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Abstract

This study aimed to elucidate the structure of the Rivermead Post Concussion Symptoms 

Questionnaire (RPQ) and evaluate its longitudinal and group variance. Factor structures were 

developed and compared in 1,011 patients with mild traumatic brain injury (mTBI; i.e., Glasgow 

Coma Scale score 13–15) from the Transforming Research and Clinical Knowledge in TBI 

Corresponding Author: Lindsay D. Nelson, PhD, ABPP, Department of Neurosurgery, Medical College of Wisconsin, 8701 West 
Watertown Plank Road, Milwaukee, WI 53226, Phone: (414) 955-7308, Fax: (414) 955-0193, linelson@mcw.edu.
*The TRACK-TBI Investigators: Opeolu Adeoye, MD, University of Cincinnati; Neeraj Badjatia, MD, University of Maryland; 
Kim Boase, University of Washington; Yelena Bodien, PhD, Massachusetts General Hospital; M. Ross Bullock, MD PhD, University 
of Miami; Randall Chesnut, MD, University of Washington; John D. Corrigan, PhD, ABPP, Ohio State University; Karen Crawford, 
University of Southern California; Ramon Diaz-Arrastia, MD PhD, University of Pennsylvania; Ann-Christine Duhaime, MD, 
Mass General Hospital; Richard Ellenbogen, MD, University of Washington; V Ramana Feeser, MD, Virginia Commonwealth 
University; Adam R. Ferguson, PhD, University of California, San Francisco; Brandon Foreman, MD, University of Cincinnati; 
Raquel Gardner, University of California, San Francisco; Etienne Gaudette, PhD, University of Southern California; Dana Goldman, 
PhD, University of Southern California; Luis Gonzalez, TIRR Memorial Hermann; Shankar Gopinath, MD, Baylor College of 
Medicine; Rao Gullapalli, PhD, University of Maryland; J Claude Hemphill, MD, University of California, San Francisco; Gillian 
Hotz, PhD, University of Miami; Sonia Jain, PhD, University of California, San Diego; Frederick K. Korley, MD, PhD, University 
of Michigan; Joel Kramer, PsyD, University of California, San Francisco; Natalie Kreitzer, MD, University of Cincinnati; Harvey 
Levin, MD, Baylor College of Medicine; Chris Lindsell, PhD, Vanderbilt University; Joan Machamer, MA, University of Washington; 
Christopher Madden, MD, UT Southwestern; Alastair Martin, PhD, University of California, San Francisco; Thomas McAllister, 
MD, Indiana University; Randall Merchant, PhD, Virginia Commonwealth University; Laura B. Ngwenya, MD, PhD, University of 
Cincinnati; Florence Noel, PhD, Baylor College of Medicine; David Okonkwo, MD PhD, University of Pittsburgh; Eva Palacios, PhD, 
University of California, San Francisco; Daniel Perl, MD, Uniformed Services University; Ava Puccio, PhD, University of Pittsburgh; 
Miri Rabinowitz, PhD, University of Pittsburgh; Claudia Robertson, MD, Baylor College of Medicine; Jonathan Rosand, MD, 
MSc, Massachusetts General Hospital; Angelle Sander, PhD, Baylor College of Medicine; Gabriella Satris, University of California, 
San Francisco; David Schnyer, PhD, UT Austin; Seth Seabury, PhD, University of Southern California; Mark Sherer, PhD, TIRR 
Memorial Hermann; Sabrina Taylor, PhD, University of California, San Francisco; Nancy Temkin, PhD, University of Washington; 
Arthur Toga, PhD, University of Southern California; Alex Valadka, MD, Virginia Commonwealth University; Mary Vassar, RN MS, 
University of California, San Francisco; Paul Vespa, MD, University of California, Los Angeles; Kevin Wang, PhD, University of 
Florida; John K. Yue, MD, University of California, San Francisco; Ross Zafonte, Harvard Medical School

HHS Public Access
Author manuscript
Assessment. Author manuscript; available in PMC 2022 September 01.

Published in final edited form as:
Assessment. 2021 September ; 28(6): 1656–1670. doi:10.1177/1073191120913941.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



(TRACK-TBI) study, using RPQ data collected at 2 weeks, and 3, 6, and 12 months post-injury. 

A bifactor model specifying a general factor and emotional, cognitive, and visual symptom 

factors best represented the latent structure of the RPQ. The model evinced strict measurement 

invariance over time and across sex, age, race, psychiatric history, and mTBI severity groups, 

indicating that differences in symptom endorsement were completely accounted for by these latent 

dimensions. While highly unidimensional, the RPQ has multidimensional features observable 

through a bifactor model, which may help to differentiate symptom expression patterns in the 

future.

Keywords

mild TBI; bifactor; invariance; post-concussive symptoms; Rivermead Post-Concussion Symptoms 
Questionnaire; traumatic brain injury

In the United States, nearly three million individuals are affected by traumatic brain injury 

(TBI) every year (Taylor et al., 2017), the vast majority of whom are classified as having 

mild TBI (mTBI), based on a Glasgow Coma Scale (GCS) of 13–15 (Rimel et al., 1981). 

Patients with mTBI report a wide array of cognitive, emotional, and physical symptoms 

following injury, including headaches, dizziness, nausea/vomiting, noise sensitivity, sleep 

disturbance, fatigue, irritability, depression/tearfulness, frustration/impatience, forgetfulness, 

poor concentration, slowed thinking, blurred vision, light sensitivity, double vision, and 

restlessness (International Classification of Diseases 10th edition [ICD-10], 1992).

Although the prevalence of persistent mTBI symptoms is debated, it is well-documented 

that these symptoms are typically most severe acutely, diminish for most patients over 

time, and can vary in presentation and duration across individuals (Arciniegas et al., 2005; 

Bazarian et al., 2009; Boake, et al., 2005; Hiploylee et al., 2017; Mitten & Strauman, 2000; 

Voormolen et al., 2018). Based on the wide variability in recovery course and outcomes 

after mTBI and the limited treatment options available, there has been increasing interest in 

identifying distinct patterns of symptom presentation with the goal of designing precision 

medicine treatments for mTBI. Motivated by this general goal, the present study leveraged 

latent variable modeling techniques (factor analysis) to evaluate the degree to which distinct 

dimensions underlying mTBI symptoms (i.e., “clinical phenotypes”) exist that may inform 

clinical and translational research.

Rivermead Post-Concussion Symptoms Questionnaire

The Rivermead Post-Concussion Symptoms Questionnaire (RPQ), developed by King et al. 

(1995), is a widely used self-report questionnaire of mTBI symptoms in mTBI research 

settings. Although conceptually derived from published literature as a measure of universal 

TBI symptoms (King et al., 1995), where item ratings are typically summed to create a 

total score, prior psychometric investigations have suggested that the RPQ may have a 

multidimensional structure (i.e., measure more than one underlying construct). For example, 

Rasch analysis performed by two independent groups using data from adults with head 

injury in the chronic (3+ months post-injury) recovery course were interpreted as indicating 

that the RPQ does not measure a unidimensional construct (Eyres et al., 2005; Lannsjö et 
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al., 2011). One of these studies led to the practice used by some researchers to divide the 

instrument into two subscales, one measuring the purportedly acute symptoms of headache, 

dizziness, and nausea, and the other reflecting the remaining 13 items of the RPQ (Eyres et 

al., 2005).

Other investigations provided evidence of additional factors that accounted for RPQ item 

endorsement. Confirmatory factor analyses (CFA) by Potter, Leigh, Wade and Fleminger 

(2006) yielded evidence of three highly correlated factors (i.e. cognitive, emotional, somatic) 

that explained variance in symptoms reported 6 months after head injury, although similar 

fit was obtained when the emotional and somatic factors were collapsed. Another CFA using 

RPQ data from patients with mild-to-moderate TBI yielded a different three-factor model 

with cognitive/emotional, somatic, and visual factors; however, the participants were patients 

who had both sustained TBI within the last year and reported post-TBI depression (Hermann 

et al., 2009).

A more recent CFA of the RPQ among military service members following blast exposure 

found the structure from Potter et al. to be ill-fitting, whereas a 4-factor structure comprising 

emotional, cognitive, visual, and vestibular domains was favored (Franke et al., 2015). 

However, a substantial portion of the sample endorsed a high level of posttraumatic stress 

disorder symptoms and depression following injury (Franke et al., 2015). Lastly, because 

the four factors were highly correlated, correlation patterns with external variables were 

very similar across factors. Taken together, this prior work is consistent in elucidating some 

degree of multidimensionality in the latent structure of the RPQ, but the number and nature 

of its dimensions are less well delineated.

The Bifactor Model as an Alternative Conceptualization of RPQ Symptom 

Structure

The strong correlations among factors identified in prior structural models of the RPQ 

suggest the presence of a superordinate or general factor that may reflect overall 

TBI symptom severity. As such, second order factor models and bifactor models may 

each account for a largely unidimensional domain - while reconciling elements of 

multidimensionality - in ways correlated factor models used in prior studies have not. These 

approaches have distinctive implications for the latent structure of a domain, and account 

for multidimensionality differently. Second order factor models posit that a superordinate, 

unidimensional factor influences item endorsement via intermediate first order factors that 

account for the shared variance among groups of items comprising differentiable symptom 

dimensions. In a bifactor model, proportion of variance in each item is accounted for by a 

general, unidimensional factor (e.g., general self-reported mTBI symptom severity); residual 

item covariances that are unaccounted for by the general factor exhibit additional structure, 

such that independent subdomains or specific factors account for remaining variance in the 

domain (Nelson et al., 2018). Figure 1 illustrates the comparison between a second order 

and bifactor model. In contrast, a correlated factor model posits that separable but related 

(to varying degrees) factors account for the shared variance between sets of items and that 

these correlated dimensions account for the latent structure and, therefore, item endorsement 
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patterns within the domain. In our recent investigation of the structure of another symptom 

checklist widely used in athletes with sport-related mTBI (the Sport Concussion Assessment 

Tool, or SCAT), we found that a bifactor structure (rather than correlated or second order 

factor models) best delineated the structure of mTBI symptoms and manifested better 

discriminant validity across external clinical variables (Nelson et al., 2018), supporting 

the consideration of a bifactor structure for other mTBI symptom measures and patient 

populations.

Evaluating the Comparability of Structural Model Factors Using 

Measurement Invariance Analyses

In addition to evaluating the structure of the RPQ through representation by a wider array 

of models, it is important to evaluate the degree to which the model’s factors can be 

comparably interpreted over time and in different groups. Mild TBI recovery is a dynamic 

process where distinct neurophysiological events occur over time (Giza & Hovda, 2014) 

and the predominant symptoms can change. For example, it has been suggested that 

physiological symptoms are often most prominent in the acute post-injury period (King, 

1997), whereas cognitive and emotional symptoms may predominate in the chronic recovery 

phase (Gordon et al., 2000). Similarly, dimensions of mTBI symptoms can differ across 

distinct groups of individuals. For example, factors like sex (i.e., female; Rabinowitz et 

al., 2015), greater age (King, 2014), race (Caucasians vs. non-Caucasians), presence of 

psychiatric history (Hermann et al., 2009; Lishman, 1988; Stein et al., 2015), and TBI 

severity (Dikmen et al., 2017) have all been found to predict distinct recovery courses and 

symptom outcomes in mTBI samples.

Thus, it is conceivable that mTBI symptom checklists such as the RPQ measure different 

constructs over time or between groups - questions addressable through formal tests of 

measurement invariance. Should the RPQ measure different constructs over time and/or 

across groups, then biases in the test would yield uninterpretable results with regard to 

recovery and/or group mean differences. However, should invariance analyses show that the 

structural model factors of the RPQ are directly comparable over time and/or across groups, 

then the measure would be much more useful in future work elaborating upon the sources 

of these differences. To our knowledge, no study has formally investigated the integrity of 

the RPQ structural model parameters across time or groups of interest via measurement 

invariance testing, which assesses the degree to which structural model constructs are 

measured on the same scales (Reise, Widaman, & Pugh, 1993). In addition to informing 

a richer understanding of the structure of mTBI symptoms, evaluating the longitudinal and 

group invariance of the model best reflective of the RPQ symptom domain may inform 

whether or not this instrument will be valuable in future clinical and research efforts to 

delineate phenotypes differentiated by self-reported mTBI symptoms.

Current Study

The purposes of this study were to elucidate the factor structure of the RPQ and to evaluate 

the replicability of the model’s parameters across time and groups in a large, longitudinal 

sample of patients with community-acquired mTBI enrolled in the multicenter Translating 
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Research and Clinical Knowledge in TBI (TRACK-TBI) study. TRACK-TBI participants 

were recruited from Level I trauma centers within 24 hours of injury and completed the RPQ 

at 2 weeks and 3, 6, and 12 months post-injury. Leveraging the large TRACK-TBI sample 

with acute and post-injury follow-up assessments, we investigated the interpretability of the 

model’s factors across sex, age, race, psychiatric history, and mTBI severity as indicated by 

brain scan, as well as over time (i.e., from 2 weeks through 12 months post-injury). Based 

on the aforementioned work, we hypothesized that a bifactor (rather than a correlated factor 

or a second order) model would best represent the structure of the RPQ, and that the model’s 

factors would reflect quantitative (i.e., severity) as opposed to qualitative (e.g., biased item 

responses) differences over the recovery period and across patient subgroups.

Method

TRACK-TBI Study

Subjects were identified and recruited through the TRACK-TBI study – a prospective, 

multicenter study of patients across 11 Level I trauma centers in the United States (Yue 

et al., 2013). Eligibility criteria for TRACK-TBI included presentation within 24 hours 

of injury with clinical indication for a head computed tomography (CT) scan (e.g., acute 

intracranial abnormalities, bleeding, or other neuroimaging evidence of brain injury due 

to recent trauma), and showing or reporting evidence of alterations in consciousness 

or amnesia. Exclusion criteria included being in custody, being pregnant, having non­

survivable physical trauma or a debilitating mental disorder (i.e., schizophrenia, bipolar 

disorder or other that would interfere with follow-up and validity of outcome assessments), 

or being non-English or non-Spanish speaking. All participants or legal representatives gave 

written informed consent to participate in the study. Outcome data were collected from each 

patient at 2 weeks and 3, 6, and 12 months after injury. Patient interviews were conducted 

either by phone follow-up (3 months) or in person (2 weeks, 6 months, 12 months), with 

some assessments performed over the phone at time points other than 3 months to limit 

missing data. Study protocols were approved by the institutional review boards of each 

respective site.

Participants

Mild TBI patients enrolled between 2/26/2014 and 5/4/2016 were considered for analyses. A 

total of 1,352 patients with TBI were enrolled—of these, 1,155 met our inclusion criterion 

for mTBI (defined as Glasgow Coma Score of 13–15 upon Emergency Department arrival). 

Of the 1,155 participants with mTBI, the percentage with complete outcome data at each 

follow-up assessment was 81.1% (2 weeks), 75.6% (3 months), 71.5% (6 months), and 

66.0% (12 months). Item-level missingness in the RPQ was very low (<0.5%) within 

patients who followed-up at each timepoint. Therefore, patients were included in analyses if 

they provided any RPQ data at any follow-up assessment, yielding 1,011 participants in the 

analyses reported below.

Table 1 shows descriptive statistics for the sample. Participants with outcome data did not 

differ in sex, cause of injury, psychiatric history, or prior TBI history at any of the 4 time 

points compared to those without. At 2 weeks post-injury, participants with outcome data 
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were an average of 5 years older than participants lost to follow-up (p < .001), but no age 

differences were observed at other time points. At 12 months post-injury, participants with 

outcome data were more likely to be non-White than those lost to follow-up (p = .012), but 

no race differences were observed at other time points. In terms of ethnicity, participants 

with outcome data at 3 of 4 time points (3 months through 12 months), were more likely to 

be non-Hispanic (p < .001) than participants without outcome data at those points. Across all 

time points, participants with outcome data were somewhat more educated than those lost to 

follow-up (ΔM = 1 year, ps ≤ .009). Finally, participants with outcome data at 2 weeks were 

more likely to have a positive CT scan (p = .028).

Measures

RPQ.—Developed by King et al. (1995), the RPQ elicits self-report ratings of the severity 

of symptoms over the last 24 hours compared to pre-injury levels. The response options for 

each of the 16 items are 0 (not experienced at all), 1 (no more of a problem than pre-injury), 

2 (mild problem), 3 (moderate problem), or 4 (severe problem). Because scores of 0 and 1 

both represent the absence of injury-related symptoms, these responses were collapsed into 0 

(not experienced at all/no more of a problem; King et al., 1995).

Demographic and injury-related variables.—Demographic, history, and injury­

related variables submitted to measurement invariance analyses included age, race, sex, 

self-reported history of psychiatric disorder, and acute neuroimaging findings. Race, sex, 

and history of psychiatric disorder were self-reported. Because data were received in de­

identified fashion with ages > 90 given a nonspecific code, two participants with ages 

> 90 years old were coded as 90.5 years old for continuous analyses of age. Age was 

categorized into terciles for measurement invariance analyses. Due to limited representation 

of other races in the sample, invariance testing with race only included participants 

identifying as African American or Caucasian and compared as a binary variable. Acute 

neuroimaging findings comprised the outcome of CT scans as read by a single board­

certified neuroradiologist, coded as positive or negative for acute intracranial abnormalities 

utilizing the recommended TBI Common Data Elements (e.g., subarachnoid hemorrhage, 

contusion; Duhaime et al., 2010).

Data Analytic Plan

As our first aim was to assess the factor structure of the RPQ, we used a multi-step factor 

analytic approach to the data. First, due to the ordinal nature of the items, we observed the 

relationship between items using polychoric correlations (for inter-item correlation matrix 

for all timepoints, see Model Invariance Supplementary Output). Second, 1/3 of the sample 

was randomly selected to conduct exploratory factor and bifactor analyses (EFA, bi-EFA, 

respectively) of the 16 items to identify candidate structures for each respective time point. 

Third, we applied these candidate structures to the remaining 2/3 of the sample in a series 

of CFAs, including correlated factor, second order, and bifactor models, to examine the fit of 

various structural models at each time point. Lastly, we conducted measurement invariance 

analyses to determine the extent to which structural model parameters were equivalent 

across clinically relevant groups (e.g., sex) and across different stages (i.e., assessment time 
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points) of the mTBI recovery period. All factor and measurement invariance analyses were 

conducted in Mplus (7th edition; Muthen & Muthen, 1998–2017).

Factor analyses.—Due to the ordinal nature of the items, item skewness, and the low 

level of item-level missingness within the data, factor analyses were conducted using mean- 

and variance-adjusted weighted least squares (WLSMV) estimation (Beauducel & Herzberg, 

2006; Li, 2016). Geomin rotation, an oblique rotation method which allows for factors to 

be correlated was used in EFA, whereas factors were uncorrelated in bi-EFA. Eigenvalues, 

scree plots, and factor loadings were considered to determine candidate EFA and bi-EFA 

structures at each follow-up time point. The root mean square error of approximation 

(RMSEA) was used to assess absolute fit, whereas the comparative fit index (CFI) and 

Tucker Lewis index (TLI) were used to assess incremental fit. Models with RMSEA < 

.05 and CFI/TLI > .95 were considered well-fitting, and RMSEA < .08 was considered 

acceptably fitting (Hu & Bentler, 1999; MacCallum, Browne, & Sugawara, 1996). For 

correlated and second order CFA models, each item was specified to load on the factor on 

which it loaded most strongly in the corresponding EFA (except when specifying a relatively 

consistent model at each time point, see below). For bifactor CFA models, each item was 

parameterized to load on the general factor, and items were parameterized to additionally 

load on a specific factor if they loaded at least .30 on that factor in the corresponding 

bi-EFA.

Measurement invariance analyses.—Formal factorial measurement invariance 

modeling (Liu et al., 2017; Meredith, 1993; Putnick & Bornstein, 2016) allows for tests 

of the degree to which facets of the model reflect the same constructs in different groups or 

across different assessment time points. There are several levels of measurement invariance 

that impose increasingly stringent constraints on the equivalence of the model across groups/

time; when fit statistics suggest that the more stringent model fits no worse than the one with 

more relaxed assumptions, one cannot reject the model with more constraints placed upon 

parameters specifying more equivalency in parameters across groups/time. The first two 

levels, configural and weak invariance, constrain parameters such that their interpretations 

yield evidence for qualitative differences across groups/time. The latter two levels, strong 

and strict invariance, yield evidence for quantitative (i.e., severity) differences across groups/

time. Configural invariance specifies models such that the same overall structure can be 

imposed across groups/time. Weak invariance specifies that the same items load on each 

respective factor (i.e., configural invariance) and, additionally, that loadings are equal in 

magnitude across groups/time. Strong invariance holds that configural and weak invariance 

are present and, additionally, that item thresholds are invariant across groups/time. Finally, 

strict invariance additionally constrains the residual variances of items to be equal across 

groups/time, indicating that individual differences in endorsement of items is completely 

accounted for by the items’ respective latent factors.

Longitudinal measurement invariance tests differ from group-difference invariance tests 

considering that the dependence of observations at different time points is accounted for 

through allowing facets of the model to be correlated over time and the residual correlations 

among items across time points to be freely estimated. Based on recommendations by 
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Cheung & Rensvold (2002) and Chen (2007), models with increasing stringency were 

not rejected if they resulted in < .01 decline in CFI or < .015 in RMSEA, respectively. 

Additionally, Chi-square difference tests were also observed but less favored owing to their 

over-sensitivity in large samples even within the context of no change in CFI and TLI across 

models (Hu, Bentler, & Kano, 1999). Model-based reliability measures of omega, omega 

hierarchical, and relative omega were also computed (Reise, Bonifay & Haviland, 2013).

Results

Exploratory Factor Analyses

EFA estimated parameters for models with up to six factors, and bi-EFA included models 

with one general factor and up to five subfactors. The first eigenvalues ranged between 9.28 

and 11.44 across the time points, with first to second eigenvalue ratios of 7.70, 9.12, 10.29, 

and 12.24 for 2 week, 3 month, 6 month, and 12 month assessments, respectively, suggesting 

a dominant first factor.

In the EFA, four-factor solutions at each time point evinced interpretable loading patterns 

and good fit, with some consistency in the factors across time. The EFA factor structure 

at 2 weeks yielded acute somatic (headaches, dizziness, nausea), cognitive (forgetful, poor 

concentration, longer to think), visual (blurred vision, light sensitivity, and double vision), 

and other somatic/emotional symptoms (sleep disturbance, feeling frustrated, fatigue, 

irritability, depression, noise sensitivity, restlessness) factors. In contrast, at 3 months the 

four-factor EFA suggested emotional (irritable, depressed, frustrated), cognitive, and visual 

factors along with a factor representing the remaining somatic symptoms. Emotional and 

cognitive factors also emerged in the four-factor EFA solution at six months, but one item 

of the visual factor loaded on a separate somatic factor with dizziness and nausea loading 

on the former. Lastly, the 12-month, four-factor EFA included emotional and visual factors, 

a collapsed somatic/cognitive factor, and a two-item factor defined by sleep disturbance and 

restlessness. Given some consistency across assessments in the emergence of emotional, 

cognitive, visual, and somatic factors, the 3-month EFA model was viewed as one that 

should be specified in CFA with data from other time points, in addition to four-factor 

models with loading patterns based on the time-specific EFA results described above. Five- 

and six-factor models emerging in EFA were not tested in CFA owing to evidence for factor 

over-extraction (e.g., Heywood cases, factors with zero or one significant loading).

In contrast to EFA where solutions varied somewhat across time points, four-factor bi­

EFA models in particular demonstrated greater consistency in loading patterns at separate 

assessments. These models supported the presence of a strong general factor (e.g., at 2 

weeks loadings of the items on the general factor ranged between .55 and .85). The 

subfactors of the four-factor bi-EFA model reflected emotional (irritability, depression, 

frustration), cognitive (forgetfulness, poor concentration, taking longer to think), and visual 

(blurred vision, sensitivity to light, and double vision) symptom dimensions varying 

independently from the general factor and from each other. Models with one general factor 

and one or two subfactors, as well as four or five subfactors, evinced less consistency across 

assessments than the four-factor bi-EFA model. Thus, only the four-factor bi-EFA model 
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with one general factor and emotional, cognitive, and visual subfactors was specified in 

CFA.

Confirmatory Factor Analyses

Higher order factor models.—Fit statistics for higher order factor models (i.e., first 

order/correlated factor models and second order models) are presented in Table 2. One­

factor CFAs are presented for baseline comparison and evaluation of this model’s fit given 

evidence for a prominent factor saturating the domain. Additionally, four-factor correlated 

factor models derived from EFAs at each respective time point are presented. As noted 

above, EFA models derived at the 3-month follow-up were included as correlated four-factor 

model (i.e., emotional, cognitive, visual, and somatic factors) variants in CFA analyses as 

well. Second order models with one superordinate factor and four first order factors loading 

upon this second order factor were specified, based on the EFA results for each time point 

and the 3 month time point.

Absolute fit of one-factor models was not adequate at any time point (RMSEA ≥ .085). 

Four-factor correlated factor models fit better than one-factor models at each time point, but 

those specified based on the EFA from the respective time point each fit less well than those 

based on the 3 month EFA model. The second order model specified with the latter model’s 

first order factors (i.e., emotional, cognitive, visual, and somatic) fit comparably well to 

these four-factor correlated factor models. Notably, and speaking to the saturation of the 

mTBI symptom domain by a dominant dimension, the loadings of the somatic, emotional, 

cognitive, and visual factors on the second order factor ranged between .97 – .99, .90 – .93, 

.86 – .93, and .81 – .88, respectively, across time points. These findings indicate that, with 

the possible exception of the visual factor, the first order factors of the five-factor second 

order model are nearly isomorphic with the superordinate factor. Finally, nested within 

the four-factor bifactor model were second order models with one superordinate factor, 

three first order factors (i.e., emotional, cognitive, and visual), and remaining items loading 

directly on the second order factor. These models did not fit as well as the four-factor 

bifactor model at any time point (see below).

Bifactor models.—Fit statistics for the four-factor bifactor model, specifying one general 

factor reflecting the shared variance among all items and three specific, independent 

subfactors reflecting the structure of remaining variance in certain items are presented in 

Table 2. The four-factor bifactor model demonstrated excellent fit at each time point (CFI 

.986 – .995; TLI .982 – .994; RMSEA .041 – .059). Thus, this model showed excellent fit at 

each point of the recovery period, superiority of fit relative to the second order variant of the 

model, and greater distinctiveness between its facets than first order factors of the five-factor 

second order model. At each of the four time points, all items showed strong, significant 

loadings on the General factor, and three specific factors comprised residual covariance 

among items assessing Emotional, Cognitive, and Visual symptoms.

Total omega reliability for the General factor, and Emotional, Cognitive, and Visual 

subfactors, respectively, were .97, .92, .98, and .96 at 2 weeks; .97, 93, .94, .91 at 3 months; 

.96, .94, .95, .92 at 6 months; and .98, .94, .96, and .93 at 12 months. OmegaH scores 
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were .93, .18, .25, and .32 at 2 weeks; .94, .16, .21, .27 at 3 months; .96, .13, .15, .23 at 

6 months; and .95, .11, .20, and .30 at 12 months, respectively. Table 3 shows a summary 

of related omega scores. The high omega values, paired with the percentage of common 

variance explained by the General factor (ECV [New] ranged from 82 – 87%), imply that 

most of the variance within the RPQ can be attributed to this unidimensional construct. 

However, some substantive variance was explained by the subfactors, particularly the Visual 

subfactor, at each time point. Given that 1) the General factor of the four-factor bifactor 

model accounted for a large proportion of shared variance among RPQ items, 2) specific 

factors of the bifactor model accounted for non-trivial proportions of variance unaccounted 

for by the General factor, 3) loadings of first order factors on the second order factor of the 

second order model were so high that the first order factors were nearly indistinguishable 

from each other and from the second order factor, and 4) the four-factor bifactor RPQ model 

demonstrated excellent fit, we favored the four-factor bifactor model as best representing the 

latent structure of the RPQ.

Measurement Invariance of the Bifactor Model

We compared the fit of invariance models across various demographic (i.e., sex, age, race) 

and clinical (i.e., reported psychiatric history prior to injury, positive vs. negative head CT 

findings) groups for each assessment time point to examine how well the constructs reflect 

the same individual difference dimensions across these groups. Additionally, we conducted 

longitudinal measurement invariance analyses to evaluate how well factors and subfactors 

of the four-factor bifactor RPQ model indexed the same constructs at different points in the 

recovery period in the sample as a whole.

Group invariance.—Measurement invariance of the bifactor model was compared across 

the demographic groups of sex, age group (i.e., roughly equal groups of 17 – 28, 29 – 48, 

and 49 – 90+ year-olds), and Caucasian American vs. African American race. For each set 

of invariance models (i.e., configural, weak, strong, and strict invariance), across each of 

the demographic and clinical groupings, and at each assessment time point (i.e., 2 weeks, 

3 months, 6 months, 12 months) the strict measurement invariance model was deemed the 

best fitting. Fit statistics for the strict invariance models for each group at each time point 

are presented in Table 4. For the sake of brevity, fit statistics for all of the four levels of 

invariance for each group at the four time points are presented in the Supplement (Table 1). 

One can compare fit statistics of the invariance models for each group at each time point, 

and in no comparison did any model imposing increasing constraints demonstrate a decrease 

in CFI or TLI of .01 or greater. Both tables demonstrate that the magnitudes of absolute (all 

RMSEA < .05) and comparative (all CFI > .990; all TLI > .990) strict invariance model fit 

indices were excellent as well.

Strict measurement invariance across groups indicates that group differences in endorsement 

of specific RPQ items are accounted for at the latent factor level. In other words, once 

controlling for the model’s factors, endorsement of each item was equal across groups. 

This implies that groups differed in severity on the model’s factors and did not differ 

in qualitatively distinctive ways (e.g., in different patterns of endorsement, in salience of 

specific items to factors).
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The strict invariance model allows for estimation of group mean-level differences on 

each of the factors as well, the magnitudes of which are directly comparable and 

readily interpretable. To evaluate the potential clinical significance of the bifactor model 

dimensions, we investigated the group means (from the strict invariance model output) 

on each factor, reported as standard deviation (SD) units in Table 5. Women were higher 

than men on the General factor by .56, .45, .41, and .33 SDs (all ps <.001) at the 

2-week, 3-month, 6-month, and 12-month time points, respectively. African Americans were 

consistently higher on the General factor than Caucasian Americans by .37 – .54 SDs (all 

ps < .001). Age is presented in Table 6, where the middle age group (i.e., 29 – 48) scored 

somewhat more highly (~ .25 SD, all ps < .05) on the General factor than the youngest 

age group (i.e., 17 – 28) at each time point. The oldest age group (i.e., 49 – 88) was lower 

than the youngest group at 2 weeks (−.31 SD, p = .040) and 3 months on the Emotional 

subfactor (−.58 SD, p = .001), higher than the youngest group on the Cognitive subfactor at 

3 months (.34 SD, p = .021) and 6 months (.63 SD, p < .001), and higher than the youngest 

group on the Visual subfactor at 6 months (.37 SD, p = .038) and 12 months (.34 SD, p 
= .047). Positive psychiatric history was associated with higher General factor means than 

negative psychiatric history by .39 – .56 SD units at each time point (all ps <.001). Finally, 

individuals with positive CT scan results were consistently higher than those with negative 

findings on the Visual subfactor (.30 – .44 SD units, all ps <.05).

Longitudinal Invariance.—Longitudinal measurement invariance analyses were 

conducted to determine to what extent facets of the bifactor model could be interpreted 

in the same way at the four post-injury time points (i.e., 2 weeks, 3 months, 6 months, 

12 months). Fit statistics for the configural, weak, strong, and strict longitudinal invariance 

models are presented in Supplement Table 1. Neither CFI nor TLI decreased by .01 or 

more from the configural through strict invariance models, the absolute fit was excellent for 

each model (RMSEA < .025), and the incremental fit was excellent for each model (CFI 

> .99; TLI > .99). Therefore, the most parsimonious and excellent fitting strict longitudinal 

measurement invariance model was deemed the best fitting. Figure 2 presents loading 

parameters of this model.

Table 5 includes mean-level differences on the bifactor model’s General factor and 

Emotional, Cognitive, and Visual subfactors over time, relative to the 2-week assessment 

time point. Expectedly, scores on the General factor decreased from the 2-week to 3-month 

assessment (−.46 SD, p <.001), from the 2-week to 6-month assessment (−.60 SD, p < .001), 

and from the 2-week to 12-month assessment (−.64, p < .001). The greatest decline in the 

General factor was from 2 weeks to 3 months, followed by a decline smaller in magnitude 

from 3 months to 6 months, and leveling off from 6 months to 12 months. Interestingly, the 

Emotional subfactor increased from 2 weeks to 3 months (.75 SD, p < .001), dropped by .10 

SD from 3 months to 6 months, and remained at that level through 12 months. The Cognitive 

subfactor increased from 2 weeks to 3 months (.36 SD, p < .001), doubled to .74 SD (p < 

.001) by the 6-month assessment, and dropped a small degree by the 12-month assessment 

(.59 SD, p <.001). Finally, the Visual subfactor did not show significant change in mean 

levels across the four time points.
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Discussion

The purposes of this study were to elucidate the factor structure of the RPQ and to determine 

the degree to which its structure was invariant across time and groups of interest among 

individuals with mTBI. Whereas prior work has been limited to correlated factor structures, 

we additionally considered second order factor models and bifactor models. The four-factor 

bifactor model provided excellent fit to the data and explicitly accounted for the largely 

unidimensional structure of the RPQ while simultaneously delineating specific dimensions 

reflecting remaining multidimensional components of the domain not adequately explained 

by the General factor. The results of our study provide evidence that, as expected, the RPQ 

is largely unidimensional. This conclusion is supported by an excellent fitting bifactor model 

and omega estimates indicating that ≥ 82% of the variance in RPQ total scores is explained 

by the General factor. In addition to supporting the continued use of total scores as an index 

of overall mTBI symptom burden, our model helps illustrate why one-factor models of the 

RPQ are ill-fitting and explains why correlated factor models of the RPQ yield factors with 

high correlations and minimal discriminant validity.

Additionally, we tested the equivalency of bifactor model parameters across group variables 

and over time. Measurement invariance analyses revealed that parameters of the four-factor 

bifactor model of the RPQ were equivalent over time and across sex, age, race, psychiatric 

history, and mTBI severity (CT+/−) groups. This is perhaps surprising, given the dynamic 

nature of mTBI recovery. However, strict measurement invariance indicates that differences 

in RPQ item endorsement over time and across groups are completely attributable to the 

latent factors of the model. In the case of the General factor, for example, differences in total 

scores on the RPQ across recovery phases and diverse patient subgroups likely represent 

valid time/group differences as opposed to instrument-related measurement discrepancies. In 

addition to finding that a dominant General factor underlies RPQ symptom endorsement, 

strict measurement invariance models indicate that differences over time and between 

patient groups were quantitative rather than qualitative – that is, patients with mTBI vary 

in severity of symptom dimensions more so than by patterns of symptom endorsement. 

This has implications for current research efforts to develop precision medicine approaches. 

In particular, the strong covariance among symptoms due to the presence of a dominant 

general factor may make it difficult to identify distinct clinical phenotypes of mTBI on the 

basis of observed symptoms. The bifactor model proposed here detected distinct symptom 

phenotypes that could better develop precision-medicine approaches to stratify and treat 

patients with mTBI.

Because observed mTBI symptom ratings vary in degree (i.e., severity) more than in kind 

(i.e., clusters of symptom endorsement), efforts to distinguish among subtypes of mTBI 

on the basis of self-reported symptom endorsement patterns alone may be unproductive. 

Clinical phenotyping efforts may instead benefit from using the distinct bifactor model 

dimensions identified in this work or integrating symptom dimensions with a more diverse 

array of clinical assessment data from additional modalities.

Despite the strong General factor underlying RPQ symptom ratings, a significant minority 

of variance was attributable to other, independent dimensions affecting ratings of Emotional, 
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Cognitive, and Visual symptoms. To better understand the clinical value of the specific 

factors identified by the bifactor model, we estimated mean differences in factor scores 

across time and between groups defined by demographic and clinical characteristics. 

Consistent with the natural history of recovery from mTBI (Carroll et al., 2014), general 

factor scores showed a steady decline in mTBI symptoms over time, with the most dramatic 

change occurring within the first three months post-injury. General factor scores also 

correlated with demographic variables in expected ways (i.e., with similar patterns to what 

has been reported for observed mTBI symptom severity scores). In particular, General 

factor scores were higher in females, individuals with pre-injury psychiatric disorders, and 

African Americans, consistent with research on mTBI outcomes after trauma (Dischinger 

et al., 2009; Preiss-Farzanegan, et al., 2009). Visual specific factor scores were higher for 

patients with objective evidence of brain injury/more severe mTBI (CT+) and remained 

stable over time, implying perhaps that this subfactor provides a symptom-based marker of 

injury severity. Though specific factors within our model offered sensible constructs of TBI 

symptom sets, the low internal consistency reliability estimates for each subfactor suggest 

that their clinical and research utility may be limited. Further research may be fruitful to 

determine the degree to which these specific factors could be made more reliable (e.g., with 

the addition of other like-items). Given their limited reliability, it is surprising and perhaps 

promising that we observed meaningful, significant group differences in specific factor score 

estimates.

Several study limitations should be noted. Our data may have been missing at random 

(MAR) or not missing at random (NMAR), types of missingness that can bias WLSMV 

estimates. However, because of the ordinal, highly non-normally distributed aspects of our 

data, estimates based on full information maximum likelihood estimation (more robust 

to MAR data) would have been biased due to not meeting distributional assumptions 

(Beauducel et al., 2006; Savalei, 2010). Another limitation may be that 3-month follow-up 

appointments were conducted via phone (vs. predominantly in-person at other time points). 

Mitigating this concern somewhat, the presence of strict measurement invariance across 

time provides evidence that the RPQ consistently measures mTBI symptom dimensions 

regardless of mode of assessment. In addition, the sample was restricted to patients with 

admission GCS 13–15, and the extent to which these findings generalize to individuals with 

more severe TBIs is unknown. Moreover, because the study only enrolled patients who 

presented to a Level I trauma center and had a head CT ordered by the treating physician, 

it is unclear to what degree the findings would generalize to the broader mTBI population 

(e.g., those who do not have a head CT or do not present to a trauma center for care, 

or military populations exposed to additional environmental threats). However, given our 

relatively broad definition of mTBI and demonstration of strict invariance of the resulting 

RPQ structural model across time and patient groups, one might expect the model to fit in 

other subgroups, individuals with dual-diagnoses (e.g., PTSD) and in the mTBI population 

as a whole.

Future Directions

This study provides further evidence that the RPQ is sufficiently unidimensional to 

continue to use total scores to represent overall mTBI symptom burden, although there are 
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multidimensional aspects of the domain that additionally account for smaller proportions 

of variance in symptom ratings. These findings align with our work showing a high 

degree of unidimensionality of mTBI symptoms among young athletes with sport-related 

injuries who were assessed with a different symptom checklist (SCAT; Nelson et al., 2018), 

suggesting that this general finding may hold across diverse assessment measures and mTBI 

subpopulations. The consistency of the RPQ bifactor model’s parameters across time and 

patient characteristics demonstrates its utility in comparing scores across key demographic 

and clinical subgroups, as well as across various phases of mTBI recovery. Despite a 

dominant first factor, the four-factor bifactor model was able to parse meaningful subsidiary 

factors that contributed more modestly to RPQ ratings in the domains of Cognitive, 

Emotional, and Visual symptoms. Further exploration of these specific symptom dimensions 

is warranted; in particular, Visual factor scores may represent a novel symptom-based 

index associated with objective measures of mTBI severity, such as positive head CT 

scans. Overall, these findings, alongside related work with the SCAT in young athletes 

with mTBI, imply that patients vary more in severity than type of symptoms, which may 

hinder attempts to identify categorically distinctive groups of mTBI patients from observed 

symptom ratings. Efforts to characterize individuals based on profiles of the bifactor model 

dimensions identified in this study may facilitate a more precision medicine-based approach 

to classify and treat patients with mTBI.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Comparison between hypothetical second order factor model (A) and bifactor model (B). 

Used in Nelson et al. (2018).
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Figure 2. 
Factor loadings of the strict measurement invariance four-factor bifactor model over time. 

Loadings differed slightly across T1 – T4 owing to standardization. These estimates reflect 

parameters from T1 2 weeks.
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Table 1.

Sample Characteristics (N = 1,011)

Demographics/history N (%), M (SD) Injury-Related Variables N (%), M (SD)

Female sex 355 (35.1%) Cause of Injury

Age (range 17–90) 39.74 (16.67)  Road traffic accident 712 (61.6%)

Ethnicity  Incidental fall 277 (21.0%)

 Non-Hispanic 796 (78.7%)  Other nonintentional 60 (5.2%)

 Hispanic 211 (20.9%)  Violence/assault 69 (5.2%)

 Missing 4 (0.4%)  Mass violence 1 (0.1%)

Race  Other 34 (2.9%)

 Caucasian American 769 (76.1%)  Missing 2 (0.2%)

 African American 175 (17.3%) Loss of Consciousness

 Native American 2 (0.2%)  Yes 760 (75.2%)

 Asian American 34 (3.4%)  No 141 (13.9%)

 Other/Multiracial 26 (2.6%)  Suspected/Unknown 108 (10.6%)

 Missing 5 (0.5%)  Missing 2 (0.2%)

Years of education 13.55 (2.97) Post-traumatic Amnesia

Psychiatric History  Yes 683 (67.6%)

 Yes 211 (20.9%)  No 203 (20.1%)

 No 796 (78.7%)  Suspected/Unknown 124 (12.2%)

 Missing 4 (0.4%)  Missing 2 (0.2%)

Prior TBI Positive Head CT

 No 767 (66.4%)  Yes 300 (29.7%)

 Yes 337 (29.2%)  No 696 (68.8%)

 Missing 51 (4.4%)  Missing 15 (1.5%)

Note. N = sample size, M = mean, SD = standard deviation. GCS arrival score 13–15 criteria with at least one completed follow-up assessment for 
study inclusion. TBI = traumatic brain injury; PTA = post-traumatic amnesia; CT = computerized tomography. Sample was adult mTBI including 
six 17-year old patients.
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Table 2.

Fit Statistics for Confirmatory Factor Models at Each Time Point

Model χ2 df RMSEA CFI TLI

T1 2 Weeks

Higher Order Models

 Correlated factor

 1-factor 992.4 104 .117 .939 .930

 4-factor
a 387.3 98 .069 .980 .976

 4-factor
b 373.1 98 .067 .981 .977

 Second order

 4-factor (1SO, 3FO)
c 353.9 102 .063 .983 .980

 5-factor (1SO, 4FO)
a 451.0 100 .075 .976 .971

 5-factor (1SO, 4FO)
b 383.7 100 .067 .981 .977

Bifactor Model

 4-factor (1G, 3S) 301.3 95 .059 .986 .982

T2 3 Months

Higher Order Models

 Correlated factor

 1-factor 664.8 104 .095 .965 .960

 4-factor
b 280.5 98 .056 .989 .986

 Second order

 4-factor (1SO, 3FO)
c 338.3 102 .062 .985 .983

 5-factor (1SO, 4FO)
b 274.7 100 .054 .989 .987

Bifactor Model

 4-factor (1G, 3S) 238.1 95 .050 .991 .989

T3 6 Months

Higher Order Models

 Correlated factor

 1-factor 522.1 104 .085 .976 .972

 4-factor
a 245.0 98 .052 .991 .989

 4-factor
b 214.9 98 .047 .993 .992

 Second order

 4-factor (1SO, 3FO)
c 278.0 102 .056 .990 .988

 5-factor (1SO, 4FO)
a 266.0 100 .055 .990 .988

 5-factor (1SO, 4FO)
b 226.6 100 .048 .993 .991

Bifactor Model

 4-factor (1G, 3S) 207.6 95 .046 .993 .992

T4 12 Months
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Model χ2 df RMSEA CFI TLI

Higher Order Models

 Correlated factor

 1-factor 639.3 104 .100 .967 .962

 4-factor
a 410.1 98 .079 .981 .976

 4-factor
b 244.7 98 .054 .991 .989

 Second order

 4-factor (1SO, 3FO)
c 273.2 102 .057 .989 .987

 5-factor (1SO, 4FO)
a 404.1 100 .077 .981 .977

 5-factor (1SO, 4FO)
b 255.4 100 .055 .990 .988

Bifactor Model

 4-factor (1G, 3S) 177.2 96 .041 .995 .994

Note: χ2 = chi-square statistic; df = degrees of freedom; RMSEA = root mean square error of approximation statistic; CFI = comparative fit index; 
TLI = Tucker-Lewis index; SO = second order factor; FO = first order factor; G = general factor; S = specific factor;

a
derived from the time point’s exploratory factor analysis;

b
consistent with 3-month exploratory factor analysis;

c
derived from consistent exploratory bifactor model at each time point
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Table 3.

Omega Scores for Four-Factor Bifactor Strict Measurement Invariance Model across Time

Model Factor ECV (New) Omega/ OmegaS OmegaH/ OmegaHS Relative Omega

T1 2 weeks

General factor .82 .97 .93 .96

 s1 Emotional .22 .91 .20 .22

 s2 Cognitive .26 .94 .24 .26

 s3 Visual .37 .89 .30 .34

T2 3 months

General factor .85 .98 .95 .97

 s1 Emotional .17 .93 .15 .16

 s2 Cognitive .23 .95 .21 .23

 s3 Visual .34 .92 .28 .31

T3 6 months

General factor .87 .98 .95 .97

 s1 Emotional .14 .94 .13 .13

 s2 Cognitive .18 .95 .17 .18

 s3 Visual .31 .92 .26 .28

T4 12 months

General factor .86 .98 .95 .97

 s1 Emotional .12 .94 .11 .12

 s2 Cognitive .21 .96 .20 .20

 s3 Visual .35 .93 .30 .32

Note: ECV (New)= explained common variance; Omega/OmegaS = internal reliability of the multidimensional composite; Omega H/OmegaHS: 
proportion of variance in given scale attributed to individual differences in General factor
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Table 4.

Fit Statistics for Strict Measurement Invariance of the Four-Factor Bifactor Model across Sex, Age, 

Psychiatric History, CT Scan Results, and Time

Group χ2 df RMSEA CFI ΔCFI TLI ΔTLI χ2 diff p

Sex

 T1 2 weeks 378.6 259 .031 .994 .005 .994 .004 .111

 T2 3 months 309.2 258 .021 .998 . .998 . .397

 T3 6 months 330.1 259 .026 .997 .004 .997 .004 .456

 T4 12 months 309.4 259 .023 .998 .003 .998 .003 .584

Age

 T1 2 weeks 557.2 423 .032 .994 .005 .995 .005 .195

 T2 3 months 484.1 421 .023 .997 .003 .998 .003 .375

 T3 6 months 648.6 423 .044 .992 −.002 .993 −.002 .000

 T4 12 months 500.6 423 .027 .997 .003 .998 .003 .312

Race

 T1 2 weeks 362.3 259 .030 .995 .006 .995 .006 .637

 T2 3 months 341.2 259 .028 .996 .001 .996 .001 .030

 T3 6 months 361.8 259 .032 .996 .002 .996 .002 .020

 T4 12 months 301.3 259 .021 .998 .003 .998 .003 .689

Psychiatric history

 T1 2 weeks 374.0 260 .031 .995 .005 .995 .004 .198

 T2 3 months 353.1 259 .029 .996 .002 .996 .002 .019

 T3 6 months 305.4 259 .021 .998 .003 .998 .003 .340

 T4 12 months 308.1 259 .022 .998 .003 .998 .003 .540

CT Scan

 T1 2 weeks 403.5 259 .035 .993 .006 .994 .007 .185

 T2 3 months 301.8 258 .020 .998 .003 .998 .003 .550

 T3 6 months 366.9 259 .032 .996 .002 .996 .002 .015

 T4 12 months 314.0 259 .024 .998 .003 .998 .003 .463

Time

 T1 – T4 2525.9 1925 .018 .992 .002 .992 .002 .023

Note. χ2 = chi-square statistic; df = degrees of freedom; RMSEA = root mean square error of approximation; CFI = comparative fit index; TLI 
= Tucker-Lewis index; CT = computerized tomography. Age was stratified into terciles. CT scan results were coded as the presence or absence of 
acute intracranial findings. dfs at T2 3 months for sex, age, and CT scan differ from other time points owing to collapsing nausea item responses for 
one of the groups.
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Table 6.

Mean Differences in Strict Measurement Invariance Bifactor Model Factors across Age Groups

Model Factor T1 2 weeks T2 3 months

Age Age1 Age2 p Age3 p Age1 Age2 P Age3 p

General factor .00 .28 .002 −.03 .736 .00 .28 .004 .15 .145

 s1 Emotional .00 −.23 .095 −.31 .040 .00 −.44 .009 −.58 .001

 s2 Cognitive .00 −.32 .013 .07 .603 .00 .17 .230 .34 .021

 s3 Visual .00 .25 .077 .39 .011 .00 −.13 .462 .17 .359

Model Factor T3 6 months T4 12 months

Age Age1 Age2 p Age3 p Age1 Age2 p Age3 p

General factor .00 .23 .031 .12 .257 .00 .23 .036 .15 .164

 s1 Emotional .00 −.18 .315 −.27 .150 .00 −.05 .789 −.21 .235

 s2 Cognitive .00 .10 .521 .63 <.001 .00 .00 .986 .27 .096

 s3 Visual .00 .21 .192 .37 .038 .00 .084 .638 .34 .047

Note. Age1 = 17 – 28; Age2 = 29 – 48; Age3 = 49 – 88. p = significance of χ2 difference test for age group 2 or 3 versus 1. Means of zero to 
two decimal places indicate fixed parameters in the first group and differences are represented in standard deviation units relative to these means. 
Estimates in bold emphasize significance at p<.05.
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