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Both the basal body and the microtubule-based axoneme it nucle-
ates have evolutionarily conserved subdomains crucial for cilium 
biogenesis, function and maintenance. Here, we focus on two con-
spicuous but underappreciated regions of these structures that make 
membrane connections. One is the basal body distal end, which 
includes transition fibres of largely undefined composition that link 
to the base of the ciliary membrane. Transition fibres seem to serve 
as docking sites for intraflagellar transport particles, which move 
proteins within the ciliary compartment and are required for cilium  
biogenesis and sustained function. The other is the proximal-most 
region of the axoneme, termed the transition zone, which is charac-
terized by Y‑shaped linkers that span from the axoneme to the ciliary 
necklace on the membrane surface. The transition zone comprises 
a growing number of ciliopathy proteins that function as modular 
components of a ciliary gate. This gate, which forms early during cilio
genesis, might function in part by regulating intraflagellar transport. 
Together with a recently described septin ring diffusion barrier at the 
ciliary base, the transition fibres and transition zone deserve attention  
for their varied roles in forming functional ciliary compartments.
Keywords: cilium; transition zone; transition fibre; basal body; 
ciliopathy
EMBO reports (2012) 13, 608–618; published online 1 June 2012; doi:10.1038/embor.2012.73

See the Glossary for abbreviations used in this article.

Introduction
Cilia are finger-like organelles that project from the surfaces of most 
eukaryotic cell types. Motile cilia move fluids and cells, and immotile 
cilia transduce environmental stimuli and regulate signalling path-
ways important for development (reviewed in [1]). The biomedical 
importance of cilia is becoming increasingly appreciated, as defects 
in ciliary structure and function are found to cause human diseases or 
‘ciliopathies’, typified by cystic kidneys, blindness, obesity, skeletal  
malformations and nervous system anomalies [2,3].

All cilia arise from a basal body; a centriolar barrel anchored 
to the base of the ciliary membrane by transition fibres (Fig 1A,B). 
At or near this attachment point are docking sites for intraflagellar 
transport (IFT) particles (Fig 1C; [4,5]). These membrane-associated 
multimeric protein complexes travel along microtubules by using 
kinesin 2 anterograde and cytoplasmic dynein retrograde molecular 
motors, and are required for building and maintaining cilia [6–8]. 
At the distal end of the basal body, the plasma membrane gives way 
to a compositionally distinct membrane that envelops the entire 
cilium  [9]. Indeed, an important feature of cilia is their compart
mentalization, and this property might be bestowed in part by its 
singular membrane composition. Protein transport between the 
cytoplasm and cilium is regulated, and facilitates control over 
cilium-based signalling [10,11]. Regulation of ciliary protein entry 
and exit might depend on proteins at the ciliary base, leading to the 
idea of a diffusion barrier or ‘gate’ that prevents nonspecific move-
ment of membrane proteins into and out of the cilium [12]. In this 
review, we focus on two substructures at the base of cilia, transition 
fibres and the transition zone, that are important for ciliogenesis and 
control of ciliary protein composition.

Evolutionarily conserved basal body–ciliary structures
The occurrence of cilia within all major eukaryotic clades and  
the evolutionary conservation of core ciliary proteins, indicate that 
the last eukaryotic common ancestor had a structurally sophisti-
cated motile, and probably sensory, cilium that largely resembled 
that of extant eukaryotes [13,14]. The most prominent part of 
the cilium is the axoneme, which is comprised of nine peripheral 
microtubule doublets surrounding a central pair—the so-called 9+2 
arrangement—in most motile cilia, with the central pair usually 
lacking in non-motile (primary) cilia—the 9+0 arrangement (Fig 1A; 
see  [15] for treatment of cilium ultrastructure). Axonemes extend 
from the mother centriole, which is the oldest centriole, inherited 
during mitosis. During ciliogenesis, the typically triplet microtubule-
containing mother centriole becomes a basal body, distinguished by 
adornment with appendages projecting from the centriolar barrel.

These appendages come in several forms (Fig 1B). Most proximal 
(closest to the nucleus) are the subdistal appendages and basal foot. 
At the basal foot of mammalian cells, ninein, a subdistal appendage 
component, is recruited by the Odf2 protein and promotes centri-
olar microtubule nucleation and anchoring [16,17]. Odf2 itself is 
required for basal foot formation, which in turn helps coordinate 
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the beat of motile cilia [18]. Beyond the subdistal appendages lie 
the distal appendages. During ciliogenesis, the mother centriole 
anchors to a membrane—the ciliary vesicle or plasma membrane—
through the distal appendages, which then become the pinwheel-
shaped transition fibres or alar sheets. In mammalian cells, these 
structures contain Cep164, and depend on distal centriolar pro-
teins such as Ofd1 for their formation [19]. Human mutations in 
OFD1 are associated with orofaciodigital syndrome 1, a cilio
pathy characterized by digit malformations and kidney cysts [20]. 
Without Ofd1, cells cannot recruit Cep164 to the centriole, form 
distal appendages, dock the mother centriole to membranes or 
form cilia. Ofd1 localizes to the distal centriole in a region central 
to the appendages, a domain also occupied by other distal centri-
ole components, including Poc5 [19,21]. Super-resolution micros-
copy revealed a new centriolar protein, Ccdc123/Cep123, found to  
co-localize with Cep164 at the distal appendages [22]. In all likeli-
hood, additional components of transition fibres will be discovered 
and their specific roles in ciliogenesis will be uncovered.

Beyond the basal body lies the transition zone, an evolution-
arily conserved ciliary subdomain characterized by distinctive 
Y‑shaped fibres that connect the doublet microtubules to the over-
lying ciliary membrane (Fig 1A). Y‑links organize, terminate in, or 
constitute the ciliary necklace, which are circumferential strands of 
intramembrane ‘decorations’ [23] that might in fact form a spiral 
(Fig 1D; [24]). The Y‑links are immediately distal to the transition 
fibres, as both can sometimes be observed, but only in slightly 
oblique transmission electron microscopy cross-sections [25]. 
Although the composition of the Y‑link and necklace structures 
is largely unknown, with the probable exception of CEP290/
NPHP6 in Chlamydomonas [26], proteins with specific transition 
zone localization and associated functions are good candidates. 
These include a growing cohort of other ciliopathy proteins 
implicated in Meckel syndrome (MKS), Joubert syndrome (JBTS), 
nephronophthisis (NPHP), Senior–Loken syndrome (SLSN) and 
Leber congenital amaurosis (LCA). A non-exhaustive list of these 
proteins is presented in Table 1. Extra features observed within the 
transition zone of motile cilia, detailed in [15], are not discussed 
further here. These include, for example, the basal plate, which 
might anchor the central pair required for motility.

There is ambiguity concerning the boundaries of the transi-
tion zone with respect to the basal body and ciliary axoneme. For 
example, one review article on ciliary nomenclature [27] suggests 
that the transition fibres might comprise part of the transition zone. 
Here, we ascribe the transition fibres as components of the basal 
body, because they stem directly from the distal end of the centri-
olar barrel (see the three-dimensional reconstruction in [28]). By 
contrast, we define the transition zone as being part of the proximal-
most region of the axoneme containing doublet microtubules and 
Y‑links—structural features that form only in ciliated cells (Fig 1). 
Just beyond the transition zone is the ‘inversin compartment’, which 
in mammalian cells and Caenorhabditis elegans contains, among 
other proteins, inversin/NPHP2 [29,30].

Earliest steps of ciliogenesis
Formation of primary cilia depends on liberating the mother cen-
triole from its centrosomal role in cell division after cytokinesis. 
In some mammalian cell types, the earliest detectable ciliogenic 
event is the docking of a ciliary vesicle to the mother centriole 
(Fig 2; [31,32]). Whether the centriole selects a ciliary vesicle with 

special ciliogenic properties for docking, or imposes ciliary char-
acteristics on a naive vesicle, is unclear. Furthermore, whether 
the basal body appendages implicated in vesicle binding repre-
sent mature distal appendages and transition fibres is not certain. 
Subsequently, the basal body-ciliary vesicle often, but not always, 
migrates to the cell surface, an event which in tissue culture cells 
seems to be dependent on the actin cytoskeleton and, intriguingly, 
membrane-associated components of the transition zone (MKS1 
and MKS3; [33–35]). A second intracytosolic event then initiates, 
whereby the axoneme elongates, invaginating one face of the cili-
ary vesicle to create the ciliary membrane. Alternatively, in other 
cell types, such as multiciliated cells, direct interaction of the basal 
body with the plasma membrane occurs, followed by extension 
of the axoneme (Fig 2; see review [33] for further details on the 
ciliogenic pathways observed). In both cases, the forming cilium 
acquires transition-zone‑like features along the growing axoneme 
and ciliary membrane.

On the basis that disruption of one or more transition-zone
associated proteins can result in centriole migration or membrane 
docking and attachment defects, in mammalian cells and the 
nematode C.  elegans, it has been argued that transition zone 
proteins participate in these early steps of ciliogenesis [5]. These 
transition zone proteins probably form supramolecular complexes, 
the nature and ultrastructural organization of which is only start-
ing to be understood in genetic and proteomic terms [5,36–38]. 
Evidence that these expansive complexes might constitute features 
of transition zone ultrastructure comes from the observed disrup-
tion of Y‑links after abrogation of several pairs of transition zone 
proteins in C. elegans or CEP290 in Chlamydomonas [5,26,39]. In 
addition to potential structural roles, the inferred transmembrane 
and membrane-associated properties of transition zone proteins 
(for example, MKS2/TMEM216, MKS3/TMEM67 and JBTS14/
TMEM237; see Table 1) could confer extra functions during cilio
genesis, such as interaction with vesicular transport machinery, 
fusion of the ciliary vesicle with the plasma membrane and facili-
tating the proper anchoring of the basal body to the membrane by 
securing Y-link to membrane connections.

Although formation of the ciliary axoneme is widely acknowl-
edged to depend on IFT, there is evidence from different model 
systems that basal body docking and anchoring, or transition zone 

Glossary

AC3	           �adenylyl cyclase 3
DYF-1	           �abnormal DYe-Filling 1 gene
CEACAM1	          �carcinoembryonic antigen-related cell adhesion molecule 1
Cep	           �centrosomal protein
HYLS‑1	           �hydrolethalus syndrome protein 1
GPI	           �Glycosylphosphatidylinositol
KIF17	           �kinesin family member 17
OFD	           �orofaciodigital
Odf2	           �outer dense fibre 2
PKD2	           �polycystic kidney disease 2
Poc5	           �proteome of centriole 5
RP2	           �retinitis pigmentosa 2
RPE1	           �retinal pigment epithelial cell line
SAS‑4	           �spindle assembly abnormal 4
SEPT2	           �septin 2
siRNA	           �small interfering RNA
TRAM	           �translocating chain-associating membrane
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formation, does not require this transport system. For example, tran-
sition zone formation seems normal in the Chlamydomonas IFT52 
mutant, which cannot otherwise build the rest of the axoneme [40], 
as well as in IFT gene mutants in C. elegans [5,41]. Instead, it is prob-
able that IFT complexes associate with the ciliary or other vesicles, 
and the basal body, during the early stages of ciliogenesis [42,43]—
ostensibly primed for elongating the axoneme after basal body 
(transition fibre)–transition zone attachment, to the membrane (Fig 2). 

Although how these events are coordinated is not understood, at least 
two IFT proteins, IFT20 and Elipsa/DYF‑11, Bardet–Biedl syndrome 
(BBS) proteins, and vesicular transport components (such as Rab11, 
Rab8, rabin 8 and rabaptin 5) seem to partake in ciliary cargo trans-
port from the Golgi to the ciliary base near the basal body [44–48]. 
Other IFT proteins must be recruited to the ciliary base and assem-
bled to allow IFT particle interactions with ciliary proteins, but such 
spatio-temporal details remain to be elucidated.
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Developing
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Docking/fusionMigration

IFT particles
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Fig 2 | Roles of the basal body distal end and transition zone region during two phases of primary cilium formation (‘early’ and ‘late’). In many mammalian cell 
types, the first ciliogenic event involves the binding of a CV to the distal end of the mother centriole, probably through distal appendages (1). A (presumably 
immature) TZ region begins to emerge and invaginate the CV, the membrane surface of which grows through fusion of secondary vesicles (2–3). The basal 
body-CV can migrate to the plasma membrane (3) and then fuse with it (4), at which point the maturing TZ forms the ciliary gate (5). Complete formation of 
the axoneme and functional cilium is an IFT/BBS protein-dependent process (6); IFT/BBS proteins present on the undocked basal body might perform specific 
transport roles or might simply be trafficked for eventual assembly as functional IFT particles. A different pathway (7) followed by other cells types might not 
involve a CV, but rather, have the basal body docking directly with the membrane; a TZ might start to form just before, during and after this step. Also, basal body 
migration does not occur in all cell types. CV, ciliary vesicle; IFT, intraflagellar transport; BBS, Bardet–Biedl syndrome; TZ, transition zone.

Fig 1 | The transition fibres, and the transition zone with its associated ciliary necklace, represent evolutionarily conserved features of the basal body–ciliary organelle.  
(A) All cilia have a microtubule-based axoneme that emerges from a centriolar structure termed the ‘basal body’. The TFs and TZ are depicted schematically 
together with representative TEMs from a Caenorhabditis elegans sensory cilium and human oviduct primary cilium. Y‑link structures organize, or make up, 
the ciliary necklace present on the ciliary surface (shown as beads). In nematodes, the basal body almost completely degenerates after ciliogenesis, retaining 
only TFs. The nature and function of the inner singlet microtubules seen in the TEM cross-sections of C. elegans cilia are unknown. The ciliary compartment 
is highlighted in yellow. (B) Substructures of the centriolar barrel, with the reported localization of several components shown. (C) Fluorescence microscopy 
images of markers showing the basal bodies, TZs and axonemes of C. elegans and mammalian cilia. The two C. elegans cilia show an IFT protein (DYF‑11; 
green) marking the basal body (TF region) and axoneme, and MKS‑5 (red) marking the TZ. The mouse cilium shows the basal body (γ-tubulin; red), TZ 
(membrane-associated TMEM231 forming a ring; green) and the axoneme (acetylated tubulin; blue). (D) Freeze–fracture scanning electron micrograph  
of a hamster respiratory cilium, showing evidence that the ciliary necklace is in fact a spiral, with an approximate 8° angle of pitch with respect to the ciliary 
axis (arrows show apparent start and end points of the bead-like particles on the membrane). C. elegans images modified with permission from [5]; oviduct 
TEM from [55]; TMEM231 data from [36]; ciliary necklace from [24]. IFT, intraflagellar transport; MT, microtubule; TEM, transmission electron migrograph;  
TF, transition fibre; TZ, transition zone.

◀
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Formation of ciliary compartment in early ciliogenesis
An essential attribute of the cilium is that it represents a bona fide 
organelle, with its own transport system, signal transduction mol-
ecules and, in the case of motile cilia, force-generating machinery. 
Yet, unlike an organelle such as a mitochondrion, which is fully 
sequestered from the cytosolic environment by a contiguous mem-
brane, the cilium is built whilst ostensibly exposed to non-ciliary 
cell body components. If the initial establishment of a ciliary com-
partment requires isolation from cytosolic and plasma membrane 
protein pools, then ciliary gate formation might represent one of the 
earliest steps of ciliogenesis.

Freeze–fracture electron microscopy studies have provided 
insights into the timing of ciliary necklace formation, which could 
act as a membrane diffusion barrier. In Tetrahymena, a distinct 
arrangement of intramembrane particle arrays, termed ‘fairy rings’, 
form before substantial axonemal outgrowth and the mature cili-
ary necklace are apparent [49]. The ring, corresponding roughly to 
the diameter of basal bodies, is evident on a flat area of the plasma 
membrane. The emergence of a ciliary membrane protrusion is 
accompanied by a concentration of intramembraneous particles on 

the membrane slope. A similar progression of events is reported for 
motile and non-motile cilia of vertebrates [50], suggesting that this 
process is conserved.

Presumably, ciliary necklace formation coincides with the 
assembly of transition zone ultrastructure; however, the electron 
miscroscopic evidence for this is sparse. Studies of quail oviduct 
cilium biogenesis hint at the appearance of bead structures in the 
lumen of ciliary vesicles, as well as the presence of Y‑links in a 
potentially early phase of transition zone formation [51]. Studying 
moth spermatogenesis, the authors of [52] visualized regular 
repeating patterns of membrane-associated beads in ciliary stumps 
protruding into the ciliary (flagellar) vesicle. More time-resolved 
experiments with molecular markers of the ciliary vesicle,  
the plasma membrane region in which the basal body docks, the 
transition zone and the necklace are required to better understand 
this early ciliogenic pathway.

Apart from the ciliary necklace, other structures probably contribute 
to the restriction or modulation of ciliary entry and exit. These include 
transition fibres, Y‑links, nucleocytoplasmic transport machinery and a 
septin ring. Similarly to the transition zone, the spatio-temporal events 

Table 1 | Functions and associated disorders of proteins that localize to the ciliary transition zone

Mammalian 
protein

Other names/related disease Function Representative 
references

Mks1 Bbs13; MKS‑1 (Ce) Formation and function of ciliary gate; Hedgehog signalling [5,37,38,95]

B9d1 Mksr1, Mks9; MKSR‑1 (Ce) Formation and function of ciliary gate; Hedgehog signalling [5,36,38,96]

B9d2 Mksr2, Mks10, Stumpy; MKSR‑2 (Ce) Formation and function of ciliary gate [5,38,96,97]

Tmem216 Mks2, Jbts2; MKS‑2 (Ce) Formation and function of ciliary gate [37,39,98]

Tmem67 Mks3, Jbts6, Meckelin, Nphp11, 
COACH syndrome; MKS‑3 (Ce)

Formation and function of ciliary gate [5,37,99]

Rpgrip1L Mks5, Nphp8, Jbts7, Ftm, COACH 
syndrome; MKS‑5 (Ce)

Formation and function of ciliary gate; scaffold for many transition  
zone proteins; Hedgehog signalling

[5,37,38,100]

Rpgr Rp3 NPHP4-interacting protein required for cilium maintenance [101,102]

Rpgrip Lca6 Rpgr- and NPHP4-interacting protein required for cilium maintenance [101,102]

Cc2d2a Mks6, Jbts9, COACH syndrome;  
MKS‑6 (Ce)

Formation and function of ciliary gate; Hedgehog signalling [5,36–38,103]

Cep290 Nphp6, Mks4, Jbts5, Slsn6, Lca10 Formation and function of ciliary gate; possible component of Y‑links [26]

Tmem17 ZK418.3 (Ce) Function of ciliary gate [36]

Tmem231 T26A8.2 (Ce) Function of ciliary gate; Hedgehog signalling [36]

Tmem237 Jbts14; JBTS‑14 (Ce) Formation and function of ciliary gate; regulation of Wnt signalling [39]

Tctn1 Tect1, Jbts13, E04A4.6 (Ce) Function of ciliary gate; regulates Hedgehog signalling [37]

Tctn2 Tect2, Mks8 Neural tube patterning, Hedgehog signalling [37,38]

Tctn3 Tect3 Forms complex with Tctn1,Tctn2, Mks1, B9d1, Cc2d2a, and Tmem67 [37]

Lca5 Lebercilin Interaction with IFT proteins; ciliary photoreceptor maintenance [67,104]

Ahi1 Jbts3, Jouberin Cilium biogenesis; photoreceptor maintenance [38,105–107]

Nphp1 Jbts4, Slsn1; NPHP‑1 (Ce) Formation and function of ciliary gate [5, 37, 38, 106]

Nphp4 Slsn4; NPHP‑4 (Ce) Formation and function of ciliary gate [5, 37, 38, 108]

nucleoporins Many Ciliary entry of KIF17 kinesin, perhaps other proteins [72]

Virtually all transition-zone-localized proteins are associated with one of the following disorders, as indicated by their corresponding gene designations: Bbs, Bardet–Biedl 
syndrome; Mks, Meckel syndrome; Mksr, MKS1-related; Jbts, Joubert syndrome; Nphp, nephronophthisis; Lca, Leber congenital amaurosis; Rp, retinitis pigmentosa; Slsn,  
Senior–Loken syndrome.
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involved in establishing these systems during ciliogenesis remain 
to be established. Furthermore, how these structures or functional 
units cooperate to ensure that the protein composition of the cilium 
remains optimal is not understood and requires further investigation.

Transition fibres: the ‘business’ end of the basal body
In many respects, transition fibres represent the functional region 
of the basal body. First, they serve as the main membrane attach-
ment point for the basal body. Second, they represent a physical 
block to transport, as electron micrographs from multiple cell types 
indicate that the inter-fibre spaces are too small to allow the passage 
of vesicles [53–56]. Consistent with this idea, vesicles are typically 
not observed in cilia [57,58]. Hence, the point of transition fibre 

attachment to the plasma membrane defines the limit at which 
cilium-destined vesicles can fuse (Fig 3). Indeed, in photoreceptor 
cells, IFT protein- and rhodopsin-positive vesicles are found at the 
periciliary ridge membrane, which extends apically ~0.5 μm from 
the transition fibre–plasma membrane junction, and some vesicles 
are observed at the junction itself [42,43,59,60]. 

Third, various proteins are targeted to the transition fibre region. 
C. elegans and trypanosome RP2 and human SEPT2 both localize 
in a doughnut-like fashion (~500 nm diameter) at the ciliary base, 
consistent with the transition fibre ring diameter (Fig 3; [61–63]). 
RP2, related to the tubulin folding cofactor C, might provide qual-
ity control for tubulins before incorporation into the axoneme, and 
SEPT2, which we discuss below, is a component of a membrane 
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Fig 3 | Regulation of membrane diffusion and transport by ciliary gate structures present in the TF–TZ region. Vesicles bearing ciliary membrane proteins dock 
at the base of cilia in proximity to the TF physical barrier. Ciliary cargo might be transported into cilia by IFT particles (shown moving bidirectionally along the 
axoneme), which dock at the TFs and functionally interact with TZ proteins. Shown below are fluorescence images of SEPT2 (green) at the base of a mammalian 
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diffusion barrier. Immunofluorescence studies from multiple cell 
types and organisms show pools of IFT proteins at the ciliary base, 
immediately proximal to the transition zone (Figs 1B,3; [5,42,43]). 
Close examination using immunoelectron microscopy revealed 
Chlamydomonas IFT52 at the distal ends of transition fibres [4]. 
Similarly, all studied C. elegans IFT-associated proteins, namely core 
IFT and BBS proteins, concentrate within the transition fibre region 
(Fig 1C; [5]). In photoreceptor cells, IFT proteins are found at the 
centriolar barrel subdistal and distal appendages (Fig 2; [42,43]). 
Several IFT proteins, IFT57/88/140, are also observed at the groove 
in which the ciliary membrane transitions to periciliary mem-
brane, consistent with the transition fibre attachement region [42]. 
Hence, transition fibres are important docking and assembly sites for 
IFT proteins, and are integral to cilium formation and function.

Finally, it is striking that in C. elegans, basal bodies degenerate 
almost completely post-ciliogenesis, with the exception that tran-
sition fibres persist (Fig 1A; [5,41]). At least some core centriolar 
proteins, for example SAS‑4, disappear completely, whereas another 
protein implicated in cilium formation, HYLS‑1, is retained [64]. It 
is not clear whether HYLS‑1 comprises part of the transition fibre or 
another distal end basal body structure, but uncovering its precise 
localization might help elucidate its function in ciliogenesis. What 
is clear from the C. elegans findings, however, is that in the nema-
tode at least, the distal end of the basal body, including the transition 
fibres, is sufficient for sustaining the function of IFT and cilia.

Function of the transition zone region as a ciliary gate
As discussed above, a transition zone forms in the early stages of 
ciliogenesis, probably stabilizing basal body–membrane connec-
tions and contributing to compartmentalization. There is increasing 
evidence that the mature transition zone functions as a ciliary gate-
keeper. It has been ascribed two functions so far—a membrane 
diffusion barrier and a modulator of IFT.

The earliest concrete indication that the transition zone operates 
as a selective membrane diffusion barrier was obtained by the authors 
of [65], who observed the distribution of rhodopsin in mechanically 
dissociated rod photoreceptor cells. Vertebrate photoreceptors are 
comprised of a cell body, the inner segment, a transition zone often 
termed connecting cilium, and an expanded ciliary tip, the outer seg-
ment. Rhodopsin was found to diffuse from its normal site of action, 
in the outer segment, to the inner segment, but only if the two were 
serendipitously fused together rather than separated by the transition 
zone. Indeed, the diffusion rate of the membrane-associated rhod
opsin to the inner segment was found to be identical to that of its 
usual diffusion rate within the outer segment, demonstrating that an 
intact transition zone limits this diffusion.

Studies in divergent species have corroborated roles for specific 
components of the transition zone in regulating entry or exit of mem-
brane proteins into the cilium. In mammalian cells, several proteins 
display altered ciliary localization on siRNA-mediated disruption of 
transition zone proteins. These include membrane-associated GPI–
GFP and GFP-tagged CEACAM1, which accumulate at higher levels 
in cilia with dysfunctional transition zones [36]. Conversely, some 
mammalian ciliary proteins, namely AC3 and PKD2, are lost from 
transition zone protein-deficient cilia [37]. In C. elegans, abrogation 
of six different transition-zone‑localized proteins causes abnormal 
ciliary entry of the TRAM protein and membrane-associated RP2 
homologues [5]. Interestingly, the cilia of one of the C.  elegans 
mutants analysed, mks‑6, shows an essentially normal cilium 

transition zone ultrastructure, suggesting specific disruption and mal-
function, for example, of the necklace rather than complete removal 
of the Y‑links or ciliary gate. This situation might be comparable with 
that found in vertebrates, in which abrogation of individual transition 
zone proteins, including Mks6/Cc2d2a, impairs cilium formation in 
some tissues but is dispensible for ciliogenesis in others [37]. Further 
evidence of a role for the transition zone in bidirectional gating has 
come from comparing the ciliary proteomes of wild-type and mutant 
Chlamydomonas. Specifically, disruption of the Y‑link-localized 
Chlamydomonas CEP290/NPHP6 orthologue results in defects in the 
linker structures and altered composition of the motile cilia, includ-
ing accumulation of the IFT-associated BBS4 protein and reduction 
in PKD2 [26].

Although it is striking that many transition zone proteins uncov-
ered so far are membrane-associated (i.e. have transmembrane or 
lipid-interacting C2/B9 domains), consistent with a role in regulat-
ing the diffusion of membrane-associated proteins, how they do so 
remains unknown. One possibility, which remains to be explored, is 
that the transition zone proteins alter the lipid composition compared 
with that of the plasma membrane and perhaps the rest of the cilium, 
helping to restrict membrane protein diffusion. Another intriguing 
possibility, not mutually exclusive, is that they  functionally interact 
with the IFT machinery, which itself is implicated in the entry and exit 
of proteins into cilia. In mammalian cells, the IFT protein Fleer/DYF1 
interacts with a transition zone protein, B9D2/MKS10, that is neces-
sary for the transport of opsin to the outer segment of photoreceptor 
cells [66]. Similarly, another transition zone localized protein, LCA5/
lebercilin, associates with IFT particles and is required for opsin 
localization to the photoreceptor outer segment; most significantly, 
LCA5 mutations found in patients affect binding to IFT proteins [67]. 
Finally, the authors of [68] demonstrated that abrogation of the con-
necting cilium (transition zone)-localized NPHP1 protein impairs 
transport of opsins to the outer segment, coincident with the reduced 
presence of some, although not all, IFT proteins in this region.

In C. elegans, disrupting any single transition zone protein does 
not abrogate ciliogenesis, nor impair IFT [5,69]. However, genet-
ics studies define two transition zone modules that are collectively 
required for cilium formation—an NPHP module comprised of 
NPHP1 and NPHP4, and an MKS module consisting of MKS1, B9D1/
MKSR‑1, B9D2/MKSR‑2, MKS3, MKS6/CC2D2A, and probably also 
TMEM216/MKS2 and TMEM237/JBTS14 [5,39]. Simultaneously 
deleting one component from each module abrogates ciliogenesis 
in most cilia, because of impaired attachment of the basal body-
transition zone to the membrane. In those cilia that remain, IFT 
velocities along axonemes are not markedly affected, suggesting that 
the transition zone is not absolutely necessary for IFT [5]. Hints of a 
functional interaction between the transition zone and IFT machin-
ery do exist in C. elegans, as overexpression of OSM‑6/IFT52 and 
loss of NPHP4 function result in a synthetic ciliogenic defect [70]. 
Thus, further testing for genetic and physical interactions between 
IFT and transition zone genes in C. elegans and other species, such 
as zebrafish, is probably a useful avenue of investigation.

Whilst evidence for regulated entry or exit of ciliary membrane 
proteins is mounting, the question of whether the transition zone 
controls the ciliary localization of all or most components deserves 
attention. Two recent studies addressed this question by showing that 
soluble proteins and dextrans above ~40–50 kDa were excluded from 
the Xenopus photoreceptor outer segment and from RPE1 primary 
cilia [71,72]. However, by using photoactivatable GFP, the Xenopus 
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study also showed that flux of monomeric, dimeric and trimeric GFP 
across the photoreceptor connecting cilium was essentially identical, 
thus arguing against a diffusion barrier model of exclusion for soluble 
proteins at the connecting cilium [71]. Consistent with these find-
ings, a previous study showed that monomeric GFP diffusion across 
the connecting cilium was only moderately reduced compared with 
inner segment flux, and that it is much faster than outer segment 
flux  [73]. Thus, for soluble cytoplasmic proteins, transition zone 
gating might not involve a diffusion barrier mechanism such as that  
proposed for membrane-assocated proteins.

Parallels between nucleo- and ciliocytoplasmic transport
An early suggestion that the ciliary base forms a ‘flagellar and 
ciliary pore complex’, analogous to the nuclear pore complex  
(NPC; [74]) was prescient, as recent studies suggest functional simi-
larities between nucleocytoplasmic and ciliary transport machineries. 
Importin‑β1, importin‑β2/transportin, and RanBP1 are found within 
cilia, with a gradient of RanGTP and RanGDP across the basal body, 
similar to that observed across the nuclear envelope (Fig 3; [75–78]). 
The accumulation of RP2 and the IFT anterograde motor KIF17 in cilia 
requires importin‑β2, and elegant experiments that use a transient 
fast upregulation system showed that KIF17 ciliary targeting requires 
a ciliary RanGTP gradient [75,78]. Moreover, RanGTP was found to  
promote ciliogenesis through a mechanism dependent on 
RanBP1 [77]. Consistent with these findings, the importin‑β2 inter-
action with RP2 and KIF17 depends on nuclear-import-related 
sequences [75,78]. A recent and exciting study from the Verhey lab 
has now identified further NPC components—mainly nucleoporin 
proteins—at the base of cultured mammalian cell cilia in a region 
that includes the transition zone; furthermore, disruption of NPC 
function by using an antibody blocking approach restricts KIF17  
ciliary entry [72].

Other connections between nucleocytoplasmic and ciliary trans-
port are that numerous nuclear transport proteins are present in 
ciliary proteomes [79,80], and various IFT and BBS proteins share 
rare domain architectures—β‑propeller-toroid domains—with mem-
brane curvature-inducing and stabilizing NPC proteins [81]. As cilia 
are not fully bound by membrane, it remains unclear how cilium-
based NPC proteins and associated nucleocytoplasmic transport 
machineries would regulate the ciliary entry of membrane-associated 
(RP2) and cytoplasmic (KIF17) proteins. One possible scenario mir-
rors nuclear-envelope-independent functions already known for 
the nucleocytoplasmic transport machinery. For example, when 
the nuclear envelope is broken during mitosis in Xenopus embryos, 
RanGTP concentration gradients emanating from condensed 
chromosomes regulate local release of spindle assembly factors from 
inhibitory interactions with importin-α/β complexes  [82,83]. For 
ciliary transport, similar modes of regulation involving Ran, nucleo
porins and importin proteins, could facilitate protein transport across 
the base of cilia near the transition fibre/transition zone gate. Further 
understanding requires more knowledge of the full complement of 
nuclear import and export components that drive ciliary transport, 
where exactly they localize in cilia, and how they interact with 
known ciliary transport, for example IFT, and with transition zone, 
for example MKS/NPHP, functional modules.

Septins as part of a diffusion barrier at the base of the cilium
Septins are GTPases that form large-order structures, including rings, 
gauzes and filaments. In budding yeast, a septin ring assembles at 

the bud neck during cytokinesis to prevent missegregation of orga-
nelles and proteins between mother and daughter cells [84,85]. 
Septins are also implicated in forming barriers in other locales, 
including the mammalian midbody, neural dendrite spines and 
sperm annulus [86,87]. To form high-order structures, septins asso-
ciate with other family members. For example, in sperm, septin 7  
co-localizes with septin 4 at the annulus [88,89].

The annulus forms early in sperm flagellum biogenesis at  
the base, where it might help anchor the overlying membrane to 
the flagellum [90]. Septin 4 localizes to this annulus and is essen-
tial for male mouse fertility; mice lacking this protein show retention 
of cytoplasm and defects in flagellar kinesin localization [88,89]. 
Septin 4 also controls the levels and distribution of basigin, a dynam-
ically regulated flagellar component, consistent with an essential 
role for septin 4 as part of a flagellar diffusion barrier.

Septin 2, which associates with septin 7, localizes at the ciliary 
base  (Fig 3; [62,91]). In IMCD3 mouse kidney cells, GFP fusions 
of several transmembrane proteins, including serotonin receptor 6, 
Smoothened and fibrocystin, localize to the cilia. Fluorescence 
recovery after photobleaching indicates that there is little exchange 
between the ciliary and nonciliary pools of these transmembrane 
proteins, despite both populations being mobile [12]. Knockdown 
of septin 2 causes defects in ciliogenesis, and the short cilia that do 
form show increased entry of ciliary transmembrane proteins [12]. 
Thus, septin 2 probably functions as an important part of a diffusion 
barrier at the base of the cilium.

In Xenopus, septin 2 is expressed with septin 7 during gastru
lation, when it stabilizes the plasma membrane and coordinates  
convergent extension [92]. Similar to septin 2 in IMCD3 cells, septin 
7 forms a ring at the base of motile cilia in the Xenopus epidermis, 
and knockdown results in fewer and shortened cilia. Consistent with 
an essential role for cilia in vertebrate Hedgehog signal transduction, 
knockdown of either septin 2 or septin 7 abrogates Hedgehog signal-
ling [62,92]. Thus, septin 2 and septin 7, which can interact, could 
partner to participate in the diffusion barrier at the ciliary base.

Sidebar A | In need of answers
(i)	 What is the full complement of proteins that make up transition 

fibres and the different elements of the transition zone, for example 
Y‑links and ciliary necklace? 

(ii)	 Can the transition fibres or Y‑links be isolated biochemically to 
ascertain composition?

(iii)	 What are the precise three-dimensional shapes of transition fibres 
and Y‑links? Cryo-electron microscopy reconstruction analyses 
could provide sufficient structural details such that, ultimately, 
crystal structures of individual components could be ‘fitted’ or 
modelled into the macromolecular assemblies. Understanding the 
spatial relationships between the various components is necessary 
for understanding, at a molecular level, the potentially diverse 
functions of the ciliary gate structures.

(iv)	 What are the interaction partners of proteins present in the transition 
fibre–transition zone region? Some of these might bind only 
transiently, play roles in the formation of the ciliary gate, or could 
regulate docking and transport of intraflagellar transport particles.

(v)	 Where exactly, in the context of the transition fibres and transition 
zone, are the septin and RP2 rings localized, and how might they 
collaborate with these ciliary domains in ciliary gating or transport?

(vi)	 To what extent do nuclear pore-associated proteins regulate ciliary 
transport? Is it only to modulate ciliary entry of the kinesin motor 
KIF17 (OSM‑3) and RP2, or other proteins as well?
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The findings raise interesting questions. How might septins 
promote ciliogenesis? Septin 2 and septin 7 can associate with 
and arrange the distribution of microtubules to control vesicular 
transport [93,94]. Do septins coordinate the distribution of micro-
tubules required to deliver ciliary components to the basal body, 
or stabilize the microtubules of the cilium itself? If so, this might 
explain how septins promote ciliogenesis. Given that the authors 
of [36] demonstrated mislocalization of transition zone proteins on 
siRNA knockdown of septin 2, it will be interesting to further probe 
the functional relationship between the ciliary septin ring and the 
transition zone. For example, are they part of the same or are they  
distinct mechanisms for regulating ciliary composition?

Conclusions
It has been known for over 30 years that the transition fibres, together 
with the transition zone Y‑links, represent evolutionarily conserved 
subdomains of the basal body–ciliary organelle that connect micro
tubules to the ciliary membrane [15]. We have gained valuable 
insights into their roles in cilium biogenesis, maintenance and func-
tions. Yet, a deeper understanding of the molecular mechanisms of 
transition fibre–transition zone function is only possible once we 
enumerate their components and define their macromolecular 
organization (Sidebar A). Furthermore, continuing to uncover the spe-
cific functional associations between transition fibre and transition 
zone components, and other ciliary components as well as transport 
machinery, for example IFT, will help to elucidate their crucial roles 
in not only the formation, but also the function of the cilium.
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