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Compressed Representation of Dispersion Interactions and Long-Range Electronic

Correlations

Jérôme F. Gonthier1, a) and Martin Head-Gordon1, b)

Kenneth S. Pitzer Center for Theoretical Chemistry, Department of Chemistry,

University of California, Berkeley, California, 94720 USA,

and Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley,

California, 94720 USA

(Dated: 25 September 2017)

The description of electron correlation in quantum chemistry often relies on multi-

index quantities. Here, we examine a compressed representation of the long-range

part of electron correlation, that is associated with dispersion interactions. For this

purpose, we perform CCSD computations on localized orbitals, then extract the por-

tion of CCSD amplitudes corresponding to dispersion energies. Using singular value

decomposition, we uncover that a very compressed representation of the amplitudes is

possible in terms of occupied-virtual geminal pairs located on each monomer. These

geminals provide an accurate description of dispersion energies at medium and long

distances. The corresponding virtual orbitals are examined by further singular value

decompositions of the geminals. We connect each component of the virtual space to

the multipole expansion of dispersion energies. Our results are robust with respect

to basis set change and hold for systems as large as the benzene-methane dimer.

This compressed representation of dispersion energies paves the way to practical and

accurate approximations for dispersion, for example in local correlation methods.

a)j.gonthier01@gmail.com
b)mhg@cchem.berkeley.edu
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I. INTRODUCTION

In quantum chemistry, the description of electron correlation often relies on multi-index

quantities, which are tensors.1. The four-index tensor of four-center two-electron integrals

is perhaps the most familiar one. It is natural to ask whether such tensors can be efficiently

approximated using sums of products of lower-rank tensors. One way to motivate that

question is by the well-known result that positive semi-definite matrices can be diagonal-

ized, and approximated in a least squares sense by discarding small eigenvalues. Singular

value decomposition (SVD)2 generalizes this result to non-symmetric matrices, providing

a factorization in terms of a sum of vector outer products. These vectors are ranked by

an associated singular value, and selecting the N vectors with the largest singular value

provides the least-squares optimal rank-N representation of the original matrix. A matrix

whose effective rank is much smaller than its dimension can be accurately approximated

with only a small fraction of its eigenvalues or singular values.

Indeed, there are many successful strategies that express 4-center two-electron integrals

as sums of products of two and three center integrals. These include density fitting,3–5

resolution of the identity6,7 or Cholesky decomposition.8–10. Of course, accurate quantum

chemistry computations must include electronic correlation effects, which introduces further

high-dimensional tensors in the theory. Well-known examples are the doubles (T2) and

triples (T3) amplitudes of coupled cluster (CC) theory1. Can such amplitudes likewise be

compressed? After a review of relevant existing work, this paper addresses that question for

T2-type amplitudes that correspond to dispersive correlations – where two electrons undergo

correlated fluctuations at spatially separated sites.

First we note that one can apply SVD to higher-order tensors directly by grouping some

of their indices together to effectively form a two-dimensional matrix, a process we will

refer to as unfolding. This technique was first applied to the CC T2 amplitudes11 and

later extended to approximate perturbative T3 amplitudes12 to reduce computational cost

while preserving accuracy. Such tensor decompositions allow us to gain physical insight into

complex amplitudes by adaptively extracting the most relevant information. For example,

the unfolding and SVD of the T2 amplitude tensor yields the dominant pair correlations,

represented as two-electron geminal hole and particle functions.13. A generalization of SVD14

for high-order tensors has also been applied to the T2 amplitudes15 for analysis.

2



There have also been efforts to use different tensor decomposition approaches tailored to

evaluating the electronic correlation energy.16,17 Other examples include the low-rank spec-

tral expansion18; tensor hypercontraction19,20 and generalized Cholesky methods.21. Addi-

tionally, the Density Matrix Renormalization Group (DMRG),22,23 is an approximate full CI

algorithm that expresses the high dimensional electronic wavefunction as a sums of prod-

ucts of lower-dimensional quantities.24 This naturally yields a compact representation with

reduced computational cost, particularly for quasi-one-dimensional problems, reflecting the

underlying tensor decomposition.

In general, natural orbitals (NOs) are the eigenvectors that are obtained by SVD of a

density matrix,25 for which they offer a compact description. The occupation number of

NOs ranks them by their importance in the description of the corresponding density matrix.

Thus, obtaining NOs from a correlated density matrix at a low level of theory offers a

way of truncating the virtual space in a high-level correlated computation.26–28 NOs, often

extracted from affordable MP2 computations, are also extremely useful in local correlation

methods29,30, as exemplified by Pair Natural Orbitals (PNOs),31,32 that tailor the virtual

space to each electron pair, and that are extracted from the appropriate density matrix

by SVD. PNOs were recently revisited with much success for accurate local correlation

methods.33,34 Alternatively, SVD of the diagonal MP2 amplitudes yields sets of Orbital-

Specific Virtuals (OSVs) for each occupied orbital,35 a reduced representation that was also

applied to CCSD(T).36,37

The existence of a reduced correlation space for the dispersive correlation of distant elec-

tron pairs was already mentioned by Pulay in one of his earliest papers on local correlation:29

“Indeed, in the van der Waals limit interpair correlation can be probably described by using

only three correlation functions, corresponding to the three components of the instantaneous

dipole moment.” To our knowledge, a recent paper38 on improved PNO methods based on

iterating the distant CC amplitudes in a reduced virtual correlation space is the first to

actually adopt such an approach in practice, and no detailed investigation of a compressed

representation for dispersion or long-range electron correlation yet exists. This paper aims

to fill this gap, we will compare our numerical results against Pulay’s prediction, and against

the improved PNO method for long-range correlations38 in Section IV C.

Our work investigates in detail a tensor decomposition of dispersion interactions, with a

particular focus on the monomer virtual orbitals needed for an accurate description. The
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next section summarizes our method and the associated theory before presenting the two

groups of dimers that will serve as our models, and the necessary computational details. In

Section III, we show that the amplitudes describing correlation between distant electron pairs

can be greatly compressed. We examine first minimal monomers, then extract the virtual

orbitals characteristic of this compressed representation. We highlight the major role played

by 2p and 3p orbitals in systems with a single electron pair. We extend our considerations

to larger systems as well. In Section IV, we investigate the accuracy of our approximate

amplitudes in reproducing dispersion energies, both in small and large monomers. In all

cases, we obtain accurate results using a minimal number of virtual orbitals. Finally, Section

V offers a summary of our main results and our conclusions.

II. THEORETICAL METHODS AND MODEL SYSTEMS

A. Definition of dispersion energies

Here, we will follow the widely accepted definition of dispersion energies from long-range

perturbation theory.39 When describing two monomers A and B with a Hartree-Fock wave-

function, the expression for dispersion energy reads:

Edisp =
A∑
ia

B∑
jb

(ia|jb) (ai|bj)
εa + εb − εi − εj

(1)

Here (ia|jb) represents a molecular electron repulsion integral in the chemist’s notation,

where i, a are respectively occupied and virtual orbitals on monomer A whereas j, b are

occupied and virtual orbitals on monomer B. εx is the Hartree-Fock orbital energy of orbital

x. The only assumption that is made in deriving this expression is that exchange interactions

between monomers are negligible. Since exchange decays exponentially with distance, we

expect Equation (1) to be reasonably accurate even at medium range. Defining:

tabij =
(ia|jb)

εa + εb − εi − εj
(2)

we can simply rewrite the dispersion energy as:

Edisp =
A∑
ia

B∑
jb

tabij (ai|bj) (3)
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In the following, it will be useful to expand the (ai| charge density as:

(ai| =
∑
α

(
µAα
)
ai

+
∑
αβ

(
ΘA
αβ

)
ai

+ ... (4)

and similarly for |bj), where
(
µXα
)
ai

=
(
a
∣∣µ̂Xα ∣∣ i) and

(
ΘX
αβ

)
ai

=
(
a
∣∣∣Θ̂X

αβ

∣∣∣ i) are matrix

elements of the dipole and quadrupole operators for monomer X, respectively. The greek

letters α, β, ... index the components of each operator. Following Stone,39 we can now

write the interaction between the (ai| and |bj) charge densities, truncated at the quadrupole

terms, as:

(ai|bj) = Daibj
µµ +Daibj

µΘ +Daibj
ΘΘ + ... (5)

where

Daibj
µµ =

∑
αβ

Tαβ
(
µAα
)
ai

(
µBβ
)
bj

(6)

is the dipole-dipole term,

Daibj
µΘ =

∑
αβγ

Tαβγ

((
µAα
)
ai

(
ΘB
βγ

)
bj

+
(
ΘA
αβ

)
ai

(
µBγ
)
bj

)
(7)

is the dipole-quadrupole term and

Daibj
ΘΘ =

∑
αβγδ

Tαβγδ
(
ΘA
αβ

)
ai

(
ΘB
γδ

)
bj

(8)

is the quadrupole-quadrupole term. The T tensors contain the dependence of each interac-

tion on the intermolecular distance R, so that Tαβ ∝ R−3, Tαβγ ∝ R−4 and Tαβγδ ∝ R−5.

We can expand both integrals in Equation (1) to obtain:

Edisp =
A∑
ia

B∑
jb

(
Daibj
µµ

)2
+
(
Daibj
µΘ

)2

+
(
Daibj

ΘΘ

)2

εa + εb − εi − εj
+ 2

A∑
ia

B∑
jb

Daibj
µµ D

aibj
µΘ +Daibj

µΘ Daibj
ΘΘ

εa + εb − εi − εj
(9)

where we separated terms that decay as even or odd powers of R. Thus Edisp is asymp-

totically dominated by the purely dipolar term
(
Daibj
µµ

)2
that decays as R−6. The next

even-powered terms are the pure dipole-quadrupole interaction
(
Daibj
µΘ

)2

that decays as R−8

and the pure quadrupole-quadrupole interaction
(
Daibj

ΘΘ

)2

that decays as R−10. The mixed

odd-powered terms Daibj
µµ D

aibj
µΘ and Daibj

µΘ Daibj
ΘΘ decay respectively as R−7 and R−9 and vanish

for centrosymmetric molecules and atoms.

Provided we can attribute each orbital to a single monomer, Equation (3) is easily identi-

fied from the MP2 dimer energy if exchange effects are negligible. In this case, Equation (2)
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for the amplitudes is equivalent to the expression for the MP2 amplitudes. Because MP2 is

known to overestimate dispersion in the basis set limit,40,41 we replace MP2 amplitudes by

CCSD amplitudes in Equation (3). Thus, we directly identify dispersion energy from the

CCSD energy expression. This identification is not new, and was already employed in en-

ergy decomposition analyses, with the difference that dispersion is usually grouped with an

exchange-dispersion term.42–44 In the present work we do not consider exchange-dispersion

since we are only interested in the behavior of the interaction energy in the long range,

where exchange is negligible.

Practically, we perform a Hartree-Fock computation on the dimer of interest, followed

by orbital localization of the occupied and the virtual space separately using the Boys

algorithm.45–48 The orbitals are then canonicalized for each monomer separately using the

monomer blocks of the dimer Fock operator. This improves considerably the convergence

properties of the following CCSD computation. Upon convergence, the CCSD T2 doubles

amplitude tensor is read, and amplitudes tabij with i, a on monomer A and j, b on monomer

B are collected in a four-index dispersion amplitude tensor T disp2 . At this point, we proceed

with the numerical analysis described in the next section.

To obtain dispersion energies, we build the tensor T disp,sym2 that is a symmetrized version

of T disp2 where all elements obey the following relations: tabij = tbaji , t
ab
ij = −tbaij and tabij = −tabji .

Dispersion is then computed as the difference between the CCSD energy with the full T2 and

the CCSD energy with T2 − T disp,sym2 . Once again, we assume the exchange component in

this energy decays exponentially with monomer separation and quickly becomes negligible.

B. Tensor decomposition strategy

As mentioned in the introduction, obtaining optimal low-dimensional decompositions for

a tensor of more than two dimensions is not trivial.49 Here, we choose to decompose the

four-index T disp2 tensor in two steps.

In the first step we unfold the tensor, i.e. we group indices together to obtain a matrix

representation of the tensor. For T2, there are different possible ways to group indices

together. Most, if not all, of the previous work on T2 compression has chosen to group

occupied indices together, leaving virtual indices for the second dimension of the matrix.13,15

In the following, we denote this particular unfolding of the tensor as TOO,V V which is a matrix
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with O2 rows and V 2 columns where O and V are respectively the number of occupied and

virtual orbitals. PNOs for example are computed from this unfolding by restricting the

occupied indices to a single orbital pair and then performing a Singular Value Decomposition

on the resulting V 2 matrix.32 The TOO,V V unfolding makes a lot of sense for short-range

electron correlation since it physically represents the correlation of a pair of occupied orbitals

i, j into pairs of virtual orbitals a, b. In addition, the corresponding SVD yields at most O2

significant vectors, assuming V ≤ O.

Dispersion interactions however are most often understood in terms of correlated elec-

tron fluctuations. Expressions from long-range perturbation theory39 connect dispersion to

simultaneous electronic excitations on both monomers. To preserve this monomer-based

view of dispersion, we unfold T disp2 as TOAVA,OBVB where OX and VX are the occupied and

virtual orbitals of monomer X. This unfolding groups together orbitals belonging to each

monomer, with OAVA rows and OBVB columns. Singular Value Decomposition2 factorizes

our unfolding as the product of three matrices:

TOAVA,OBVB = GAΓ
(
GB
)T

(10)

where GA contains Ngem singular vectors which are columns of OAVA elements each while

GB contains Ngem singular vectors which are columns of OBVB elements each. Γ is a diagonal

square matrix with Ngem singular values on the diagonal. By the properties of the SVD,

Ngem is equal to OAVA if OAVA ≤ OBVB and to OBVB otherwise. Defining GX
•P as the

P th column of matrix GX , we can rewrite the above decomposition in terms of the singular

vectors directly:

TOAVA,OBVB =

Ngem∑
P

GA
•PγP

(
GB

•P
)T

(11)

Thus we obtain a representation of T disp2 as a weighted sum of paired singular vectors

GA
•P and GB

•P , with the weight being the singular value γP . Since the paired singular

vectors each contain both occupied and virtual orbitals, we interpret them as describing

correlated electron excitations between monomers A and B. The singular values γP offer us

a straightforward way to rank these excitations by their importance in the dispersion tensor

T disp2 . In the following, for brevity and because the singular vectors represent 6-dimensional

hole-particle functions, we will simply refer to them as geminals.

In the second step of our analysis, we investigate the virtual space associated with each

geminal. For this purpose, we select a particular geminal P from either GA or GB and
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we unfold it as
(
GX

•P
)OX ,VX with OX rows and VX columns. SVD of this matrix yields the

following factorization: (
GX

•P
)OX ,VX = UΣ (V)T (12)

We assume that OX ≤ VX and thus U and V contain OX columns that are singular vectors

composed of OX and VX elements respectively. Σ is a diagonal square matrix of OX singular

values σ. The columns of matrices U and V define new occupied and virtual orbitals that

completely describe the chosen geminal. The occupied and virtual orbitals obtained form

pairs of so-called Natural Transition Orbitals50,51 (NTOs). NTOs have been applied to

analyze excitation amplitudes in various excited state methods like TDDFT51 or CIS.52 In

our case, we analyze excitation geminals extracted from T disp2 for which we obtain OX pairs

of occupied and virtual orbitals. We then plot the virtual orbitals using VMD53 and GIMP

(www.gimp.org).Note that if we restrict indices i and j to a single orbital pair then each

geminal corresponds to a Pair Natural Orbital (PNO),31,32 whereas if i and j correspond to

the same orbitals we obtain Orbital-Specific Virtuals (OSVs).35

C. Model systems

To facilitate the interpretation of our results, we first restrict our approach to monomers

that only have one occupied orbital. Our three initial dimers are thus the He dimer, H2

in the singlet ground state and H2 at the triplet ground state, all computed at varying

interatomic distances. To investigate the influence of a multi-atomic monomer, we analyzed

He interacting with H2 where the interfragment distance is measured between He and the

H2 center of mass, the H-H axis is perpendicular to the interfragment axis and the H-H

distance is 0.74 Å. Finally, as a first glimpse into the many-orbital monomer regime, we

studied He interacting with Be. Most computations on these systems were performed with

the d-aug-cc-pVQZ basis set54–56 except where mentioned otherwise.

Then, we validated and extended our analysis on polyatomic systems, including the Ne

dimer, the methane dimer, the ethene dimer, the ethene-ethyne dimer and the methane-

benzene dimer. The geometries of the methane dimer and the methane-benzene dimer were

obtained from the S22 database of noncovalent complexes40 whereas the A2457 data set

provided geometries for ethene-ethyne and ethene dimer. We selected the parallel π-stacked

geometry of the ethene dimer (number 23 in the dataset) as a model for π-stacking aromatic
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interactions. In all cases, the geometries from the different datasets were obtained from the

online BEGDB database58 (www.begdb.com).

The Ne dimer was investigated at separations of 3.0, 6.0 and 9.0 Å using the aug-cc-pVQZ

basis set. All the other large complexes were examined with the aug-cc-pVTZ basis set at

the geometries provided in the respective dataset and at distances elongated by 3.0 and 6.0

Å along the axis linking the monomers’ centers of mass. When interfragment distances are

reported, they correspond to the C· · ·C distance for the methane dimer, to the distance

between the two molecular planes for ethene dimer and ethene-ethyne dimer, and to the

distance between the benzene plane and the closest methane H for benzene-methane dimer.

All our computations were done at the CCSD level in Q-Chem version 4.4.59

III. COMPRESSIBILITY OF T disp2

A. Small monomers

The first question that we wish to address in this work is whether there exists a compressed

representation for the dispersion amplitudes. We performed a Singular Value Decomposition

of the T disp2 tensor for CCSD computations on the He dimer at 3.0, 6.0 and 9.0 Å interatomic

separation. To assess the basis set dependence of our results, the obtained singular values

γP are plotted in Figure 1 for the cc-pVTZ, cc-pVQZ, aug-cc-pVTZ, aug-cc-pVQZ and

d-aug-cc-pVQZ basis sets. We also plotted for comparison the singular values obtained

when decomposing the intraatomic T intra2 amplitude tensor with the same unfolding, which

represents the effect of short-range electron correlation (in black on Figure 1).

As expected, we observe that the singular values associated with T intra2 decrease relatively

slowly, indicating that several dozen occupied-virtual geminals on each monomer are needed

for a reasonable description of the amplitudes. By contrast, the singular values associated

with T disp2 exhibit a very sharp decrease already at 3.0 Å, the shortest distance explored in

this work. Increasing the basis set angular momentum or adding diffuse functions does not

affect significantly the initial decrease for the 3.0 Å distance, but a longer tail appears for

singular values comprised between 10−5 and 10−8. As the interatomic distance increases,

singular values decay more and more sharply. In addition, when exchange effects become

negligible at 6.0 Å and beyond, increasing the basis set angular momentum or diffuse char-
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acter has very little effect on the total number of singular values larger than 10−8. For the

following computations, and unless mentioned otherwise, we thus choose the d-aug-cc-pVQZ

basis set. We validated the robustness of the He2 trend on other small dispersion-dominated

dimers: He interacting with a monomer containing more than one electron pair (He· · ·Be)

or more than one atom (He· · ·H2); and two hydrogen atoms at the triplet and singlet states,

prototypes of same-spin and opposite-spin dispersion respectively. (see Figure S1). All cases

are consistent with our observations on He2.

In Figure 2, we plotted in more detail the first few T disp2 singular values, which are as-

sociated with the most important geminals for each dimer. Most systems at all distances

exhibit a group of three singular values that are more significant than the others and domi-

nate the description of dispersion interactions. This feature becomes more obvious at 6.0 Å

and larger distances, as exchange effects become negligible. The only exception is H2 singlet

at 3.0 Å where the orbitals tend to be more delocalized, possibly because of the absence of

Pauli repulsion and the emerging covalent bond, which blurs our definition of dispersion.

In all systems at 9.0 Å, we distinguish a further group of 8 singular values before another

discontinuity. In the case of He2, this group of 8 shows an emerging internal structure that

divides it in 3 values followed by 5. The origin of this division will become clearer as we

examine the composition of the virtual space for each geminal in the following section. We

further remark that the contrast between the intraatomic and dispersion-related singular

values is even more striking at this scale.

In the smaller basis sets cc-pVTZ, cc-pVQZ, aug-cc-pVTZ and aug-cc-pVQZ for He2,

we observe the same structure for the first few singular values (see Supporting Information

Figure S2), which confirms the robustness of this trend. As the basis set becomes larger and

more diffuse, the 3 first singular values are still clearly separated from the rest, although the

following structure becomes less visible.

B. Virtual components of geminals

As detailed in Section II B, each singular vector from the SVD of T disp2 is a geminal with

OXVX elements, having components in both the occupied and virtual spaces. To examine

the virtual orbitals we unfold each geminal in a matrix with OX rows and VX columns,

that is decomposed by SVD in pairs of occupied and virtual orbitals (similarly to a NTO50
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FIG. 1. T disp2 singular values for He2 at 3.0 Å (blue), 6.0 Å (green) and 9.0 Å (red) interatomic

separation with the cc-pVTZ, cc-pVQZ, aug-cc-pVTZ, aug-cc-pVQZ and d-aug-cc-pVQZ basis

sets. In black, we plot the singular values for intraatomic amplitudes in He. The basis set used is

indicated above each plot.
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FIG. 2. 15 first singular values of T disp2 for H2 triplet and singlet, He· · ·Be, He· · ·H2 and He2

with the d-aug-cc-pVQZ basis set at 3.0 (blue), 6.0 (green) and 9.0 Å (red) monomer separation.

For He2, singular values for the intraatomic amplitude tensor T intra2 are also shown in black. The

computed dimer is identified above each plot.

analysis) completely representing the original matrix. In the small monomers studied here,

there is only one occupied orbital and thus only one virtual orbital per geminal.

We plot these virtual orbitals for the 11 most important geminals in Figure 3 at 6.0 Å

interatomic separation for He2. The data at 3.0 and 9.0 Å is presented in the Supporting

Information (Figures S3 and S4) and demonstrates that results are converged in practice

at 6.0 Å. At all distances, the virtual part of the three first geminals corresponds to three

2p orbitals, one per geminal (see Figure 3 and S3, Geminals 1-3). We can interpret each

geminal as describing an excitation from an occupied 1s to a virtual 2p orbital. Hence, the

three first geminals correspond to the pure dipole-dipole interactions in Equation (9), which

we expect to decay as R−6 and to dominate dispersion interactions at long range.39

The three next geminals at 6.0 Å and beyond clearly resemble 3p orbitals (see Geminals

4-6 in Figure 3), with Geminals 5 and 6 showing signs of polarization. The physical role

of 3p orbitals appears less clear, but could be connected to the next non-zero term in the
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Geminal 1 Geminal 2 Geminal 3

Geminal 4 Geminal 5 Geminal 6

Geminal 7 Geminal 8 Geminal 9

Geminal 10 Geminal 11

FIG. 3. Virtual part of geminals 1 to 11 (left to right, top to bottom) for He2 with the d-aug-cc-

pVQZ basis at 6.0 Å interatomic separation. Orbitals plotted at an isovalue of 0.05. The interacting

partner is located along the z axis, represented in blue.

multipolar expansion of dispersion for atoms,39 the mixed dipolar-quadrupolar interactions

(see Equation (9)). Geminals 7-11 display a clear 3d character at long range (see Figure 3).

Physically, we attribute these orbitals to the next non-zero term for atoms in the multipolar

expansion of dispersion which contains pure quadrupole-quadrupole interactions. At 3.0 Å

separation, exchange and overlap effects modify the shape of Geminals 4-11 virtual orbitals.

Geminals 4-8 virtuals resemble mixtures of 3d and 3p orbitals, while Geminals 9-11 are not

easily recognizable. However, virtuals corresponding to Geminals 1-3 are always identifiable

as 2p orbitals (see Figures S3 and S4).

For all groups of similar geminals, the one aligned with the interatomic axis is generally

associated with a slightly larger singular value, and thus describes a larger portion of T disp2 .

The shape and the ordering of the virtual orbitals depicted above seem to be typical of

two-electron systems, as shown by computations on other small monomers (see Figures S5 -

S12). Even the diatomic H2 asymptotically displays geminal virtuals reminescent of 2p, 3p

and 3d orbitals when interacting with He.

Finally, we can now explain the structure of the singular values observed in the previous
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section. The dominant three singular values are associated with the three 2p orbitals, that

correspond to dominant dipole-dipole interactions. The next group of 8 singular values

gathers three 3p and five 3d orbitals, from where the substructure of three and five singular

values that we noticed for some systems originates.

C. Distance dependence of singular values

As the interatomic distance increases, we expect the dispersion energy to decrease asymp-

totically as R−6. Equation (1) shows that the dispersion energy results from the contraction

of integrals and amplitudes. To second order, the amplitudes are computed directly from

the MO integrals and energies as shown in Equation (2). We can thus expect the decay rate

of the amplitudes (and thus of the corresponding singular values) to be roughly the square

root of the decay rate for the energy. We fitted the singular values for He2/d-aug-cc-pVQZ

with a f(x) = b · xA function where f(x) is the singular value, x the interatomic distance

and A and b fitted parameters. We report the decay exponents A obtained in Table I.

The three first singular values decay approximately as R−3, the three next as R−4 and the

5 last asR−5. Note that the decay exponents are a bit less accurate for this last group because

of their very low magnitude at large distance. Thus, the decay behavior associated with the

2p-like virtuals corresponds to a decay of the energy as R−6 consistent with dipole-dipole

interactions. The energy associated with the 3p-like virtuals decays approximately as R−8,

which corresponds to the expected decay for dipole-quadrupole interactions. Finally, the

energy associated with the 3d orbitals behaves as R−10, confirming its relation to quadrupole-

quadrupole interactions. Note that terms decaying as odd powers of R vanish for atoms and

centrosymmetric molecules. Thus our interpretation of the physical role of the different

virtual orbitals and the decay behavior of the associated amplitudes are consistent with the

multipolar expansion of dispersion shown in Equation (9).39

D. Polyatomic monomers

Turning to systems with multiple electron pairs, we plot the singular values obtained

from the SVD of T disp2 for Ne2, methane dimer, ethene dimer and methane-benzene dimer

in Figure 4. In all these cases, the singular values decay extremely quickly, and their decay
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TABLE I. Exponents A for the fitting curves f(x) = b · xA where f(x) is a singular value and x

the interfragment distance for He2/d-aug-cc-pVQZ.

Singular value index 0 1 2 3 4 5

Exponent A -2.90 -3.07 -3.06 -3.98 -4.40 -4.40

Singular value index 6 7 8 9 10

Exponent A -5.02 -5.16 -5.01 -4.77 -4.56

becomes even more pronounced as the interfragment distance increases. It is remarkable

that even in these larger systems, only a very small number of geminals, i.e. excitations, are

necessary for a compact description of the T disp2 tensor. A closer look at the singular values

(see Figure S13) reveals the same structure than for small monomers: a group of 3 singular

values clearly dominates the description of T disp2 at all distances, likely associated with

dipole-dipole interactions. Even the secondary structure of 8 singular values is visible, with

a subdivision in a group of 3 and a group of 5 that is only distinguishable at longer distances

in some systems, corresponding to the dipole-quadrupole and quadrupole-quadrupole terms.

Thus, our observations regarding the decay behavior and the structure of the T disp2 singular

values are robust with respect to monomer size.

IV. APPROXIMATE DISPERSION ENERGIES

Our analysis up to now has been confined to the amplitude tensor T disp2 . However, the

dispersion energy is computed by contracting T disp2 with appropriate two-electron integrals

over molecular orbitals. Does our analysis carry over from amplitudes to dispersion energies?

To investigate this question, we reconstruct T disp2 approximately from Equation (10) by

including only the Ngem most important geminals as columns of the matrices GA and GB.

We then compute the dispersion energy with the approximated T disp2 , which corresponds

to computing dispersion energies in a restricted virtual space containing only the virtual

orbitals extracted from the Ngem most important geminals that we plotted in Section III B.

We then assess the accuracy of this approximate representation by comparing it with the

dispersion energy obtained from the exact T disp2 .
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FIG. 4. T disp2 singular values for Ne2, methane dimer, ethene dimer and methane-benzene dimer

at various interfragment distances as indicated on each plot. Ne2 was computed with aug-cc-pVQZ

and all other systems with aug-cc-pVTZ.

A. Small monomers

We probed the accuracy of approximate dispersion energies in the 5 small monomers

studied previously, and plotted the results at 3.0, 6.0 and 9.0 Å for various values of Ngem

in Figure 5. We immediately see that the results are good, with errors below 0.5% at

distances larger than 3.0 Å for all Ngem tested. Using only Ngem = 3, the error converges

asymptotically to a small but constant value inferior to 0.3 % of the full dispersion energy

at long distance (≥ 6.0 Å). For further improvement, we add the next set of virtual orbitals

corresponding to 3p-like functions. In this case, Ngem = 6 in total and the relative errors

asymptotically converge to zero.
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FIG. 5. Relative percent error for dispersion energy computed with T disp2 approximately recon-

structed with 3 (blue), 6 (green) and 11 (red) geminals at 3.0, 6.0 and 9.0 Å for H2 triplet, H2

singlet, He· · ·H2, He· · ·Be and He2 with the d-aug-cc-pVQZ basis set. Each system is indicated

above the corresponding plot.

At the shortest distance of 3.0 Å, He· · ·Be and ground state H2 at the singlet state exhibit

larger errors. These are caused by the larger size of Be which increases the importance of

the exchange terms and by traces of covalent character in singlet H2. Even in these two

cases, the error decreases rapidly with distance to a small constant for 3 geminals and to

practically zero for 6 geminals and more. We found consistent trends for He2 at various

distances and with different basis sets (see Figure S14).

In all the small systems, we can thus describe dispersion energies with at least 99.5 %

accuracy at 6.0 Å and beyond using only three geminals per atom to represent the dispersion

amplitudes. At short distances, exchange effects make our definition of dispersion unreliable,

but 6 geminals per atom still generally describe 90 % of electron correlation.
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FIG. 6. Relative percent error for dispersion energy computed with T disp2 approximately recon-

structed with 3 (blue), 6 (green), 8 (red), 11 (black) and 15 (teal) geminals at various distances

for Ne2, methane dimer, ethene dimer and benzene-methane dimer. Ne2 was computed with aug-

cc-pVQZ and all other systems with aug-cc-pVTZ.

B. Polyatomic monomers

Since the singular values of T disp2 behave in a similar way between the small and large

monomers, we expect that an accurate and compact description of dispersion energies is

possible for polyatomic systems using only 3 geminals.

In Figure 6 we plot relative errors obtained for 3, 6, 8, 11 and 15 geminals for Ne2, methane

dimer, ethene dimer and methane-benzene dimer. Indeed, 3 geminals provide an excellent

description of dispersion interactions. Even at the shortest distance, we recover between

85 % and 99 % of the CCSD dispersion energy. As the interfragment distance increases,

the relative error decreases to a constant value below 0.5 %. Adding 3 more geminals to

the description of dispersion so that Ngem = 6 reduces the error at all distances and makes

the long-range error negligible. At all distances, increasing Ngem further decreases the error

until we obtain numerically exact results. Hence, all of the essential observations that were

made on small monomers carry over to larger molecules, and we can be quite confident that

these trends are general.
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Since we localize orbitals to identify dispersion in the CCSD energy, we assessed the

relative importance of σ and π electrons in dispersion interactions in the ethene dimer and

the ethene-ethyne dimer. We find that although the individual contributions of π electrons

are larger than those of σ electrons, there is usually many more σ than π electrons and

both contribute significantly. This is in agreement with other literature findings.60–62 We

also verified that the relative contribution of σ and π electrons was well-represented by our

approximate T disp2 (see Supporting Information for a more detailed discussion).

C. Properties of the virtual space

As mentioned before, each geminal can be decomposed into OX pairs of occupied and

virtual orbitals that completely describe it. Thus, there are in general Nocc virtual orbitals

per geminal, which means that the necessary Ngem geminals to describe dispersion accurately

in a given dimer correspond to the number of virtual orbitals needed per occupied orbital.

We emphasize that virtual orbitals obtained from different geminals are not orthogonal

and in fact may not even be linearly independent in the general case. We examined the

rank of the virtual space obtained by the union of the virtual orbitals from the 3 first, and

then from the 6 first geminals. For this purpose, we build the overlap matrix of the virtual

orbitals investigated and examine its eigenvalues. Except for Ne2, all overlap matrices are

full rank which indicates that all of the 3Nocc or 6Nocc virtuals are necessary to describe the

space spanned by 3 and 6 geminals respectively. For Ne2, there is one linearly dependent

virtual for Ngem = 3 at all distances, whereas for Ngem = 6 there is one linearly dependent

virtual at the shortest distance and two at 6.0 and 9.0 Å. We attribute this small redundancy

of the virtual space to the high symmetry of the dimer. One of these virtual orbitals however

is paired with a core occupied orbital. We can discard all such orbital pairs by performing

a frozen core computation, introducing only a minor error ranging from 0.05 % to 0.2 %

compared to the full electron computation (see Table SII and discussion in the Supporting

Information).

Examining again Equation (11) that connects the unfolded tensor of dispersion ampli-

tudes to the geminals

TOAVA,OBVB =

Ngem∑
P

GA
•PγP

(
GB

•P
)T

(13)
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we see that each geminal on monomer A is only coupled to one geminal on monomer B.

Hence, with 3 geminals per monomer the above sum has only 3 terms. In addition, the

singular values γP directly represent dispersion amplitudes tabij transformed to the geminal

basis. Thus, there exists in principle a transformation of the amplitudes that allows us

to describe dispersion interactions with only 3 to 6 non-zero transformed amplitudes for a

dimer. In principle this provides an extremely efficient description of dispersion, however

optimizing coupled-cluster amplitudes in such a geminal basis is far from trivial. In addition,

the geminal transformation would have to be obtained a priori with sufficient accuracy.

A simpler alternative for an efficient description of dispersion is to find an appropriate

reduced virtual orbital basis. In PNO-type methods, such a basis is extracted from approx-

imate MP2 amplitudes for each local occupied orbital pair, and we could envision a similar

strategy. Recently, Werner specifically investigated distant pairs38 and found that 3 to 4

distant PNOs (dPNOs) were associated with each occupied orbital. As we mentioned in

Section II B, our two-step SVD decomposition applied to a single orbital pair yields PNOs.

Since we also considered long-range correlation, our analysis of small monomers (one occu-

pied pair) yields dPNOs from CCSD amplitudes and we directly confirm Werner’s results:

3 dPNOs yield accurate dispersion energies. However, our method is not restricted to a

single occupied pair and our results on polyatomic molecules show that in general, only 3

to 6 (OA + OB) virtuals are necessary for dispersion. dPNOs are computed for each orbital

pair, yielding 3OAOB virtuals. Thus, our results indicate redundancy in the dPNO space

and a possibility to further reduce the virtual space needed to describe dispersion, at the

expense of a two-step SVD on the amplitude tensor. Whether or not such a reduction would

be advantageous will obviously depend on the relative costs of the dispersion computation

with respect to the SVD.

Further more, our results give us access to the shape of dispersion-optimized virtual

orbitals for various systems, hence we can explore a wider variety of ideas to obtain an

efficient virtual basis for dispersion. As an example, since our decomposition of geminals

is similar to the NTO analysis, we examine the adequacy of NTO orbitals to describe

dispersion. A simple CIS computation on atomic He shows us that the orbitals do not appear

in the desired order: 3p NTOs come after 3s and 3d orbitals, instead of being directly after 2p.

In addition, an overlay of NTOs with dispersion-optimal virtuals clearly indicate that NTOs

are generally too diffuse (see Figure S15). Thus, NTOs are unlikely to yield an accurate
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description of the electronic excitations giving rise to dispersion. This is in agreement with

the slow convergence of the sum-over-state expression for dispersion, indicating that excited

states are not an optimal basis to describe this phenomenon. Investigations are currently

underway in our laboratory to determine other ways of obtaining virtuals well-tailored to

describe dispersion interactions.

V. CONCLUSIONS

We have investigated compressed representations of the dispersion amplitude tensor T disp2

from CCSD computations using large basis sets on He2, H2 singlet and triplet, He· · ·Be

and He· · ·H2 at different separations. Grouping indices from the same monomer together,

T disp2 is written as a matrix that we can decompose by SVD in monomer geminal vectors,

each describing an excitation process. In all cases, even at relatively short distances, the

associated singular values display a sharp decrease, indicating that only a few geminals are

needed to represent T disp2 . Closer examination indicated that a group of 3 singular values

dominated the others, followed by another group of 8 singular values. For small monomers,

further SVD of each geminal vector yields one dominant virtual-occupied orbital pair. For

the three most important geminals, we obtain three virtual 2p orbitals. The next group

of 8 geminals is composed of 3p-like orbitals, dominating at long range over five 3d-like

orbitals. We connected the observed orbital shapes to the multipolar expansion of dispersion

energies by examination of the decay behavior of the corresponding singular values. In atoms

with a 1s occupied orbital, 2p virtual orbitals are describing dipole-dipole correlations, 3p

orbitals are probably linked to dipole-quadrupole interactions and 3d orbitals to quadrupole-

quadrupole interactions. We verified that our analysis carried over to polyatomic monomers

by examining singular values for Ne2, methane dimer, ethene dimer and methane-benzene

dimer.

Using only 3 geminals on each monomer, we reconstructed the original T disp2 to a very

good accuracy. This accuracy is transferable to the dispersion energies themselves with

small relative errors obtained at all distances. At long distance, a reconstruction based on

3 geminals yields a small constant relative error, which disappears on including 3 additional

geminals. This result is also valid for larger, polyatomic systems, demonstrating that efficient

compressed representations for long-range dispersion energies exist.
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The virtual space connected to such a representation is composed of a small number of

low angular momentum functions, which in general must only be able to describe a dipolar

electronic excitation from each occupied orbital. There are no more than 3 of these per

occupied orbital (just as the linear response of the SCF wavefunction to a uniform field

requires only 3 virtuals per occupied63). This directly fulfills Pulay’s prediction29, already

mentioned in the introduction, as well as similar hints in the Symmetry-Adapted Perturba-

tion Theory literature64. It also explains the success of explicitly correlated methods65 for

non-covalent interactions since the low angular momentum basis sets used are sufficient to

describe long-range dispersion while the short-range electron correlation is taken care of by

the explicit correlation technique.

Our results open new ways to approximate dispersion interactions efficiently. In principle,

coupled-cluster amplitudes can be transformed to accurately describe long-range dispersion

using as few as 3 geminals. Finding the appropriate transformation and amplitude optimiza-

tion method is however challenging. Another possibility, exploited by Werner in his recent

work on dPNOs38, is to define a reduced virtual space specifically tailored for dispersion on

each monomer. Work is currently underway in our laboratory to find even simpler alterna-

tives yielding dispersion-optimized virtuals. Such approaches may be useful for defining the

dispersion contribution in energy decomposition analysis methods based on wavefunction

methods66–68. Finally, we hinted at the importance of dipole-quadrupole terms to acceler-

ate the long-range convergence of dispersion energies, which could be useful in numerous

approximate dispersion methods.

VI. SUPPLEMENTARY MATERIAL

Supplementary Material gathers a discussion of the relative contribution of σ and π

electrons to dispersion, a table of the frozen core approximation errors, additional figures

for all systems studied and tables of all the dispersion energies and corresponding relative

errors used to make the figures.

22



ACKNOWLEDGMENTS

This work was supported by grants from the U.S. National Science Foundation (CHE-

1363342 and CHE-1665315). JFG acknowledges grant P300P2 164631 from the Swiss Na-

tional Science Foundation.

REFERENCES

1T. Helgaker, P. Jorgensen, and J. Olsen, Molecular Electronic-Structure Theory (John

Wiley & Sons, LTD, 2000).

2G. Golub and C. Van Loan, Matrix Computations (Johns Hopkins (Fourth edition), Bal-

timore, 2013).

3J. L. Whitten, J. Chem. Phys. 58, 4496 (1973).

4B. I. Dunlap, J. W. D. Connolly, and J. R. Sabin, J. Chem. Phys. 71, 3396 (1979).

5B. I. Dunlap, Phys. Chem. Chem. Phys. 2, 2113 (2000).

6O. Vahtras, J. Almlof, and M. Feyereisen, Chem. Phys. Lett. 213, 514 (1993).

7M. Feyereisen, G. Fitzgerald, and A. Komornicki, Chem. Phys. Lett. 208, 359 (1993).

8H. Koch, A. Sanchez de Meras, and T. B. Pedersen, J. Chem. Phys. 118, 9481 (2003).

9I. Roeggen and E. Wisloff-Nilssen, Chem. Phys. Lett. 132, 154 (1986).

10N. H. F. Beebe and J. Linderberg, Int. J. Quantum Chem. 12, 683 (1977).

11T. Kinoshita, O. Hino, and R. J. Bartlett, J. Chem. Phys. 119, 7756 (2003).

12O. Hino, T. Kinoshita, and R. J. Bartlett, J. Chem. Phys. 121, 1206 (2004).

13G. J. O. Beran and M. Head-Gordon, J. Chem. Phys. 121, 78 (2004).

14L. D. Lathauwer, B. D. Moor, and J. Vandewalle, SIAM J. Matrix Anal. A. 21, 1253

(2000).

15F. Bell, D. Lambrecht, and M. Head-Gordon, Mol. Phys. 108, 2759 (2010).

16U. Benedikt, H. Auer, M. Espig, W. Hackbusch, and A. A. Auer, Mol. Phys. 111, 2398

(2013).

17U. Benedikt, K.-H. Bohm, and A. A. Auer, J. Chem. Phys. 139, 224101 (2013).

18C. A. Schwerdtfeger and D. A. Mazziotti, J. Chem. Phys. 137, 244103 (2012).

19E. G. Hohenstein, R. M. Parrish, and T. J. Martinez, J. Chem. Phys. 137, 044103 (2012).

23



20R. M. Parrish, E. G. Hohenstein, T. J. Martinez, and C. D. Sherrill, J. Chem. Phys. 138,

194107 (2013).

21E. P. Hoy and D. A. Mazziotti, J. Chem. Phys. 143, 064103 (2015).

22S. R. White and R. M. Noack, Phys. Rev. Lett. 68, 3487 (1992).

23S. R. White, Phys. Rev. Lett. 69, 2863 (1992).

24G. K.-L. Chan and D. Zgid, in Annual Reports in Computational Chemistry , Vol. 5, edited

by R. A. Wheeler (Elsevier, 2009) pp. 149–162.
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(1976).

51R. L. Martin, J. Chem. Phys. 118, 4775 (2003).

52I. Mayer, Chem. Phys. Lett. 437, 284 (2007).

53W. Humphrey, A. Dalke, and K. Schulten, J. Molec. Graphics 14, 33 (1996).

54D. E. Woon and T. H. Dunning, J. Chem. Phys. 100, 2975 (1994).

55R. A. Kendall, T. H. Dunning, and R. J. Harrison, J. Chem. Phys. 96, 6796 (1992).

56T. H. Dunning, Jr., J. Chem. Phys. 90, 1007 (1989).

57J. Rezac and P. Hobza, J. Chem. Theory Comput. 9, 2151 (2013).

58J. Rezac, P. Jurecka, K. E. Riley, J. Cerny, H. Valdes, K. Pluhackova, K. Berka, T. Rezac,

M. Pitonak, J. Vondrasek, and P. Hobza, Collect. Czech. Chem. Commun. 73, 1261

(2008).

59Y. Shao, Z. Gan, E. Epifanovsky, A. T. Gilbert, M. Wormit, J. Kussmann, A. W. Lange,

A. Behn, J. Deng, X. Feng, D. Ghosh, M. Goldey, P. R. Horn, L. D. Jacobson, I. Kaliman,

R. Z. Khaliullin, T. Kus, A. Landau, J. Liu, E. I. Proynov, Y. M. Rhee, R. M. Richard,

M. A. Rohrdanz, R. P. Steele, E. J. Sundstrom, H. L. W. III, P. M. Zimmerman, D. Zuev,

B. Albrecht, E. Alguire, B. Austin, G. J. O. Beran, Y. A. Bernard, E. Berquist, K. Brand-

horst, K. B. Bravaya, S. T. Brown, D. Casanova, C.-M. Chang, Y. Chen, S. H. Chien,

K. D. Closser, D. L. Crittenden, M. Diedenhofen, R. A. D. Jr., H. Do, A. D. Dutoi, R. G.

Edgar, S. Fatehi, L. Fusti-Molnar, A. Ghysels, A. Golubeva-Zadorozhnaya, J. Gomes,

M. W. Hanson-Heine, P. H. Harbach, A. W. Hauser, E. G. Hohenstein, Z. C. Holden,

T.-C. Jagau, H. Ji, B. Kaduk, K. Khistyaev, J. Kim, J. Kim, R. A. King, P. Klunzinger,

D. Kosenkov, T. Kowalczyk, C. M. Krauter, K. U. Lao, A. D. Laurent, K. V. Lawler,

S. V. Levchenko, C. Y. Lin, F. Liu, E. Livshits, R. C. Lochan, A. Luenser, P. Manohar,

25



S. F. Manzer, S.-P. Mao, N. Mardirossian, A. V. Marenich, S. A. Maurer, N. J. May-

hall, E. Neuscamman, C. M. Oana, R. Olivares-Amaya, D. P. O’Neill, J. A. Parkhill,

T. M. Perrine, R. Peverati, A. Prociuk, D. R. Rehn, E. Rosta, N. J. Russ, S. M. Sharada,

S. Sharma, D. W. Small, A. Sodt, T. Stein, D. Stuck, Y.-C. Su, A. J. Thom, T. Tsuchi-

mochi, V. Vanovschi, L. Vogt, O. Vydrov, T. Wang, M. A. Watson, J. Wenzel, A. White,

C. F. Williams, J. Yang, S. Yeganeh, S. R. Yost, Z.-Q. You, I. Y. Zhang, X. Zhang,

Y. Zhao, B. R. Brooks, G. K. Chan, D. M. Chipman, C. J. Cramer, W. A. G. III, M. S.

Gordon, W. J. Hehre, A. Klamt, H. F. S. III, M. W. Schmidt, C. D. Sherrill, D. G. Truh-

lar, A. Warshel, X. Xu, A. Aspuru-Guzik, R. Baer, A. T. Bell, N. A. Besley, J.-D. Chai,

A. Dreuw, B. D. Dunietz, T. R. Furlani, S. R. Gwaltney, C.-P. Hsu, Y. Jung, J. Kong, D. S.

Lambrecht, W. Liang, C. Ochsenfeld, V. A. Rassolov, L. V. Slipchenko, J. E. Subotnik,

T. V. Voorhis, J. M. Herbert, A. I. Krylov, P. M. Gill, and M. Head-Gordon, Mol. Phys.

113, 184 (2015).

60M. Alonso, T. Woller, F. J. Martin-Martinez, J. Contreras-Garcia, P. Geerlings, and

F. De Proft, Chem. Eur. J. 20, 4931 (2014).

61T. Janowski and P. Pulay, J. Am. Chem. Soc. 134, 17520 (2012).

62A. A. Fokin, D. Gerbig, and P. R. Schreiner, J. Am. Chem. Soc. 133, 20036 (2011).

63P. R. Horn and M. Head-Gordon, J. Chem. Phys. 143, 114111 (2015).

64A. J. Misquitta and K. Szalewicz, J. Chem. Phys. 122, 214109 (2005).

65D. A. Sirianni, L. A. Burns, and C. D. Sherrill, J. Chem. Theory Comput. 13, 86 (2017).

66R. Azar and M. Head-Gordon, J. Chem. Phys. 136, 024103 (2012).

67J. Thirman and M. Head-Gordon, J. Chem. Phys. 143, 084124 (2015).

68J. Thirman and M. Head-Gordon, J. Phys. Chem. A 121, 717 (2017).

26




