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Summary
Objectives: Over the past few years, challenges from the pan-
demic have led to an explosion of data sharing and algorithmic 
development efforts in the areas of molecular measurements, 
clinical data, and digital health. We aim to characterize and 
describe recent advanced computational approaches in transla-
tional bioinformatics across these domains in the context of issues 
or progress related to equity and inclusion. 
Methods: We conducted a literature assessment of the trends 
and approaches in translational bioinformatics in the past 
few years. 
Results: We present a review of recent computational approaches 
across molecular, clinical, and digital realms. We discuss applica-
tions of phenotyping, disease subtype characterization, predictive 
modeling, biomarker discovery, and treatment selection. We 
consider these methods and applications through the lens of 
equity and inclusion in biomedicine. 
Conclusion: Equity and inclusion should be incorporated at 
every step of translational bioinformatics projects, including 
project design, data collection, model creation, and clinical 
implementation. These considerations, coupled with the exciting 
breakthroughs in big data and machine learning, are pivotal to 
reach the goals of precision medicine for all.
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1   Introduction 
Translational Bioinformatics is the develop-
ment and use of computational approaches 
and tools that can reason over the enormous 
amounts of life science and clinical data 
being collected to advance medicine. While 
bioinformatics methodologies have been 
used to enable biological discoveries for 
decades, here the end product has to be 
translational, or applying to human health 
and disease [1]. 

Machine learning, a branch of artificial 
intelligence that is based upon data-driven 
model development that can identify patterns 
and make decisions with minimal human 
intervention, has become a technique that 
is increasingly utilized to make sense of 
health data for translational precision med-
icine applications. In the past few years, 
there have been multiple advances in data 
collection, informatics, and machine learn-
ing methodologies for understanding and 
addressing human diseases, particularly in 
an era that has been influenced by underlying 
pressure due to challenges brought on by the 
COVID-19 pandemic. Not only have there 
been challenges to control the pandemic 
due to the changing nature of SARS-CoV-2, 
the virus that causes COVID-19, but also 
systemic challenges due to shelter-in-place 
orders shifting healthcare to increasingly 
rely on the role of technology to facilitate 
remote, patient-centric healthcare delivery. 
Furthermore, the severity of this health 

crisis has resulted in an explosion of col-
laborations and data sharing efforts in the 
realms of molecular omics measurements 
[2], clinical data, and digital health [3, 4] 
for the advancement of machine learning 
approaches in precision medicine in many 
diseases beyond COVID-19 [5, 6].

These advances provide an incredible op-
portunity to impact disease therapeutics and 
diagnostics using data - molecular, clinical, 
and digital - and to better understand disease 
in the era of precision medicine [7]. As we 
explore these realms, it is imperative to 
evaluate potential inequities across the com-
putational pipeline from data representation, 
algorithmic bias, healthcare applications, 
and impact. Scientific advances must be 
considered within a framework of equity and 
inclusion in order to prevent bias propaga-
tion, to avoid propagating health disparities 
in translational applications, and ultimately 
to further the goal of precision medicine to 
include and benefit diverse populations. 

For example, in the past few years, studies 
leveraging data from the US National Insti-
tute of Health “All of Us” research program 
have explored the prevalence of diseases 
such as eczema in diverse racialized pop-
ulations [8] and cardiovascular disease [9] 
in underrepresented populations, including 
underrepresented racialized individuals, 
people over the age of 75, people with 
disabilities, people who make less income, 
and people with less formal education. The 
data have also been used to study disparities 
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in family health history knowledge and the 
ability to afford medications for diseases 
such as glaucoma [10, 11].

In this article, we dive deeper into these do-
mains and address several relevant questions. 
Can we more precisely and quickly diagnose 
disease using computational approaches? 
Can we use data to identify new therapeutics 
or new uses for existing drugs? How het-
erogeneous is complex disease? Are there 
specific groups of patients that might respond 
to treatment better? How can some of these 
approaches be implemented in the clinic? 
We further explore what the potential biases 
are in these data and approaches - are they 
really representative of the general population 
[12]? Finally, we discuss future directions and 
trends in translational bioinformatics. 

2   Methods 
For this review, we performed literature 
searches on PubMed, Google Scholar, and 
specific journals for publications from 2019 
onward. Journals reviewed include Nature, 

Nature Digital Medicine, Nature Bioengi-
neering, Lancet, The Journal of the American 
Medical Association, Journal of Medical 
Internet Research, The New England Journal 
of Medicine, The Journal of the American 
Medical Association, Journal of Medical 
Internet Research, The New England Journal 
of Medicine, and Bioinformatics. 

We also performed keyword searches to 
identify relevant publications, with keywords 
chosen by both broad and specific translational 
informatics topics. Keywords for searches in-
clude broad informatics terms (e.g. “precision 
medicine”, “translational bioinformatics”, 
“translational informatics”, “bioinformatics”, 
“bias informatics”, “machine learning bias”, 
“multi omics”, “bioinformatics equity”, “di-
versity informatics”, “drug repurposing”), 
molecularly relevant terms (e.g. “remdesivir 
covid”, “cell free dna”, “biomarker discov-
ery”, “omics biomarker discovery”, “genetic 
precision medicine”), clinically relevant terms 
(“ehr”, “electronic health record”, “emr”, 
“electronic medical record”, “clinical trials”, 
“clinical informatics”, “all of us research 
program”), and digital health relevant terms 
(“digital biomarkers”, “digital health”, “mobile 

health”). References were also acquired from 
citations in papers identified from reviewed 
journals and keyword searches. 

After surveying identified papers, chosen 
papers were determined by their breadth, 
novelty, impact, or relevance, with a partic-
ular focus on papers that touch upon equity 
or inclusivity in the informatics fields.

3   Results 
In this review, we cover recent translational 
bioinformatics approaches for various appli-
cations, including disease characterization, 
predictive modeling, and therapeutics that 
leverage molecular, clinical, and digital data 
(Figure 1). In particular, we focus on aspects 
of equity and inclusion, which should be con-
sidered at every step of the process including 
population identification, data collection, 
methodology, and applications to achieve 
precision medicine for all.

3.1   Molecular Informatics
Recently, multiple exciting advances have 
been made to utilize omics data to gain 
new insights into heterogeneous diseases, 
discover new biomarkers, and identify new 
therapeutics through approaches that include 
drug repurposing and machine learning. In 
addition to leveraging diverse molecular 
measurements including gene expression, 
proteomics, microbiome, epigenetics, and 
others, researchers have been able to capture 
many of these types of measurements on a 
single cell level. As the technologies become 
more advanced, there is also an increasing 
recognition of the need for more equitable 
representation in omics studies.

Multi-omics studies
The expansion of multi-omics studies has en-
abled the discovery of potential mechanisms 
underlying complex diseases and health out-
comes. Studies investigating inflammatory 
bowel disease (IBD) [13] and irritable bowel 
syndrome (IBS) [14], for instance, integrated 
the use of host and microbial datasets that 
included microbial metagenomics and host 
transcriptomics, among other omics sourc-

Fig. 1   Translational Bioinformatics in the Era of Precision Medicine. Here we present recent translational bioinformatics approaches that leverage 
molecular, clinical, and digital data to advance precision medicine. We discuss specific applications such as phenotyping, outcome prediction, 
and therapeutics, as well as methods including informatics, statistics, and machine learning, all within the context of equity and inclusion.
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es, to investigate the interacting host and 
microbial factors influencing disease. Such 
studies can lead to clinically relevant find-
ings, such as targeting purine metabolism for 
IBS. Crowdsourcing approaches applied to 
multi-omics data have also been utilized for 
predicting gestational age and preterm birth 
using gene expression data and proteomics 
through an IBM DREAM challenge [15]. 
These crowdsourcing challenges help to not 
only bring together multiple skill sets across 
the medical and computational community, 
but also help raise awareness of important 
research questions. Taken together, these 
studies demonstrate how multi-omics inte-
gration and analysis can yield insights into 
the underlying heterogeneity of a multitude 
of diseases that could eventually lead to 
personalized treatment for patients.

Biomarker discoveries
Omics data have been increasingly utilized 
for biomarker discovery. The Circulating 
Cell-free Genome Atlas Study (CCGA con-
sortium) used an ensemble machine learning 
approach to classify patients with cancer, as 
well as the cancer’s tissue of origin, using 
study participants’ (2,482 and 4,207 pa-
tients with and without cancer, respectively) 
methylation patterns derived from cell-free 
DNA (cfDNA) [16]. This strongly suggests 
that analyzing methylation patterns from 
cell-free DNA has the potential to detect 
cancer at earlier stages when it is usually 
more treatable. cfDNA approaches to identify 
infectious disease using metagenomic next 
generation sequencing have also been studied 
[17], although full clinical implementation 
and integration with standard molecular and 
pathological methods has yet to be achieved. 

Drug repurposing
Recent advances in drug repurposing, or 
identifying new uses for FDA approved 
drugs, hold promise for identifying po-
tential therapeutics for new and heteroge-
neous diseases. Recently, our team used a 
transcriptomics-based drug repurposing 
pipeline to identify the loop diuretic drug 
bumetanide as a potential treatment for 
APOE4-associated Alzheimer’s disease 
(AD) [18]. Encouragingly, bumetanide was 

found to attenuate AD-like phenotypes in 
mouse models, and patients taking bumeta-
nide were found to have a lower prevalence 
of AD, demonstrating how this approach 
may enable personalized treatment for 
patients based on their individual genetics. 
Another approach for finding AD treatments 
utilized machine learning on lists of genes 
that were differentially expressed in neural 
cells when exposed to a drug [19]. Logistic 
regression classifiers to predict early- versus 
late- stage AD were then trained using these 
gene-list-specific gene expression data from 
post-mortem samples, and gene lists with 
best predictive performances were further 
probed to identify potential mechanisms 
underlying AD for therapeutic purposes.

Other studies aim to extend the acces-
sibility of drug-repurposing studies to 
wet lab scientists. Cancer researchers can 
now use the Open Cancer TheraApeutic 
Discovery website (http://octad.org) to 
compare compound-induced gene expres-
sion signatures with gene expression data 
from cancer patients’ tissue samples [20]. 
We anticipate open-source efforts for drug 
repurposing to eventually expand to other 
diseases. The COVID-19 pandemic has also 
motivated researchers to identify repurposed 
FDA-approved drugs (e.g., remdesivir [21]) 
to enable rapid implementation into the 
clinic for patients with COVID-19. Novel 
drug repurposing approaches have identified 
other potential drugs that could treat SARS-
CoV-2 infection. Researchers in one study, 
for instance, leveraged consensus rankings 
from three AI- and network- based algo-
rithms to identify potential therapeutics [22], 
resulting in four drugs that could be further 
evaluated for efficacy against SARS-CoV-2 
infection. These drug repurposing methods 
hold great potential for bringing therapeutic 
advances to a multitude of diseases in the 
coming decade.

Equity considerations
Despite many informatics advancements, 
we must ensure that these advances can 
benefit everyone equally. The National Hu-
man Genome Research Institute’s (NHGRI) 
principles and values for The Forefront of 
Genomics include recruiting and retaining 
a diverse genomics workforce as well as the 

inclusion of individuals from diverse genetic 
ancestries into genomics studies [23]. The 
NHGRI anticipates that genomics testing 
will become part of routine clinical care. 
Currently, however, genomics testing has the 
potential to exacerbate existing health dis-
parities, since people of European ancestry 
are overwhelmingly represented in GWAS 
studies, accounting for over 80% of partic-
ipants [24]. Polygenic risk scores derived 
from such studies can have less predictive 
power for individuals from ancestries that 
are not European. 

Recent advances and ongoing studies 
aim to address the underrepresentation of 
individuals with non-European ancestry. The 
Population Architecture using Genomics and 
Epidemiology (PAGE) study recruited near-
ly 50,000 individuals with non-European 
ancestry, where researchers found 27 novel 
loci [25]. These novel loci are associated 
with a range of phenotypes, including but not 
limited to lipid (e.g., HDL), lifestyle (e.g., 
cigarettes smoked on a daily basis), glycemic 
(e.g., fasting glucose), and anthropometric 
(e.g., height) traits. Importantly, they also 
found effect size heterogeneity for variants 
when individuals were stratified by genetic 
ancestry. They also discovered new single 
nucleotide polymorphisms associated with 
phenotypes in specific genetic ancestries. 
The PAGE study demonstrates that incor-
porating diverse populations in studies has 
the potential to uncover ancestry-specific 
findings that can ultimately impact clinical 
care in the era of precision medicine. The 
All of Us research program [26], which has 
enrolled nearly 330,000 participants since 
2018 [27], aims to ultimately enroll, at a 
minimum, one million participants that are 
traditionally underrepresented in research. 
All of Us collects not only molecular data, 
but also electronic health record (EHR) 
data, survey data on sociodemographic 
factors and other social determinants of 
health, and digital health data. We anticipate 
that All of Us studies will continue to derive 
new insights into human health and disease 
through the integration and analysis of mo-
lecular, clinical, and digital health datasets 
that are relevant to and beneficial for indi-
viduals from diverse genetic ancestries. To 
ensure that this equitable benefit from preci-
sion medicine is realized, it is imperative for 
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researchers to work with underrepresented 
communities [28] and to address pressing 
ethical considerations [29].

3.2   Clinical Informatics
Clinical data is sourced from electronic 
health records (EHR), clinical trials, im-
aging, and vital records. In many cases, 
this data has existed for decades, but has 
only recently been leveraged in the context 
of translational bioinformatics research. 
Researchers can utilize these datasets 
to connect patients’ lab tests, diagnoses, 
medications, and outcomes. For example, 
a researcher can trace a diabetes patient’s 
medical history from an abnormal A1C 
test result to a diabetes diagnosis, then to 
a metformin prescription, and finally to an 
improvement in symptoms. These types of 
clinical analyses can be scaled up to huge 
cohorts of patients. In one study, researchers 
explored variation in treatment utilization for 
97,231 patients with type 2 diabetes across 
five major health systems in California [30]. 
We can also contextualize research questions 
within economic and social structures. For 
example, a recent study of patients with 
pediatric diabetes in the UK found that so-
cioeconomic status and exposure to racism 
were associated with the type of treatment 
regimen a patient was on [31].

In the past couple of years, clinical 
informatics research has yielded exciting 
breakthroughs in clinical phenotyping, 
disease prediction, treatment selection, and 
implementation strategies. It has also raised 
pressing questions about how to develop 
and apply clinical algorithms that treat 
people equitably.

Clinical phenotyping
Clinical phenotyping is the characteriza-
tion of patients based on their symptoms, 
diagnoses, demographics, and relevant 
medical histories. This process is typically 
carried out quantitatively. It can range from 
grouping patients by diagnosis counts to 
performing sophisticated dimensionality 
reduction algorithms based on thousands 
of possible clinical features. Unsupervised 
machine learning algorithms trained on 

clinical data have identified novel subtypes 
in many diseases, including type 2 diabetes, 
Parkinson’s disease, Alzheimer’s disease, 
and depression [32–34]. Characterizing 
disease subtypes can help us better under-
stand their etiologies, how heterogeneous 
they are, and how to treat them.

Disease prediction
There has been an explosion of research in 
clinical predictive algorithms [35]. These 
algorithms are designed to estimate a patient’s 
risk of developing a particular phenotype 
or requiring a specific type of clinical care. 
Some recent applications of predictive algo-
rithms include preterm birth [36], mortality 
of preterm infants [37], cardiovascular events 
[38], COVID-19 outcomes [39], critical ill-
ness [40], impact of environmental disasters 
[41], acute kidney injury [42], length of hos-
pital stay [42], 30-day hospital readmission 
[43], retention of care [44], and postoperative 
in-hospital mortality [45]. Two important 
considerations described in these studies are 
interpretability and transportability. Many re-
searchers are moving away from “black box” 
algorithms and moving towards algorithms 
whose logic is accessible and aligned with 
biomedical domain knowledge. Once a model 
is developed using data from one medical 
center, it is useful to validate it using data from 
another medical center. Because there can be 
huge differences in the patient populations 
and clinical data systems between institutions, 
it is important to design algorithms that are 
resilient to those differences.

Treatment selection
Clinical data research is transforming how 
we discover and evaluate treatments for dis-
eases. The traditional drug development pro-
cess can take many years and cost millions, 
or even billions, of dollars [46]. Meanwhile, 
many clinical datasets contain decades’ 
worth of patient medication, procedure, and 
diagnosis histories. In the past few years, 
scientists have leveraged these datasets to 
discover candidates for drug repurposing 
[18, 47, 48], evaluate treatments using in 
silico clinical trials [49], and characterize 
treatment utilization across providers [3], 
institutions [30], and time [51]. Looking 

ahead, real-world data studies have the 
potential to complement the existing drug 
development process and spur new ideas 
about treating diseases.

Implementation
The final goal for many clinical bioinformat-
ics research is translating them into clinical 
practice. There have been several success 
stories, including predicting acute care in 
patients undergoing radiation therapy [52], 
identifying adults at risk for in-hospital 
clinical deterioration [53], guiding ultra-
sound image capture [54], and managing 
COVID-19 outbreaks [55]. A key component 
of successful projects is close collaboration 
with clinicians and healthcare workers to 
design a study that would be genuinely useful 
for them in the clinic [56].

Equity considerations
As bioinformatics and clinical care become 
increasingly intertwined, it is important 
to design algorithms that can benefit all 
patients, particularly those that have been 
historically excluded or harmed. This starts 
with the data. Black, Indigenous, Latino, and 
Asian participants of all genders, in addition 
to women from all racialized populations, 
are underrepresented in many clinical trial 
datasets [57–64]. For LGBTQIA+ patients, 
EHR datasets often have missing or incorrect 
information about their gender identities 
and sexual orientation [65, 66]. In addition 
to bias from the data, bias can also come 
from the logic behind the algorithms, either 
implicitly [12] or explicitly [67]. With care-
ful consideration and minimization of bias, 
we can work towards building algorithms 
that can benefit everyone. To this end, it is 
integral that bioinformatics research teams 
are formed of people with lived and learned 
understandings of anti-racism, intersectional 
feminism, equity, and justice.

3.3   Digital Health Informatics
In the past two years, the COVID-19 pan-
demic has created many challenges and 
opportunities in utilizing technology to aid 
in healthcare when direct face-to-face meet-
ings are less feasible, such as through video 
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visits (telehealth) and utilization of sensors 
on mobile phones or through commercially 
available wearables [68]. This had led to an 
explosion and maturation of the utilization 
of digital health, informatics, and machine 
learning as a way to combat the pandemic 
from both a public health perspective on pre-
vention and control, as well as with providing 
individualized healthcare.

Mobile devices and wearables
Mobile phones and wearables help provide a 
source of data that can be analyzed for health 
outcomes. Population level information has 
been utilized to help with contact tracing 
at the start of the pandemic [69], as well as 
with modeling infectious spread throughout 
numerous countries [70, 71]. There have also 
been efforts to utilize sensor data and ma-
chine learning to detect COVID-19 infection 
[72] via tracking of vital signs, sleep, activ-
ity, and even speech [73, 74]. These ‘digital 
biomarkers’ provide an alternative proxy to 
invasive blood tests or molecular biomarkers, 
and in the past years these portable sensors 
have also been investigated in their potential 
for disease diagnostics beyond COVID-19. 
Some examples of digital biomarker applica-
tions include screening for depression [75], 
diagnosis of mild cognitive impairment [76], 
prediction of Parkinson’s disease severity 
[77], detection of neurological or psychiatric 
disorders [78], and evaluating frailty in older 
people [79]. These applications either pro-
vide warnings or recommendations when im-
plemented through consumer applications, 
or are slowly integrating into medical care 
as evident in the use of digital biomarkers for 
onsite patient triage and evaluation.

Translational applications
Given the availability and ease of digital 
health, there has also been much work from 
the translational perspective in the past years 
in applying modeling and analysis approach-
es to aid in the advancement of medical 
care. One translational application includes 
aiding in physician monitoring of disease 
progression and outcomes to better inform 
clinical decision-making and management 
for complex diseases. For example, there 
are not only efforts to improve inpatient and 

at-home monitoring of vital signs [80–82], 
there are also efforts to obtain non-invasive 
proxies for metrics such as glucose [83] and 
inflammation status [84]. In the upcoming 
years, there will likely be more efforts utiliz-
ing digital biomarkers for precision medicine 
applications, such as in cancer and autoim-
mune diseases [85, 86], in order to identify 
the most optimal therapeutic approaches 
that account for disease complexity and 
heterogeneity. Furthermore, computational 
approaches are being developed to manage 
the large data complexity of information ac-
quired to derive scientific or medical insights 
via phenotyping [87] and application of 
artificial intelligence for predicting clinical 
or behavioral states [88, 89]. 

Some digital health applications explored 
in the past years include incorporation of 
interactivity and feedback, such as through 
patient-facing mobile applications. Mobile 
applications help aid in patient-centric care 
via patient education and treatment sup-
port, which is of particular importance for 
healthcare affordability and access to health 
services and information. There has been 
an increase in the availability of apps for 
a variety of diseases, such as for vital sign 
monitoring, glucose monitoring for diabetes, 
weight management [90], mental health [91], 
and even for managing postpartum maternal 
health [92]. Informatics and artificial intelli-
gence techniques can also be used to guide 
patients in management of their own care 
[93], such as in determining optimal drug 
dosage or timing [94, 95], or in predicting 
risk and providing recommendations from 
surveys and inputted data points [96, 97]. 
In particular, these translational applications 
have great opportunities for improving eq-
uity and inclusion in disease care, such as 
in aiding health management for those with 
disabilities [98], complex diseases [99, 100], 
or in under-resourced locations [101]. 

Equity considerations
With the impetus that comes from the 
COVID-19 pandemic, technology and digital 
health are expected to continually become 
integrated into clinical care and utilized for 
scientific and clinical research [68]. This 
spans a wide range of data types and appli-
cations, ranging from public health analysis 

of phones, networks, the internet, and GPS 
to individualized applications from both the 
clinical perspective (EHR, telehealth, medi-
cal devices) and from the patient perspective 
(wearables, mobile applications). There is 
therefore not a better time than now to talk 
about opportunities and issues, particularly 
with consideration of equity. These opportu-
nities include access, affordability, decreased 
time in the hospital, as well as early detection 
and prevention for public health [98]. With 
the maturation of digital health approaches, 
beyond issues regarding privacy and regu-
lations, considerations will also need to be 
made for accommodations for different levels 
of technological literacy [102]; accessibility 
for culturally diverse populations [103–105], 
older people [106, 107], and people with 
disabilities [98, 103]; adaptability to rural 
environments [108]; simplification for various 
levels of health literacy [109, 110], and access 
to fundamental tools and technology [111]. In 
particular, with modeling and scientific inqui-
ry on digital health data, there will need to be 
deliberate inclusion of diverse populations 
in data acquisition [112, 113] and modeling 
approaches to advance health equity [114]. 
With these considerations in place, digital 
health can become an essential way to bring 
informatics into accessible and equitable 
translational applications. 

4   Discussion
In this review, we discussed the role that 
molecular, clinical, and digital data paired 
with advanced computational techniques 
have played in advancing disease diagnostics 
and therapeutics. We describe approaches 
leveraging molecular data, such as multi-om-
ics integration, biomarker discovery, and 
computational drug repurposing. We also 
presented sources of clinical data, includ-
ing electronic health records, clinical trials, 
imaging, and vital records, and how these 
resources have been leveraged to carry out 
predictive modeling and therapeutic dis-
covery for clinical implementation. Finally, 
we discussed digital health data such as 
sensors and mobile health, and the types of 
applications it has been leveraged in for bio-
medical discovery. In particular, we present 
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these domains in the context of recent years, 
including influences from the COVID-19 
pandemic and of the importance of equity 
and inclusion in guiding future translational 
bioinformatics applications.

Equity is an integral component of preci-
sion medicine. In this review, we highlighted 
several examples of innovative research 
that explore the process of integrating 
computational advancements with equity 
considerations. There is an increasing body 
of literature that prioritizes equity across 
the translational bioinformatics pipeline, 
including in data acquisition, analysis and 
modeling techniques, and data interpretation 
and applications. We are hopeful that this 
will continue and expand in the future.

Bioethicists such as Sandra Soo-Jin Lee 
have argued that providing biomedical data, 
including but not limited to omics, EHR, and 
digital health data, is a ‘gift’ that carries with 
it an ethical obligation of responsibility, rec-
iprocity, and respect [29]. Lee proposes that 
research participation establishes a relation-
ship between researchers and participating 
individuals and communities that is bound 
by these relational ethical obligations [29]. If 
we do not meet these obligations, it has been 
argued that we could damage trust, which may 
lead to the reluctance of underrepresented in-
dividuals and communities in participating in 
precision medicine research [28, 29]. We must 
be mindful of how we can engage with under-
represented individuals and communities in a 
way that empowers them to make decisions 
about how their data are being used and ac-
cessed, including having underrepresented 
individuals as part of the ‘we’. Keolu Fox, 
for example, suggests that we can fulfill our 
obligations of responsibility, reciprocity, and 
respect by creating new frameworks where in-
dividuals and/or communities directly benefit 
from research findings by receiving proceeds 
and investments (e.g., through individual- and 
collective- interest models) [28].

To achieve equity, we must also remedy 
current inequities in data collection, like the 
missingness of non-biological data, so that 
researchers can explore all the factors that can 
influence a person’s health [29]. For instance, 
systematic inclusion of individuals’ racialized 
identity, gender identity, disabilities, and 
other demographic factors in EHR data [29, 
115] can help researchers better understand 

potential health disparities that impact indi-
viduals with specific identities. Additionally, 
many health clinics that serve people with 
fewer economic resources currently do not 
have EHR systems [29]. Implementing EHR 
systems more widely can help with gath-
ering data more equitably. Encouragingly, 
many efforts are underway for equitable data 
representation, such as through the All of Us 
research program and deliberate inclusion of 
diverse populations in research studies, yet 
this is only the beginning.

Finally, as we have seen, machine learning 
has become increasingly important in preci-
sion medicine research. To achieve equity, 
ethical considerations must become an essen-
tial component of the machine learning pipe-
line, from defining problems and outcomes 
to model development and implementation. 
In particular, we must consider algorithmic 
fairness, which aims to achieve equal perfor-
mance for individuals in protected groups. To 
achieve equity, however, we also need to be 
mindful of the context in which these models 
are developed. For example, developers can 
derive insight into the context of features 
that they may consider in their models by 
consulting and collaborating with domain 
experts (e.g., community experts, health 
equity researchers, and disease experts) such 
as in the identification of confounding factors. 
Mhasawade et al., suggest that we consider 
and model the complex relationships social 
determinants have on a person’s health, both at 
an individual level and at a macro level [116]. 
They also encourage developers to capture 
these relationships in a way that reflects the 
flexibility of social determinants; i.e., in a 
way that captures their intervenability. Ad-
ditionally, Mhasawade et al., and Lett et al., 
advocate for the inclusion of variables that 
race is currently used as a proxy for, such as 
formal education level and income [116, 117]. 
Both papers also argue that we must capture 
intersectionality (e.g., the impact of racism 
and sexism on an individual) in a meaningful 
way, for example by utilizing “multi-level 
analysis of individual heterogeneity and dis-
crimination accuracy”, which captures varia-
tion between and within groups [116]. Finally, 
both papers argue that we need models, such 
as agent-based models, that can capture the 
complex relationships between an individual 
and the environments they are embedded in 

(i.e., the socio-ecological framework). With 
these considerations, model developersWith 
these considerations, model developers can 
build models that benefit diverse individuals 
and communities. Strategies toward this goal 
include: evaluating the representativeness of 
the data analyzed, implementing metrics for 
model fairness [118] or bias [119], and exam-
ining the model through existing frameworks 
on algorithmic fairness [120, 121]. After 
model implementation, we can systematical-
ly audit these models periodically to ensure 
that they do not perpetuate bias and remain 
generalizable [115]. Finally, to leverage ma-
chine learning for health equity, Mhasawade 
et al., emphasize the need for these models 
to extend beyond clinical decision making 
in a healthcare context in order to maximize 
beneficial health outcomes for all.

In this era, there is an ability to acquire 
limitless data at both population and indi-
vidual levels that includes but is not limited 
to genetic data, transcriptomics data, other 
molecular data, clinical data, laboratory re-
sults, sensor data, and digital metrics. These 
datasets underlie the recent explosion of in-
formatics and machine learning in scientific 
and translational applications, particularly 
as demonstrated during the COVID-19 pan-
demic [22, 122–124]. These techniques have 
been developed to not only aid in advancing 
scientific knowledge, but also to identify 
therapeutic targets and repurpose approved 
drugs, as well as support medical decision 
making, precision medicine applications, and 
patient-centric care delivery. The next decades 
will allow these applications to continually 
mature and integrate into various applications 
in society. With this change, there is a lot of 
potential for considerations of accessibility, 
such as integrating diverse datasets and in-
clusion of those living in remote areas, with 
disabilities, or with complex diseases [98, 
111]. With the internet and patient-centric ap-
plications such as interactive user interfaces, 
there is also a potential for improving health 
literacy and health education [102, 125, 126]. 

Nevertheless, there are still many lim-
itations in translational informatics fields. 
Science and machine learning on diverse 
populations can only perform as well as 
the data represented. While there have been 
recent considerations in acquiring data on 
diverse populations or accounting for bias, 
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there is still more work to be done to ensure 
equitable data collection [29, 113]. Similarly, 
representation should be considered when 
reviewing scientific papers or models imple-
mented in clinical practice or in consumer 
applications. Furthermore, technological 
literacy is a barrier for both clinicians and 
patients, which is an important consider-
ation when designing translational tools for 
clinical support, data acquisition, and the 
delivery of healthcare. Lastly, basic access 
to institutions or devices are fundamental to 
ensure diverse inclusion across the spectrum, 
from data inclusion to digital healthcare 
accessibility [127–129]. As such, in the next 
decade, there is much need to center equity 
and inclusion when collecting and acquiring 
data, analyzing data, implementing models, 
and developing physician- or consumer-fac-
ing translational applications. 

Given the wealth and availability of 
genomic, transcriptomic and other types of 
molecular data together with rich clinical 
phenotyping and digital health data, compu-
tational integrative methods provide a pow-
erful opportunity to improve human health. 
There are different types of integrative 
models that can be applied to bring together 
diverse data to better inform disease diag-
nostics and therapeutics. More specifically, 
machine learning has powered a new path 
to transform data into knowledge through 
predictive modeling and analytics and has 
been gaining particular importance in the 
context of modeling data longitudinally. By 
integrating data across measurement modali-
ties as well as elevating equity at each step of 
the research process, we can get a bit closer 
to achieving precision medicine for all.
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