Lawrence Berkeley National Laboratory

Recent Work

Title

ENERGY LEVELS OF THE SECOND SPECTRUM OF CURIUM, Cm II

Permalink

https://escholarship.org/uc/item/2gc096fn

Authors

Warden, E.F. Conway, J.G. Blaise, J.

Publication Date 1985-12-01

LBL-20691 Preprint < 2

BL-2069

Lawrence Berkeley Laboratory

UNIVERSITY OF CALIFORNIA

Materials & Molecular Research Division

RECEIVED

LAWRENCE BERKELEY LABORATORY

FEB 1 8 1986

LIBRARY AND DOCUMENTS SECTION

Submitted to Journal of the Optical Society of America B

ENERGY LEVELS OF THE SECOND SPECTRUM OF CURIUM, Cm II

E.F. Worden, J.G. Conway, and J. Blaise

Prepared for the U.S. Department of Energy under Contract DE-AC03-76SF00098

DISCLAIMER

This document was prepared as an account of work sponsored by the United States Government. While this document is believed to contain correct information, neither the United States Government nor any agency thereof, nor the Regents of the University of California, nor any of their employees, makes any warranty, express or implied, or assumes any legal responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by its trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof, or the Regents of the University of California. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof or the Regents of the University of California.

LBL-20691 UCRL 93515

Energy levels of the second spectrum of curium, Cm II

Earl F. Worden University of California Lawrence Livermore National Laboratory Livermore. California, 94550

> John G. Conway University of California Lawrence Berkeley Laboratory Berkeley, California, 94720

Jean Blaise Laboratoire Aime Cotton Centre National de la Recherche Scientifique 91405 Orsay, France

ABSTRACT

The curium emission spectrum from electrodeless lamps has been observed from 2400 to 26,500 Å. About 30% of the 14,250 observed lines have been assigned by experimental methods as Cm II lines. The analysis of the spectrum has produced 432 odd levels and 162 even levels of Cm II that combine to classify over 4,100 curium lines. The energy levels are listed and most have Lande g values from Zeeman effect data as well as isotope shift values. Many levels have been assigned to electronic configurations and terms by use of isotope shift and Lande g values. A table containing the lowest level found for each of the eight identified electronic configurations is given. The ground state of the ion is the ${}^{8}S_{7/2}^{0}$ level of the (Rn) ${}^{5}f^{7}rs^{2}$ configuration. The next electronic configuration is ${}^{5}f^{8}rs$ whose lowest level is the ${}^{8}F_{13/2}$ level at ${}^{203.87}$ cm⁻¹.

-1-

INTRODUCTION

In 1976 we reported on the energy levels of the first spectrum of curium, Cm I.¹ References to spectroscopic work on curium up to 1975 are given in that paper. The earliest papers^{2,3} gave wavelengths for about 200 lines and 244 Cm - 242 Cm isotope shifts for 183 lines. In a second paper in 1976 we reported wavelengths, intensities and classifications (when known) for 2034 of the strongest of the over 13,250 curium lines emitted by an electrodeless discharge lamp (EDL) and observed photographically on large grating spectrographs in the 2450 to 11,500 Å region.⁴ The curium lines observed in the infrared by a Fourier transform spectrometer were also reported in 1976.⁵ Wavenumbers and intensities of 1734 lines between 8400 and 26,500 Å were listed and classification of 87% of the lines were given. A number of new energy levels of Cm I were found.

The energy levels of the Cm II spectrum tabulated here are based on these reported observations and on extensive unpublished isotope shift studies⁶ (see experimental). The isotope shift data together with previously measured Zeeman effect data allowed confirmation of a number of levels that were found through searches for constant sums and differences. They also allowed assignment of these levels to electronic configurations with considerable confidence. As a result, levels belonging to the odd configurations $5f^7rs^2$, $5f^76d7s$, $5f^76d^2$ and $5f^87p$ and to the even configurations $5f^87s$, $5f^86d$, $5f^77s7p$ and $5f^76d7p$ were identified. A total of 432 odd and 162 even levels were found and of these 94 have been assigned to the listed odd configurations and 100 to the listed even configurations. An abstract of this work has been published.⁷

-2-

Preliminary results were given in $abstracts^{8,9}$ and an interpretation of the 5f⁸7s configuration of Cm II was given in a generalized parametric study of fⁿ and fⁿs configurations in the actinides.¹⁰

Other published work on the emission spectrum of curium is by the Russian investigators at the I. V. Kurchatov Institute of Atomic Energy, 11, 12 One 11 reported 6771 lines between 2424 and 7009 A emitted by EDLs and observed with large grating spectrographs. Iron lines were used as standards both as iron impurity in the curium lamps and as iron lines photographed adjacent to the curium exposures. Lines of other impurities such as Li. Na. Mg. Al. Ca. Ti. Zn. Cu and Am were identified and eliminated from the list by Russian investigators but we have found that their list still contains over 800 impurity lines belonging to Pu. Ba. La. Ce, Pr, Nd, Sm, Eu and Gd. A number of lines were indicated as neutral or singly-ionized based on their relative intensities from lamps operated at different microwave frequencies (90 and 300 MHz) and power levels. They also indicate that self-reversal was observed in 320 lines. The second paper¹² reported isotope shifts for 97 lines as observed from EDLs with three even isotopes (80.3% 244 Cm. 17% 246 Cm. 1% 248 Cm) and two odd isotopes (1% 245 Cm and 0.7% 247 Cm). A number of 246 Cm - 244 Cm shifts were observed in the 2430-6932 A region. They reported shifts only for the 97 lines where all three even isotope positions were measured. Of these, 38 were measured with an interferometer and are accurate to 0.01 cm⁻¹. The remaining 59 were determined with a large grating spectrograph.

-3-

EXPERIMENTAL

Sources

Electrodeless discharge lamps were used exclusively for all our observations of the curium spectrum. The techniques used for preparation of the lamps and employing them to obtain wavelengths, Zeeman effect, spectrum assignment, self-reversal and isotope shift have been discussed.^{1,5,13,14} The isotopic composition of the curium samples used to prepare the EDLs is given in Table 1. The type of spectroscopic data obtained with lamps prepared from samples is given in the "Use" column of the table. Approximately 100 to 200 micrograms of curium was used for each lamp preparation. Less than 2 mg total material was used in the investigation and most of the material was recovered for other uses.

Wavelengths

The method of recording the curium spectra has been described fully in Ref. 1. Briefly the spectra were photographed on the Argonne National Laboratory (ANL) 9.15 m Paschen-Runge spectrograph in the wavelength region 2400 to 9100 Å. Additional spectra were photographed on a 3.4 m Ebert spectrograph using a grating with 300 lines/mm at angles near 59[°] (2400-3200 Å) and 30[°] (8900-11500 Å). Line positions were measured on semiautomatic comparators with an accuracy of ±1 micron. The photographic wavelength list contained about 13,250 lines due to ²⁴⁴Cm. The wavenumber precision or internal consistency from the level analysis is ±0.02 cm⁻¹ or better throughout the line list. The near infrared region was investigated using a Fourier transform spectrometer. A total of 1734 lines were measured with an accuracy of 0.005 cm⁻¹.⁵ Because of the overlap, the infrared measurements added about 1000 lines to the list.

-4-

Spectrum assignment

When operated at low metal-atom pressures, EDLs tend to enhance the second spectrum and at high metal-atom pressures the first spectrum is predominant. In the region 2400 to 9400 A 51% of the lines were assigned Cm I and 30% to Cm II while the remaining 19% were mostly weak lines. Details of spectrum assignment procedures are given in Refs. 1 and 14.

Zeeman effect

The Zeeman effect was photographed from 2400 to 9000 Å with the ANL 9.15 m spectrograph at a field of 2.4 T (24,000 gauss). Figure 1 shows Zeeman patterns obtained for two Cm II lines. The patterns were measured with a semiautomatic comparator and the data reduced by computerized least-squares methods.¹ The accuracy of the g-values derived from resolved Zeeman patterns like 3962.7 Å in Figure 1 is ± 0.003 Lorentz units. Level g values obtained from such measurements are given to three significant figures after the decimal point in Tables 2 and 3. Level g values reported to two places after the decimal are accurate to ± 0.02 Lorentz units. These values were derived from measurements on unresolved patterns or on patterns where only a measure of the interval between adjacent components (delta g) could be obtained. A more detailed description of how g values were derived is given in Ref. 1.

-5-

Isotope shift

Spectra of Cm isotopes using lamps with isotopic compositions given in Table] were recorded on the 9.15 m ANL spectrograph and measured with a semiautomatic comparator. Figure 2 is a sample portion of the spectrum obtained with these isotopic mixtures. The advantage of using lamps with three isotopic compositions is evident from this figure. Shifts of over 6000 lines were measured. The shifts are the wave number of the heavy isotope minus the wave number of the light isotope. Shifts of clearly resolved lines, for example the three lines with wavelength identified in Figure 2. have a precision of ± 0.005 cm⁻¹ or better. Level shifts obtained from these lines are reported to three significant figures in Tables 2 and 3. Level shifts reported in the tables to two places are precise to about ± 0.02 cm⁻¹. The isotope shift of the ground state was assumed to be zero. Lines with shifts less than 0.1 cm^{-1} are precise to only about ± 0.01 cm¹, a few shifts less than 0.1 cm⁻¹ are precise to only about ± 0.05 cm⁻¹. Line isotope shifts less than 0.1 cm⁻¹ were obtained from values measured for 248 -244 Cm shifts. They were converted to 246 Cm - 244 Cm shifts by use of the relative isotope shift (RIS) factor of 1.945 for $({}^{248}$ cm - 244 cm)/ $({}^{246}$ cm - 244 cm) derived from lines that have large isotope shift and that are unblended. The RIS for Cm was measured using lines with small or no Cm hyperfine structure: ²⁴⁵ Cm has a nuclear spin of 7/2. These Cm RIS values are shown in Figure 3 together with a RIS for 242 Cm derived from 244 Cm -²⁴²Cm shift data of Conway and McLaughlin.³

RESULTS

The energy levels of singly-ionized curium atoms are listed in Tables 2 (odd levels) and 3 (even levels). Column 1 lists the value of the energy level in cm⁻¹, columns 2 and 3 give the J and g values. Column 4 is the isotope shift in units of cm⁻¹. The isotope shifts are 246 Cm - 244 Cm shifts relative to the 5f⁷7s² ⁸S_{7/2} ground state as zero shift. Column 5 gives the configuration designation followed by the term, usually in LS coupling notation. In some cases the J₁j coupling notation is used. We follow the configuration notation used in Atomic Energy Levels-The Rare-Earth Elements.¹⁵

In Figure 4 is shown the level structure of the lowest terms of Cm II. The electronic configurations and LS designations are indicated. The level structure of the ${}^{8}F$ and ${}^{6}F$ terms of the $5f^{8}7s$ configuration found at the beginning of Table 3 is more clearly illustrated in this figure. Figure 5 shows the range of isotope shifts for levels assigned to identified configurations of Cm II. Note that there is overlap of observed shift for a number of configurations. In these cases, theory, Lande g values, transition intensities and other factors are important for assigning the level to the appropriate configuration. As seen in the figure, we report the shifts relative to the ground state as X. For the shifts in Tables 2 and 3, the X is zero. The value of X is approximately ± 1.2 cm⁻¹ for Cm II. In heavy elements the largest isotope shifts are found for levels belonging to configurations with largest number of penetrating s electrons and smallest number of shielding f or d electrons. The smallest isotope shifts are for levels of configurations with no penetrating electrons. Thus

-7-

in the case of Cm II, the configuration $5f^{8}6d$ is expected to have a shift close to zero. As can be seen from Table 4, this leads to a value of approximately +1.2 cm⁻¹ for levels of $5f^{7}7s^{2}$. The levels of the still unidentified $5f^{6}6d7s^{2}$ configuration are expected to have larger shifts.

Table 4 lists the lowest level of the identified configurations of Cm II along with their designations, g values and isotope shifts. We have identified levels belonging to all the configurations expected below $50,000 \text{ cm}^{-1}$ except the 5f⁹ configuration predicted to start around 26,000 cm⁻¹ according to Brewer.¹⁶

A parametric study has been made of only the $5f^87s$ configuration.¹⁰ The parametric study was made before the more complete isotope shift data were available. As a result, several levels identified as $5f^87s$ were reassigned to other configurations or removed. At the same time, new levels with the correct isotope shift have been assigned to $5f^87s$. These corrected assignments are included in Table 3. The levels of $5f^87s$ below 18000 cm⁻¹ did not change. Since these levels strongly influence the fit, the parameters in Ref. 10 will not be changed significantly.

-8-

ACKNOWLEDGMENTS

We wish to thank Mark Fred (ANL) for the use of spectrographic facilities and computer programs. Thanks also to E. K. Hulet (LLNL) for supplying the curium samples and to G. V. Shalimoff (LBL), T. Parsons (LBL) and R. Burns (ANL) for purification of the isotopically enriched samples. We thank R. G. Gutmacher for help with some of the experimental work and M. Jepson for key punching much of the experimental data. We appreciate the assistance of the Hazard Control personnel, especially P. Linnes, in handling and transportation of the radioactive materials. We wish to thank J. Verges (LAC) for taking the infrared spectra at Laboratoire Aime Cotton and to thank J. F. Wyart (LAC) for calculations that were valuable guides in the search for new levels. One of us (J. B.) wishes to acknowledge a grant from NATO which made possible a visit to the Lawrence Berkeley Laboratory.

This work supported by the U.S. Dept. of Energy under contract W-7405-ENG-48 at the Lawrence Livermore National Laboratory and by the Director, Office of Energy Research, Office of Basic Energy Sciences, Chemical Sciences Division under contract DE-ACO3-76SF00098 at the Lawrence Berkeley Laboratory and by Centre National de la Recherche Scientifique at Laboratoire Aime Cotton, Orsay, France.

-9-

REFERENCES

1. E. F. Worden and J. G. Conway, "Energy Levels of the First Spectrum of Curium, Cm I," J. Opt. Soc. Am. 66, 109-121 (1976).

2. J. G. Conway, M. F. Moore and W. W. T. Crane, "The Emission Spectrum of Curium," J. Am. Chem. Soc. Am. <u>73</u>, 1308-1309 (1956).

3. J. G. Conway and R. D. McLaughlin, "Isotope Shift and Wavelengths of the Curium Spectrum," J. Opt. Soc. Am. 46, 91-93 (1956).

4. E. F. Worden, E. K. Hulet, R. G. Gutmacher and J. G. Conway, "The Emission Spectrum of Curium," Atom. Data and Nucl. Data Tables <u>18</u>, 459-495 (1976).

5. J. G. Conway, J. Blaise and J. Verges, "The i.r. Spectrum of Curium-244," Spectrochim. Acta 31B, 31-47 (1976).

6. E. F. Worden and J. G. Conway, "Isotope Shifts in the Atomic Spectrum of Curium," J. Opt. Soc. Am. 70, 1576A (1980).

7. J. Blaise, J. Verges, J. F. Wyart, J. G. Conway and E. F. Worden, "Term Analysis of the Spectrum of Singly-ionized Curium (Cm II)," European Conference on Atomic Physics, April 6-10, 1981, Heidelberg, West Germany. 8. E. F. Worden and J. G. Conway, "Status of the Analysis of the Curium I and II Spectra," Physica 33, 274 (1967).

9. E. F. Worden and J. G. Conway, "Extension of the Analysis of Cm I and II Spectra," Atomic Spectroscopy Symposium, U. S. National Bureau of Standards, Gaithersburg, Maryland, Sept.11-14, 1967.

10. J. Blaise, J. F. Wyart, J. G. Conway and E. F. Worden, "Generalized Parametric Study of the 5fⁿ and 5fⁿ7s Configurations," Phys. Scripta 22, 224-230 (1980).

11. E. A. Lobikov, N. K. Odintsova and A. R. Striganov, "Emission Spectrum of Curium," I. V. Kurchatov Institute of Atomic Energy, Report IAE-3210, Moscow, USSR, (1979); translated by George V. Shalimoff, Lawrence Berkeley Laboratory; private communication (1980).

12. E. A. Lobikov, A. R. Striganov, V. P. Labozin, N. K. Odintsova and V. F. Pomytkin, "Atomic Spectrum of Curium," Optics and Spectroscopy 46, 596-599 (1979). Opt. Spektrosk. 46, 1054-1060 (1979).

13. F. S. Tomkins and M. Fred, "Electrodeless Discharge Tubes Containing Rare Earth and Heavy Element Halides," J. Opt. Soc. Am. <u>47</u>, 1087-1091 (1957).

14. E. F. Worden, R. G. Gutmacher and J. G. Conway, "Use of Electrodeless Discharge Lamps in the Analysis of Atomic Spectra," Appl.Opt. 2, 707-713 (1963).

-11-

15. W. C. Martin, R. Zalubas and L. Hagan, Atomic Energy Levels-The Rare-Earth Elements NSRDS-NBS 60 (U.S. Government Printing Office, Washington, D.C., 1978)

16. L. Brewer, "Energies of the Electronic Configurations of the Singly, Doubly, and Triply Ionized Lanthanides and Actinides," J. Opt. Soc. Am. <u>61</u>, 1666-1682 (1971).

٠

FIGURE CAPTIONS

Figure 1. Zeeman patterns of one Cm I and two Cm II lines at 2.4 T photographed on the ANL 9.15 m spectrograph.

Figure 2. Three A region of the curium spectrum showing the isotope shift for four isotopes. Spectra of three isotopically different samples are shown. Photographed on the ANL 9.15 m spectrograph.

Figure 3. Relative isotope shift of five isotopes of curium from atomic emission spectra.

Figure 4. Low lying energy levels of singly-ionized curium. The electronic configurations and LS term designations are given.

Figure 5. Range of observed isotope shifts for several electronic configurations of curium II. The value of x is about +1.2 cm⁻¹ (see text).

Figure 1. Zeeman patterns of one Cm I and two Cm II lines at 2.4 T photographed on the ANL 9.15 m spectrograph.

Figure 2. Three A region of the curium spectrum showing the isotope shift for four isotopes. Spectra of three isotopically different samples are shown. Photographed on the ANL 9.15 m spectrograph.

Figure 3. Relative isotope shift of five isotopes of curium from atomic emission spectra.

-16-

J

Figure 4. Low lying energy levels of singly-ionized curium. The electronic configurations and LS term designations are given.

Figure 5. Range of observed isotope shifts for several electronic configurations of curium II. The value of x is about +1.2 cm⁻¹ (see text).

Captions;

Table 1. Isotopic composition of curium samples used for lamp preparation.

Table 2. The odd parity energy levels of the curium ion, Cm II.

Table 3. The even parity energy levels of the curium ion, Cm II.

Table 4. Lowest levels of identified configurations in Cm II.

Sample	Composition >1%			>1%	Use		
2 2	244 245		246 248		·		
Î	95	1.5	3		Wavelength, Zeeman effect Spectrum assignment, Self-reversal Isotope shift		
2	27		16	55	Isotope shift		
3	55	23	21		Isotope shift		

Table 1. Isotopic Composition of Curium Samples Used for Lamp Preparation.

Table 2.	ion, Cm	parity energy II.	levels of	the curlum
Energy	J odd	g odd	IS	Configuration
(cm ⁻¹)			(cm ⁻¹)	
0.000	7/2	1.935	0.000	5f ⁷ 7s ² ⁸ s ^o
4010.645	5/2	2.492	-0.496	$5f^{7}6d7s^{10}D^{0}$
4411.540	7/2	2.028	-0.496	$5f^{7}6d7s^{10}D^{0}$
5067.900	9/2	1.826	-0.494	$5f^{7}6d7s^{10}D^{0}$
6202.430	11/2	1.716	-0.492	$5f^{7}6d7s^{10}D^{0}$
8199.890	3/2	2.666	-0.559	$5f^{7}6d7s$ B_{D}^{O}
8425.360	13/2	1.655	-0.480	51 ⁷ 6d7s ¹⁰ D ⁰
8474.775	5/2	1.952	-0.557	51 ⁷ 6d7s ⁸ D ^o
9012.480	7/2	1.722	-0.554	51 ⁷ 607s ⁸ D ⁰
10134.785	9/2	1.638	-0.555	$5f^{7}6d7s$ $^{8}D^{0}$
12913.101	11/2	1.599	-0.547	5f ⁷ 6d7s ⁸ D ⁰
14830.150	3/2	3.009	-0.962	$5f^{7}6d^{2}$ $10F^{0}$
15092.768	5/2	2.109	-0.934	$5f^{7}6d^{2}$ $10F^{0}$
15457.514	7/2	1.800	-0.867	$5f^{7}6d^{2}$ $10F^{0}$
15559.133	9/2	1.650	-0.659	$5f^{7}6d7s$ $^{8}D^{\circ}$
15737.548	11/2	1.603	-0.600	$5f^{7}6d7s$ $^{8}D^{0}$
16956.223	7/2	1.595	-0.429	51 ⁷ 6d7s ⁶ D ⁰
17013.379	9/2	1.633	-0.800	$5f^{7}6d^{2}$ $^{10}F^{0}$
17430.189	7/2	1.435	-0.158	$5f^{7}7s^{2}$ $6p^{0}$
17485.491	5/2	1.93	-0.584	5r ⁷ 6d7s ⁸ D ⁰
17853.291	7/2	1.63	-0.621	5f ⁷ 6d7s ⁸ D ⁰
18122.430	3/2	2.710	-0.606	$5f^{7}6d7s$ $^{8}D^{0}$
18205.773	9/2	1.585	-0.634	51 ⁷ 6d7s ⁶ D ⁰
18222.515	11/2	1.635	-0.972	$5f^{7}6d^{2}$ $10F^{0}$
18230.266	5/2	1.705	-0.565	5f ⁷ 6d7s ⁶ D ⁰
18376.367	3/2	1.810	-0.515	5f ⁷ 6d7s ⁶ D ⁰
18847.318	1/2		-0.517	5f ⁷ 6d7s ⁶ D ⁰

÷ 1-

,

			0 000	$r_{e}7_{e}2$ 10_0
19596.910	13/2		-0.998	5100 F
21426.120	15/2	1.60	-0.99	51 od F
21816.865	7/2		-0.481	5100/8
22280.885	7/2		-0.840	5r od P
22430.420	9/2	1.42	-0.493	51 0078
22577.590	7/2		-0.654	$51^{\circ} 6078$
23794.020	9/2		-0.987	$51^{\circ} 60^{\circ} P$
24078.900	11/2	1.720	-0.978	5r 6d P
24533.055	11/2	1.365	-0.514	51°6078
26087.144	7/2	1.56	-0.991	$51^{\circ} 6d^{\circ}$
26234.985	3/2		-0.962	$51^{\circ} 6d^{-1}$
26272.380	5/2 9/2	1.49	-0.901	51 6d -
27065.085	11/2	1.51	-0.972	$5f^{8}(^{7}F_{c})7P_{c}$
				-8,7
27700.945	13/2	1.42	-1.022	$5r(F_6)^{7p}1/2$
27853.520	13/2	1.355	-0.473	51 ⁷ 6d7s
28079.390	11/2	1.320	-0.757	51 ⁷ 6d7s
28555.840	11/2	1.170	-0.593	5f ⁷ 6d73
28587.400	9/2	1.185	-0.499	5f ⁷ 6d7s
29169.595	11/2	1.050	-0.571	51 ⁷ 6d7s
29617.815	9/2	1.425	-0.972	$5f'6d^2 F^0$
29925.300	11/2	1.425	-0.974	$5f^{7}6d^{2}$ $^{8}F^{0}$
30011.710	7/2	1.335	-0.75	51 ⁷ 6d7s
30166.000	9/2	1.055	-0.526	5f ⁴ 6d7s
30252.500	13/2	1.49	-1.000	$5f^{7}6d^{2}$ $^{8}F^{0}$
30297.135	7/2	1.290	-0.700	5f ⁽ 6d7s
30386.005	5/2	1.335	-0.910	$5r^{\prime}6d^{\prime}$
30550.820	3/2	1.045	-0.955	5f ⁷ 6d ² [°] G [°]
30692.380	9/2	1.49	-0.675	5f ['] 6d7s
30740.115	5/2	1.925	-0.950	$5F'6d^2 °P^0$
30745.000	1/2	-1.05	-0.990	$5f'_{6d} = {}^{\circ}G^{\circ}$
30797.630	7/2	1.49	-0.595	5f ⁷ 6d7s
30800.555	11/2	1.200	-0.528	5f ¹ 6d7s
30007.005	(/2	1.58	-0.742	r 07 6 4 7 4
3099/+995	11/2	1.175	-0.504	$\sum 0$
51154.310	11/2	1.09	-0.522	21 00/S

-22-

				8.7
31166.675	9/2	1.43	-0.800	5f°('F ₅)7p _{1/2}
31259.795	9/2	1.352	-0.619	5f ⁷ 6d7s
31333.385	3/2	2.42	-0.83	
31357.880	9/2		-0.580	51 ⁷ 647s
31455.540	11/2	1.279	-0.082	$5f^77s^2$
31734.470	15/2	1.331	-0.471	51 ⁷ 6d7s
31777.160	11/2	1.226	-0.536	5f ⁷ 6d7s
31788:195	9/2	1.246	-0,565	5f 6d7s
31890.645	7/2		-0.508	5f ¹ 6d7s
31933.755	11/2	1.274	-0.635	5f 6d7s
31947.675	7/2	1.478	-0.859	5f [°] ('F ₄)7p _{1/2}
32106.235	11/2	1.230	-0.528	55 ⁷ 6d7s
32195.825	11/2	1.337	-1.017	51 ⁷ 6d ²
32354.785	9/2	1.265	-0.498	5f ⁷ 6d7s
32417.800	11/2	1.280	-0.582	5f'6d7s
32521.205	912	1.305	-0.235	7
32654.875	15/2	1.22	-0.575	51 6079
32728,135	9/2	1.145	-0.525	
32775.870	9/2	1.287	-0.956	
32816.105	7/2	1.167	-0.553	51 ⁷ 6d7s
32867.720	9/2	1.340	-0.701	51 ⁷ 6d7s
32923.880	13/2	1.39	-1.008	5f'6d ²
33055.015	9/2	1.368	-0.610	
33090.820	7/2	1.46	-0.734	
33235.225	9/2	1.312	-0.573	
33265.480	11/2	1.382	-0.830	5f ⁸ (⁷ F ₅)7p _{1/2}
33401.800	13/2	1.060	-0.534	, j 172
33680.490	13/2		-1.205	$5f^76d^2$
33749.175	11/2	1.44	-0.966	
33766.240	7/2	1.315	-0.723	
33767.090	11/2	1.045	-0.540	·
33002.330	9/2	1.30	-0.925	54 (^r 4 ^{) (p} 1/2
33948.555	15/2		-0.643	· •
34023.550	5/2	1.385	-0.595	•
34099.075	7/2	1.121	-0.550	
34277.980	3/2	1.504	-0.716	
34304.385	5/2	1.619	-0.806	5f ⁸ (⁷ F ₃)7p _{1/2}

-23-

34332.340 34337.385 34382.990 34678.910 34683.930 34701.770 34750.645 34816.785 34821.815 34857.050	15/2 13/2 9/2 7/2 9/2 5/2 1/2 3/2 9/2 5/2	1.295 1.150 1.274 1.474 1.405 -0.665 0.696 1.250 1.353	-0.505 -0.457 -0.545 -0.622 -0.80 -0.716 -0.605 -0.579 -0.717 -0.580	
34888.905	11/2	1.38	-0.734	
34926.680 34945.405	13/2 7/2	1.39	-0.830 -0.571	
34986.555 35050.860	9/2 5/2	1.315 1.416	-0.579 -0.531	
35178.905	3/2	1.552	-0.866	
35226.355	9/2	1.32	-0.661	
35291.395	7/2	1.382	-0.774	
35319.115	5/2	1.223	-0.726	
35335.025 35368.750 35390.740 35397.720 35431.385 35571.395	11/2 13/2 11/2 9/2 15/2 11/2	1.240 1.195 1.172	-0.578 -0.334 -0.727 -0.75 -0.542 -0.538	
35575.055 35591.550 35593.180 35611.250 35730.540 35820.665 35932.290 35972.365 35981.305 36008.790 36063.090	5/2 9/2 3/2 7/2 5/2 11/2 3/2 7/2 13/2 7/2 3/2	1.145 1.33 0.902 1.284 1.510 1.237 1.092 1.187 1.215 1.27	-0.68 -0.652 -0.569 -0.68 -0.629 -0.857 -0.68 -0.358 -0.467 -0.632 -0.843	
36083.640	1/2	3.098	-0.958	
36128.375 36178.220 36200.780 36223.420 36226.140 36330.280 36413.100 36447.545 36464.155 36500.930	9/2 3/2 9/2 5/2 15/2 15/2 13/2 7/2 9/2 3/2	1.245 1.221 1.22 1.25 1.172 1.212 1.233 1.288 1.229 1.271	-0.488 -0.828 -0.487 -0.869 -0.516 -0.597 -0.360 -0.627 -0.666 -0.705	

5f⁸(⁷F₆)7p_{3/2} 5f⁸(⁷F₆)7p_{3/2}

 $5f^{8}({}^{7}F_{2})7p_{1/2}$ $5f^{8}({}^{7}F_{3})7p_{1/2}$ $5f^{8}({}^{7}F_{2})7p_{1/2}$

5f⁸(⁷F₁)7p_{1/2}

5r⁸(⁷F₁)7p_{1/2}

36592.945 36596.380 36710.135 36812.230 36908.125 36957.800 36968.780 37046.885 37101.190 37113.725 37118.775 37179.780	13/2 9/2 11/2 3/2 5/2 7/2 9/2 13/2 3/2 7/2 11/2	· · · · · · · · · · · · · · · · · · ·	1.342 1.215 1.085 1.28 0.831 1.273 1.274 1.32 1.134 1.255	-0.229 -0.919 -0.765 -0.838 -0.65 -0.73 -0.69 -0.653 -0.778 -0.73 -0.524 -0.71
37225.120 37310.010 37315.470 37359.605 37393.790 37417.815 37504.720	13/2 3/2 11/2 5/2 7/2 11/2 7/2		1.165 1.007 1.25 1.41 1.225 1.18	-0.516 -0.73 -0.641 -0.75 -0.730 -0.668 -0.77
37528.470	1/2		-0.280	-0.854
37648.630 37656.630 37717.275 37789.685 37815.545 37829.305 37924.220 37958.835 37992.800 37999.680 38042.165 38188.050 38042.165 38188.050 38259.945 38316.115 38327.135 38457.830 38457.830 38457.830 38457.120 38634.830 38685.550	11/2 5/2 1/2 3/2 9/2 7/2 9/2 11/2 7/2 13/2 1/2 1/2 1/2 1/2 1/2 1/2 1/2 15/2 13/2 13/2 13/2		1.025 0.416 1.226 1.121 1.20 1.293 1.163 1.205 1.251 1.30 1.425 2.93 1.242 1.39 1.34 1.279 1.257	-0.640 -0.515 -0.76 -0.81 -0.634 -0.913 -0.605 -0.590 -0.75 -0.567 -0.609 -0.850 -0.540 -0.540 -0.72 -0.557 -0.71 -0.692 -0.692 -0.692 -0.696 -0.632
38759.425 38771.070 38793.695 38794.960 38949.170 38973.940 38980.505 39078.555 39082.665 39165.195 39195.735 39204.165	9/2 15/2 5/2 1/2 9/2 7/2 13/2 9/2 11/2 9/2 11/2 5/2		1.23 1.05 1.79 1.135 1.225 1.007 1.254 1.245	-0.75 -0.580 -0.75 -0.590 -0.601 -0.591 -0.645 -0.605 -0.75 -0.71 -0.580 -0.636

5f⁷6d7s

5f⁸(⁷F₀)7p_{1/2}

Table 2.

÷

39336.155 39369.570 39381.485 39458.235 39465.845 39466.380 39474.990 39507.215 39537.265 39566.445 39643.640 39681.090 39681.090 39690.790 39739.615 39772.100 39817.225 39843.060	3/2 5/2 7/2 9/2 13/2 11/2 9/2 11/2 7/2 15/2 3/2 9/2 13/2 7/2 11/2 5/2 5/2	0.785 1.29 1.24 1.095 1.30 1.34 1.12 1.420 1.21 1.18 1.195	-0.659 -0.588 -0.572 -0.645 -0.650 -0.661 -0.603 -0.574 -0.707 -0.533 -0.63 -0.70 -0.587 -0.71 -0.643 -0.68 -0.68 -0.430	5£ ⁸ 7p
39909.880 39914.725 39918.670 39997.135 40081.950 40097.095 40113.560 40252.565 40275.325 40285.940 40337.475 40350.040 40378.520 40446.285 40494.100 40534.325 40632.180 40651.520	13/2 7/2 9/2 11/2 13/2 9/2 11/2 7/2 11/2 5/2 9/2 11/2 5/2 9/2 13/2 13/2 1/2 5/2	1.260 1.16 1.44 1.156 -0.01 1.172!	$\begin{array}{c} -0.122 \\ -0.585 \\ -0.620 \\ -0.864 \\ -0.531 \\ -0.70 \\ -0.437 \\ -0.595 \\ -0.607 \\ -0.570 \\ -0.71 \\ -0.73 \\ -0.67 \\ -0.66 \\ -0.560 \\ -0.579 \\ -0.633 \\ -0.648 \end{array}$	5£ ⁷ 7s ²
40671.600 40673.045 40700.530 40761.165 40805.300 40821.695 40892.880 40932.805 40968.520 40968.520 40976.960 40978.500 41070.930 41134.885 41148.045 41154.810 41178.630 41188.750	9/2 3/2 5/2 11/2 7/2 13/2 7/2 13/2 9/2 13/2 9/2 5/2 7/2 9/2 11/2 11/2 13/2 5/2 7/2	1.11 1.106 1.30 1.145 1.283	-0.563 -0.569 -0.521 -0.445 -0.622 -0.626 -0.629 -0.630 -0.630 -0.6310 -0.655 -0.663 -0.694 -0.597 -0.68	· ·

			0 507
41239.850	9/2		-0.59/
41241.095	11/2		-0.557
112110099	F/2	1 505	-0.76
41259.200	5/2	1.505	-0.10
41268.575	13/2		-0.670
41316,950	7/2		-0.512
11 269 925	2/2		-0 570
41300.035	3/2		-0.570
41383.570	15/2	1.18	-0.431
41418.670	11/2	1.33	-0.339
11160 500	E/2		-0 613
41409.590	5/2		-0.015
41482.680	13/2	1.18@	-0.682
41563.230	9/2		-0.629
11616 07E	11/2		-0 557
41010.075	11/2		0.007
41708.685	7/2		-0.850
41733.900	9/2	1.231	-0.582
11726 575	7/2	1.334	-0.73
	1/2	• 104	0.15
41737-535	3/2	1.401	-0.040
41766.730	5/2	·	-0.414
11772 330	9/2		-0.580
	7/0		-0.647
41794.705	(/2		-0.04/
41812.210	13/2		-0.74
41854, 125	15/2		-0.544
11996 520	11/2		-0 510
41000.530	11/2		
41902.410	9/2	· · · · ·	-0.640
41902.810	7/2		-0.642
41050 050	7/2		-0.538
	17/2	1 1 25	-0.755
41909.340	13/2	1.125	-0.755
42019.890	15/2		-0.768
42065.795	11/2		-0.71
12085 520	7/2		-0 555
	1/ <u>2</u>		
42087.685	5/2		-0.15
42088.400	3/2	1.120	-0.576
42097 955	13/2	1.11	-0.734
	11/0		-0.820
42133.915	11/2		-0.020
42144.600	9/2		-0.76
42148,185	5/2		-0.75
12200 010	1/2		-0 73
42200.040	772		0.15
42200.960	1/2		-0.505
42215.605	11/2	1.220	-0.673
42252 785	3/2		-0.466
12250 195	0/2		-0 551
42239.103	9/2		-0.994
42265.225	15/2		-0.668
42365.340	13/2		-0.76
12268 020	11/2	1 21	-0 658
42 300.930	11/2	1.21	
42425.245	7/2		-0.087
42498.445	9/2	1.251	-0.68
42502 850	7/2	1.36	-0.75
	172		-0 552
42510.470	13/2		-0.552
42550.840	3/2		-0.73
42571.570	5/2	1.122	-1.066
12508 070	5/2	1 17	-0 82
	J, C	1.11	0.02
42016.250	(/2	1.246	-0.013
42631.425	13/2	1.176	-0.570
42655 350	3/2-5/2		-0.617
10705 475	11/2	1 77	-0.75
76167.017	11/6	1.44	-0.13

42734.955	9/2		-0.393
42771.475	7/2		-0.566
42833.290	9/2		-0.552
42847.780	11/2		-0.728
42928.330	5/2		-0.70
42949,100	13/2	1.23	-0.589
42984.425	5/2		-0.69
12088.080	11/2		-0.628
12008 210	9/2		-0 630
12006 815	7/2	1 172	-0.635
43000.045	11/2	10176	-0.530
43003.225	5/2		
43100.235	5/2		-0.14
43137.075	(/2		-0.500
43153-145	9/2	1.21	-0.020
43176.710	3/2		-0.00
43179.390	11/2		-0.378
43217.790	13/2		-0.644
43273.530	7/2		-0.74
43297.960	1/2	2.11	-0.75
43300.105	9/2		-0.64
43317.145	3/2		-0.74
43319.155	11/2	1.252	-0.693
43328.370	9/2		-0.79
43358.390	5/2		
43422.935	7/2		-0.537
43456.525	13/2	1.30	-0.582
43518.515	5/2	_	-0.68
43555.140	5/2		-0.653
43577.835	7/2		-0.75
43662.765	3/2		-0.75
43678.565	5/2		-0.75
43679,580	9/2		-0.79
43729.950	7/2		-0.592
43752.815	13/2		-0.639
43795 175	9/2		-0.81
43822 005	3/2		-0.825
43022.000	7/2		-0.673
43020.010 12811 215	11/2		-0 603
12867 260	5/2		-0.68
12801 750	1/2	0.67	-0.00
43091.750	11/2	0.01	
43915.005	0/2		
43920.305	9/2		-0.74
43958.690	1/2		-0.67
43978.320	11/2		-0.530
44019.480	9/2		-0.74
44061.855	11/2	1.23	-0.853
44094.895	3/2		-0.631
44170.500	9/2		-0.723
44207.775	3/2		-0.69
44333.105	9/2		-0.75
44363.825	5/2		-0.71
44385.055	13/2		-0.572
44452.095	11/2		-0.641
44502.475	9/2		-0.638

	44549.030 44578.420 44613.720	9/2 3/2 11/2		-0.74 -0.77 -0.625
	44655.485	7/2 11/2	1.285	-0.75 -0.626
	44693.840	5/2		-0.648
	44770.785	7/2		-0.76
	44841,920	11/2		-0.412
	44865.395	5/2	· ·	-0.556
	44937.350	9/2		-0.77
	44975.660	5/2		-0.66
	45005.235	3/2		-0.11
	45051.520	9/2		-0.567
	45063.385	5/2		-0.67
	45074.245	7/2		-0.76
	45128.260	11/2		-0.72
	45149,295	7/2		-0.710
	45185.190	3/2		-0.75
	45188.390	7/2		-0.75
	45239.465	9/2		-0.77
	45378.565	5/2	1.180	-0.605
	45420.905	11/2		-0.74
	45466.885	7/2		-0.658
	45507.100	1/2	0.76	-0.75
	45577.985	7/2		-0.640
	45593.880	7/2		-0.569
	45821.335	11/2		-0.584
	46025.105	1/2		-0.73
	46207.615	7/2		-0.615
	46367.130	1/2		-0.638
	46415.550	7/2		-0.76
	46479.765	5/2		-0.576
	46744.710	5/2		-0.15
	46777.145	3/2		-0.645
	46785.185	7/2		-0.75
	46815.755	9/2		-0.71
	46915.165	5/2		-0.574
,	46917.670	7/2		-0.641
	46983.055	9/2		-0.646
	47027.350	5/2		-0.74
	47648.725	3/2		-0.75
	47794.205	5/2		-0.73
	47845.070	9/2,7/2		
	48001.690	3/2	1.02	-0.70

v

48142.335	3/2		-0.597
48210.480	11/2		-0.593
48231.405	7/2		-0.515
48321.740	1/2		-0.601
48373.330	7/2		-0.665
48429.520	3/2		-0.73
48454.540	5/2		-0.75
48670.48	11/2	1.16	
48706.080	11/2		-0.784
48831.755	7/2		-0.77
49183.995	11/2		-0.67
49227.275	11/2		-0.72
49334.035	3/2		-0.74
49566.770	13/2		-0.600
50029.210	5/2		-0.74

! possibly, g=1.428
@ possibly, g=1.26

	ion, Cm I	ſ.		
Energy Level	Jeven	g even	IS	Configuration
(cm ⁻¹)			(cm ⁻¹)	
				* * • • • • • • • • • • • • • • • • • •
2093.870	13/2	1.500	-0.738	5f ⁸ 7s ⁸ F
3941.439	11/2	1.424	-0.765	5 f⁸7s ⁶ F
5919.263	9/2	1.527	-0.736	51 ⁸ 78 ⁸ F
6347.900	11/2	1.500	-0.744	5 f⁸7s ⁸ F
7067.133	7/2	1.485	-0.748	51 ⁸ 7s ⁸ F
8144.306	9/2	1.400	-0.765	51 ⁸ 7s ⁶ F
8436.099	5/2	1.656	-0.733	51 ⁸ 7s ⁸ F
9073.572	7/2	1.444	-0.753	51 ⁸ 7s ⁶ F
9127.847	3/2	1.834	-0.733	51 ⁸ 7s ⁸ F
9801.305	1/2	3.740	-0.729	51 ⁸ 7s ⁸ F
10433.776	5/2	1.300	-0.763	51 ⁸ 7s ⁶ F
11250.886	3/2	1.167	-0.759	51 ⁸ 7s ⁶ F
11978.441	1/2	-0.420	-0.760	51 ⁸ 7s ⁶ F
15918.045	9/2	1.489	-0.731	51 ⁸ 7s ⁶ D
16938.940	13/2	1.225	-0.750	51 ⁸ 7s ⁴ H
17126.590	7/2	1.34	-0.750	51 ⁸ 7s ⁶ D
17150.790	13/2	1.415	-1.177	51 ⁸ 6d ⁸ G
17468.095	11/2	1.35	-1.070	51 ⁸ 6d ⁸ G
17511.400	11/2	1.16	-0.867	51 ⁸ 7s ⁴ H
18255.735	15/2	1.425	-1.187	51 ⁸ 6d ⁸ G
18919.640	9/2	1.562	-1.188	51 ⁸ 6d ⁸ G
20340.960	7/2		-1.007	51 ⁸ 60 ⁸ G
20544.775	7/2		-0.885	51 ⁰ 7s
20704.725	9/2		-1.159	51 ⁸ 6d ⁸ D
21044.030	11/2		-1.165	51 ⁸ 6d ⁸ D
21150.090	5/2		-1.165	51 ⁸ 6a ⁸ G
22175.940	3/2		-1.171	51 ⁸ 6d ⁸ G

Table 3. The even parity energy levels of the curium

22305.430	7/2	1.66	-1.180	51 ⁸ 6d ⁸ D
22572.665	1/2		-1.185	51 ⁸ 6a ⁸ G
23105.645	5/2		-1.156	55 ⁸ 6d ⁸ D
23186.855	13/2		-1.182	51 ⁸ 60 ⁸ F
23239.970	17/2		-1.174	51 ⁸ 60 ⁸ H
23560.020	11/2		-1.178	51 ⁸ 6d ⁸ F
24046.385	7/2	2.098	-0.403	$5f^{7}(^{8}s^{0}_{7/2})7s7p(^{3}p^{0}_{0})$
24113.725	9/2	1.505	-1.158	51 ⁸ 6d ⁸ F
24265.300	15/2		-1.178	51 ⁸ 60 ⁸ H
25207.260	13/2		-1.184	51 ⁸ 60 ⁸ H
25402.410	11/2		-1.186	51 ⁸ 6d
25436.470	9/2	1.240	-0.726	51 ⁸ 7s
25579.725	9/2	1.781	-0.485	5f ⁷ (⁸ s ^o _{7/2})7s7p(³ p ^o ₁) ¹⁰ F
25783.365	11/2		-1.174	5f ⁸ 6d ⁸ H
26328.020	9/2	1.290	-1.085	51 ⁸ 6d
26490.795	11/2		-1.190	51 ⁸ 6d
27404.255	9/2	1.445	-1.162	51 ⁸ 6d
27446.760	9/2		-0.903	51 ⁸ 7s
27539.800	9/2	1.37	-1.002	5r ⁸ 6d
27625.715	5/2	1.596	-0.717	51 ⁸ 7s
27980.085	5/2	2.024	-0.513	$5f^{7}(^{8}S^{0}_{7/2})7s7p(^{3}P^{0}_{1})^{8}P$
27983.940	15/2		-1.183	51 ⁸ 6d ⁶ H
28191.535	7/2	1.744	-0.476	5f ⁷ (⁸ S ⁰ _{7/2})7s7p(³ P ⁰ ₁) ⁸ F
28232.670	7/2	1.543	-0.741	5f ⁸ 7s
29247.870	7/2	1.63	-1.172	51 ⁸ 6d
29477.200	5/2	1.389	-0.738	51 ⁸ 7s
29814.140	9/2		-1.154	51 ⁸ 6d
30442.315	11/2			51 ⁸ 6d
30457.640	13/2		-1.180	51 ⁸ 6d
30701.540	5/2	1.620	-1.139	51 ⁸ 6d
30850.570	7/2	1.58	-1.179	51 ⁸ 6d
31816.660	5/2	1.293	-1.130	51 ⁸ 6d
32034.430	3/2	2.933	-0.923	51 ⁷ 6d7p ¹⁰ F
32411.310	5/2	2.070	-0.924	$5f^{7}6d7p^{-10}F$

Table 3.

32436.980	7/2	1.458	-1.149	51 ⁸ 6d	
32605.690	5/2		-1.165	51 ⁸ 6d	
32617.405	3/2	1.695	-1.124	51 ⁸ 6d	
32845.490	.9/2	1.383	-1.163	51 ⁸ 6d	
32984.770	7/2	1.746	-0.942	51 ⁷ 6d7p ¹⁰ F	
33576.600	7/2	1.318	-0.722	51 ⁸ 7s	
33577.195	11/2	1.765	-0.465	$5f^{7}(^{8}s^{0}_{7/2})7s7p(^{3}P^{0}_{2})^{-10}F$	2
33670.005	5/2		-0.893		
33852.565	9/2	1.629	-0.926	51 ⁷ 6d7p ¹⁰ F	
34171.395	7/2	1.545	-1.149	51 ⁸ 6d	
34532.400	11/2	1.32	-1.138	5r ⁸ 6d	
34893.775	5/2	1.65	-1.163	5r ⁸ 6d	
35280.665	5/2	2.255	-0.762	51 ⁷ 6d7p ¹⁰ D	
35378.325	11/2	1.366	-1.041	5f ⁷ 6d7p +f ⁸ d	
35397.790	9/2	1.768	-0.458	$5f^{7}(^{8}s^{0}_{7/2})7s7p(^{3}P^{0}_{2})^{8}P$	
35456.915	11/2	1.367	-1.042	5r ⁷ 6d7p ¹⁰ F	
35556.240	7/2	1.858	-0.743	51 ⁸ 6d7p ¹⁰ D	a
35778.500	7/2	1.13	-1.106	51 ⁷ 6d7p +1 ⁸ d	1.
36039.980	9/2 7/2	÷	-0.721		
36415,100	7/2	1.05	-0.723	51 ⁸ 78	
36526,985	9/2	1.723	-0.805	$5f^{7}6d7p^{10}D$	
36618.270	7/2		-0.708		
36695.555	9/2	1.128	-1.148	-7,8-9	
36866.530	7/2	1.655	-0.578	$5r^{(3)}(37)^{(3)}(7)^{(2)}(7)^{(3)}(7)^{(2)}(7)^{(3)}($	
37263.590	13/2		-1.158	8-	
37493.235	5/2		-0.741	$5f^{-7}s$	
37730.880	5/2	1.710	-0.548	$5f'(^{3}S_{7/2})^{7}s^{7}p(^{3}P_{2})^{-1}P$	
38548.615	3/2	2.245	-0.489	$5f^{7}(^{8}S^{0}_{7/2})7s7p(^{3}P^{0}_{2})^{6}P$	
39336.800	11/2		-0.48	7 10	
39464.980	11/2	1.689	-0.894	51 (6d7p 10D	
39568.525	13/2	1.559	-0.920	51'6d7p '0F	
40592.510	5/2	2.240	-0.654	5r'(°S ⁰ 7/2)7s7p('P ⁰) ⁸ P	
40966.185	7/2	1.778	-0.743	5r ⁷ (⁸ s ⁰ _{7/2})7s7p(¹ P ⁰ ₁) ⁸ P	
41006.550	9/2		-0.855		
41098.265	7/2		-1.075		

-33-

Ŧ

.

41130.390	9/2	1.70	-0.698	$5f^{7}(^{8}S^{0}_{7/2})7s7p(^{1}P^{0}_{1})^{8}P$
42112.135	5/2		-0.676	1/2
42223.500	3/2	2.49	-0.968	5f ⁷ 6d7p ⁸ D
42261.415	5/2	1.990	-0.947	5f ⁷ 6d7p ⁸ D
42277.220 42286.200 42295.745	7/2 3/2 7/2	1.50 1.243	-0.867 -0.959 -0.833	5f ⁷ 6d7p ⁸ D
42332.445 42534.980 42647.650	9/2 9/2 7/2		-0.944 -0.973 -1.015	5f ⁷ 6d7p ⁸ D
42691.920	9/2		-0.804	51 ⁰ 7s
42775.855 43272.010 43285.755	11/2 9/2 7/2	1.64 1.28	-0.958 -0.775 -1.027	55 ⁷ 6d7p ⁸ D
43377.225 43490.765	5/2 3/2		-0.777 -0.56	51 ⁸ 7s
43513.325 43526.900 43545.040 43703.945 43774.785 43819.750 43888.380 43995.330 44036.965	1/2 5/2 3/2 7/2 5/2 7/2 7/2 9/2 5/2	3.59	-0.944 -0.959 -0.56 -1.065 -0.819 -0.971 -0.750 -0.989 -0.720	5f ⁷ 6d7p ⁸ F
44085.290	9/2	1.38	-0.977	
44117.435	9/2 7/2	1.227	-0.694	
44400.270 44535.315	13/2 9/2	1.615	-0.959 -1.235	5 f⁷6d7p ¹⁰ D
44680.910 44725.925 44900.620	7/2 11/2 11/2	1.995 1.464	-0.929 -1.085 -0.970	55 ⁷ 6d7p ¹⁰ P
45538.930 45631.340 45685.045	9/2 9/2 9/2	1.583	-0.995	
46095.890 46339.190 46401.315 46510.315 46572.450	15/2 7/2 7/2 7/2 5/2	1.56 1.29 1.387	-0.951 -0.955 -0.699 -1.010 -1.026	55 ⁷ 6d7p ¹⁰ F
46603.555 46789.130 47071.970 47133.630 47277.720 47728.745	7/2 5/2 9/2 9/2 11/2 9/2	1.35 1.785 1.45	-0.745 -0.895 -0.937 -0.967 -0.942 -0.931	· ·

Table 3.

47866.300	5/2		-0.987
47868.975	9/2		-0.912
47910.130	9/2	1.30	-0.697
47916.005	5/2		-0.750
47936.880	13/2,11/2		-0.968
48003.625	11/2,9/2		-0.888
48083.445	5/2		-0.944
48193.975	5/2		-0.870
48310.650	11/2		-0.993
48312.535	7/2	1.465	-0.929
48397.810	13/2		-0.957
48430.080	5/2		-0.65
48509.010	11/2		-1.036
48956.270	3/2		-0.90
49196.710	7/2	,	-0.914
49507.150	7/2		-1.059
51071.625	5/2		-0.84
51936.210	9/2		-0.980
52103.525	5/2		-0.701
53493.295	9/2,7/2		-0.810
53638.865	11/2		-0.948
54860.915	13/2	•	-0.834
55233.760	7/2		-0.833
56656.735	5/2		-0.62
58041.765	9/2		-0.725

Table 4.	Lowest lev in Cm II.	rels of ident.	ified configurations
Energy Level (cm ⁻¹)	g value	Isotope Shift (cm ⁻¹)	Configuration Designation
Odd			
0.000	1.935	x	51 ⁷ 75 ² 850 7/2
4010.645	2.492	x-0.496	55 ⁷ 6d7s ¹⁰ D _{5/2}
14830.150	3.009	x-0.962	$5f^{7}6d^{2}$ $10f^{6}F_{3/2}$
27065.085	1.51	x-0.972	51 ⁸ 7p ⁸ F _{11/2}
Even			
2093.870	1.500	x-0.739	51 ⁸ 7s ⁸ F _{13/2}
17150.790	1.415	x-1.177	51 ⁸ 6d 9 _{G13/2}
24046.385	2.098	x-0.403	55 ⁷ 7s7p ¹⁰ P _{7/2}
32034.430	2.933	x-0.923	.51 ⁷ 6d7p ¹⁰ F _{3/2}

This report was done with support from the Department of Energy. Any conclusions or opinions expressed in this report represent solely those of the author(s) and not necessarily those of The Regents of the University of California, the Lawrence Berkeley Laboratory or the Department of Energy.

Reference to a company or product name does not imply approval or recommendation of the product by the University of California or the U.S. Department of Energy to the exclusion of others that may be suitable.

Ö

LAWRENCE BERKELEY LABORATORY TECHNICAL INFORMATION DEPARTMENT UNIVERSITY OF CALIFORNIA BERKELEY, CALIFORNIA 94720

5