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ABSTRACT OF THE DISSERTATION

Surface Bundles Over Low-Dimensional Manifolds

by

Jonathan Alcaraz

Doctor of Philosophy, Graduate Program in Mathematics
University of California, Riverside, September 2022

Dr. Stefano Vidussi, Chairperson

Surface bundles over circles and surfaces have been and continue to be well stud-

ied. The main focus of this thesis is manifolds which admit multiple surface bun-

dle structures over low-dimensional manifolds. In [Sal15], Salter proved certain

cohomological properties of 4-manifolds with multiple surface bundle structures

over surfaces. In this thesis, we will analyze the extent to which analogous results

are true in other dimensions as well as construct examples of spaces with multiple

surface bundle structures with punctured surfaces as fibers.
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Chapter 1

Preliminaries & Background

1.1 A Brief History of Fiber Bundles

The study of fiber bundles dates back to 1935 when Whitney wrote in [Whi35]

about spaces “in which the points themselves are spaces of some simple sort.” He

was particularly interested in the case when the “points themselves” were spheres

and hence termed these spaces sphere spaces. Along with other topologists and

differential geometers, Whitney continued to study these objects into the 1940s and

eventually they coined the term sphere bundles. Study of these objects continued,

leading to the general study of fiber bundles, and in 1951, Steenrod wrote the first

expository text in the subject, The Topology of Fibre Bundles [Ste51].

During the mid 20th century, physicists began to observe certain symmetries, called

“gauge” symmetries, of field theories. In the early 1950s, physicists Yang and
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Mills began their study of non-abelian gauge theories in order to understand the

so-called strong interactions. This eventually lead to the standard model of par-

ticle physics, which unifies three fundamental forces of physics in the language

of gauge theory. Though developed independently from the theory of fiber bun-

dles, the mathematical formalization of gauge theory can be understood in terms

of principal bundles, that is a fiber bundle with a fiber-preserving, regular action by

diffeomorphisms from a Lie group called the structure group of the bundle.

Since then, much of the study has focused on surface bundles, that is fiber bun-

dles whose fibers are 2-dimensional manifolds, particularly those whose bases are

themselves circles or surfaces. In this thesis, we will explore certain properties of

such surface bundles and generalize them to higher dimensions.

1.2 Low-Dimensional Manifolds and Their Fundamen-

tal Groups

As mentioned above, we will be discussing surface bundles over low-dimensional

manifolds, that is, surface bundles whose base space is a circle, surface, or 3-

manifold. As such, we need to understand certain properties of these spaces and

their fundamental groups. Since the fundamental group of the circle is simply the

free cyclic group, we will focus on the latter two.

2



1.2.1 Surfaces and Surface Groups

In general, when discussing surfaces, we refer to manifolds of dimension 2 which

are connected, orientable, and closed, that is, they are compact and without bound-

ary. Such surfaces are completely classified by their genus, so we denote the sur-

face of genus g by Σg. See Figure 1.1 for cartoon examples of these surfaces.

Figure 1.1: The sphere (S2 = Σ0), the torus (T 2 = Σ1), the surface of genus 2 (Σ2)

Typically, we focus on surfaces whose genera are at least two. We often refer to

such surfaces as hyperbolic surfaces due to the Gauss-Bonnet theorem. That is, when

Σg is endowed with a Riemannian metric of constant curvature κ, then

κ =
2πχ(Σg)

Area(Σg)
(1.1)

where χ(Σg) is the Euler characteristic of Σg. For surfaces, χ(Σg) = 2− 2g and thus

κ is negative—and hence Σg is hyperbolic—precisely when g ⩾ 2. A more detailed

explanation of this can be seen in an introductory text in differential geometry such

as [Kob95].

The fundamental group of a surface of genus g can be computed by considering Σg

as the quotient space obtained by taking a regular 4g-gon and identifying suitable

sides. With this model, we can use the Seifert-Van Kampen Theorem to compute
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the fundamental group of a surface as:

π1Σg =

〈
a1, . . . ,ag,b1, . . . ,bg

∣∣∣∣∣
g∏

i=1

[ai,bi]

〉
. (1.2)

Any group with such a presentation is referred to as the surface group of genus g and

is often denoted Πg. Moreover, any surface group can be realized as the funda-

mental group of a surface and in fact, Σg is an Eilenberg-MacLane space K(Πg, 1),

namely its homotopy groups are

πiΣg =


Πg if i = 1

{1} otherwise.

(1.3)

1.2.2 Punctured Surfaces and Free Groups

So far, we’ve been discussing closed surfaces, but there may be instances where

we’d like to consider surfaces with finitely many points removed. Such surfaces

are called punctured surfaces, denoted Σb
g where b is the number of points removed,

called punctures. A punctured surface admits a deformation retraction to a compact

subsurface with as many boundary components as the punctures in the original

surface.

Further, the punctured surface is homotopy equivalent to a wedge of circles. The

number of circles is equal to 2g+ b− 1 where g ⩾ 0 is the genus of the surface and

b ⩾ 1 is the number of punctures or boundary components. To see this, for a fixed
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Figure 1.2: A punctured surface deformation retracts to a compact surface with
one boundary component

g, one can induct on b. When b = 1, Σ1
g can deformation retract onto the 1-skeleton

of Σg—a wedge of 2g circles. With each additional puncture, the 1-skeleton gains

an extra circle.

So the fundamental group of a punctured surface is the free group of rank 2g+b−1,

π1Σ
b
g
∼= F2g+b−1 . (1.4)

Moreover, any free group of finite rank can be exhibited as the fundamental group

of a punctured surface.

1.2.3 3-manifolds and 3-manifold Groups

Unless otherwise stated, when we refer to the 3-manifolds, we mean manifolds of

dimension 3 which are connected, orientable, and closed.

Definition 1.1. The connected sum of two 3-manifolds N1 and N2 is a 3-manifold

N, denoted

N = N1#N2, (1.5)
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obtained by removing the interior of closed balls B1 and B2 from each of N1 and N2

respectively and gluing them together along their boundaries via an orientation-

reversing diffeomorphism of φ : ∂B1 → ∂B2, namely

N1#N2 = (N1 − Int(B1)) ∪φ (N2 − Int(B2)). (1.6)

Note that any two orientation-reversing self-diffeomorphisms of S2 are isotopic

and hence N1#N2 does not depend on φ.

A 3-manifold N is said to be prime if for any decomposition of the form (1.5), either

N1 = S3 or N2 = S3. A 3-manifold is irreducible if every embedded 2-sphere bounds

a 3-ball.

Consider an irreducible 3-manifold N expressed as a connected sum as in (1.5).

Let S denote the embedded 2-sphere in N given by the boundaries of Ni − Int(Bi).

Since N is irreducible, S bounds a 3-ball, say B ⊆ N. Since the components of N−S

are Ni − Bi, then either B ⊆ N1 − Int(B1) or B ⊆ N2 − Int(B2). Without loss of

generality, suppose the former. Since B is a compact submanifold of codimension

0 in the compact manifold N1 − Int(B1), they must be equal. Therefore, N1 =

B∪B1 = S3 and N is prime. From this, it follows that S3 itself is a prime 3-manifold.

Moreover, the only prime 3-manifold which is not irreducible is S2 × S1. More

information regarding prime 3-manifolds can be found in [Hat07] including proof

of the following theorem:
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Theorem 1.1 (PRIME DECOMPOSITION). Any 3-manifold N can be decomposed

as

N = N1#N2# · · ·#Nn (1.7)

where Ni are prime. Moreover, this decomposition is unique up to permutation

and inserting or removing S3.

Any non-prime 3-manifold N therefore admits a prime decomposition as in 1.7

where all Ni ̸∼= S3 and n > 1. In particular, π1Ni are nontrivial by the Poincaré

conjecture and thus

π1N = π1N1 ∗ · · · ∗ π1Nn (1.8)

is a proper free product. These decompositions of 3-manifolds and their fundamental

groups will be helpful for working with these objects. In the next section we will

see a useful property of the fundamental groups of non-prime 3-manifolds.

1.2.4 The Finitely Generated Normal Property of Groups

Definition 1.2. A group has the finitely generated normal (f.g.n.) property if each of

its non-trivial finitely generated normal subgroups has finite index.

This notation is taken from [KS73]. In the literature, such as [Cat03], this property is

often referred to as the NINF property since normal nontrivial subgroups of infinite

index are not finitely-generated. Here let’s see some examples.

Example 1.1. Surface groups Πg = π1Σg have the f.g.n. property for g ⩾ 2.
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A thorough proof of this classical result can be found in [Cat03].

Example 1.2. Free groups Fn have the f.g.n. property.

Proof. In the case where n = 1, follows since any nontrivial subgroup of Z has

finite index.

In the case where n ⩾ 2, consider Fn as the fundamental group π1Y where Y is a

wedge of n circles. If K is a non trivial finitely generated normal subgroup of π1Y ,

then let Z be the cover of Y corresponding to K, namely K = π1Z. Thus, K is a free

group and Z is a wedge of circles. Since K is finitely generated, Z is compact and

since standard covering theory shows that compact covers of a compact space are

of finite degree, K has finite index in π1Y.

Example 1.3. Proper free products, i.e. free products of non-trivial groups, have the

f.g.n. property.

The proof of this can be found in the last section of [Bau66].

1.3 Surface Bundles

Definition 1.3. A surface bundle structure on a space X, or surface fibering pf X,

is a locally trivial fiber bundle p : X → B such that all fibers are diffeomorphic

to a surface of genus at least 2, that is, every point b ∈ B admits a trivialization

8



neighborhood U with a diffeomorphism φ : p−1(U)→ Σ×U such that

p−1(U) Σ×U

U

φ

p πU
(1.9)

commutes. The surface p−1(b) ∼= Σ is called the fiber over b and we use the phrase

surface bundle over B, or simply a surface bundle, to describe the structure (X,p). We

refer to B as the base space and to X as the total space.

We will specifically study surface bundles whose base spaces are low-dimensional

manifolds such as circles, surfaces, or 3-manifolds, in which case the total space X

is also a manifold with dimension

dim(X) = dim(Σ) + dim(B) = 2+ dim(B) . (1.10)

Example 1.4. Given a manifold B and a hyperbolic surface Σ the space Σ× B is a

surface bundle with the projection map

p : Σ× B→ B : (x,b) 7→ b . (1.11)

We call such an example a trivial bundle since the trivialization neighborhood of

any point can be taken to be the entire base space B.

9



Example 1.5. Let Σ be a hyperbolic surface and φ : Σ → Σ be an orientation-

preserving diffeomorphism. The mapping torus of Σ with respect to φ,

Nφ :=
Σ× [0, 1]

(x, 0) ∼ (φ(x), 1)
(1.12)

admits a surface bundle structure

p : Nφ → S1 : [x, t] 7→ [t] (1.13)

with fiber Σ. The diffeomorphism type of Nφ is determined by isotopy type of φ,

that is, if φ0 is isotopic to φ1, then Nφ0
∼= Nφ1

. The isotopy class of φ is often

referred to as the monodromy of the bundle Nφ.

Example 1.6. Consider two hyperbolic surfaces Σ1 and Σ2. The trivial bundle in

this case admits two fiberings:

pi : Σ1 × Σ2 → Σi , (1.14)

one for each projection.

Given a surface fibering X → B over a connected manifold with connected fibers,

we get a long exact sequence of homotopy groups:

· · · → π2B→ π1Σ→ π1X→ π1B→ 1 (1.15)
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where Σ is the fiber and the map π1Σ→ π1X is the map induced by the inclusion of

Σ ↪→ B. The proof of this statement can be found in introductory texts to algebraic

topology such as [Hat02]. In many cases of our interest, the map π2B → π1Σ is

trivial. For example, if B has a contractible universal cover, as in the case where

B = S1 or B is a hyperbolic surface, then the long exact sequence becomes a short

exact sequence

1→ π1Σ→ π1X→ π1B→ 1 . (1.16)

For a given space X, we may wonder whether it admits more than one surface

bundle structure. We can see from Example 1.6 that it is possible for a space to

have multiple surface fiberings. In order to study this further, we should first

clarify what it means for surface bundles structures to be distinct.

Definition 1.4. Two surface fiberings p1 : X → B1 and p2 : X → B2 are fiberwise

diffeomorphic if there exist diffeomorphisms φ : X → X and α : B1 → B2 such that

the following diagram commutes:

X X

B1 B2

p1

φ

p2

α

(1.17)

This definition is an equivalence of surface fiberings, but one may find it too coarse

for some purposes. For example, the fiberings in Example 1.6 would be reasonably

expected to be distinct, which is the case in most instances. However, in the case

11



where Σ1 = Σ2, we can use the diffeomorphisms φ : Σ1 × Σ2 → Σ1 × Σ2 defined by

φ(x,y) = (y, x) and let α be the identity map Σ1 → Σ2. This satisfies the definition

above.

Definition 1.5. Two surface fiberings X → B1 and X → B2 are π1-fiberwise diffeo-

morphic if they are fiberwise diffeomorphic and φ∗(π1Σ1) = π1Σ1 where Σ1 is the

fiber of X→ B1 and we identify π1Σ1 with the kernel of π1X→ π1B1.

In Example 1.6, if Σ1 = Σ2, then φ∗(π1Σ1⊕1) = 1⊕π1Σ2. Therefore, the projections

p1 and p2 are fiberwise diffeomorphic but not π1-fiberwise diffeomorphic.

In general, if p1 : X → B1 and p2 : X → B2 are fiberwise diffeomorphic, it follows

that φ∗(π1Σ1) = π1Σ2. So we get the following commutative diagram with exact

rows:

1 π1Σ1 π1X π1B1 1

1 π1Σ2 π1X π1B2 1

φ∗ φ∗ α∗ (1.18)

In particular, if p1 and p2 are π1-fiberwise diffeomorphic, then φ∗ restricts to an

automorphism of π1Σ1 and so π1Σ1 = π1Σ2. In fact, the converse is true as shown

in Proposition 2.1 of [Sal16]. Therefore, we introduce the following definition:

Definition 1.6. We say two surface bundle structures on X are equivalent if their

induced maps on fundamental groups have the same kernel.

We can call a surface fibering p : X→ B unique if all other surface fiberings of X are

equivalent to p. However, in many cases, a fibering is not unique. In fact, we can

12



ask how many ways a surface bundle fibers. As such, we introduce the following

definition.

Definition 1.7. Given a surface bundle X, the surface fibering number is given by

sFib(X) = #
{

surface fiberings p : X→ B
}
/ ∼ ∈ N ∪ {∞} (1.19)

where p1 ∼ p2 if and only if they are equivalent.

Given a surface bundle p : X→ B over a manifold B, consider the induced map on

cohomology p∗ : H1(B;Z)→ H1(X;Z). By identifying H1(X;Z) = Hom(π1X,Z) and

H1(B;Z) = Hom(π1B,Z), we can realize p∗ by defining p∗(α) = α ◦ p∗ where p∗ is

the map induced on fundamental groups.

π1X π1B

Z

p∗

p∗α
α (1.20)

Moreover, since the map p∗ is surjective, if p∗α = α ◦ p∗ = 0, then α = 0. Thus p∗

is injective and in particular

b1B ⩽ b1X. (1.21)

The injectivity of p∗ allows us to think of H1(B;Z) as a subgroup of H1(M;Z) or by

considering rational coefficients, H1(B;Q) as a vector subspace of H1(M;Q).

13



1.3.1 Fibered 3-manifolds and Seifert-Fibered Spaces

A 3-manifold may admit bundle structures as either a surface bundle over a cir-

cle or as a circle bundle over a surface; in fact, the trivial bundle shows that a

3-manifold can admit both structures simultaneously. In the study of 3-manifold

topolgy, the phrase fibered 3-manifold usually refers to the former, but not the latter.

For the sake of this thesis, we will study surface bundles over circles as a starting

point for studying surface bundles in general and we will look at circle bundles

over surfaces as groundwork for exploring surface bundles over 3-manifolds.

circle bundle surface bundle

base Σg S1

fiber S1 Σg

Surface Bundles Over Circles

As discussed in Example 1.5, a mapping torus is an example of a surface bundle

over the circle. In fact, this is the only example of a surface bundle over a circle. To

see this, we use the following bijective correspondence, valid for any dimension of

base manifold B:

{ Isomorphism classes of

oriented Σ- bundles over B

}
←→


Conjugacy classes of

representations

ρ : π1B→ MCG(Σ)

 (1.22)

14



where MCG(Σ) is the mapping class group of Σ, that is the group of isotopy classes

of orientation-preserving diffeomorphisms Σ → Σ. A more thorough discussion

of this correspondence can be found in [FM12] in its full generality, however in

the case where B = S1 and hence π1B = Z, the image of ρ is the cyclic subgroup

generated by some mapping class of Σ. In particular, a mapping torus Nφ will

correspond with the representation ρ : Z → MCG(Σ) given by 1 7→ [φ]. So any

Σ-bundle over S1 is equivalent to the mapping torus with monodromy given by

the generator of ρ(Z).

Since π2S
1 is trivial, then a surface fibering N → S1 of a 3-manifold N determines

the short exact sequence

1→ π1Σ→ π1N→ Z→ 1. (1.23)

Since π1Σ is a normal finitely-generated subgroup of infinite index in π1N, the fun-

damental group of a surface bundle over a circle does not have the f.g.n. property.

In [Thu86], Thurston describes a norm on H2(N;R) for any 3-manifold N with

b1N > 0. The unit ball with this norm is a polyhedron with vertices at points

in H2(N;Q) ⊆ H2(N;R). Moreover, if N admits a fibering N → S1 with fiber Σ,

then [Σ], called a fibered class, determines a ray in H2(N;R) which passes through

a top-dimensional face of the polyhedron. Moreover, Thurston determines that

any other ray of rational slope through this face is determined by the fiber of some

other non-equivalent surface fibering of N.

15



In particular, if b1N > 1, then sFib(N) = ∞. In the case of a fibered 3-manifold

with b1N = 1, we claim sFib(N) = 1. The techniques used to prove this claim are

generalized and used to prove Lemma 2.2.

Circle Bundles Over Surfaces and Seifert-fibered Spaces

Another class of 3-manifolds which admit fibrations are circle bundles over sur-

faces, that is, locally trivial fiber bundles over surfaces whose fibers are circles.

Assuming the base surface Σ is hyperbolic, then a circle bundle N induces a short

exact sequence

1→ Z→ π1N→ π1Σ→ 1 (1.24)

and since Z is a normal finitely-generated normal subgroup of infinite index, the

fundamental group of N does not have the f.g.n. property.

A generalization of circle bundles over surfaces are Seifert-fibered spaces, which are

3-manifolds which can be decomposed as a disjoint union of copies of embedded

circles called fibers so that each fiber has a tubular neighborhood which is a standard

fibered torus, that is, the mapping torus of an open disc with respect to rotation by

a rational multiple of 2π. We refer to fibers where this is rotation by an integer

multiple of 2π as ordinary fibers and otherwise refer to the fiber as exceptional, of

which there are only finitely many. The quotient given by identifying the fibers

is a surface with certain marked points, called orbifold points, corresponding to the

exceptional fibers. We call this quotient an orbisurface. The fundamental group of a

16



Seifert-fibered space admits the exact sequence

Z→ π1N→ πorb
1 Σ→ 1 (1.25)

where πorb
1 Σ is the orbifold fundamental group of Σ. Except in the case where N is

a spherical 3-manifold—that is a 3-manifold which is finitely covered by the 3-

sphere—the map Z → π1N will be injective and πorb
1 Σ is infinite, hence π1N does

not have the f.g.n. property.

3-manifold Groups and the Finitely Generated Normal Property

We’ve seen in this section three classes of 3-manifolds whose fundamental groups

lack the f.g.n. property, namely

• surface bundles over circles,

• circle bundles over surfaces of genus at least 1, and more generally,

• aspherical Seifert-fibered spaces.

All of which are prime since any non-prime 3-manifold can be decomposed as

N = N1#N2 with N1 ̸∼= S3 ̸∼= N2 and thus

π1N = π1(N1#N2) = π1N1 ∗ π1N2 (1.26)

17



would be a free product of nontrivial groups and by Example 1.3 would satisfy the

f.g.n. property.

One might wonder what other types of 3-manifolds have fundamental groups

which fail to satisfy the f.g.n. property. The following theorem from [Hem76] elab-

orates on this question.

Theorem 1.2. Let N be a 3-manifold and K a finitely generated normal subgroup

of π1N with infinite quotient Q. Then one of the following happens:

1. K ∼= Z, in which case N is Seifert-fibered over a surface Σ.

2. K is a surface group and Q contains a finite normal subgroup H so that the

following diagram commutes:

1 1

π1Σ H

1 K π1N Q 1

Q/H

1 1

(1.27)

where either

(a) Q/H ∼= Z, in which case N is a Σ-bundle over S1, or

18



(b) Q/H ∼= Z2 ∗ Z2, in which case N has a two-sheeted regular cover which

is a Σ-bundle over S1 arising from the following diagram:

1 1

1 π1Σ π1Ñ Z 1

1 π1Σ π1N Z2 ∗ Z2 1

Z2 Z2

1 1

(1.28)

We can summarize this theorem by saying that the only 3-manifolds whose funda-

mental groups do not have the f.g.n. property are finitely covered by a surface bun-

dle over a circle or are Seifert-fibered space. Moreover the only nontrivial finitely

generated normal subgroups of infinite index in 3-manifold groups are surface

groups or Z.

1.3.2 Surface Bundles Over Surfaces

In this section, we will see how surface bundles over surfaces are similar to and dif-

fer from surface bundles over circles as well as look at examples of surface bundles

over surfaces.

Given a surface bundle p : M→ Σ over a surface, we’ve seen that we can consider

H1(Σ;Q) as a vector subspace of H1(M;Q) since p∗ : H1(Σ;Q)→ H1(M;Q) is injec-
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tive. The following lemma shows how distinct fiberings interact with each other

in cohomology.

Lemma 1.3. Consider a 4-manifold M with non-equivalent surface-fiberings p1 : M→

Σ1 and p2 : M→ Σ2 over hyperbolic surfaces Σ1 and Σ2. Then

p∗
1(H

1(Σ1;Q)) ∩ p∗
2(H

1(Σ2;Q)) = {0} ⊆ H1(M;Q). (1.29)

This result can be found as Lemma 3.3 in [Sal16] and a proof of a more general

result can be found in the following chapter.

In particular, if M is a surface bundle over a hyperbolic surface Σ where b1Σ =

b1M, then this surface bundle structure is unique. This is analogous to the case of

a surface bundle N over S1 and b1N = 1. In fact, we can take this idea a bit further

with the following corollary:

Corollary 1.4. Suppose p : M → Σ is a surface bundle structure on a 4-manifold

M. If b1M < b1Σ+ 4, then p is unique.

Proof. Suppose M admits distinct surface bundle structures p1 : M→ Σ1 and p2 : M→

Σ2 where Σ2 has genus g. By Lemma 1.3,

b1M ⩾ b1Σ1 + b1Σ2 (1.30)

Since b1Σ2 = 2g and g ⩾ 2, then b1M ⩾ b1Σ1 + 4.
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This result also shows that the case where b1Σ < b1M does not necessarily follow

analogously to the lower dimensional case, since a surface bundle over S1 admits

infinitely many surface bundle structures whenever 1 < b1N. Moreover, it fol-

lows from [Joh94] that any 4-manifold admits at most finitely many surface bun-

dle structures over hyperbolic surfaces. In fact, we see in [Sal15] that given any

positive integer n, there is a 4-manifold which admits at least n distinct surface

bundle structures. Salter’s proof of this is constructive; it builds 4-manifolds with

n distinct surface fiberings, but it is not clear whether the constructed manifolds

admit any other surface bundle structures.

Constructing the Atiyah-Kodaira Fibration

In [Kod67] and [Ati69], Kodaira and Atiyah independently developed constuc-

tions of a 4-manifold which admits two distinct nontrivial fiberings. Here, we will

see the construction of this useful example of a nontrivial surface bundle. We pro-

vide the full details here since we will discuss a modification to this construction

in chapter 3.

Start with the compact oriented surface Σ2 of genus 2. Consider a double cover

of Σ2 by a surface Σ3 of genus 3. The deck transformation of this cover gives a

free Z2-action on Σ3. Denote by ι the involution on Σ3 given by the nontrivial deck

transformation.
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We define the map

ρ : π1(Σ3)
Ab−→ H1(Σ3;Z)

mod 2−−−→ H1(Σ3;Z2) ∼= Z⊕6
2 (1.31)

There exists a regular cover f : Σh → Σ3 such that ker(ρ) ∼= π1(Σh). Moreover, f is

cover of degree

[π1(Σ3) : π1(Σh)] =
∣∣Z⊕6

2

∣∣ = 64. (1.32)

Covering space theory says tells us that

χ(Σh) = 64χ(Σ3) (1.33)

2− 2h = 64(2− 2 · 3) (1.34)

h = 129 (1.35)

Consider the graphs Γf = {x, f(x)} ⊆ Σ129 × Σ3 and Γιf = {x, ιf(x)} ⊆ Σ129 × Σ3 of f

and ι ◦ f respectively. Since ι has no fixed points, then Γf ∩ Γιf = ∅. Moreover, these

graphs represent cohomology classes in H2(Σ129 × Σ3;Z) and it can be shown that

[Γf] + [Γιf] is even.

As a result [BPVdV84], we can construct a degree 2 branch cover branched along

Γf ⊔ Γιf, call this surface MAK. So we have a 2-fold branch cover

φ : MAK → Σ129 × Σ3 (1.36)

22



which we post compose with projection onto Σ129 to get

MAK → Σ129, (1.37)

a surface bundle over Σ129. To determine the fiber, pick a point x ∈ Σ129. The

preimage of this point with respect to the projection is {x}×Σ3 and the preimage of

this with respect to φ is a double branch cover of Σ3 branched at 2 points, f(x) and

ιf(x). The Hurwitz formula tells us that the genus of this branch cover is given by

2g− 2 = 2(2 · 3− 2) + 2 (1.38)

g = 6. (1.39)

So MAK fibers as

Σ6 ↪→ Z ↠ Σ129 (1.40)

Alternatively, we could post compose with the other projection giving a fibering

MAK → Σ3 (1.41)

Pick x ∈ Σ3. The preimage of this point with respect to the projection is Σ129 × {x}.

Note this intersects the ramification locus at f−1(x)∪f−1(ιx). Since f is a 64-sheeted

cover, this is a discrete set of 128 points. The preimage of Σ129 with respect to φ is a

double branch cover of Σ129 branched at these points. Again applying the Hurwitz

23



formula, the fiber is a surface with genus given by

2g− 2 = 2(2 · 129− 2) − 128 (1.42)

g = 321. (1.43)

So MAK also fibers as

Σ321 ↪→MAK ↠ Σ3 (1.44)

While both fiberings were known since their initial discovery in the 1960s, it wasn’t

until [Che18] when Chen proved that indeed sFib(MAK) = 2.
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Chapter 2

Surface-Bundles Over 3-manifolds

Given a surface bundle p : X → B with base either S1 or a surface Σ, the following

table summarizes the relationship between the Betti numbers of the base and total

spaces with the number of distinct fibering of the total space:

b1B = b1X b1B < b1X

B = S1 sFib(X) = 1 sFib(X) = ∞
B = Σ sFib(X) = 1 1 ⩽ sFib(X) < ∞

In this chapter, we will explore the case when B is a 3-manifold and answer analo-

gous questions to those answered by this table.
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2.1 Almost Unique Surface-Fibered 5-manifolds

In this section, we will explore a generalization of Lemma 1.3 in purely in terms of

group theory and see how it applies to surface bundles over 3-manifolds.

2.1.1 A Group Theoretic Generalization of Lemma 1.3

The following two lemma approach the proof of Lemma 1.3 in terms of only the

abstract group theoretic properties.

Lemma 2.1. Let G be a group which admits epimorphisms p1 : G → Q1 and

p2 : G → Q2 with distinct finitely generated non-trivial kernels K1 and K2 respec-

tively.
1

K2

1 K1 G Q1 1

Q2

1

p1

p2

(2.1)

If [Q1 : p1(K2)] < ∞, then

p∗
1(Hom(Q1,Q)) ∩ p∗

2(Hom(Q2,Q)) = {0} . (2.2)
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Proof. Firstly, we notice that if a character α ∈ Hom(G,Q) vanishes on a finite

index subgroup of G, then α = 0. To see why, consider such a character α. Since it

vanishes on a finite index subgroup of G, ker(α) has finite index in G. Therefore,

G/ ker(α) is a finite subgroup of Q. However, the only finite subgroup of Q is the

trivial group. Thus α = 0.

Take α ∈ p∗
1(Hom(Q1,Q))∩p∗

2(Hom(Q2,Q)) ⊆ Hom(G,Q). Since α ∈ p∗
1(Hom(Q1,Q)),

then α = p∗
1(β), for some β ∈ Hom(Q1,Q). In particular, if k ∈ K1, then α(k) =

β(p1(k)) = β(0) = 0, so α vanishes on K1. Similarly, α also vanishes on K2, and

thus vanishes on the product of the subgroups K1 and K2,

K1K2 = {k1k2 : ki ∈ Ki} . (2.3)

Since Ki are normal subgroups, then so is K1K2. It suffices to show that K1K2 is

finite index.

Indeed, the composition

G→ Q1 → Q1/p1(K2) (2.4)

has kernel exactly K1K2. Since [Q1 : p1(K2)] < ∞, then K1K2 has finite index in

G.

Lemma 2.2. Let G be a group which admits epimorphisms p1 : G → Q1 and

p2 : G → Q2 with distinct finitely generated non-trivial kernels K1 and K2 respec-

tively such that either of the following are true:
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1. K1 and Q1 have the f.g.n. property and Q2 contains no finite normal sub-

groups

2. Q1 and Q2 have the f.g.n. property.

Then

p∗
1(Hom(Q1,Q)) ∩ p∗

2(Hom(Q2,Q)) = {0}. (2.5)

Proof. Firstly notice that if either Qi is finite, the equality 2.5 is satisfied trivially

since Hom(Qi,Q) = {0} when Qi is finite. For the remainder of this proof, we will

assume both Qi are infinite.

Let Γ = p1(K2), a finitely-generated normal subgroup of Q1. In either case, Q1 has

the f.g.n. property, so either

(i) Γ is trivial, or

(ii) [Q1 : Γ ] is finite.

If Γ = 1, then K2 ⊴ K1. We consider the short exact sequence

1→ K1/K2 → Q2 → Q1 → 1 . (2.6)

Given case (1), since K1 has the f.g.n. property and K2 is finitely generated and

nontrivial, then [K1 : K2] is finite. We see that K1 = K2 since Q2 contains no normal

28



finite subgroups. However, this contradicts the assumption that K1 and K2 are

distinct.

Given case (2), since Q2 has the f.g.n. property and Q1 is infinite, the short exact

sequence 2.6 shows that K1/K2 is a finitely generated normal subgroup of Q2 with

infinite index and hence must be trivial. Therefore, K1 = K2, contradicting the

assumption that they are distinct.

In either case, we get that [Q1 : Γ ] is finite, so the result follows from Lemma 2.1.

We can take this result and apply it to surface bundles over certain 3-manifolds.

2.1.2 Applying Lemma 2.2 to Surface Bundles Over 3-manifolds

Theorem 2.3. If p1 : X → N1 and p2 : X → N2 are distinct surface bundles over

3-manifolds N1 and N2 and π1N1 has the f.g.n. property, then

p∗
1(H

1(N1;Q)) ∩ p∗
2(H

1(N2;Q)) = {0} . (2.7)

Proof. If π1N2 is finite, then the equality 2.7 is satisfied trivially as in the proof of

Lemma 2.2. For the remainder of this proof, we shall assume that π1N2 is infinite.

First, identify H1(X;Q) = Hom(π1X,Q). Since pi are distinct surface bundles, then

the kernels of pi∗ are distinct surface subgroups of π1X; in particular, the kernels

are finitely generated and satisfy the f.g.n. property.
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If N2 is not prime, then in particular, π1N2 has the f.g.n. property, so the result

follows from Lemma 2.2 part 2.

If N2 is prime, then we claim that π1N2 contains no normal finite subgroups. To see

this, suppose H ⩽ π1N2 is such a subgroup. In particular, H would have infinite

index in π1N2. By Theorem 1.2, H would be either be a copy of Z or a surface

group, neither of which is finite. Thus π1N2 contains no non-trivial normal finite

subgroups and therefore the result follows from Lemma 2.2 part 1.

Theorem 2.4. Let p : X→ N be a surface bundle over a 3-manifold such that π1N

has the f.g.n. property and b1X = b1N, then any other surface fibering of X has a

rational homology sphere as a base space.

Proof. Suppose π : X→ N ′ is another surface fibering of X. Then by Theorem 2.3,

p∗(H1(N;Q)) ∩ π∗(H1(N ′;Q)) = {0} ⊆ H1(X;Q) . (2.8)

Since b1N = b1X, p∗(H1(N;Q)) = H1(X;Q) and thus H1(N ′;Q) = {0}. By Poincaré

duality, H2(N ′;Q) = {0} and so N ′ is a rational homology sphere.

An important note regarding the results in this section is that the fundamental

groups of the base 3-manifolds have the f.g.n. property. We now explore examples

where this fails to be true.
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2.2 Examples of 5-manifolds With Multiple Surface-

Fiberings

In this section we will discuss some general methods for constructing 5-manifolds

with multiple surface bundle structures. All of these examples will have a base

space which is a surface bundle over a circle, and hence lack the f.g.n. property.

2.2.1 Trivial Bundles With Multiple Fiberings

Example 2.1. Consider a 3-manifold N with a surface fibering p : N → S1 with

fiber F. Given any hyperbolic surface Σ, we can take the trivial Σ-bundle over N,

q : Σ×N→ N. We can construct another fibering of the total space by

id×p : Σ×N→ Σ× S1 : (x,y) 7→ (x,p(y)). (2.9)

These fiberings are not equivalent since the kernel of q∗ : π1(Σ × N) → π1N is

π1Σ× {1} while the kernel of (id×p)∗ : π1(Σ×N)→ π1(Σ× S1) is {1}× π1F.

We can use this construction to exhibit two examples of interest.

Theorem 2.5. There is a surface bundle over a 3-manifold p : X → B with b1X =

b1B and sFib(X) > 1.

Proof. Let N be a surface-fibered 3-manifold with b1N = 1. We could construct

such a 3-manifold using 0-surgery on a fibered knot of genus at least one. A more
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detailed explanation of such a construction can be found in [Rol76]. Further, let

Σ be some hyperbolic surface. By the construction described above, Σ × N fibers

trivially over N and also fibers over Σ× S1, so

sFib(Σ×N) ⩾ 2. (2.10)

Moreover, b1(Σ×N) = b1(Σ× S1).

Theorem 2.6. There is a 5-manifold X with sFib(X) = ∞.

Proof. Let N be a surface-fibered 3-manifold with b1N > 1. In particular, N admits

infinitely many surface bundle structures. For each fibering, pα : N → S1, Σ × N

admits a distinct surface bundle structure over Σ× S1, namely id×pα.

2.2.2 Pullback Bundles

We can generalize the construction above to a non-trivial bundle with multiple

surface bundle structures.

Example 2.2. Suppose p1 : N1 → S1 and p2 : N2 → S1 are distinct surface bun-

dles with fibers F1 and F2 respectively. Let X be the pullback p∗
1N1 = p∗

2N2 and

q1 : X→ N1 and q2 : X→ N2 be the projection maps so that the following diagram

commutes.
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X N1

N2 S1

q2

q1

p1

p2

(2.11)

More explicitly,

X = {(x1, x2) ∈ N1 ×N2 : p1(x1) = p2(x2)} (2.12)

and the maps qi are the projections onto the first and second coordinate respec-

tively. With this construction, it is easy to see that q1 is a fiber bundle with fiber

q−1
1 (x) = ({x}×N2) ∩ X (2.13)

= {(x, x2) : p2(x2) = p1(x)} (2.14)

= {x}× p−1
2 (p1(x)) (2.15)

= {x}× F2 (2.16)

∼= F2 (2.17)

and similarly, q2 is a fiber bundle with fiber q−1
2 (x) ∼= F1. Moreover, if we take a

fixed θ ∈ S1 then

q−1
1 (p−1

1 (θ)) = q−1
2 (p−1

2 (θ)) = F1 × F2 ⊆ X ⊆ N1 ×N2. (2.18)

In fact, X is the total space of a fiber bundle over S1 with fiber F1 × F2 where the

bundle structure is given by the map p := p1 ◦ q1 = p2 ◦ q2 : X → S1. If N1 is the
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mapping torus of φ1 : F1 → F1 and N2 is the mapping torus of φ2 : F2 → F2, then X

is the mapping torus of

φ : F1 × F2 → F1 × F2 : (x1, x2) 7→ (φ1(x1),φ2(x2)) (2.19)

To see how this generalized the previous example, notice that if N1 is any surface

bundle over a circle and N2 is a trivial bundle over a circle, then X is equivalent to

a trivial bundle over N1.

Lemma 2.7. If X is constructed as in Example 2.2, then the following diagram

commutes:
π1N1 MCG(F2)

π1S
1

ρq1

p1∗
ρp2

(2.20)

where ρq1 and ρp2 are the monodromy representations of q1 and p2 respectively.

Proof. Since N1 is the total space of an F1-bundle over S1, it determines a short exact

sequence

1→ π1F1 → π1N1 → π1S
1 → 1. (2.21)

We claim that ρq1
(π1F1) = [id] ∈ MCG(F2). Indeed, we see that the bundle struc-

tures qi : X → Ni restrict to the trivial bundle structures F1 × F2 → Fi and thus
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ρq1
(π1F1) acts trivially on F2. Hence ρq1

factors through π1S
1, namely

π1N1 MCG(F2)

π1S
1

ρπ1

p1∗
g

(2.22)

It remains to show g = ρp2
. Since p1∗ is induced by p1 this follows from the com-

muting square 2.11.

Theorem 2.8. There is a 5-manifold X with surface fiberings p1 : X → N1 and

p2 : X→ N2 such that

b1X = b1N1 = b1N2 = 1. (2.23)

Proof. Let p1 : N1 → S1 and p2 : N2 → S1 be surface bundles such that b1N1 =

b1N2 = 1 and let X be the pullback bundle as described above. It follows from

[Mor87] that there are splittings

H1(X;Q) ∼= H1(N1;Q)⊕H1(F2;Q)π1N1
(2.24)

and

H1(N2;Q) ∼= H1(S
1;Q)⊕H1(F2;Q)π1S1 (2.25)
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where H1(F2;Q)π1N1
and H1(F2;Q)π1S1 are the coinvariant homology of the bundles

π1 and p2 respectively, namely

H1(F;Q)π1B = H1(F;Q)/{v− gv : g ∈ π1B} (2.26)

where the action of π1B on H1(F;Q) is induced by the monodromy representation;

that is, if ρ : π1B → MCG(F) is the monodromy representation of a surface bundle

over B, then gv = ρ(g)∗(v) for v ∈ H1(F;Q). Further, it follows from Lemma 2.7

that ρπ1(π1N1) = ρ2(π1S
1) and thus

H1(F2;Q)π1N1
∼= H1(F2;Q)π1S1 . (2.27)

Since b1N2 = b1S
1 = 1, H1(F2;Q)π1S1 = 0 by 2.25 and hence H1(F2;Q)π1N1

= 0.

Therefore H1(X;Q) ∼= H1(N1;Q) by 2.24.

2.3 Further Questions

Question 2.1. The examples of surface bundles over 3-manifolds we’ve constructed

in this chapter have at least 2 surface bundle structures and we’ve seen that one

can construct a 5-manifold with infinitely many surface bundle structures. Does

there exist a 5-manifold X with sFib(X) < ∞?
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Question 2.2. Examples 2.1 and 2.2 construct 5-manifolds which admit multi-

ple surface bundle structures, but in both cases, all of the base spaces are surface

fibered 3-manifolds. Does there exist a 5-manifold with multiple surface bundle

structures, at least one of which has a base space whose fundamental group satis-

fies the f.g.n. property?
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Chapter 3

Free-by-Surface Groups

Following the notation of [Joh94], we will refer to the class of groups which can

be realized as the fundamental group of a surface of finite type by D. In the lan-

guage introduced in Chapter 1, this is the union of the class of surface groups with

the class of free groups. A group extension of a D-group by another D-group is

referred to as a D2-group. These D2-groups come in four types:

• Surface-by-surface group: A group extension of a surface group by another

surface group.

• Free-by-free group: A group extension of a free group by another free group.

• Surface-by-free group: A group extension of a surface group by a free group.

• Free-by-surface group: A group extension of a free group by a surface group.
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Note that the group cohomological dimension of a group of the first two types on

this list would be 4 and 2 respectively, whereas that of the latter two types would

be 3.

In Chapter 1, we discussed surface bundles over surfaces and the fundamental

groups of the total spaces of such bundles are D2-groups of the first type on the

list above. Moreover, for each surface bundle structure a 4-manifold admits, its

fundamental group admits a D2-structure of the first type. In this chapter, we will

discuss a topological approach at constructing groups with multiple D2-structures

of the last type.

3.1 Multisections

Definition 3.1. A multisection, or a k-section of a surface bundle p : X → B is a

submanifold S ⊆ X such that the restriction p|S : S→ B is a degree k cover.

In [BH16], the authors use a similar definition in the broader context of Lefschetz

fibrations.

Lemma 3.1. If S is a k-section of surface bundle p : X → B over a hyperbolic

surface B, with fiber Σg, then the restriction p̂ = p|X−S is a fiber bundle over B with

fiber Σk
g, that is Σg with k points removed.

Proof. Fix a point b ∈ B and let U be a trivialization neighborhood of p around b

which is evenly covered by p|S. We claim U is a trivialization neighborhood of p̂.
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We can see that

p̂−1(U) = p−1(U) − S (3.1)

Since U is a trivialization neighborhood of p, then there is a diffeomorphism

φ : p−1(U)→̃U× Σg (3.2)

Since U is evenly covered by p|S, then p−1(U) ∩ S is made up of components

{U1, . . . ,Uk}, each diffeomorphic to U. Since S is transverse to the fibers of p,

φ(Ui) = U× {xi} for some xi ∈ Σg. So φ(p̂−1(U)) = U× (Σg − {x1, . . . , xk}).

This strategy allows us to take existing surface bundles and turn them into punc-

tured surface bundles over surfaces, that is, surface bundles over surfaces where

the fibers are punctured surfaces. In particular, the fundamental groups of such

bundles are groups G which admit group extensions of the form

1→ Fn → G→ Πh → 1 (3.3)

where h is the genus of the base surface and n = 2g + k − 1, where n is the genus

of the fiber and k is the number of punctures in the fiber respectively. Such an

extension is called a free-by-surface structure of G.
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3.2 Groups With Multiple Free-by-Surface Structures

We start with the simplest example.

Example 3.1. Given a surface Σ, the space X = Σ× Σ−∆ has fundamental group

with two free-by-surface structures.

The product Σ× Σ admits two trivial fiberings

p1 : Σ× Σ→ Σ : (x,y) 7→ x (3.4)

and

p2 : Σ× Σ→ Σ : (x,y) 7→ y . (3.5)

The diagonal ∆ = {(x, x)} ⊆ Σ × Σ is a 1-section of both pi. Thus by Lemma 3.1,

the restrictions p̂i = pi|Σ×Σ−∆ are surface fiberings with base Σ and fiber Σ∗, that

is Σ with one point removed. Note that p̂i are distinct since pi are. If g is the

genus of the surface Σ, then the fundamental group of X admits two inequivalent

D2-structures as

1→ F2g → π1X
p̂i∗−−→ Πg → 1. (3.6)

Note, though the kernels of p̂i∗ are distinct, they are both isomorphic to F2g. Next,

we will generalize this example to one where that is not the case.

Example 3.2. Consider a covering map f : Σg → Σh. The complement C of the

graph Γf of f in Σg×Σh has fundamental group with two free-by-surface structures.
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Similarly to Example 3.1, the graph Γf is a multisection of the projections

p1 : Σg × Σh → Σg : (x,y) 7→ x (3.7)

and

p2 : Σg × Σh → Σh : (x,y) 7→ y . (3.8)

The graph Γf is simultaneously a 1-section of p1 and an n-section of p2 where n is

the degree of f. Therefore, the fundamental group of C admits D2-structures as

1→ F2h → π1C
p1∗−−→ Πg → 1 (3.9)

and

1→ F2g+n−1 → π1C
p2∗−−→ Πh → 1. (3.10)

Example 3.3. The Atiyah-Kodaira fibration contains a submanifold which is a

multisection of the two fiberings described in Chapter 1.

Let MAK denote the Atiyah-Kodaira bundle as constructed in Chapter 1 with sur-

face fiberings p1 : MAK → Σ129 and p2 : MAK → Σ3. Recall that MAK is a branch

cover of Σ129×Σ3 along the Γf∪Γιf. Let Γ ⊆MAK be the inverse image of the branch

locus.

Firstly, we notice that Γ is a 2-section of p1. Since p1 has fiber Σ6, then the restriction

p̂1 = p1|MAK−Γ has fiber Σ2
6. Thus the fundamental group of MAK − Γ admits an
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extension as

1→ π1Σ
2
6 → π1(MAK − Γ)→ π1Σ129 → 1 (3.11)

or equivalently,

1→ F13 → π1(MAK − Γ)→ Π129 → 1 (3.12)

since the fundamental group of Σ2
6 is a free group of rank 2(6) + 2− 1 = 13.

Similarly, we notice that Γ is 128-section of p2. Since p2 has fiber Σ321, then the

restriction p̂2 has fiber Σ128
321 and thus MAK − Γ also admits a short exact sequence

1→ F769 → π1(MAK − Γ)→ Π3 → 1 (3.13)

since the fundamental group of Σ128
321 is a free group of rank 2(321) + 128− 1 = 769.

3.3 Further Questions

Question 3.1. Do there exist any non-product groups which simultaneously ex-

tend a free group by a surface group and a surface group by a free group?
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