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ORIGINAL RESEARCH
SPINE

Multivariate Analysis of MRI Biomarkers for Predicting
Neurologic Impairment in Cervical Spinal Cord Injury

X J. Haefeli, X M.C. Mabray, X W.D. Whetstone, X S.S. Dhall, X J.Z. Pan, X P. Upadhyayula, X G.T. Manley, X J.C. Bresnahan,
X M.S. Beattie, X A.R. Ferguson, and X J.F. Talbott

ABSTRACT

BACKGROUND AND PURPOSE: Acute markers of spinal cord injury are essential for both diagnostic and prognostic purposes. The goal
of this study was to assess the relationship between early MR imaging biomarkers after acute cervical spinal cord injury and to evaluate
their predictive validity of neurologic impairment.

MATERIALS AND METHODS: We performed a retrospective cohort study of 95 patients with acute spinal cord injury and preoperative
MR imaging within 24 hours of injury. The American Spinal Injury Association Impairment Scale was used as our primary outcome measure
to define neurologic impairment. We assessed several MR imaging features of injury, including axial grade (Brain and Spinal Injury Center
score), sagittal grade, length of injury, maximum canal compromise, and maximum spinal cord compression. Data-driven nonlinear principal
component analysis was followed by correlation and optimal-scaled multiple variable regression to predict neurologic impairment.

RESULTS: Nonlinear principal component analysis identified 2 clusters of MR imaging variables related to 1) measures of intrinsic cord
signal abnormality and 2) measures of extrinsic cord compression. Neurologic impairment was best accounted for by MR imaging measures
of intrinsic cord signal abnormality, with axial grade representing the most accurate predictor of short-term impairment, even when
correcting for surgical decompression and degree of cord compression.

CONCLUSIONS: This study demonstrates the utility of applying nonlinear principal component analysis for defining the relationship
between MR imaging biomarkers in a complex clinical syndrome of cervical spinal cord injury. Of the assessed imaging biomarkers, the
intrinsic measures of cord signal abnormality were most predictive of neurologic impairment in acute spinal cord injury, highlighting the
value of axial T2 MR imaging.

ABBREVIATIONS: AIS � American Spinal Injury Association Impairment Scale; BASIC � Brain and Spinal Injury Center; MCC � maximum canal compromise;
MSCC � maximum spinal cord compression; NL-PCA � nonlinear principal component analysis; PC � principal component; SCI � spinal cord injury

Early biomarkers of spinal cord injury (SCI) are essential during

the acute phase of injury, a time when crucial management deci-

sions are made and a period of great prognostic anxiety for patients

and families.1-3 As emerging experimental therapies translate to the

clinic, early biomarkers will also be important for patient selection

and monitoring in clinical trials. Multiple potential MR imaging bio-

markers exist to evaluate acute SCI.1,4-20 These measures primarily

focus on the sagittal imaging plane, examining factors such as length

of T2-hyperintense signal within the cord, whether abnormal signal

is confined or spans multiple vertebral levels, presence of hemor-

rhage, and secondary markers of cord injury such as spinal cord com-

pression and spinal canal compromise.1,5-22 The internal structure of

the spinal cord, with predominantly longitudinally oriented WM

tracts, suggests that the axial injury extent and WM sparing should

also be strong predictors of outcome. This concept has been demon-

strated in preclinical studies and recently in human studies introduc-
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ing an axial scoring system known as the Brain and Spinal Injury

Center (BASIC) score.4,23-30 However, until now, it has been unclear

how the axial grading relates to other imaging biomarkers of the

sagittal plane and extrinsic compression measures.

The various MR imaging–based metrics have been shown to be

reproducible, and all have some individual degree of predictive va-

lidity for clinical outcome.1,4-20 Here, we evaluated the relationships

of these MR imaging metrics to each other and to neurologic impair-

ment. We applied a data-driven tool, nonlinear principal component

analysis (NL-PCA), to understand the relationship between different

MR imaging biomarkers and assess their ability to predict neurologic

impairment. NL-PCA detects statistical patterns, incorporating mul-

tiple variables independent of their scale and decomposing them into

a smaller set representing multidimensional clusters of variables

(principal components [PCs]) that covary.31,32 We then used non-

linear regression approaches to benchmark different MR imaging

assessments against each other for predicting neurologic impairment

at discharge. We hypothesized that MR imaging measures of acute

cervical SCI would group together as a coherent multivariate PC

ensemble and that distinct PCs (PC1, PC2, etc) would predict neu-

rologic impairment. We intended 1) to provide insight into relation-

ships between early MR imaging biomarkers after acute cervical SCI

and 2) to provide an evaluation of the predictive validity of each

individual measure of neurologic impairment.

MATERIALS AND METHODS
Study Cohort
This study was HIPAA and institutional review board compliant.

We performed a retrospective cohort study of patients with acute

blunt cervical SCI evaluated at a Level I trauma center (Zucker-

berg San Francisco General Hospital) from 2005 to 2014. Inclu-

sion criteria were 1) blunt acute cervical SCI, 2) age �18 years, 3)

presurgical cervical spine MR imaging performed within 24 hours

after injury, and 4) documented American Spinal Injury Associ-

ation Impairment Scale (AIS) at both admission and discharge.

Exclusion criteria were 1) penetrating SCI, 2) surgical decompres-

sion and/or fusion before MR imaging, 3) MR imaging that was

too degraded by motion or other artifact such that images were

nondiagnostic, and 4) preexisting surgical hardware. Of 212 pa-

tients initially identified, 95 patients met all inclusion and exclu-

sion criteria and were included in the study. The data collected

included sex and age, AIS at admission and discharge (as docu-

mented in the chart and performed by appropriately trained

physiatrists and neurosurgeons), hours to MR imaging from time

of injury, days to discharge, and whether surgical decompression

of the cervical spine was performed before discharge. Fifty-two of

the 95 patients included in this study were included in a cohort

of patients as part of a previously published study.4 This prior,

smaller study involved initial development and interrater reliabil-

ity testing of the BASIC score, whereas the current study tests multi-

ple MR imaging grading schemes against each other, and against

neurologic outcome, by using multivariate statistical analysis.

MR Imaging
All MR imaging examinations were acquired on the same 1.5T Gen-

esis Signa scanner (GE Healthcare, Milwaukee, Wisconsin). We as-

sessed sagittal T2 FSE, sagittal T1, and axial T2 FSE sequences per-

formed as part of our routine imaging protocol, with these sequences

not substantially changing over the study interval. Additional se-

quences performed as part of our trauma imaging protocol were not

evaluated. Sequences were performed with the following parameters

(presented as mean � standard deviation from 10 randomly selected

examinations): 1) for axial T2 FSE through the entire cervical spine:

TR, 3798 ms � 586 ms; TE, 102 ms � 6 ms; section thickness, 3 ms;

echo-train length, 17 � 3.4; in-plane FOV, � 160 � 160 mm with a

512�512 matrix for nominal in-plane resolution of 0.31 mm2; 2) for

sagittal T2 FSE: TR, 3585 ms � 563 ms; TE, 105 ms � 5 ms; section

thickness, 3 mm; echo-train length, 17.1 � 3; in-plane FOV, 200 �

200 mm; and 3) for sagittal T1: TR, 528 ms�103 ms; TE, 16 ms�1.3

ms; section thickness, 3 mm; echo-train length, 2.6 � 0.8; and in-

plane FOV, 200 � 200 mm with a 512 � 512 matrix for nominal

in-plane resolution of 0.39 mm2.

Image Analysis
A neuroradiology fellow (M.C.M.) and attending physician (J.F.T.)

performed consensus MR imaging ratings for all metrics while

blinded to clinical outcome. The interrater reliability and BASIC

axial MR imaging grading have been previously described as fol-

lows4,30: grade 0, no cord signal abnormality; grade 1, T2 hyper-

intensity confined to GM; grade 2, intramedullary T2 hyperinten-

sity extends beyond expected gray matter margins to involve

spinal white matter, but does not involve entire transverse extent

of the spinal cord; grade 3, T2 hyperintensity involving GM and

some but not all of WM; grade 4, T2 hyperintensity involving the

entire axial plane of the spinal cord; grade 5, grade 3 injury with

the addition of foci of T2 hypointensity consistent with hemor-

rhage. Sagittal grading was assigned as previously described: grade

1, no spinal cord signal abnormality; grade 2, single-level T2 hy-

perintensity; grade 3, �1 vertebral level T2 signal hyperintensity;

grade 4, T2 signal hyperintensity with areas of hypointensity rep-

resenting hemorrhage.1,19 The greatest length (mm) of injury on

sagittal T2 was measured as described in the National Institutes of

Health/National Institute of Neurologic Disorders and Stroke SCI

common data elements version 1.0.3 Maximum canal compro-

mise (MCC) and maximum spinal cord compression (MSCC)

assessed midsagittal images by dividing the anteroposterior diam-

eter of the canal (on sagittal T1 for MCC) and the anteroposterior

diameter of spinal cord (on sagittal T2 for MSCC) by the average

of the canal or spinal cord above and below as previously

described.8,15,16,22

Multidimensional Analysis Workflow and
Statistical Analysis
NL-PCA assessed the relationship among MR imaging measures

by incorporating pattern detection with optimal-scaling transforma-

tions to accommodate nonparametric, ordinal, and nonlinear rela-

tionships that are common in clinical assessment tools such as MR

imaging scoring by a radiologist.33,34 Established decision rules de-

fined the final dimensionality: Kaiser rule criterion of eigenvalue �1

and Cattell rule (ie, scree plot).33-36 Validity of MR imaging and PC

scores for predicting AIS at discharge involved linear mixed model,

Spearman rank correlation, and an optimal-scaled regression.

Receiver operating characteristic curves assessed sensitivity

and specificity of MR imaging measures for predicting AIS at

AJNR Am J Neuroradiol 38:648 –55 Mar 2017 www.ajnr.org 649



discharge by using a sliding scale (ie, AIS A versus B, C, D, E; AIS

A, B versus C, D, E; AIS A, B, C versus D, E; and AIS A, B, C, D

versus E), resulting in 4 separate receiver operating characteristic

curves. In addition, we completed a supplementary analysis where

we compared adjacent groups. Because of the low number of pa-

tients in the AIS B subgroup (n � 3), AIS A and B were grouped

together as a motor complete group. We compared the areas un-

der the curve of the different MR imaging biomarkers.

In a next step, we used discriminant function analysis to

assess within the BASIC measure the optimal combination of

scores to discriminate the different AIS groups. BASIC score

was recoded as: 1) a simple lesion/no lesion score (BASIC 0 �

no lesion, and BASIC 1– 4 � any lesion) and 2) into a 3-point

scale merging BASIC score subcategories 1–3 into 1 category.

All MR imaging variables and the 2 recoded BASIC score vari-

ables were fed into a discriminant function analysis test for

discrimination of AIS at discharge.

Statistical significance for all tests was

set at � � .05. All statistical analyses

were performed in SPSS v.23 (IBM,

Armonk, New York). Syndromic plots

for the PC loadings were generated

in custom-designed software in R

(http://www.r-project.org/).37

RESULTS
Patient characteristics are listed in Table

1. MR imaging measurements are out-

lined in Table 2 and Fig 1. The relation-

ships between the BASIC score and AIS

at discharge are listed in Table 3. NL-

PCA demonstrated all imaging parame-

ters loaded highly on PC1. PC2 discrim-

inated MR imaging measures, with only

MSCC and MCC showing high loadings

(On-line Fig 1A). Statistical decision

rules pruned the initial 5-dimensional

NL-PCA solution to 2 dimensions (On-

line Fig 1B). The optimal-scaled trans-

formation matrix revealed a high corre-

lation between the lesion length, sagittal

grade, and the BASIC score and, to a

lesser extent, between the compression

variables (MSCC and MCC) (Fig 2A).

The loading patterns of the 2-dimen-

sional NL-PCA solution are displayed

in Fig 2B. PC1–2 accounted for 88.6%

of the total variance in the dataset (PC1,

58.6%; PC2, 30%). All imaging variables

loaded highly on PC1. Variance ex-

plained by PC1 represents convergence

across all MR imaging variables. In con-

trast, PC2 mainly captures compression

variables MSCC and MCC, representing

divergence of the MR imaging variables

of intrinsic cord signal abnormality.

In Fig 2C, individual PC scores are

projected into PC1 and PC2 space, with

each patient color-coded by AIS change
and by AIS grade at discharge. Patients
with higher scores on the PC1 axes have
worse AIS at discharge. Confirming this,

FIG 1. MR imaging-based metrics. A and B, Sagittal T2-weighted MR imagings of the cervical spine
of patients with acute SCI were used to measure the length of T2 signal hyperintensity in mm (A,
white line) and to calculate MSCC (B, 1 � {di/[(da � db)/2]} � 100%). di indicates distance of the
spinal cord at the injury site; db, one segment below the injury site; da, one segment above the
injury site. C, Sagittal T1-weighted image of the cervical spine demonstrating how we used this
sequence to measure MCC (1 � {Di/[(Da � Db)/2]} � 100%). Di indicates distance of the spinal
canal at the injury site; Db, one segment below the injury site; Da, one segment above the injury
site. D, The axial T2-weighted MR imaging of the cervical spine at the level of the epicenter of
injury was used to define the BASIC score. Areas of macroscopic T2-hypointense hemorrhage are
surrounded by hyperintense edema with no normal cord signal, consistent with BASIC grade 4.
BASIC axial grade cartoons are depicted in the lower panel. E, Shows cartoons of the sagittal
grading system. Sag indicates sagittal.

Table 1: Patient characteristicsa

Age 57.91 � 18.15
Sex (M, F) 67, 28
AIS at admission A � 26, B � 9, C � 18, D � 42
AIS at discharge A � 17, B � 3, C � 15, D � 41, E � 19
Time to MRI (hours) 6.97 � 5.15
Time to discharge (days) 25.15 � 35.31
Surgical decompression Yes � 63, No � 32

a Values expressed as N or mean � SD.

Table 2: MRI scoring schemes
BASIC Ordinal 0–4: 0 � normal; 1 � GM only; 2 � some WM; 3 � all WM

in plane; 4 � with hemorrhage
Sagittal grade Ordinal 1–4: 1 � normal; 2 � less than a VB; 3 � longer than 1 VB;

4 � with hemorrhage
Longitudinal extent of

T2 signal abnormality
Numeric �mm	

MCC Numeric MCC % � 1 � {Di/[(Da � Db)/2]} � 100%;
D � canal widtha

MSCC Numeric MSCC % � 1 � {di/[(da � db)/2]} � 100%;
d � spinal cord widtha

Note:—VB indicates vertebral body.
a See Fig 1 for further description.
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a linear mixed model revealed that PC1, but not PC2, significantly
predicted AIS at discharge (PC1: F � 33.79, P 
 .001; PC2: F �
2.11, P � .086).

To compare predictive validity of PC1 and PC2 versus univar-
iate MR imaging measures, we applied univariate nonparametric
Spearman rank correlations for prediction of AIS at discharge
(Table 4 and Fig 3). Based on Spearman rank correlation, vari-
ables of intrinsic cord signal abnormality (lesion length, sagittal

grade, BASIC score) and both PC1 and PC2 predicted AIS at dis-
charge. Neither MSCC nor MCC significantly correlated with AIS at
discharge. Lesion length (� � �0.66), sagittal grade (� � �0.70),
BASIC score (� � �0.85), and PC1 (� � �0.69) all negatively cor-
related with AIS at discharge, whereas PC2 showed a weak positive
correlation with AIS at discharge (� � 0.22).

We used optimal-scaled regression to benchmark the predic-
tive validity of MR imaging measures against each other. An ad-
vantage of the optimal-scaled regression is that it takes into ac-
count different analysis levels (ordinal versus continuous) in a
single model. PC scores were not included in this analysis because
of multicollinearity. BASIC was the only significant predictor of
AIS at discharge (P 
 .01).

We next benchmarked how individual MR imaging measures
perform in predicting AIS at discharge compared with AIS at ad-
mission. Not surprisingly, AIS at admission showed a strong pos-
itive correlation with AIS at discharge by Spearman rank correla-

tion (� � 0.82, P 
 .01). Optimal-
scaling regression revealed that BASIC
score and AIS at admission were the only
significant predictors of AIS at discharge
(both P 
 .01) (On-line Table 1).

We were concerned that BASIC pre-
diction of AIS at discharge may be con-
founded by the decision to perform sur-
gical decompression, which could also
influence outcome. To test this, we per-
formed 2 additional waves of analysis.
First, we tested whether BASIC score sig-
nificantly predicted the decision to per-
form surgical decompression by using a
generalized linear model. BASIC score
significantly predicted surgical decom-
pression decision-making (Wald �2 �
9.00, P � .003). To test whether this con-
founded BASIC’s predictive validity for
AIS at discharge, we reran the general-
ized linear model with an interaction
term, testing whether BASIC and surgi-
cal decompression were statistically en-
tangled. This analysis maintained the
significant predictive main effect of BA-
SIC on AIS (Wald �2 � 34.92, P 
 .001).
Furthermore, undergoing decompres-
sion surgery was not a significant predic-
tor of AIS at discharge (Wald �2 � 0.17,
P � .68), nor was there a significant in-
teraction between BASIC and decom-
pression surgery (Wald �2 � 1.58, P �
.66). Similarly, we wanted to assess if
BASIC significantly predicts AIS at dis-
charge after correcting for MSCC. Using
the same analysis tools, the predictive
validity of BASIC was maintained (F �
30.69, P 
 .001), and there was no inter-
action effect between AIS at discharge
and MSCC (F � 0.79, P � .53).

The sensitivity and specificity (re-
ceiver operating characteristic and area
under the curve) of the MR imaging

FIG 2. Results of the 2-dimensional NL-PCA. A, Heat map of the optimal-scaled transformation
matrix of all MR imaging measures included in the NL-PCA. The matrix indicates all bivariate
cross-correlations: yellow indicates a positive relationship and orange indicates a negative rela-
tionship. B, 2-dimensional NL-PCA solution. PCs reflect the clustered variance shared by the MR
imaging measures and are represented by a convex triangle. The arrow gauge and the intensity of
the color (red indicates a positive relationship and blue indicates a negative relationship) show the
magnitude (ie, loading weights) of the correlation between each MR imaging measure and the PC.
C, Bi-plots of individual patients (n � 95) in the 2-dimensional space described by PC1 and PC2. In
the top left corner, the extracted bi-plot is displayed. In the left graph, the same bi-plot is
color-coded by AIS change (ie, AIS change from admission to discharge) and is color-coded in the
right graph by AIS at discharge. PCA indicates principal component analysis.

Table 3: BASIC score in relation to AIS at dischargea

AIS A AIS B AIS C AIS D AIS E
Total

Patients
BASIC 0 1 (7.7) 12 (92.3) 13
BASIC 1 12 (70.6) 5 (29.4) 17
BASIC 2 1 (2.6) 10 (25.6) 26 (66.7) 2 (5.1) 39
BASIC 3 7 (43.8) 2 (12.5) 5 (31.3) 2 (12.5) 16
BASIC 4 10 (100) 10

a Data presented as no. of patients (%).
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measures in predicting AIS at discharge are shown in Fig 4 (AIS
sliding scale). Supporting previous analysis, the length, sagittal
grade, and BASIC score predicted AIS at discharge, with their
areas under the curve statistically superior to random guessing
(Table 5). BASIC consistently had the highest area under the
curve in comparison with the other MR imaging measures. In a
supplementary analysis, we tested how well the MR imaging mea-
sures can discern adjacent AIS categories. The results are shown in
On-line Table 2. Similar to the sliding scale results, BASIC consis-
tently had the highest area under the curve for distinguishing both
severe and mild AIS categories in comparison with the other MR
imaging measures.

Finally, to assess discriminative value score subcategories, we
applied a linear discriminant function analysis. This supervised
pattern detection approach discovers the optimal combination of
scores to discriminate the different AIS groups. The full BASIC
score had the largest absolute correlation with the canonical dis-
criminant function for AIS, suggesting that the full 5-point BASIC
score performs better than truncated scoring schemes (0.962).
The full BASIC score outperformed both the simple dichotomous
score (lesion versus no lesion, with BASIC 0 � no lesion and
BASIC 1– 4 � any lesion; 0.388) and a 3-point scale merging
BASIC score subcategories 1–3 into 1 category (BASIC 0 � no
lesion, BASIC 1–3 � nonhemorrhagic lesion, BASIC 4 � hemor-

rhagic lesion; 0.639). A second discrim-
inant function analysis included only
patients with a BASIC score of 1–3 (ie,
those patients with nonhemorrhagic in-
tramedullary T2 signal abnormality) to
define the prognostic value of BASIC in
this specific subpopulation. BASIC had
the largest absolute correlation with the
discriminative function (0.991), fol-
lowed by the length of the lesion (0.416).

DISCUSSION
We applied data-driven multivariate an-

alytic techniques to evaluate how multi-

ple MR imaging– derived metrics relate

to each other and to short-term impair-

ment when applied to a group of 95 pa-

tients with acute blunt cervical SCI. We

identified 2 principal components (PC1

and PC2) that explained 88.6% of the

total variance in the dataset. Measures of

intrinsic spinal cord signal abnormality

had the highest positive loading on PC1,

whereas measures of extrinsic cord com-

pression had more modest positive

loading. Both the BASIC score and sag-

ittal grade had greater correlation with

outcome than PC1, whereas BASIC

score was the only univariate MR imag-

ing measure to correlate with outcome

when correcting for differences in data

measurement scales. The present results

support the prognostic relevance of the

BASIC score compared with other MR

imaging measures of SCI.
Although all imaging variables loaded positively on PC1, PC2

was more discriminatory in nature, segregating structural mea-

sures of compression from variables reflecting intrinsic cord sig-

nal abnormality. PC2 had a weakly positive correlation with AIS

(� � 0.22, P � .03), whereas measures of extrinsic compression

had no significant correlation with outcome. These findings dem-

onstrate the discriminant validity of NL-PCA and highlight the

split between MR imaging measures of intrinsic cord signal ab-

normality and structural measures of compression.30 Structural

measures of compression thus have a complex relationship with

outcome. The present data do not necessarily conflict with prior

work examining the predictive validity of MSCC in acute

SCI.8,15,16,21,22 Miyanji and colleagues8 showed that MSCC was a

key predictor of neurologic recovery after traumatic SCI. In that

study, outcome for patients with SCI was dichotomized into com-

plete and incomplete categories, whereas we have used the more

granular 5-point AIS grading scale. In addition, after correcting

for baseline neurologic status, only intrinsic measures of SCI sig-

nificantly correlated with neurologic recovery, findings consistent

with the present results.8

Receiver operating characteristic analysis confirmed that of

the imaging variables examined, the BASIC score was the most

accurate for predicting short-term impairment. We were con-

FIG 3. Multivariate (PCs) and univariate prediction of AIS at discharge. A, PC1 was negatively
correlated with AIS at discharge, and PC2 showed a weak positive correlation. B, The length of the
lesion, the sagittal grade, and the BASIC score showed a negative correlation with AIS at dis-
charge. Note that because of the ordinal scale of the BASIC score and the sagittal grade, some
subjects coincide on the same value. The number of subjects within each sphere is represented by
the size of the spheres. Only scatterplots of the statistically significant correlations between the
MR imaging measures and AIS at discharge are displayed.

Table 4: Predicting AIS at discharge—Spearman rank correlation and optimal scaling
regression results

Spearman Correlation Optimal Scaling Regression

� �2 P Value Zero-Order Partial Part P Value
Length �0.66 0.44 
.01 �0.65 �0.11 �0.05 .50
Sagittal grade �0.70 0.49 
.01 �0.69 0.36 0.18 .10
BASIC score �0.85 0.72 
.01 �0.87 �0.75 �0.50 
.01
MCC �0.20 0.04 .05 �0.24 0.02 0.01 .90
MSCC �0.14 0.02 .18 �0.20 �0.08 �0.04 .62
PC1 �0.69 0.48 
.01
PC2 0.22 0.05 .03
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cerned that other factors may confound the prognostic validity of

the BASIC score. For example, the decision to perform surgical

decompression may be influenced by the presence and pattern of

signal abnormality in the spinal cord, which could influence out-

come.38-40 In addition, the extent of

spinal cord compression with associ-

ated cord deformation may potentially

confound BASIC grading. Our analy-

sis confirms that the predictive validity

of the BASIC score was maintained af-

ter correcting for potential interac-

tions from surgical decompression

and spinal cord compression.

Prior studies suggest MR imaging is

most accurate at predicting outcomes

when patients have evidence for very

mild (normal cord signal) or very se-

vere (intramedullary hemorrhage) in-

jury.1,6,7,10,13,14,20 In contrast, tremen-

dous variability in clinical outcomes has

been described in the setting of inter-

mediate degrees of injury.1 To specifi-

cally evaluate MR imaging measures

and outcomes in this subgroup of pa-

tients from our cohort, we applied dis-

criminant function analysis to patients

with a BASIC score of 1–3 (patients

with nonhemorrhagic intramedullary

T2 signal hyperintensity; n � 72).

Even in this subpopulation, the BASIC

score had a very high absolute correla-

tion with the discriminant function

(0.991), followed by the length of the

lesion (0.416). Therefore, the prognostic capabilities of the

BASIC score are not simply attributable to the ease of progno-

sis at the ends of the injury severity spectrum.

Limitations of our study primarily relate to the retrospective,

single-institution study design. We are actively pursuing this sub-

ject further in a prospective fashion with longer clinical follow-up

at multiple time points and more detailed outcome measures.

Our technique was designed to look at the relationships of the

various imaging metrics to each other and to clinical outcome (AIS

at discharge). Although we believe that the current study is adequate

for investigating these relationships, we realize that there are changes

in neurologic impairment expected over a longer time course. In

addition, in a future prospective study, more detailed outcome mea-

sures need to be included to more comprehensively capture neuro-

logic function.

CONCLUSIONS
This study demonstrates the utility of applying NL-PCA for

defining the relationship between MR imaging biomarkers in a

complex clinical syndrome of cervical SCI. Independent, pro-

spective studies are needed to validate our conclusion that in-

trinsic measures of spinal cord pathology on acute MR imag-

ing, particularly the BASIC score, best predict neurologic

impairment in acute SCI compared with measures of extrinsic

compression. This analytic pipeline is suited for future patient-

level investigation and is amenable to inclusion of emerging

potential biomarkers. Multidimensional approaches may also

be useful for future prospective validation of imaging metrics

FIG 4. Receiver operating characteristic curves for the different MR imaging measures. The
curves show the sensitivity and specificity of the different measures to predict AIS at discharge.
AIS at discharge was dichotomized by using a sliding scale, resulting in 4 separate receiver oper-
ating characteristic curves (AIS A versus B, C, D, E; AIS A, B versus C, D, E; AIS A, B, C versus D, E; and
AIS A, B, C, D versus E). The diagonal gray line represents a reference line that corresponds to
random guessing. The further the receiver operating characteristic curves are located to the top
left corner, the higher is the sensitivity and specificity of the measure in predicting the dichoto-
mized AIS at discharge.

Table 5: Receiver operating characteristic analysis results
AUC P Value 95% CI

AIS A vs. B, C, D, E
Length 0.88 
.01 0.80–0.96
Sagittal grade 0.88 
.01 0.79–0.97
BASIC score 0.98 
.01 0.95–1.00
MCC 0.66 .039 0.50–0.82
MSCC 0.66 .036 0.51–0.81

AIS A, B vs. C, D, E
Length 0.90 
.01 0.83–0.97
Sagittal grade 0.86 
.01 0.77–0.94
BASIC score 0.96 
.01 0.92–1.00
MCC 0.65 .05 0.50–0.79
MSCC 0.64 .06 0.49–0.79

AIS A, B, C vs. D, E
Length 0.81 
.01 0.72–0.89
Sagittal grade 0.80 
.01 0.71–0.89
BASIC score 0.91 
.01 0.85–0.97
MCC 0.55 .44 0.43–0.67
MSCC 0.52 .71 0.40–0.65

AIS A, B, C, D vs. E
Length 0.88 
.01 0.77–0.99
Sagittal grade 0.88 
.01 0.79–0.98
BASIC score 0.93 
.01 0.86–0.99
MCC 0.66 .03 0.52–0.80
MSCC 0.59 .21 0.45–0.74

Note:—AUC indicates area under the curve.
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derived from advanced quantitative techniques such as

DTI, which are under active investigation for spinal cord

pathology.26,41-43
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