
ε
|X0,i −X0,j |

))

− 2ε

σ2
i + σ2

j

∫ t

0
ϕ′
(1
ε
|Xi(u)−Xj(u)|

)
d|Xi(u)−Xj(u)|

for ε > 0 and t ≥ 0. Taking the limits as ε ↓ 0, we obtain

lim inf
ε↓0

∫ t

0
ϕ′′

(1
ε
|Xi(u)−Xj(u)|

)
du = 0

almost surely. Since φ′′(0) = 1, this implies, by Fatou’s lemma, that∫ t

0
1{Xi(u)=Xj(u)}du =

∫ t

0
lim inf

ε↓0
ϕ′′

(1
ε
|Xi(u)−Xj(u)|

)
du

≤ lim inf
ε↓0

∫ t

0
ϕ′′

(1
ε
|Xi(u)−Xj(u)|

)
du = 0

(5.15)

Therefore, the set of times when two or more components Xi meet is shown to have Lesbegue
measure zero. If (X,L,B) is a weak solution of (SDIR), then it is also a weak solution of
(SDER).

The solution of (SDI) can be handled in a similar manner. If (X,B) is a weak solution of
(SDI), then it is also a weak solution of (SDE). □

Proof of Theorem 2.2. Pathwise uniqueness for (SDI), (SDIR), (SDE) and (SDER) has
been shown in Proposition 3.1 and Remark 3.2. Weak existence for the four equations follows
from Theorem 2.3. It remains to prove strong existence. To this end we employ the Yamada-
Watanabe Theorem (see Remark 2.1). □
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