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ABSTRACT 

Silicon compilation is a term used for many different purposes. In this paper we define,fiili­
con compilation as a mapping from some higher level description into layout. We define the basic 
issues in structural and behavioral silicon compilation and some possible solutions to those issues. 
Finally, we define the concept of an intelligent silicon compiler in which the compiler evaluates 
the quality of the generated design and attempts to improve it if it is not satisfactory. 



1. INTRODUCTION 

The term silicon compilation was introduced by Dave Johannsen at Caltech [Joha79], 
where he used it to describe the concept of assembling parameterized layout modules. This 
term is now quite popular, and is used in a variety of different contexts throughout the IC 
CAD community. 

In a narrow sense, silicon compilation is extension of the standard cell approach 
where standard cells are replaced by parameterized cell compilers. These cell compilers allow 
users to customize the cell functional, electrical, and layout parameters. In the case of simple 
cells, such as NAND and NOR gates, the-us~r specifies the number of inputs, chooses among 
several drive buffers, and selects the position of 1/0 ports around the boundary of the cell. 
More recently, compilers for microarchitectural components such as ROMs, RAMs, PLAs, 
and ALUs were added to the basic SSI set. Since the number of options increases with the 
complexity, special forms or menus are provided for the specification of compiler -parameters .. 

In a much broader sense, silicon compilation is a translation process from a higher-level 
description into layout. Here, a higher-level description defines a description that hides 
details from the user, and is not just a textual equivalent of the layout. This translation pro­
cess is broken down into several steps, with each step considered as a compiler for that level. 
Using this hierarchy, one can define a microarchitecture compiler that translates a higher 
level description into a set of registers, buses, and ALUs; or a silicon compiler that translates 
a structural description into layout. 

The silicon compilation process is represented by the tripartite representation of design 
(Y-chart) shown in Figures l(a) and l(b) [GaKu83]. The three axes represent three different 
domains of description: behavioral, structural, and geometrical. Multiple levels of abstrac­
tion (or detail) are represented along each axis, and the information level becomes more 
abstract as one moves away from the vertex. 

In the behavioral domain, the most important aspect of a design is its function and not 
its implementation. In this domain, the design is treated as a "black box" with a specified 
set of inputs, a set of outputs, and a set of functions describing the behavior of each output as 
a function of the inputs and time. For example, the boolean expression "x = a'b + ab' after 
30 ns" (Figure 2(a)) gives only the functional specification of a cell whose output (x) becomes 
logical one 30ns after its inputs (a and b) become different logical values, and becomes logical 
zero 30ns after its inputs become the same logical value. This expression does not imply 
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anything about the implementation or the structure of the cell. In the above expression, the 
timing is modeled as a delay expressed in nanoseconds. At the more abstract levels of 
description, such as finite state machines and register transfer descriptions, time is modeled 
by the concept of state. At even higher levels of description, such as algorithmic descriptions, 
the concept of state is replaced by the concept of statement sequence. Statement sequences 
only prescribe the order of statement execution. 

Several levels of abstraction are identifiable in the behavioral domain [WaTh85]. For 
example, differential equations are used at the circuit level and boolean expressions at the 
logic level. At the microarchitecture level, register transfer (or finite state machine) descrip­
tions are used that specify the conditions to be tested, all register transfers to be executed, 
and the next control state for each state. An algorithmic description defines all the data 
structures and a sequence of transformations that manipulate them. At an algorithmic level, 
variables (or data structures) are left unbound to registers or memories, and operations are 
also unbound to functional units or control states. 

The structural representation bridges the gap between the behavioral and geometric 
representations. It is a one-to-many mapping of a behavioral representation onto a set of 
components and connections under constraints like cost, time, and area. If, for example, the 
boolean expression from Figure 2(a) is mapped onto a set of components consisting of only 
two-input NAND gates with a maximum delay of 10 ns, then one of the structural represen­
tations will consist of four NAND gates as shown in Figure 2(b ). The structural representa­
tion does not specify any physical parameters; such as the position of the four NAND gates 
on a printed circuit board or on a silicon chip. 

Sometimes a structural representation, like a logic or circuit schematic, also serves as a 
behavioral description. For example, the behavioral description obtained from the structure 
in Figure 2(b) is x = ((a(~b)')'(b(ab)')')'. Such a derived behavioral description is conveniently 
used for design simulation and timing verification, but makes redesigning with new design 
rules almost impossible. 

The most commonly used levels of structural representation are associated with the 
basic structural elements used. At the circuit level, the basic elements are transistors, resis­
tors, and capacitors; while gates and flip-flops are at the logic level. ALUs, registers, RAMs, 
and ROMs are used to represent register-transfer as well as algorithmic structures. However, 
at the algorithmic level, microarchitectural components are grouped into datapaths, control 
units, and data storage. Also, more emphasis is placed on component synchronization and 
communication than on component implementation. Processors, memories, and switches are 
used at the system level. 

The geometrical representation ignores, as much as possible, the function of the design 
and binds the structure in space (physical design) or to silicon (geometrical design). For 
example, if a gate array consists of two-input NAND gates arranged in cells of six gates each, 
then a possible binding of the structure from Pigure 2(b) is shown in Figure 2( c ). Each 
NAND gate and connection in the structure is assigned a physical location. The structure­
to-geometry mapping is defined as a two step process. The first step, usually called symbolic 
or topological layout, determines relative or approximate positions for all structural ele­
ments. The absolute positions are determined in the second step after the substitution of lay­
outs for symbols and layout compaction. Although symbolic layout can be viewed as an 
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independent design representation, it is included in the geometric representation in order to 
simplify the representation space. The most commonly used levels in geometric representa- · 
tion are: mask geometries, cell placement, and floor-planning with arbitrary size blocks. 
Note again that the floor-planning level may cover several distinguished levels in two other 
representational domains. At the system level, there is physical partitioning and placement 
on the board and cabinet levels; while on the geometrical level there is placement and floor­
planning of blocks. 

Finally, design is an iterative process where tradeoffs are performed in design cycles to 
meet the desired constraints (time, area, power, etc.). While humans normally perform this 
task, it is desirable to automate some of this decision making process. This is briefly 
described in a later section on future trends. 

2. SILICON COMPILATION 

The Y chart is used to represent different VLSI-design methodologies and to pictorially 
explain the differences between silicon-compiler based design systems. 

Traditional methodologies require a designer to build a structure and define its function 
with basic components, such as gates; these are then used hierarchically to build higher level 
structures. Once the design is finished, it is flattened into a structure of basic components for 
simulation, placement, and routing (Figure l(a)). This methodology doesn't efficiently exploit 
the hierarchical nature of the design, because the simulation, placement, and routing are per­
formed at the lowest level of abstraction (where they are the most expensive to perform). 
Furthermore, the fixed functionality, as well as fixed electrical and layout properties, of the 
basic components leads to an inefficient layout. 

The silicon compilation methodology tries to overcome these deficiencies by providing 
basic components that are fine-tuned to the user's specification at a higher level of abstrac­
tion, such as ALUs, PLAs, RAMs, datapaths, controllers, and core microcomputers. Further­
more, the methodology provides more abstract models for simulation, placement, and rout­
mg. 

Silicon compilers are programs that generate layout descriptions together with higher­
level models of that description such as functional, logic, timing, power and testability 
models to be used by verification, analysis and optimization tools such as functional and logic 
simulators, timing and power analyzers, and layout compactors. The functional, electrical, 
and layout requirements for each basic component are passed as parameters to the 
corresponding silicon compiler. A hierarchical methodology is supported by allowing silicon 
compilers to call other silicon compilers. 

As with gate-array and standard-cell methodologies, silicon-compilation requires two 
experts: The tool maker and the tool user. A silicon-compiler writer (the tool maker) creates 
compilers for leaf cells and then uses these leaf cell compilers to construct module compilers, 
processor compilers, and other higher level compilers. These compilers are parametrized, 
with parameters for different design components stored in a table or a menu. Such a menu 
serves the role of a behavioral description for a design component. The task of a silicon­
compiler writer is represented by the outward going spiral in Figure l(b ). 
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A system or application designer (the tool user) specifies the design using a behavior al or 
structural description. In the former case, five different tasks must be performed before the 
design is ready for fabrication: 

1) The behavioral description is translated into a structural description (synthesis). 

2) The layout of each structural component is instantiated by a module compiler 
(module compilation). 

3) All structural components are placed on silicon and routed (physical design). 

4) The packaging is selected. 

5) A test vector set is generated. 

In the latter case, the translation task is not needed since the system designer specifies 
the design structure. 

A typical IC design system based on the silicon-compilation methodology is shown in 
Figure 3. The design structure is specified by the user or is generated by the synthesizer from 
the behavioral description. In either case a Menu/Form package is used to capture the 
behavioral description of each component in the structure. The behavioral description is 
passed in the form of options or parameters to the corresponding silicon compilers. A tech­
nology file contains all of the process relevant design rules used for generating the layout. In 
an interactive environment, layout or schematic editors are used to alter compiler outputs. 
However, in this case, the "correct by construction" property of silicon compilers is lost. 
Similarly, timing, behavioral, or logic models are generated for each component in the struc­
ture. These models are linked together and passed to a timing analyzer or a simulator. 
Geometric models are linked together with placement and routing tools to form a chip com­
posite .. For interactive placement and routing a composition editor or a silicon assembler 
may be used [Trim84], and a package editor is used to provide packaging information to the 
foundry. Similarly, the simulator provides a test set for testing the assembled IC. 

3. SILICON COMPILATION ISSUES 

Commercial and research silicon compilers are classifiable according to several attri­
butes. 

3.1. User Expertise 

Figure l(b) shows that the field is roughly divided into compiler writers that design sili­
con compilers and system designers that use silicon compilers to design application specific 
integrated circuits (ASICs). Silicon compiler writers use IC languages to capture and 
parametrize layout, and other embedded languages to write simulation, timing, and power 
models for each silicon compiler. System designers specify systems as a structure of com­
ponents, where each component is: (a) a predefined library component, (b) instantiated by a 

.silicon compiler, or (c) defined from scratch by the designer. System designers are often asso­
ciated with system companies or divisions that do not have their own fabrication facilities, 
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while silicon compiler writers are associated mostly with semiconductor manufacturers that 
provide custom design and foundry services. 

This division in the market place was initially reflected in commercial silicon compila­
tion systems from Silicon Design Labs (SDL), Silicon Compilers Inc. (SCI) and Seattle Silicon 
Technology (SST). Today, silicon compilation based systems offer both compilers for system 
design, and tools for developing custom compilers. 

This crude division can be generalized by considering the design process as a generator 
of the final design description on one of the design levels using a design language such as the 
L-language [Buri85] for IC description or VHDL [Shah86] for logic description. In the future 
we will see compilers on different levels of design using different languages with the obvious 
tradeoff between control over the design and the designer's expertise. 

3.2. Integrability 

Silicon compiler systems come in two varieties: 

1) They may be complete systems with their own set of proprietary tools such as simu­
lators, timing verifiers, and routers for complete IC design. 

2) They may be integrated into a standard CAE work station with most of the support 
tools provided by the host work station environment. 

The advantage of the first approach is the enforcement of consistent design practices, a 
more efficient database, and better interfaces between different tools. The second approach 
offers a smooth transition from existing design methodologies, and the possibility of re-using 
already designed parts. 

3.3. User Interface 

The user interface specifies ways in which the designer may interact with the system 
during the design phase, in addition to specifying the initial input description. Some systems 
allow layout or schematic editing after it is generated by a silicon compiler. - A layout editor 
is necessary during the compiler writing phase, since a cell layout is first created manually, 
then possibly converted into textual form and parametrized. Some systems allow preplace­
ment and prerouting during the design composition. 

Design documentation provides an auditing mechanism for the designer to keep track of 
the current state of the design. This includes simulation and timing analysis results at vari­
ous levels, as well as several logic, schematic, and layout "views" that the silicon compiler sys­
tems produce. Some silicon compiler systems provide browsers that facilitate extensive user 
monitoring of the design. Systems like the one offered by SDA [LaMo85] provide frameworks 
for generating regular and semiregular structures. 
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3.4. Richness 

Richness is characterized by the number and types of module generators available in the 
system. Module types are divided into basic modules and sequential modules. Basic modules, 
such as SSI logic, registers, ALUs, PLAs, RAMs, ROMs, and datapaths, take one control 
state for execution. Sequential modules, such as counters, finite state machines, controllers, 
and processors, require more than one control state for execution. Some companies offer 
several different types of controllers,_ such as Interrupt, Bus, DMA, and CRT controllers. 
Finite-state machine generators and other popular modules like the ones from the AMD 2901 
family or patterns based on popular microprocessors are also available. As an example, a sili­
con compiler for a core microcomputer which is instruction set compatible with Intel's 8085 is 
offered by Silicon Design Labs. 

3.5. Process Independence 

Silicon compilers are not technology independent, that is, a silicon compiler written for 
a CMOS process can not easily be derived from one written for a Bipolar process. However, a 
compiler can be made process independent by specifying design rules in a separate technology 
file and specifying the layout in terms of symbols and constraints between those symbols. 
During the design instantiation, the symbols are replaced by their geometric representation 
and the layout is compacted according to the constraint values in the technology file. This 
method allows the compiler to cover a broad spectrum of processes, but its layout density 
depends on the sophistication of the compactor. The other strategy is to specify layout with 
generic lambda rules in which all constraints are a multiple of the basic lambda unit. The 
process independence is achieved by changing the value of lambda. The second method is 
simpler but it may produce less compact layouts at the end. 

3.6. Quality Measures 

Each design system based on silicon compilers can be evaluated through three quality 
measures: 

1) Transistor density in sq. mills/transistor. 

2) Compilation speed in transistors/hour. 

3) Design time in transistors/person-hour. 

The above quality measures depend heavily on the complexity and the regularity of the 
design. Until standard benchmarks are established, these measures are just indicative of sili­
_con compilation capabilities and they should not be used to compare different systems. 
Recently, SST reported densities of .36 sq mills/transistors on a DSP chip slightly better tha11 
the standard 80386 microprocessor. This demonstrates the viability of silicon compilation as 
a design methodology. 

In addition to design functionality, the transistor density also depends on the fabrication 
process. The density measure is similar to the computer performance measure of 
instructions/second which is not very accurate, but is a very popular approximation of per­
formance. A better density measure uses the design functionality as a normalizing factor 
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instead of the transistor count, since the existence of each transistor may be difficult to jus­
tify .. 

The compilation speed is defined as the compiler run time without plotting, and should 
be normalized to the same machine. Reported compilation speeds vary from 5K - 25K 
transistors/hour for different chips and systems. 

The design time depends heavily on the design complexity as well as the abstraction 
level of the compiler. Typically, design times range from 10-30 transistors/hour for various 
designs. Better design times (300-400 transistors/hour) are achieved by using high level com­
pilers such as core compilers. These results indicate obvious tradeoffs between the design 
time, the compiler complexity, and the abstraction level of the behavioral specification. 

3. 7. Support tools 

Tools for silicon compilation are divided into three groups: verification, analysis, and 
optimization tools. 

The verification tools are used to verify the correctness of the input behavioral or struc­
tural description. Verification is accomplished by the designer specifying a set of input­
output pairs and observing for each pair whether the description produces the correct 
corresponding output for each input. It must be noted that verification only proves that the 
design works for the given test set. 

The most frequently used tools are behavioral, functional, logic, circuit, and fault simu­
lators. Behavioral simulators are easy to write, particularly if the behavioral description 
language is embedded in another programming language. Functional and logic simulators are 
used in structural silicon compilation, where each module compiler generates a functional or 
logic module that is linked together with other modules as specified in the input structural 
description. A fault simulator allows a user to specify a set of test vectors, and determines 
the fault coverage of the given test set under an assumed fault model. Usually, a single 
stuck-at fault model is used. Circuit simulation is used mostly on leaf cells or when a foreign 
module is imported at the circuit level. 

Analysis tools are used to determine the quality or "goodness" of the generated design. 
Very frequently, a timing analyzer is used that determines the delay from any input to any 
output, and the delay between elements. The maximum delay between storage elements 
determines the clock period. Thus, a timing analyzer can be used to predict the performance 

· of a design. Similarly the testability analysis tools calculate the controllability and observa­
bility figures, that is, the relative measures of difficulty in controlling and observing signal 
values. Together, those figures define the testability of a design. 

Optimization tools improve the quality of the design without performing any tradeoffs. 
Quality optimization tools make translating behavior to structure, or structure to geometry 
easier, since the translators do not have to produce an optimal design, but only a correct 
design. The most frequently used optimization tools at the layout level are programs for lay­
out compaction and transistor sizing. At the topological level, many PLA folders minimize 
PLA area by sharing rows and columns between two or more input and output lines. At the 
logic level, synthesis programs, such as SOCRATES [GBGH86) and the Yorktown Silicon 



Compiler [BBCD85], are capable of optimizing logic for a given input-output delay. Simi­
larly, some behavioral level compilers are also capable of optimization for a given time delay. 
However, optimization at this level is a part of the synthesis and not a separate tool. 

Presently, there are no existing commercial or research compilers that incorporate all 
these tools. Most compilers include a simulator for checking the input description, and a tim­
ing analyzer. Optimization tools are seldom available. 

4. BERA VI ORAL SILICON COMPILATION 

The following important issues are used to characterize behavioral silicon compilation: 
1) architectural model, 2) input language, 3) bindings, 4) timing model, and 5) physical 
model. This framework is used to examine how some existing behavioral silicon compilers 
function. The following examples are meant to comprise a representa~ive, but not an exhaus­
tive, collection of the behavioral silicon compilers currently in existence in the commercial 
and research communities. 

4.1. Architectural Model 

Silicon compilers are generally designed for a class of applications using a specific archi­
tectural model. This architectural model is sometimes referred to as the target architecture. 
The architectural model describes the type and parameters of the hardware realizable from 
the input specification and can be very narrow, as in bit-serial silicon compilation, or very 
broad, as in a set of communicating finite state processes. Most silicon compilers fall into one 
of three architectural models: 1) Datapath compilers, 2) Control unit compilers, and 3) Data­
path and control compilers. Within each model, further identification of the implementation 
style is made based upon the model's features. 

4.1.1. ·Datapath 

Compilers using the Datapath model primarily perform computations. These compilers 
do not perform control functions like data steering, or next state determination. The data­
path style is categorized by the types of basic units used (adders, shifters, ALU's), the types 
of storage used (registers, register banks, memories, etc.), and the connection style (muxes, 
uni-directional buses, bidirectional buses, etc.). Pipelining may be used in the datapath as in 
[PaPa 86] to generate a fully pipelined datapath, or in the components that make up the 
datapath as in [PaGa 86]. 

Digital signal processing applications often require machines that perform repetitious 
calculations. These types of machines fit well in the Datapath model, because of the data 
flow nature of many of the DSP calculations. Several compilers have been developed for digi­
tal signal processing applications. FIRST [Berg83J and the GE bit-serial silicon compiler· 
(BSSC) [JNHH85] are pipelined bit-serial datapath compilers. FIRST and BSSC use units like 
multipliers and adders, and use latches as storage elements for delays. The connection style is 
point-to-point between datapath elements. Figure 4 shows the organization of a typical digi­
tal signal processing application, whose architectural model mimics the depicted data flow 
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graph. 

4.1.2. Finite State Machine Controller 

The Finite State Machine (FSM) controller model is suitable for generating the control 
unit for a machine. The FSM concept consists of two basic elements as shown in Figure 5: the 
registers that store the state of the machine, and the combinational logic that performs the 
mapping of inputs and current state to a next state. In addition, the combinational logic com­
ponent generates control signals for use by a datapath in that particular control state. The 
implemented FSM may be state-based, where the outputs are dependent on the current state 
only, or transition-based, where the outputs are a function of both the current state and the 
inputs. 

In applications with little computation and only a few states, an FSM alone may suffice 
to implement the whole design, by implementing the corresponding datapath inside the 
FSM's combinational logic. In a more general environment, such as a microprogrammed 
architectural model, the architecture consists of a separate control unit and a datapath. 
Depending on the style of the control unit, the mapping logic may be implemented in a regu­
lar structure such as a PLA or a ROM, or directly as random logic. Several FSM synthesis 
systems have been developed that use PLA-based techniques as well as multi-level logic syn­
thesis techniques [Sang85]. 

The Berkeley FSM synthesis system [RuSD85] has a transition-based model and syn­
thesizes control units for custom-built datapaths. The implementation is in the form of a 
PLA targeted for CMOS technology. The design is synchronous, using a fixed, 2-phase clock­
ing scheme. 

The . FSM synthesizer developed at AT&T Bell Labs [TPLM86] allows the user to 
describe either a state-based or a transition-based FSM. The synthesized FSM may be 
implemented in a variety of styles, including polycells, PLAs, and P ALs. 

4.1.3. Control Unit + Datapath 

The control unit and datapath (CU+DP) model uses a datapath which performs the 
computations and a control unit that captures state information and produces control signals 
for the datapath. Communication between the control unit and the datapath is synchronous. 
Operations performed in the datapath in one state produce inputs to the control unit for 
determining the next state. Since the control unit is basically an FSM, the style of its imple­
mentation determines whether the inputs to the control unit are directly obtained from the 
datapath (transition-based) or are encoded into the current state of the machine (state­
based). Pipelining can be implemented in the datapath and/or the control unit. Pipelining in 
the control can be as simple as the overlapping of instruction fetches and executions or it may 
be more complex. 

Inherent parallelism in a design problem may be exploited by using multiple datapaths 
to perform computations on independent streams of data. Each datapath may be controlled 
by a separate control unit thus creating a group of single CU +DP processors. In this case, the 
architectural model is based on a structure of these processors running in parallel. Different 



10 

control, communication, and clocking strategies may be used within each processor, and 
between processors. 

In MacPitts [Sout83] a processor is implemented as a microprogrammable datapath 
with a fixed clocking scheme. The datapath consists of registers and function units like 
adders and comparators. Figures 6( a) and 6(b) show the MacPitts architectural and datapath 
model. 

The CMUDA system [THKR83] architectural model assumes a microprogrammable 
datapath controlled by a centralized transition-based FSM. Communication between proces­
sors is achieved synchronously by means of a fixed two phase clocking scheme. The datapath 
may be pipelined, but the control unit has limited pipelining that is determined by one of the 
three implementation styles described in [NaCP82]. The datapath consists of units like 
ALU's, comparators, etc. The storage elements consist of registers and memories, and the 
connection style is distributed with a limited number of buses. The ATT DAA [KGWF85] 
also has a similar architectural model. 

Other systems that fit into the CU+DP architectural model include Sile [BlFR85], 
CADDY [Camp85], ELF [GiKN84], SYCO [Jerr86], YASC [JhSK85], and MIMOLA 
[Marw86]. 

The CU+DP model can be generalized to create structures of communicating proces­
sors, where each processor may be based on any one of the preceding basic architectural 
models. 

4.2. Input Language 

The input to a behavioral silicon compiler is a behavioral description that specifies the 
result(s) of a computation or a set of computations, but not the implementation. Every com­
piler uses a predefined style of implementation referred to as the architectural model. A com­
piler, therefore, must map or bind language variables, operations, and constructs to com­
ponents within the architectural model. Usually this mapping is one-to-many, since there 
are several different ways of implementing each operation or construct. This implies that the 
compiler must make design tradeoffs that best satisfy the design goals. If-the compiler does 
not make these design decisions, then the language must provide constructs that allow the 
user to make them. For example, if the architectural model consists of several ·communicat­
ing DP+CU processes, the language must have special constructs that allows the designer to 
partition the design into a set of communicating processes. If the compiler is capable of 
doing this automatically, a partitioner is used that automatically partitions the input descrip­
tion (perhaps optimally) into a set of processes. 

Hence, the expressivity of a language reflects the generality of the architectural model 
used by the compiler, while language bindings specify how some constructs are mapped into 
the architectural model. This section discusses two basic issues relating to an input language: 
features that enhance the expressivity of the language, and bindings that the user may per­
form in the language. The output of the behavioral compiler is a structural design at the 
register transfer level which exhibits the desired behavior within the architectural model of 
the compiler. 
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4.2.1. Order of Execution 

An input language with purely sequential constructs requires the compiler to extract 
parallelism from the input description. For example, the CMUDA system uses ISPS as its 
input description language. The ISPS description [Barb81] is compiled into a Value Trace 
(VT) representation [Snow78] (an intermediate graph form), from which parallelism is 
extracted. 

Some input languag~s allow special constructs for expressing parallelism. Figure 7( a) 
shows the 'ser' and 'par' constructs in Sile used to swap values in variables a and b. Figure 
7(b) shows how the same thing can be described in the SYCO compiler input: each statement 
is executed serially, and the user describes parallelism by including more operations in one 
statement. If the input description explicitly binds operations to states, no further parallelism 
is extracted. However, some compilers [JhSK85] [GiKn84] allow the specification of parallel­
ism in the language using special constructs; more parallelism may be extracted at compile 
time during the state binding phase. 

As an example, in the MacPitts system the user specifies the variables as being either 
registers or internal ports in the def section of the code. Variables declared as registers are 
assigned to registers and mark state (cycle) boundaries. Variables declared as internal ports 
represent data transfers between sequential operations performed in the same state. Given a 
sequence of statements where each variable is declared as an internal port, this sequence of 
statements is implemented combinationally and executes in only one state. However, if the 
variables are defined as registers, this compl)tation chain is implemented as a series of states 
that must be executed sequentially to perform the computation. 

4.2.2. Data Types 

Data types identify the types (integer, boolean, etc.) of data in the input language. Data 
types influence the compilation process in two ways. First, it enables detection and possible 
correction of architectural model violations like combining datapaths of differing bit widths 
or differing types. Second, data types help guide the compilation process in specific ways. For, 
example, in Sile, integer operations are mapped into the datapath, while boolean operations 
are mapped into the logic synthesis subsystem for control generation. 

4.2.3. Macros 

A macro may be viewed simply as an operation that is expanded into smaller, divisible 
operations. Macro-expansions serve two purposes. First, they provide a short-hand notation 
for the user to define pseudo-operations in the language. Second, they allow annotation of the 
input_ description to guide the compilation process in a specific direction. Annotating the 
input refers to the case where the user has already predetermined a specific structural module 
that is to be bound to the macro operator. Hence, these operators are deliberately pre­
allocated by the user. The ELF system allows the definition of new hardware operators by 
means of the macro facility in ADA. 



12 

4.2.4. Subroutine Calls 

Subroutines permit calling frequently used segments of a description, without having to 
define the segments more than once. The subroutine calls and returns are usually monitored 
in a stack which resides in the control unit. 

In some systems, the input specification directly affects the time and area overhead for 
the compiled design. For example in SYCO, the control structure for a subroutine call gets 
compiled into a control slice at that level of the input specification's hierarchy. A deep nest­
ing of calls results in a large communication overhead between control slices, but results in a 
savings in area. Conversely, flattening out the input description by using a shallow nesting of 
procedure calls increases the area but reduces the execution time. 

4.2.5. Graph Representations 

Before discussing how various bindings are performed by a compiler, it is instructive to 
examine the underlying graph representation (such as the CMUDA Value Trace) of the input 
descriptions. In general, the behavioral graph representation consists of nodes that correspond 
to operations in the input language .and edges that correspond to the flow of data between the 
operations. The operation order specified in the input implies data and control dependencies 
on the graph. Data dependencies enforce a correct order of execution by allowing an operation 
to be scheduled only if its inputs are ready. Control dependencies arise from language con­
structs that involve conditional evaluation such as if, case, and loop constructs. In addition, 
the input description may have timing constraints specified between operations in the input 
or between labels in the input specification. These timing constraints are often represented as 
nodes that exist between the corresponding operations or edges in the graph. 

As an example, Figure s· shows a segment of code that is compiled into into a flowgraph 
in CADDY. The circles represent_ operations in the input description and the squares 
represent variables, constants, and intermediate values. The solid and dotted edges represent 
data and control dependencies respectively. The timing constraint in the input has been com­
.piled into a control edge between the "CASE" node and the "OF" node. In this representation, 
control constructs such as the CASE statement above have been mapped into control flow, 
where each of the mutually exclusive branches "START= O" and "START= 1" can proceed 
independently. 

It is also possible to map these constructs into data flow, where each branch is simul­
taneously performed, and the result is chosen at the end of the CASE statement. Figure 9 
shows how a similar segment of code (without the timing constraint) is compiled from an 
ISPS description into the Value Trace (VT) representation. Here the value of "A" is assigned 
to "A + APORT" if "START = 1", and is assigned to O if "START = O", after both 
branches have been executed. Compiling conditional constructs into data flow usually results 
in a faster design at the expense of additional hardware {because the exclusive branches are 
executed simultaneously). ELF uses a control/data flow graph representation that is similar 
to CADDY's where control constructs are represented explicitly, while a flexible control/ data 
flow graph is described in [OrGa86]. 

The amount of parallelism in the design is determined by the way in which bindings of 
operations (graph nodes) to states, and function units to operations are performed. Several 
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concepts are of relevance here. 

Sequential operations must be executed in series. The sequential ordering may be 
enforced by control or data dependencies in the input description. If the clock cycle length is 
small, then sequential operations may be forced to execute in different states as shown in Fig­
ure 10( a). Chaining of operations involves using the output of one operation as the input to 
another in the same state. If the clock cycle length is long enough, it is possible to chain two 
sequential operations in the same state as shown in Figure lO(b ). Multicycle operations are 
those that take more than one clock cycle to execute (Figure 10( c )). Parallel operations have 
no direct dependencies between each other and may execute independently in the same state 
or across several states as depicted in Figure 10( d). 

4.3. Bindings 

A behavioral compiler transforms the input description into the final design using a pro­
cess of successive refinements and optimizations. This process binds structural and geometri­
cal detail to the design within the architectural model of the silicon compiler. In all, the 
language to structure bindings may be classified into four groups: 

(1) Operations to States, 
(2) Operations to Units, 
(3) Variables to Registers, and 
(4) Connectivity. 

State bindings represent the allocation of operations to specific control steps (or states) 
of the abstract machine. The amount of parallelism used in the machine is determined during 
state binding. Parallelism in this context means performing more operations (by using more 
structural components) per state for a given cycle length. The parallelism in the design is 
therefore limited by the number of available structural components and the state length 
(clock cycle period). The task of an operation-to-state binder, given a state length, is to 
minimize the number of states by maximizing structural component utilization. 

Once an operation is assigned to a state, a structural component (eg. an ALU) that per­
forms the required operation ( eg. an add operation) must be assigned to that operation for 
that state. The bindings of operations to function units is typically a m.any to few assignment 
respectively. This is because multi-function components such as ALUs may be used for a 
different operation type during each state. Units can be used in many states but are allowed 
allocation only once per state. Hence, the number of units affects state bindings. 

Data that is generated in one state and is used in another must be saved in registers. 
Register binding involves the allocation of registers to data carried across state transitions. 
Some systems have a one to one correspondence of the input language variables to the regis­
ters, while others optimize registers by sharing. Register sharing allows a register to store 
two or more variables that have disjoint lifetimes. By sharing variables in registers, it is pos­
sible to use fewer registers than if each variable is assigned to its own unique register. 

Connectivity binding represents the allocation of connections between hardware com­
ponents to create the necessary information paths. Connections are either point-to-point 
(muxes at each function unit and register input) or bussed (muxes at both the inputs and out­
puts of function units and registers). The bus model allows greater sharing of interconnection 
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by creating a larger number of paths for the same number of connections. This is equivalent 
to creating a switching network with one more level of switch boxes (muxes in this case) as 
compared to the point-to-point model. 

The silicon compiler writer (Figure l(b)) is free to make design tradeoff decisions while 
writing the compiler, and these tradeoffs are reflected in the architectural style, the physical 
model, and the timing model of the compiler. Some compilers allow the user to specify some 
design details in the input language (explicit binding), and the compiler binds the rest. 
Advantages of explicit bindings are that the user has tighter control over the design process 
and that it makes the compiler simpler. Disadvantages are that the compiler is restricted 
from performing optimizations and tradeoffs on the user's explicit bindings, and that the user 
has to have a detailed understanding of the design rules, and the architectural, physical, and 
timing models. If the compiler is restricted from performing tradeoffs, the user must rewrite 
the description in order to explore another design in the search space. 

State, unit, register, and connection binding strategies vary from system to system. 
Different systems combine these binding problems together in varying degrees. The task of 
transforming a behavioral specification to an abstract architecture ( eg. register transfer 
level) has been studied independently of silicon compilation for several years [Thom 77] 
[Snow 78]. Most systems take an algorithmic approach to these bindings. Due to the com­
plexity of these binding problems, the algorithms are typically heuristic in nature and no sys­
tem guarantees that its designs are optimal. As an example of this complexity, the problem of 
allocating language operators to datapath components can be transformed into a scheduling 
problem which is NP-complete [LDSM80]. 

The Elf system uses an urgency scheduling algorithm to perform operation-to-state 
bindings. Operation nodes in the graph are weighted and compared to timing constraints to 
determine their order of binding. Node weights are calculated by taking the minimum 
number of cycles to execute the node plus the maximum weight of the node's successors. 
Node urgencies are determined by taking a ratio of the node's weight and the number of 
cycles left until its time constraint. Nodes are allocated to states based on available com­
ponents and their urgency. If a node (operation) is delayed it will approach a timing 
specification line and its urgency will increase. This raises the probability of the operation 
being allocated. If the timing specification cannot be met the user is notified. 

The HAL [PaKn86] system uses a load balancing approach to conduct operation to state 
bindings. Load balancing attempts to distribute operations across states in such a way as to 
evenly distribute like operations while taking into account the speed requirements of the final 
design. This should help minimize the number of components necessary to perform any one 
type of operation. The operations are then grouped together to form units. Another pass is 
made to minimize the concurrency of operations using similar resources. At this stage the 
operations are bound to states and the remaining bindings (operation to unit binding, register 
binding, and connectivity binding) are performed in the last stage. The assignment (or bind­
ing) of operations to states is based on structural component locality in an attempt to minim­
ize the length of interconnect lines. 

EMUCS [HiTh83] performs operation-to-unit, register, and connectivity binding by 
creating cost tables and using a min-max criterion. Cost calculations are based on considera­
tions such as the addition of another multiplexer or adding another connection. During each 
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iteration, the cost for binding each unbound graph element is computed. Next, the difference 
between the two least costly bindings is computed. The element with the largest difference in 
the two least costly bindings is bound using the lowest cost. EMUCS then iterates until all of 
the graph elements are bound. 

Figure 11 shows an example of one iteration in the EMUCS algorithm. The graph has 
been sliced into two control steps and all of the registers have been bound. Under the graph is 
a cost table showing the cost of binding ALUs to operations in the graph. ALU_l has been 
bound to operation.,..2 and so the row for operation....2 in the cost table is filled with X's. Since 
ALU_l is bound to operation....2 in the first control step there is an X in the first column of the 
first row because an ALU may be used only once during a control step. All of the other ALUs 
are assumed to be unbound to any other hardware. 

The costs are calculated by adding 10 units for each added connection and 5 units for 
each added multiplexer. The cost for binding ALU....2 to operation_3 is calculated by adding 10 
units to connect each input, 5 units to add a multiplexer in front of register 3 (because ALU_l 
already outputs to register 3), and another 10 units to connect ALU....2 to the multiplexer for 
a total of 35 units. If ALU_! is bound to operation_3 all of the necessary connection exist and 
the cost is 0 units. The other costs are calculated in a similar manner. 

A decision on which operation to bind is made by comparing the two least costly bind­
ings for each operation (min-max criterion). The operation with the maximum difference 
between the two least costly bindings is chosen for binding using its least costly binding solu­
tion. In this example ALU_l is bound to operation_3 during this iteration. In the next itera­
tion the cost table is updated and the procedure repeated until all of the bindings have been 
made. 

DAA [Kowa84] uses a two pass method based on a knowledge based expert system to 
perform bindings. The first pass uses rules to create and connect elementary components 
together and stores this information in an intermediate structure and control specification 
language. The second pass uses rules in a clean-up phase to merge components into more 
complex elements that yield the final design. 

Table 1 summarizes some of the features of some current compilers with respect to their 
architectural model, the input language, and their bindings. Typically, these compilers use a 
standard set of available function unit types that are eventually mapped into a target archi­
tecture. The Yorktown Silicon Compiler (YSC) [BBCD85] uses an input descriptioii. that is at 
a lower level (logical vs behavioral) of abstraction than the other compilers. A high-level 
front end for the YSC is currently under development. 

4.4. · Timing Model 

The following aspects of the design process may be used to characterize the timing 
model: clocking, delay specification and communication protocol. 
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4.4.1. Clocking 

Most compilers assume a synchronous model for the design. The clock may be mono­
phase, 2-phase, or n-phase. Compilers like MacPitts and Sile assume a 2-phase clock with 
distinct read and write phases. This allows for straightforward compilation of parallel code in 
the language since read/write conflicts are avoided: all variables on the right-hand side of an 
assignment are read during phase 1 of the clock, while all variables on the left-hand side 
(stores) are written to in phase 2 of the clock. Thus the registers have master-slave seman­
tics, allowing for both a read and a write to the same register in the same clock. 

4.4.2. Delay Specification 

Some input languages permit the specification of delay between statements in the 
behavioral description. The user may want to set maximum and minimum limits on these 
delay figures. If the delay spans a set of non-sequential statements (eg. loops), then the user 
is also specifying the maximum and minimum execution time for that section of the code. 
Maximum and minimum delays specified from a module's inputs to its outputs is often 
ref erred to as performance specification. The major issues here are how these delays are 
specified in the language, and how this information is used to guide the synthesis process. 

The ELF system uses a subset of ADA [GiBK85] as the input language. Delay 
specification 1s supported in the language with the pair of constructs 
"TIMING.REFERENCE" and "TIMING'.CONSTRAINT" to specify a maximum and 
minimum delay between the reference point and the constraint point in the algorithm. The 
construct "TIMING.PERIOD" may be applied to a loop, which simply specifies the maximum 
and minimum loop execution times. The timing constraint is compiled into a timing node 
that exists between two reference lines corresponding to the two reference points in the inp.ut 
description. Urgency weights are assigned to operations in the flow graph based on these tim­
ing constraints and operations are allocated to states based on their urgency weights. 

Nestor and Thomas [NeTh86] show how timing constraints may be specified in the ISPS 
description which is used as input to the CMUDA system. Timing is specified by associating 
labels with operations in the ISPS description and maximum/minimum timing constraints 
between pairs of labels. The timing constraints guide scheduling of the Value Trace (VT) 
flowgraph into time steps using a list scheduling algorithm, which iteratively schedules VT 
nodes into states using a timing constrained priority function. In each iteration, the priority 
function indicates if scheduling a VT node in the current state violates a: minimum timing 
constraint, or if postponing scheduling of the VT node to a later state violates a maximum 
time constraint. 

4:.4.3. Communication Protocol 

If the design is viewed as a set of chips that communicate with each other, and each chip 
is composed of several processes that run in parallel, then different communication protocols 
may be used within the same process, between different processes, or between chips. 

In synchronous processes, two or more tasks communicate after they have been exe­
cuted. For example, a process (FSM) in Sile may contain several blocks of code which are to 
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execute in parallel. The statements inside a 'par' block are executed in one synchronous state, 
and communication between variables in these statements is achieved at the end of that 
state. 

Within a chip, inter-process communication may be achieved synchronously or asyn­
chronously. Sile allows for processes (FSM's) to run on different clocks. Asynchronous vari­
ables global to the communicating processes are declared in Sile's main body. The processes 
then communicate by handshakes on these global variables using the synchronization func­
tions "data-ready" and "data-received" applied to the variable. As shown in Figure 12, FSMl 
waits for "data-ready(shared-reg)" to become true before reading "shared-reg". On reading 
"shared-reg", the function "data-received" becomes true, and FSM2 may write another word 
into "shared-reg". 

When communication between chips is desired, the user has to explicitly code the proto­
col in the input specification. For example, Figure 13 shows read and write protocols for an 
external memory chip in MacPitts. This protocol is synchronous, assuming that both the 
chips use the same clock. In the read protocol, the user has to ensure that the read signal and 
address are asserted for three clocks, while the input data is read in on the second clock. Like­
wise, for the write cycle, the user must specify that the address and data are asserted for 
three clocks, while the write signal is set high in the second clock. 

Digital signal processing applications require different communication protocols based 
on the timing characteristics of the data to be transferred. The nature of the algorithms 
resembles a producer-consumer relationship, where the input signal is sampled at predefined 
constant intervals, and the computation is performed on the samples to produce the output. 
In Cathedral II [RDVG86], if large unordered blocks of data are transferred at a high sam­
pling rate between processors and their timing is known at compile time, a synchronous pro­
tocol is used with a pair. of interleaved RAMs as shown in Figure 14. If data is being 
transferred from processor 1 to processor 2, the protocol requires that during a time frame, 
processor 1 writes to one RAM while processor 2 reads from the other RAM. In successive 
time frames, the RAMs are switched. At less demanding data transfer rates, a single RA.i.\1 
with a bus connecting the two processors may suffice. In cases when the timing cannot be 
determined at compile time, a two way handshake may be employed for synchronization of 
the data transfer. 

4.5. Physical Model 

The physical model for a silicon compiler defines the topology of the chips it generates. 
This physical model varies from a completely prefixed footprint for some systems, to a com­
pletely random topology at the other end of the spectrum. In each case, the requirement for 
placement and routing differs. 

Linear topology is based on a bit-slice structure where layout is generated by appending 
one bit cell slices. As a result, routing is reduced to a one-dimensional problem. Examples of 
systems that have a linear topology include MacPitts, SYCO, and GE's Bit-Serial Silicon 
Compiler (BSSC). 

The MacPitts physical model consists of a control unit and a datapath as shown in Fig­
ure 6(a). The control part is implemented as a Weinberger array, while the datapath is 
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composed of bit slices of units (called organelles) drawn from a cell library. The horizontal bit 
slices in the datapath are separated by interconnection channels in which local buses run. 
MacPitts determines the placement of the units to optimally pack these local buses, attempt­
ing to minimize the channel width by making the buses share collinear tracks. 

Figure 15(a) shows the physical model for Syco. Syco's control unit is composed of con­
trol "slices" which are stacked together, with the lowest level slice being adjacent to the data­
path. The number of control slices is determined by the maximum nesting of procedures in 
the input description. Each control slice is defined by the the set of procedures at that level 
of hierarchy in the input description. The datapath for Syco (Apollon) is similar to that of 
MacPitt's except that it is organized around a two-bus scheme. The two buses ate segmented 
into sub-datapaths which run in parallel, as shown in Figure 15(b ). Apollon attempts to 
order the placement of these sub-datapaths based on a heuristic which uses the proximity of 
the registers in the sub-datapath. The problem of one-dimensional placement and routing is 
transformed into two subproblems: ordering (relative linear placement) of the sub-datapaths; 
and assignment of registers to the sub-datapaths. 

FIRST uses a floor-plan consisting of two rows with a central routing channel. The user 
specifies blocks in the input language. FIRST sorts these blocks by height, and creates a par­
titioning into a tall set and a short set, where the division between tall and short is deter­
mined by minimizing the resulting area. The tall blocks are placed in the top row while the 
short blocks are placed in the bottom row. Within each row, blocks appear in the relative 
order specified in the language. Channel routing is then applied in the central channel. Fig­
ure 16 shows the FIRST topology. 

LAGER's [PoRB86] chip-level physical model also consists of two rows of blocks, where 
each block is a bit-parallel processor· that operates in parallel with the other processors on 
the chip. Within each row, the processors are optimally ordered and oriented so as to minim­
ize the routing. Channel routing is used in the central channel between the two rows. 

A completely random topology requires two-dimensional placement and routing of the 
basic cells. A system with a random topology allows for greater layout flexibility, but the 
compiler has to handle the complex problem of two dimensional placement and routing. Sile 
uses such a topological model where the blocks are first placed [MaFB84] and 2-dimensional 
routing in irregular channels is then performed [Cies84]. The Yorktown Silicon Compiler 
(YSC) goes one step further by allowing global floor-planning with flexible macrocells. YSC's 
target implementation uses macrocells built out of rows of complex cells. The global floor­
planner determines the relative placement and the shape of each macrocell using a simulated 
annealing algorithm which takes into account critical timing and total wiring. The aspect 
ratio determined by the floor-planner forces the macrocell generator to tile complex cells in a 
requisite number of rows to meet the specified aspect ratio. 

5. FUTURE TRENDS 

The design process model consists of iterating over designs and exploring alternatives.· 
Present day silicon compilers translate an input description into layout in a unique way. A 
designer working with a behavioral compiler must understand the translation process built 
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into the compiler and modify the input description so as to force. the compiler to produce the 
desired results. When working with structural compilers, the designer must be able to evalu­
ate a design and be able to choose a different style or a component. An intelligent silicon 
compiler incorporates knowledge about the design process and uses this knowledge to guide 
the transformations of the input specification through several design iterations until the 
specified set of constraints are met. 

Intelligent compilation is broken down into four basic tasks: style selection, refinement, 
optimization, and strategy formulation. 

The selection of styles depends on the goals assigned to a particular implementation. In 
order to automate the refinement, the process of translating overall design constraints into 
different design styles must be captured [BrGa86] [KnPa86]. 

Refinement (sometimes called partitioning or decomposition) is the process of translat­
ing a behavioral description into a structure of predefined components from the next lower 
level of design. As we mentioned before this translation is not unique; usually several different 
styles can be selected. 

An optimization step improves utilization of allocated resources such as silicon area in 
PLA folding or layout compaction, the number of tracks in channel routing, or the number of 
functional units in a microarchitecture. Optimizations are performed after or together with 
the refinement. An optimization process is usually defined by an algorithm. Compaction, 
placement, and routing optimizations are typical, while clock speed / power sizing, and PLA 
folding are offered by some silicon compilers. 

A strategy is a sequence of different style selection, refinement, and optimization steps. 
The type and the order of the steps in the sequence characterizes the strategy. Strategies are 
better understood at levels closer to physical design than at the higher, more abstract levels. 
It is natural that symbolic layout is followed by geometric layout, which is followed by com­
paction. However, the order of register, unit, and bus allocation, and their optimization. on 
the microarchitecture level is not clear. Presently, all existing silicon compilers allow only 
one fixed strategy. 

The whole design process can be thought of as a set of refinements and optimizations for 
each style at each level of design. 

In order to formulate a proper design strategy, three more mechanisms must be added. 
The constraint-propagation process partitions constraints assigned to a design module into 
constraints for each of its components. The designer performs this task when using presently 
available compilers. The second mechanism deals with evaluating the final design of each 
component and estimating how well the constraints have been satisfied. The evaluation pro­
cess is supported by providing time analysis, cost and power reports. For example, Silicon 
Compilers, Inc. provides clock reports, 1/0 timing reports, path delay reports, violation 
reports, an.d SCOAP reports. The third task deals with performing tradeoffs in case one or 
more constraints are not satisfied. The tradeoffs are made by choosing different design styles, 
such as choosing a ripple-carry adder over a carry-look-ahead adder if area goal is more 
important than the speed goal. 
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An intelligent silicon compiler model must be supported by two other mechanisms. 
First, it needs an input language that requires little explicit binding, so as to postpone the 
decision making process to the system at compile time. Second, it needs an internal represen­
tation which is flexible enough to allow tradeoff analysis and transformations based on user 
constraints. An example is shown in Figure 17, where the contents of two registers are incre­
mented and exchanged. Depending on the constraints at compile time, the compiler may per­
form the exchange in one state if two adders are available (Figure 17(a,)), in two states if only 
one adder and three buses are available (Figure 17(b )), or in three states if only one adder and 
two buses are available (Figure 17( c)). 

Presently, goal definition, style selection, constraint propagation, design evaluation, and 
tradeoffs are made by the designer with the help of CAD tools such as simulators and timing 
verifiers. 

6. CONCLUSIONS 

Silicon compilation was presented as an evolving methodology that makes custom sili­
con affordable and removes the design time bottleneck. As this methodology evolves, the level 
of abstraction will rise from the circuit and logic level to the microarchitectural level. This 
evolutionary process should blend well with present CAD tools, so more silicon-compilation 
systems are expected to appear on standard workstations in the future. 

Silicon compilers could be standard utility routines on future workstations, with the 
compiler layouts modifiable by the designer, and integrated with handcrafted custom and 
semi-custom parts. Furthermore, a designer should be able to add his or her own compilers 
to the set, create new compilers by using existing compilers, and add his or her own personal 
cells. Present day layout and schematic capture workstations are not well suited to providing 
this integrated mixed-mode methodology. Future workstations will require more powerful 
IC layout and design description languages, along with integrated design data bases support­
ing easy conversion between hierarchy abstraction levels. With such stations in place we will 
be able to design intelligent silicon compilers with knowledge-based technology to control the 
whole design process. Future trends include richer behavioral descriptions, automatic syn­
thesis tools, and Al based tools for com'plete design-process automation. 
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(chip example 

(declare (word-length 8) 
. . . ) 

(fsm serial-swap 

(ser (set temp a) 

(set a b) 

(set b temp))) 

( fsm parallel-swap 

(par (set a b) 

(set b a)))) 

Figure 7(a). Sequential/Parallel Constructs· in Sile 

program example( ... ); 

procedure serialswap; 

begin 
temp<- a; 

a<- b; 

b <-temp;· 
end 

procedure parallelswap; 

begin 
a<- b / b <-a; 

end 

begin %*MAIN*% 

call serialswap; 

call parallelswap; 
end. 

Figure 7(b ). Sequential/Parallel Constructs in SYCO 
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(chip async-protocol 
(declare (word-length 8) 

(clockl pin 4) 
(clock2 pin 5) 

(variable shared-reg unstored asynchronous word)) 

(fsm send-pi:ocessor 
(declare (word-length 8) 

(variable send-buffer stored word)) 

(while t 

)) 

(while (not (data-ready shared-reg)}) 
(set shared-reg send-buffer) 

(fsm receive-processor 
(declare (word-length 8) 

(variable receive-buffer stored word)) 

(while. t 

))) 

(while (not (data-received stored-reg))) 
(set receive-buffer shared-reg) 
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