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ABSTRACT OF THE DISSERTATION

Lightweight Cryptographic Mechanisms for Internet of Things and Embedded
Systems

by
Abdulrahman Abdulaziz Bin Rabiah

Doctor of Philosophy, Graduate Program in Computer Science
University of California, Riverside, March 2023
Professor Nael Abu-Ghazaleh, Co-Chairperson

Professor Silas Richelson, Co-Chairperson

Today, IoT devices such as health monitors and surveillance cameras are widespread. As
the industry matures, IoT systems are becoming pervasive. This revolution necessitates
further research in network security, as IoT systems impose constraints on network design
due to the use of lightweight, computationally weak devices with limited power and net-
work connectivity being used for varying and unique applications. Thus, specialized secure
protocols which can tolerate these constraints are needed. This dissertation examines three
problems in the constrained IoT setting: 1) Key exchange, 2) Authentication and 3) Key
management.

First, IoT devices often gather critical information that needs to be communicated
in a secure manner. Authentication and secure communication in an IoT environment can
be difficult because of constraints, in computing power, memory, energy and network con-
nectivity. For secure communication with the rest of the network, an IoT device needs to

trust the gateway through which it communicates, often over a wireless link. An IoT device
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needs a way of authenticating the gateway and vice-versa, to set up that secure channel.
We introduce a lightweight authentication and key exchange system for IoT environments
that is tailored to handle the IoT-imposed constraints. In our system, the gateway and
IoT device communicate over an encrypted channel that uses a shared symmetric session
key which changes periodically (every session) in order to ensure perfect forward secrecy.
We combine both symmetric-key and public-key cryptography based authentication and
key exchange, thus reducing the overhead of manual configuration. We study our proposed
system, called Haiku, where keys are never exchanged over the network. We show that
Haiku is lightweight and provides authentication, key exchange, confidentiality, and mes-
sage integrity. Haiku does not need to contact a Trusted Third Party (TTP), works in
disconnected IoT environments, provides perfect forward secrecy, and is efficient in com-
pute, memory and energy usage. Haiku achieves 5x faster key exchange and at least 10x
energy consumption reductions.

Second, signature-based authentication is a core cryptographic primitive essential
for most secure networking protocols. We introduce a new signature scheme, MSS, that al-
lows a client to efficiently authenticate herself to a server. We model our new scheme in an
offline/online model where client online time is premium. The offline component derives ba-
sis signatures that are then composed based on the data being signed to provide signatures
efficiently and securely during run-time. MSS requires the server to maintain state and is
suitable for applications where a device has long-term associations with the server. MSS al-
lows direct comparison to hash chain-based authentication schemes used in similar settings,

and is relevant to resource-constrained devices e.g., IoT. We derive MSS instantiations for
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two cryptographic families, assuming the hardness of RSA and decisional Diffie-Hellman
(DDH) respectively, demonstrating the generality of the idea. We then use our new scheme
to design an efficient time-based one-time password (TOTP) system. Specifically, we im-
plement two TOTP authentication systems from our RSA and DDH instantiations. We
evaluate the TOTP implementations on Raspberry Pis which demonstrate appealing gains:
MSS reduces authentication latency and energy consumption by a factor of ~82 and 792,
respectively, compared to a recent hash chain-based TOTP system.

Finally, we examine an important sub-component of the massive IoT technology,
namely connected vehicles (CV)/Internet of Vehicles (IoV). In the US alone, the US de-
partment of transportation approximates the number of vehicles to be around 350 million.
Connected vehicles is an emerging technology, which has the potential to improve the safety
and efficiency of the transportation system. To maintain the security and privacy of CVs,
all vehicle-to-vehicle (V2V) communications are typically established on top of pseudonym
certificates (PCs) which are maintained by a vehicular public key infrastructure (VPKI).
However, the state-of-the-art VPKIs (including SCMS; the US VPKI standard for CV)
often overlooked the reliability constraint of wireless networks (which eventually degrades
the VPKI security) that exists in high-mobility environments such as CV networks. This
constraint stems from the short coverage time between an on-board unit (OBU) inside a
fast moving vehicle and a stationary road-side unit (RSU). In this work, we present TVSS,
a novel VPKI design that pushes critical VPKI operations to the edge of the network; the
RSU, while maintaining all security and privacy assumptions in the state-of-the-art VP-

KIs. Our real-life testbed shows a reduced PC generation latency by 28.5x compared to

X



recent VPKIs. Furthermore, our novel local pseudonym certificate revocation lists (PCRLs)
achieves 13x reduction in total communication overhead for downloading them compared

to delta PCRLs.
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Chapter 1

Introduction

Cryptography is a valuable mathematical tool that can help provide many secu-
rity and privacy properties including confidentiality, integrity, non-repudiation, anonymity
and unlinkability through the use of special cryptographic systems and keys (which need
to be carefully managed). These properties can be achieved using either symmetric key
cryptography (aka secret key cryptography) or asymmetric key cryptography (aka public
key cryptography). In symmetric key cryptography, a pair of users share the same crypto-
graphic key sk to carry out a cryptograpihc operation such as encrypting data to keep it
private from non-authorized users or hashing a challenge using sk to achieve authentication.
While this mechanism does not require much computation, it requires pairwise sharing of
keys making it unscalable when used for authentication in large scale systems as the total
number of distinct keys in the system becomes n?-n/2 for n users. In asymmetric key cryp-
tography however, each user maintains a pair of cryptographically bounded keys (sk, pk),

where sk is kept private and pk is published to other users in the system; for example,



many digital signature constructions utilize this type of cryptography to achieve identity
and message authentication, where data signed using the secret key sk can be verified using
the public key pk. A remarkable advantage of this mechanism is that it scales well as the
total number of keys in the system becomes 2n; this makes it common for daily use in
large scale systems. However, it requires computationally expensive cryptographic opera-
tions as it relies on complex mathematical operations. Public key infrastructure (PKI) is
a traditional key management system based on public key cryptography wherein users are
equipped with public-private key pairs as well as public key bound digital certificates that
are signed by trusted third parties (TTPs). PKI allows for smooth key management such as
adding users to the system, revoking users from the system and managing user credentials.

With the increasing deployment of resource-limited devices (e.g., sensors, con-
nected vehicles and Internet of Things devices (IoTs)) [8], designing secure systems with
low computational and network overhead has become a critical issue. When devices have
limited computational power, memory, network connectivity and/or energy reserves, se-
curity often takes a back seat to reducing protocol latency, reducing CPU and memory
footprint, and lowering energy consumption. Several high profile attacks in recent years
(e.g., Mirai botnet [54] and BrickerBot [I88]) highlight the need for better security for
these devices [172].

Traditional solutions offering the aforementioned security and privacy properties
often rely on expensive cryptographic mechanisms and require frequent network communica-
tion, high bandwidth and network latency. Such solutions can be prohibitive in the context

of constrained environments due to the limitations in device capabilities, intermittent con-



nectivity as well as not being able to scale to the large number of IoT devices expected to be
fully deployed in the near future. Therefore, it is essential to provide lightweight cryptogr-
phic primitives that allow building lightweight secure and privacy preserving communication

systems for IoTs and embedded systems.

1.1 Motivation

This dissertation is motivated by three security aspects that are critical for any

IoT system: 1) Key exchange, 2) Authentication and 3) Key management.

1.1.1 Key Exchange

Secret key cryptography is the traditional solution utilized to encrypt massive ses-
sion data exchanged over the network because of its superior performance over public key
cryptography. It is recommended that encryption keys are to be short-lived and rotated
periodically (e.g., each session) so as to limit cryptanalysis as well as the amount of data
exposed in case of key compromise. Previous mechanisms suggest deriving these session
keys from long-term keys using cryptographic key derivation functions (KDF); however,
the fact that IoT devices might be easily reachable by surrounding/curious entities indi-
cates potential exposure of long-term keys (and consequently session keys) and confidential
data of previous sessions. Perfect forward secrecy (PFS) is a strong security property that
guarantees that all keys of past sessions cannot be recovered in case of device compromise
(i.e., long-term sk compromise) [70, 53]. Many schemes have been introduced in the lit-

erature that attain the PFS property using a PKC-based key agreement protocol, namely



authenticated Diffie-Hellman key exchange (e.g., [81L [IL 99]). However, repeated use of
public key cryptography places a burden on limited-resource devices for its expensive com-
putation, rendering it impractical. More recently, some approaches [170} 77, 22| 43 103} [56]
have been proposed to completely decouple session key updates from expensive public key
operations while achieving PF'S; in these approaches however when the key is compromised,
the previous key does not maintain its security (it becomes distinguishable from a random
value). Therefore, these work do not achieve the ideal PFS, where the loss of a key does not
compromise the security of any previous key, making them susceptible to pre-computation
attacks. A lightweight authenticated key exchange protocol that can attain the ideal PFS
model is important as critical data such as military or self identifying information may be

communicated in the IoT environment.

1.1.2 Authentication

Authentication is a main challenge for secure communication in IoT environments.
Quick authentication of data can be critical to saving lives and businesses; consider a pa-
tient with irregular heart beats or blood pressure, and thus her doctor must instantly be
warned for quick response in case of emergency. Symmetric key cryptography based authen-
tication offers a computationally lightweight solution but imposes key-management issues
and introduces security vulnerabilities, For instance, SKC requires the server to store IoT
authentication keys, which makes the IoT devices subject to impersonation attacks if the
server is compromised and the keys are stolen. As a result, digital signatures have been the
traditional solution for authentication since it overcomes SKC limitations. However, it im-

poses considerable overhead on resource-constrained IoT devices. This involves significant



computational overhead to generate keys and signatures. Digital signatures additionally
require storage of large keys and communication of signatures that are at least several hun-
dreds of bits. This makes it impractical especially for situations in which signers are of
limited resources and/or signatures need to be generated extensively and fast (e.g., smart
cards or wireless sensor networks (WSN)). Alternatively, hash chains are a cryptographic
primitive that can be used to build an authentication system with appealing features com-
pared to digital signatures. A hash chain is a list of vertices {vo,...,vn} labeled by the
corresponding list of strings {xo,...,xzn} such that x;;1 = H(x;) for all 4, and H is a hash
function. Traversing the chain in the forwards direction can be done efficiently whereas it is
computationally infeasible in the backwards direction due to the hardness of inverting H. A
user uses her chain head x( to generate zy_1 to authenticate herself to a server holding the
chain tail . This scheme reduces the bandwidth requirements as it requires only half the
signature size. However, hash chains have a limited lifespan and require the user to have a
O(N) timexspace complexity for authentication. Therefore, new public-key authentication
solutions that are efficient in the amount of computation and energy usage are needed for

IoT.

1.1.3 Key Management

Connected vehicles (CVs) is an important part of the emerging IoT technology.
CVs allows vehicles and the infrastructure to communicate and collaborate to improve the
safety and efficiency of the overall transportation system. CVs and the infrastructure road-
side units (RSUs) utilize a direct communication model since low latency is paramount for

such real-time systems; they often rely on the direct wireless communication technology



called dedicated short range communication (DSRC). Authenticated communication in CV
networks is essential as such real-time systems need to make critical decisions based on the
information they receive from other vehicles and the infrastructure. Thus, CVs must utilize
a vehicular PKI (VPKI) key management system and use their certificates to authenticate
and broadcast messages in the CV network. CVs additionally imposes privacy requirements
on the VPKI system so as to protect vehicles participating in the CV network from potential
vehicle driving activity tracking. In order to prevent other vehicles from linking messages
of a single vehicle for a long time (and thus tracking its driving activities), CVs have to
periodically refresh their pseudonym certificates (PCs) with new certificates essentially with
new pseudonym identities. This property is called unlinkability. In order to also prevent
the certificate authority from tracking vehicles, a standard solution is to separate the duties
of renewing the pseudonym certificates on two non-colluding authorities such that no one
authority is able to map the messages originating from the same vehicle to its long term
identity. This property is called anonymity. A major concern (and often overlooked) in
the design of VPKIs is the high-mobility nature of CV networks. In essence, a fast vehicle
passing by an RSU would have a very brief time of network connectivity which could be less
than a second in highway scenarios. Therefore, there is a high probability that a CV request
of a PC from the cloud through an RSU would fail (the vehicle might leave the RSU coverage
before receiving the PC). Furthermore, the innate channel uncertainty of wireless networks
tend to intensify in highly mobile environments [79]. This natural fluctuation of reliability
in CV networks would eventually degrade the security level of a given VPKI (e.g., a vehicle

might be forced to use the same PC for a long time which would increase the likelihood of a



linkability attack). State of the art vehicular PKI systems require highly mobile vehicles to
continuously interact with the cloud in order to refresh their pseudonym certificates, which
imposes high latency leading to high certificate renewal failures and eventually degradation
of the privacy of CVs.

Furthermore, the current revocation mechanism used in VPKIs is certificate re-
vocation lists (CRLs), in which revoked vehicles are compiled in a single list that is then
distributed to the whole CV network. This is because mechanisms that rely on the net-
work (such as Online Certificate Status Protocol, OCSP [I61]) are not feasible due to the
intermittent connectivity of CV networks. Because revocation is more likely in a CV en-
vironment (e.g., due to malicious or non-malicious events), this list is expected to grow
large overtime, which requires high bandwidth on the vehicles to download it. For instance,
consider the cyber attack in 2015 which allowed hackers to disable vehicles and triggered
Chrysler to recall 1.4 million vehicles [2]. To mitigate this issue, the US standard VPKI,
Security Credential Management System, SCMS, suggests that the CRL is to hold at most
10,000 entries (i.e., ~400KB); however, this opens an even more dangerous vulnerability
as now legitimate entities will not be able to have a holistic knowledge of revoked vehicles,
which can lead to malicious attacks. In order to reduce the bandwidth requirements of
downloading a CRL, VPKIs additionally consider utilizing delta CRLs, where the CRL is
incrementally updated so that the vehicle only downloads the newly revoked vehicles (i.e.,
delta CRL) when it gets network connectivity with the RSU/backend (e.g., weekly/daily).
Nonetheless, the high scale of CVs and the limited contact time that a CV has with the

infrastructure make it hard for CVs to successfully download such delta CRLs. VPKI sys-



tems also suggest dividing the revoked certificates on different CRLs based on some common
factor, such as region of revocation (e.g., a state) [40], so that a vehicle only downloads and
keeps a relevant CRL to it. Notice that this approach is not secure because it can still allow
a revoked vehicle to maliciously participate in the system outside the region of revocation
without being detected as long as the PCs are valid (e.g., SCMS PCs are valid for a week);
this can degrade the safety and efficiency of the vehicular environment. Thus, a privacy
preserving and scalable VPKI system that can address the aforementioned limitations is of

great importance so as to improve road safety and efficiency.

1.2 Dissertation Contributions

This dissertation introduces lightweight cryptographic mechanisms that allow build

ing efficient and scalable IoT systems with strong security and privacy properties.

1.2.1 Key Exchange

In the first work, we construct a secure authentication and key-exchange protocol
which achieves ideal PFS, and, after an initial setup phase, requires only lightweight private
key operations. Specifically, our scheme returns to the model where the master key is fixed
once and for all, and where each subsequent session key is computed from the previous,
using a hash function. At the core of our new technique is we use the entropy inherent in
the messages exchanged during a session in the update procedure. Each entity relies on
the session key and an apriori agreed upon set of random messages exchanged during the

session (using the previous session key) to update the session key K to K. using symmetric



key cryptography (SKC) and a cryptographic hash function. We make sure no secrets are
shared over the channel. As a result, the long-term master keys play a minimal role in
our protocol, which allows us to remove the reliance on it. Our protocol guarantees that if
the master key or a session key is compromised then all previous session keys retain their
security in the sense that they remain indistinguishable from random. Thus it achieves the
ideal PFS achieved by [81] (but not by [56]), while still being as lightweight as [56]. We call
our protocol Haiku, to reflect simplicity and the lightweight nature of the authentication
and key-exchange protocol.

Haiku makes use of public-key cryptography only during an initialization phase,
where it relies on Elliptic Curve Digital Signature Algorithm (ECDSA) for authentication
and the Elliptic Curve Diffie-Hellman Ephemeral (ECDHE) algorithm for key exchange. For
normal operations, it uses lightweight symmetric-key mechanisms: a symmetric key cryp-
tosystem, cryptographic hash function and Hashed Message Authentication Code (HMAC)-
based Key Derivation Function (HKDF) for confidentiality, message integrity, and authen-
tication. Haiku minimizes the number of messages as well as total bytes exchanged for
authentication and key exchange to save energy [118| 146, 42]. Additionally, it does not
depend on a central, trusted third party, thus allowing the IoT device and gateway to
securely exchange information in a disconnected environment. The protocol minimizes hu-
man intervention by not requiring any input from the user for initial setup. Finally, Haiku
achieves performance and memory improvements that are compelling, achieving around 5
and 4 times reduction in latency and memory usage, respectively, for initial setup as well

as session key updates compared with using public-key cryptography and a TTP. Our ex-



periments also show that IoT devices can reduce energy and CPU cycle consumption by
26 and 20 times for authentication and key exchange, respectively, and reduce the total
bytes exchanged over the channel by 6 times. This allows IoT devices to achieve significant
energy savings, which is critical since they often depend on limited battery power [185].
Haiku’s design is intuitive and straightforward to understand. Despite the fact
that it combines elements of public-key and private-key cryptography, it is quite simple,
since the composition is modular. This makes it easy to reason about the various parts
of the protocol in isolation which keeps our security analysis clean. We also provide a
formal proof of security for Haiku and show that it is secure against a series of attacks.
Moreover, although we have implemented Haiku using an ECDHE-based authenticated key-
agreement (AKE) protocol, any secure AKE would suffice. Thus, if a faster AKE protocol
were developed, we could replace this module in our scheme to improve performance. This

work is published at USENIX NDSS DISS 2018 [30] and at IEEE ICDCN 2021 [31].

1.2.2 Authentication

The starting point for this work is the observation that hash chain based authenti-
cation can be improved by using specific hash functions which support faster traversal from
the head label to the (preimage of the) tail label; we call these hash functions mergeable
hash functions. In essence, they allow the generation of any point in a hash chain of length
N using a cost of O(log N), an exponential improvement. The offline cost of the scheme
is the cost of generating a set of basis component hash functions, leaving the online cost
to be that of merging these (which mathematically consists only of multiplication opera-

tions). The scheme requires additional storage space to store the pre-computed basis hashes,
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but the total timexspace required by the client is polylog(/N). This achieves a significant
improvement.

Our work applies this idea of improving hash chain authentication via mergeable
hash functions over to the realm of signature-based authentication. Specifically, we show
that if a signature scheme supports a special “merge” procedure (which, roughly speak-
ing, allows logarithmically many signatures to be merged to produce a linear number of
signatures), then it can be used to drastically improve the efficiency of signature-based au-
thentication. We present our new MSS signature scheme abstractly and show how to obtain
from it an efficient stateful signature scheme (which directly yields an efficient authentica-
tion scheme). We then instantiate our construction from RSA and, for the first time from
discrete-log (such as ElGamal [59]) signatures, by showing that RSA and BLS [37] signa-
tures support such a merge procedure. We find it surprising that our techniques extend to
work in discrete-log groups since discrete-log-based hash functions do not support the same
merge-friendliness exhibited by RSA hash functions. To demonstrate the utility of MSS
and its constructions, we describe a concrete application next.

We note that similar ideas have appeared in prior work [39, 133], but in some
other contexts, for example to speed up the runtime of algorithms which repeatedly apply
the RSA function. Some subtleties need to be dealt with to turn this idea into a secure
authentication scheme. We are unaware of any prior work in using mergeable signatures for

ElGamal signatures.

Application — Time-based One Time Passwords. We use MSS to implement a time-

based one-time password (TOTP) authentication system. TOTP systems allow a user to
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authenticate herself to a server using a ”one-time” password that is valid for a short, fixed
time. After the time expires, the user will have to authenticate herself again using another
password.

Finally, we implement and compare our scheme to other authentication imple-
mentations in the context of a TOTP system in a number of scenarios involving resource-
constrained devices. The experimental results on Raspberry Pis show that the new MSS
based TOTP systems provide appealing efficiency gains. Our RSA-based TOTP system
cuts down authentication latency and energy consumption by 6 and 10 times, respectively,
compared to a recent TOTP system based on one-dimensional hash chains (with client
storage of first hash of each week) [100]. Additionally, our elliptic curve ElGamal (ECEIGa-
mal) based TOTP system reduces authentication latency and energy consumption by ~82
and 792 times, respectively, compared to [100] (with client hash storage as in the previous
case). We believe our proposed scheme provides an excellent option for verification for

energy-constrained devices. This work is published at IEEE ICDCS 2021 [14§].

1.2.3 Key Management

Our contributions in this work are the following:

Edge-based VPKI: We propose Token-based Vehicular Security System (TVSS), a new
system architecture for VPKI with properties which are essential for a large scale
mobile PKI system. The core novel feature of is that it takes advantage of the compute
power of the network of roadside units (rather than using RSUs simply as a network

of proxies connecting vehicles to the backend servers). We find that computationally
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able RSUs fit seamlessly into VPKI, yielding improvements across the board. Our
system has the following benefits, which are listed and discussed below to show their

importance:

1. Low latency PC generation: TVSS offers a lightweight PC generation protocol
consisting essentially of just a handshake between the vehicle and an RSU. In
particular, PC generation requires no online involvement from the back-end. This
allows for new use cases which were unsupported by previous systems (e.g., high
speed PC generation that is similar to the electronic toll road collection gates

such as the E-ZPass toll collection gates in the US).

2. Improved Revocation: The revocation procedure in TVSS requires drastically

less total communication than the central PCRL-based solution.

3. Simple architecture: Passing computation to the RSUs greatly simplifies the
system as a whole. The overall footprint of TVSS is much smaller than that of

the US standard, SCMS. Thus, if implemented, TVSS would be much cheaper

to maintain. We stress that this comes with no loss of security.

Formalizing VPKI Security: In order to foster future work on VPKI, we give formal
game-based security definitions for unlinkability and anonymity, the two main secu-
rity requirements of VPKI. Additionally, we consider a new type of attack on a VPKI
scheme we call clone attacks and show how to neutralize them in TVSS. Clone attacks
fall under the broad umbrella of sybil attacks [55], which occur when a single vehicle
obtains several different copies of valid credentials in order to pretend to be several

different vehicles. A clone attack is a variant which occurs when an authorized vehicle
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shares its CA-validated credentials with an unauthorized vehicle in an attempt for
both cars to obtain valid PCs from different RSUs. Similar attacks have been con-
sidered in cryptocurrencies [45 202], transportation toll collection [159] and network
authorization [140] schemes. We show how to handle clone attacks against TVSS; no

discussion or defense to clone attacks is given in other VPKI systems.

General OBU and RSU Testbed: We build and assemble a real testbed of OBUs and
RSUs that have technical specifications similar to commercial OBUs and RSUs. Specif-
ically, we set up the networking standard specifically designed for connected vehicles,
IEEE 802.11p/dedicated short range communication (DSRC). We believe these OBUs
and RSUs can be very useful to other research, enabling general vehicle to infrastruc-

ture (V2I) and V2V applications as they are open source and re-programmable.

VPKI Implementation and Field Experiments: We implement TVSS and other VPKI
systems on real OBUs and RSUs, conduct a series of highway and in-city street ex-
periments at different velocities ranging from 25mph to 85mph. TVSS achieves 28.5x
reductions in its PC generation latency compared to a recent VPKI. We also observe a
~13x reduction in total communication for our optimized version of PCRLs compared
to delta PCRLs (updated daily). At extreme speeds, TVSS achieves 3.85x improve-
ments in success ratio of OBUs refreshing PCs compared to a recent VPKI system
while SCMS is unable to refresh PCs. At extreme speeds also, local PCRLs are 6.5x
more likely to be successfully downloaded by OBUs compared to the best alternative

delta PCRLs.
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1.3 Dissertation Outline

In Chapter [2| we provide a literature review and discuss the state-of-the-art mecha-
nisms of key exchange, authentication, key management and certificate revocation. We then
present our novel efficient authenticated key exchange protocol in Chapter [3] In Chapter [4]
we introduce our novel online/offline signature scheme that yields an efficient authentication
protocol. In Chapter 5] we introduce a novel privacy preserving, scalable and low latency
vehicular pubic key infrastructure system for connected vehicles. We finally conclude and

present the future work in Chapter [6]
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Chapter 2

Related Work

We divide the related work into six groups: 1) Authenticated Key Exchange, 2) On-
line/offline signature based authentication, 3) Hash chain based authentication, 4) Second-
factor authentication, 5) Vehicular public key infrastructure based key management and

6) Digital certificate revocation.

2.1 Authenticated Key Exchange

Traditional authentication and key exchange protocols might not be suitable for
IoT environments due to making heavy use of PKC, which is heavy for environments with
resource-constrained devices; for example, Transport Layer Security (TLS) [I54] and Data-
gram Transport Layer Security (DTLS) [I55]. Some traditional solutions might be infeasible
in disconnected IoT environments since they rely on a TTP, such as Kerberos [I01]. Other
solutions do not achieve the strong security property, PFS, like Wi-Fi Protected Access 2-

Pre Shared Key (WPA2-PSK) [4].
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Some loT-specific protocols use PKC repeatedly for authentication and key es-
tablishment [1211, 147, [I8T), [99] 196], which is expensive. Other protocols rely mainly on
a central trusted third party (e.g., Certificate Authority, CA) for authentication and key
exchange [21], 153, [145] [I7T], B8], which is infeasible in disconnected environments. Other
solutions do not achieve PFS, (e.g., [68, 89]). Some approaches [170] [77, 22] [43], 103]
rely on weaker security models (susceptible to dictionary attacks) than ours, to achieve
PFS. Haiku achieves PFS using a stronger security model (via random salts) while using
lightweight key updates. Another approach introduced relies mainly on the hardware ca-
pability for introducing randomness for authentication and key exchange using Physically
Unclonable Function (PUF) [I5]. The PUF approach seems helpful, but it is still not widely
deployed in devices. The approach in [201] requires the authenticator (e.g., gateway) to
move towards the IoT back and forth or do some physical motions while the IoT is sending
random packets. The authenticating device then matches the IoT Received Signal Strength
(RSS)-trace with an apriori RSS-variation. However, human presence is needed or the au-
thenticator needs to be able to do the motions by itself. Other context-based authentication
and key exchange schemes for IoT are also introduced in [109, [195] 129] 158, 95| 92].

The authors in [191] take advantage of the randomness in wireless channels to
update the session key. This approach relies mainly on the assumption that the wireless
channel is not perfect (loss free). One downside of their protocol is that if the adversary
has access to a perfect channel, the protocol becomes vulnerable to both passive (e.g.,
eavesdropping) and active attacks (e.g., hijacking). Another downside is that their protocol

does not provide authentication. Since each pair of nodes starts the first session with a
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publicly fixed initial session key, their protocol is susceptible to impersonation attacks,
which are problematic for machine to machine communication.

The protocol proposed in [30] improves the work in [191] by providing lightweight
authentication and not requiring adversaries have an imperfect wireless channel. Haiku
improves on the work in [30] by making changes to the protocol, thus making it support
lossy links, more scalabel, efficient and secure. Particularly, [30] achieves PFS as long as
an attacker, who has captured all encrypted messages of all sessions, is able to find only one
secret key, either the long term key or session key, during a session. Haiku improves security
and achieves PFS even if the attacker is able to find all secret keys during a session. We
prevent such an attacker from updating the session key given that he/she acquires all secret
keys during a session along with all encrypted messages of all sessions. We also provide
a formal proof of security for the proposed protocol. We finally provide implementation
results: latency under various network conditions, number of bytes exchanged over the

network, memory footprints and energy consumption.

2.2 Online/Offline Signature based Authentication

There are a number of applications in which signers are of limited resources and /or
signatures need to be generated extensively (e.g., smart card or wireless sensor network
(WSN) settings). The notion of online/offline signatures was first introduced in [63] to help
signers avoid expensive operations at the (critical) time of signing and generate signatures
quickly. The authors in [63] proposed a hybrid scheme that relies on a Lamport-like one-

time signature scheme for efficient online message signing and on a traditional signature
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scheme (e.g., RSA) for offline signing. While this scheme speeds up online signing since it
depends on lightweight hashing operations, it imposes long signatures, which are expensive
in resource-constrained environments. Other schemes improve the signature phase at the
expense of imposing extra overhead on the signature verification phase (e.g., [167, 94, 197,
711, 193, 104, 163, 166]), which is infeasible if the signature verifier is constrained (e.g., a
smart lock). Moreover, [39] [166], 194, 67, 106] incur extra expensive computations during
offline signing in order to make online signing more efficient. MSS achieves efficient online
signing without incurring extra overhead at offline signing, or verification and signature

length. Similar ideas have also appeared in other contexts [133] [132], 124].

2.3 Hash Chain based Authentication

Lamport proposed an OTP scheme in which a client is authenticated using uniquely
changing values rather than static passwords, without a server keeping secrets [107]. This
scheme was implemented as S/Key [80] using one-dimensional hash chains. This primi-
tive can achieve OTP authentication using one-way communication. S/Key is prone to
phishing attacks because the next password can be valid for a long time. T/Key [100] is
a recent hash chain-based OTP system that improves S/Key and makes phishing attacks
harder by restricting each password to a small authentication window. However, infrequent
authentications make its verification too expensive. Furthermore, hash chains are used to
build cost-effective micropayment schemes; for instance, PayWord [156] is a credit-based
scheme which relies on hash chains and requires minimal use of heavyweight signatures

(namely one signature on chain tail) as apposed to traditional micropayment schemes (e.g.,
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[49, [128§]). Other hash chain based micropayment schemes and applications are also intro-
duced in [119, 17, 141l 82, O], 20, 175, 203, 177, [75]. In addition, hash chains appear in
group key establishment [29], Winternitz one-time signatures [4I], broadcast authentica-
tion [9, 142] and Merkle-Damgard construction [I127]. Moreover, Nguyen [133] introduced a
MDHC construction using RSA commutative hash functions to improve the performance of
PayWord. Using their MDHC construction, we implemented a MDHC-TOTP system and
show that our TOTP systems outperform it. Ehdaie et al. [58] proposed a two-dimensional
hash chain scheme for key agreement in WSN. Commutative hash functions are the basis

for hash trees used in broadcast encryption and group key agreement schemes [65, [168].

2.4 Second-Factor Authentication

Shortcomings of static passwords are discussed in [87]. An intensive formal anal-
ysis of a suite of second factor authentication schemes with different security, usability and
deployability is introduced in [169]. Online second-factor authentication relies on challenge-
response protocols between the second-factor device and server, requiring bidirectional com-
munication [50, 69 120} 174, 51]. Popular schemes include YubiKey [198] and Duo [164].
Such systems, however, use OTP systems when the second-factor device is offline. The
HMAC-based OTP (HOTP) system [116] requires the client and server to share a sym-
metric secret key k and an incremental counter ¢ that they both use to generate an OTP
using HMAC(k, ¢). However, the next password is valid for a long time (similar to S/Key),
which makes it subject to phishing attacks. The TOTP system [130] makes this attack less

effective by factoring in a timestamp ¢ when generating one-time passwords. A remark-
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able advantage of these two systems is that they can produce small one time passwords,
which allow for better system usability (e.g., OTPs of 20 bits that can be represented as 6
digits). Both schemes, however, share the secret k with the server, rendering them suscep-
tible to server compromise attacks. The attack against the well-known TOTP-based RSA
SecurID [113] is expected to have affected more than 40 million people [200]. Other OTP
schemes have also been proposed in the literature (e.g., [192) [184]). Our TOTP systems
are best suited for offline second factor authentication; they do not share secrets and are

more efficient than others.

2.5 Vehicular Public Key Infrastructure based Key Manage-

ment

Since the development of the first generation of cellular networks, the research
towards building CV networks for civilian use, as well as addressing the security and privacy
issues of such networks, have evolved into different directions. Ultimately, many research
efforts have been consolidated under the term vehicular PKI (VPKI) which is coined after
the traditional PKI that secures the Internet.

Early VPKI Designs: In its early designs [I89, [136] [32], the VPKI primarily consisted
of a CA that issues enrollment certificates (ECs) to vehicles and later issues PCs for V2V
communication. While this protects a CV from tracking from other CVs, the CA can still
track all CVs.

Separation of Duties in a VPKI: At later iterations, the design of the VPKI sepa-

rated the PC issuance tasks from CA and assigned them to a different VPKI entity named
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Pseudonym Certification Authority (PCA). The main motivation of this separation is to
prevent a single entity from linking an EC to its corresponding PC. The US department
of transportation (US DoT) has mandated a VPKI system called Security Credential Man-
agement System (SCMS) [40, 134]. Similarly, the European Union (EU) has mandated a
VPKI system called cooperative intelligent transport systems (C-ITS) certificate manage-
ment system (EU CMSS) [46), [61), [62]. In these systems, vehicles get fresh PCs from the
PCA only after PC requests are validated by the CA using vehicles’ ECs. The separation
of duties helps prevent the PCA from revealing vehicles’ ECs and the CA from revealing
PCs information (e.g., public/verification keys). Furthermore, the authors in [10} [72] [33], 98]
have proposed a ticketing scheme where a vehicle requests a PC-ticket from the CA then
uses this ticket to acquire a PC from a PCA. The authors in [162] further improved the
concept of tickets and introduced what they call a V-Token, an encrypted PC-EC linkage
information which is embedded inside every PC and can only be decrypted by the collabo-
ration of several VPKI entities using a threshold encryption scheme. V-Token also utilizes
a blind signature scheme to prevent the CA from peering into the content of tokens but
at the expense of revealing (hence discarding) some of the tokens in order to provide a
probabilistic authentication for the remaining tokens.

Fault-Tolerance in a VPKI: As a different improvement, the authors in [96] have pro-
posed SECMACE, a VPKI architecture that splits the CA into multiple CAs where each
CA is responsible of a manageable set of vehicles (usually bounded by the same geographical
region). The authors in [I79] have proposed an additional improvement over SECMACE by

introducing IOTA-VPKI, a Distributed Ledger Technology (DLT) implementation based
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on Direct Acyclic Graph (DAG). The main purpose of this improvement is to prevent a
single-point-of-failure whenever one of the CAs goes down. The authors of SECMACE
have further improved their VPKI design by implementing it as a cloud-based solution
named VPKI as a Service (VPKIaaS) [07] making use of many cloud-based paradigms such
as server migration and resource expansion.

Drawbacks: All of the previously mentioned VPKI designs heavily rely on backend
services that are located behind a network infrastructure. Furthermore, every PC request
needs at least two separate roundtrips across the network (vehicle-CA and vehicle-PCA
roundtrips).

Hierarchical VPKI Certification: As a notable work, the authors in [I17] have proposed
a VPKI design that is similar to ours. Instead of obtaining PCs, a vehicle obtains Long-
Term PCs (LPC) from a PCA that can be valid up to months. The vehicle then obtains
the regular short-termed PCs using an LPC from another new entity in the VPKI named
Road Authority (RA) which is responsible of issuing PCs for a specific geographical region.
A single RA typically controls multiple RSUs that cover the region of the controlling RA.

Drawbacks: With such a hierarchical design, there is a high probability that a
vehicle would request PCs from the same RA using the same LPC because of 1) the long-
term validity time of LPC entails a bigger exposure of its signature, and 2) the repetitive
routine of the daily commutes of drivers which make them interact with the same RA on a
daily basis (e.g. from home to work and vice versa). This situation would enable an RA to

link multiple PCs to the same vehicle.
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2.6 Digital Certificate Revocation

It is important for Intelligent Transportation System (ITS) that misbehaving en-
tities are to be revoked from the system in order to ensure safety on the roads as well
as road flow efficiency [139]. There is a consensus to use vehicular PKI (VPKI) to se-
cure ITS. In VPKI, certificate revocation using compilation and distribution of certificate
revocation lists (CRLs [47]) that contain certificate serial numbers is the most common
technique [70, 137, 152]. Particularly, the standard system in the US, Security Credential
Management System (SCMS), mandates such a technique as the main vehicle revocation
technique [40].

Previous work has suggested CRL distribution using road-side units (RSUs) [138]
and car-to-car epidemic [I38], [78] [105]. However, a CRL grows very large overtime and thus
it becomes prohibitively bandwidth consuming to download it. To reduce the overhead of
distributing the CRL on the VPKI, the CRL can be divided into pieces and each piece is sent
to the rest of the VPKI system (e.g., RSUs, .etc). An RSU can then deliver such CRL pieces
to vehicles [I38], which meanwhile can contribute to disseminating those CRL pieces [105]
to other vehicles till the whole system is in synch; however, this solution is vulnerable to
pollution attacks as fake CRL pieces can be maliciously injected, which eventually prevents
recovering the whole CRL (or even a part of it). To overcome this issue, the backend system
could individually sign each CRL piece and disseminate it so that it can be individually
verified by recipients; however, this introduces a significant computational burden on both
the backend system (i.e., linear number of singing operations) and the recipients (i.e., linear

number of signature verification operations). On the other hand, revocation techniques that
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require vehicles to have constant network communication with the certificate authorities are
not realistic to be used in the connected vehicle environment due to network latency and

intermittency. An example of these protocols includes the online certificate status protocol

(OCSP).
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Chapter 3

Haiku: Efficient Authenticated
Key Agreement with Strong

Security Guarantees for IoT

Today, IoT devices such as health monitors and surveillance cameras are widespread.
As the industry matures, IoT systems are becoming pervasive. This revolution necessitates
further research in network security, as IoT systems impose constraints on network de-
sign due to the use of lightweight, computationally weak devices with limited power being
used for varying applications. Thus, specialized secure protocols which can tolerate these
constraints are needed.

In this work, we examine the problem of secure authentication and key-exchange
in an IoT setting. This problem is fundamental and arises whenever an IoT device wishes to

communicate privately with other nodes in its network. Traditional solutions either involve

26



Table 3.1: Latency (in us) on Arduino Uno running at 16 MHz.

Public Key Cryptography Symmetric Key Cryptography
Operation (PKC) Operation (SKC)
EdDSA ECDHE AES256 SHA256
Key generation 3,763,668 3,769,856 Key generation 206.27 -
Sign/Key exchange 6,111,812 3,763,952 Encryption/Hash (per byte) 49.66 167
Verify 9,717,781 - Decryption (per byte) 95.95 -

making heavy use of public-key cryptography (PKC), or relying on a trusted third party
(TTP), e.g., [99, 181} I7I]. Unfortunately, neither of these solutions is ideal for a number
of IoT settings. PKC imposes a computational overhead because of the need for choosing
large random prime numbers and computing modular exponentiations. When devices are
resource constrained, this cost represents a computational bottleneck and care must be taken
during protocol design to avoid incurring these costs too often. Table demonstrates the
computational latency of standard cryptographic schemes on a constrained IoT device.
On the other hand, TTP-based solutions are not ideal for IoT devices either, as use-case
constraints might require IoT devices to operate while offline or with only intermittent
connectivity with the rest of the network, including the TTP. In this work, we describe a
protocol for secure key exchange and authentication which makes minimal use of expensive
PKC primitives and achieves strong security without relying on TTP.

Perfect Forward Secrecy. PFS is a strong security notion for communication protocols
which persist over time. Roughly speaking, a protocol with PFS segments time into sessions
and guarantees that even if a long-term secret key is compromised during a session, previous

sessions retain their security [76], 53].
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Having a secure, authenticated communication framework between an IoT device
and gateway that provides PFS is highly desirable, since critical and private data (e.g.,
medical, or personal identifying information) may be exchanged in the IoT environment. It
is important to ensure that the data is not compromised even if an attacker records the data
in the hope of subsequently performing cryptanalysis to derive the secret key and decrypt
past information exchanges. PFS demands limiting the use of a fixed secret key to a single
session (i.e., a limited number of packet exchanges). Between sessions, the secret keys are

updated and old keys discarded.

Prior Work on PFS. PFS is defined and implemented according to [8I]. In this con-
struction, two types of keys were maintained — a master key and a session key. The master
key was fixed once and for all, while each session key was generated at the beginning of
the session using a key-agreement protocol. Session key generation was independent of the
communication across all prior sessions, and independent of the master key. So if the ad-
versary compromised the master key, for example, all session keys maintained their security
(in the sense that an adversary, given the master key, cannot distinguish the session key
from a random string). A clear downside of [§1] is that an expensive key agreement protocol
must be run in every session. More recently, [56] gave a construction which requires only
symmetric key operations. Roughly speaking, their construction breaks time into blocks of
multiple sessions. At the beginning of each block, a master key MK’ = H1(MK) is computed
by applying a hash function to the previous master key. Likewise, at the beginning of each
session, a session key K. = Hq(Kj) is computed by applying a hash to the previous session

key (or to the master key for the first session in a block). The security guarantee of [50]
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is that if a master key is compromised then all session keys from previous blocks maintain
their security. Note however that when the master key is compromised, the previous master
key does not maintain its security (it becomes distinguishable from a random value). Thus,
this work does not attain the ideal PFS, where the loss of a key does not compromise the

security of any previous key.

Our Contribution. In this work, we construct a secure authentication and key-exchange
protocol which achieves ideal PFS, and, after an initial setup phase, requires only lightweight
symmetric key operations. Specifically, our scheme returns to the model where the master
key is fixed once and for all, and where each subsequent session key is computed from the
previous, using a hash function. At the core of our new technique is we use the entropy
inherent in the messages exchanged during a session in the update procedure. Fach entity
relies on the session key and an a priori agreed upon set of random messages exchanged
(using the previous session key) during the session to update the session key Ky to K
using SKC and a cryptographic hash function. We make sure no secrets are shared over the
channel. As a result, the long-term master keys play a minimal role in our protocol, which
allows us to remove the reliance on it. Our protocol guarantees that if the master key or a
session key is compromised then all previous session keys retain their security in the sense
that they remain indistinguishable from random. Thus it achieves the ideal PFS achieved
by [81] (but not by [56]), while still being as lightweight as [56]. It additionally prevents a
passive adversary who somehow possesses the master key or a session key from obtaining
future session keys. We call our protocol Haiku, to reflect simplicity and the lightweight

nature of the authentication and key-exchange protocol.
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Haiku makes use of public-key cryptography only during an initialization phase,
where it relies on Elliptic Curve Digital Signature Algorithm (ECDSA) for authentica-
tion and the Elliptic Curve Diffie-Hellman Ephemeral (ECDHE) algorithm for key ex-
change. For normal operations, it uses lightweight symmetric-key mechanisms: a sym-
metric key cryptosystem, cryptographic hash function and Hashed Message Authentication
Code (HMAC [26])-based Key Derivation Function (HKDF) for confidentiality, message in-
tegrity, and authentication. Haiku minimizes the number of messages as well as total bytes
exchanged for authentication and key exchange to save energy [118] 146}, 42]. Additionally, it
does not depend on a central, trusted third party, thus allowing the IoT device and gateway
to securely exchange information in a disconnected environment. The protocol minimizes
human intervention by not requiring any input from the user for initial setup. Finally, Haiku
achieves performance and memory improvements that are compelling, achieving around 5
and 4 times reduction in latency and memory usage, respectively, for initial setup as well
as session key updates compared with using public-key cryptography and a TTP. Our ex-
periments also show that IoT devices can reduce energy and CPU cycle consumption by
26 and 20 times for authentication and key exchange, respectively, and reduce the total
bytes exchanged over the channel by 6 times. This allows IoT devices to achieve significant
energy savings, which is critical since they often depend on limited battery power [185].

Haiku’s design is intuitive and straightforward to understand. Despite the fact
that it combines elements of public-key and symmetric-key cryptography, it is quite simple,
since the composition is modular. This makes it easy to reason about the various parts

of the protocol in isolation which keeps our security analysis clean. We also provide a
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formal proof of security for Haiku and show that it is secure against a series of attacks.
Moreover, although we have implemented Haiku using an ECDHE-based authenticated key-
agreement (AKE) protocol, any secure AKE would suffice. Thus, if a faster AKE protocol

were developed, we could replace this module in our scheme to improve performance.

3.1 10T Environment Constraints and Requirements

As mentioned, IoT environments impose a number of constraints. IoT devices are
often limited in terms of energy, memory and/or processing power [I85]. Further, specialized
use-cases might require IoT devices to operate while off-line or disconnected from the rest
of the network [112], without access to a TTP. We next outline our network model and

specify the attack scenarios considered in this work.

3.1.1 Network Model and Assumptions

The network topology considered is shown in Fig. The network has multiple
(potentially a large number of ) IoT devices and a gateway with an intermittent connectivity
with the cloud. The IoT devices communicate exclusively through the gateway. We assume
that communication may be over a wireless network, where other parties may be able to
sniff and capture the encrypted packets exchanged between the IoT device and the gateway.
We assume the MAC layer protocol does not provide link-level reliability.

A new IoT device joins the network by performing a secure handshake with the
gateway. We assume the IoT device and the gateway are equipped with a limited amount

of non-volatile storage (e.g., an EEPROM). We also assume IoT devices are equipped with
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Figure 3.1: Network Topology.

certificates (i.e., a private/signature key sk and a public/verification key vk) [48], 90] and
a hardware security extension technology, like ARM TrustZone [144] and Intel SGX [3],

providing trusted execution environment (TEE) to protect secret keys from intruders.

3.1.2 Attack Scenarios

We outline the possible attack scenarios that may be used by an adversary A to
exploit vulnerabilities of an IoT protocol such as Haiku. We aim to ensure that the protocol

we design is robust against these potential attacks.

e A may seek to sniff on the channel to find the secret keys from authentication and key

exchange messages and also potentially change the content of data messages.

e A may try to cause disruptions by altering, fabricating or replaying authentication and key

exchange messages.

e A may try to provide false data by replaying old data messages.

e A who determines a session key may also seek to determine keys of future or previous

32



sessions to gain access to confidential messages or alter data of future sessions.

A who determines the long-term secret (i.e., IoT/gateway signature key, sk) and who has
recorded all the encrypted messages may seek to find previous session keys to decrypt those

previous messages.

A passive attacker who determines all the secret keys during a session may also seek to
determine the session keys for subsequent sessions in order to continue to eavesdrop on the

channel.

Haiku is designed to prevent all of these attacks, and a security analysis of the protocol is

provided in Section [3.3] to verify this.

3.2 Haiku

3.2.1 Protocol Overview

Haiku consists of three algorithms: (Init, Update, Com m). Roughly speaking, Init is
used once at the beginning to set the first session key; Update is run at the end of each session
to refresh the session key; Comm is used for communication during a session. Importantly,
the first procedure, Init, is the only one which makes use of public key operations; Update is
entirely symmetric key based. PFS demands that after Update is run, to refresh a session
key and delete the old key. The communication of the old sessions are secure even if
the adversary learns the new session key and the long term private key associated with
the device. We begin with a high level discussion of each algorithm. They are described

formally later in this section. We envision Haiku providing link layer security.
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Parameters and Subroutines. Haiku is parameterized by a security parameter n and
integer N which controls the length of each session. The communication subroutine Comm
uses a symmetric-key encryption scheme and a secure MAC. We denote these encryption,
decryption and signing procedures by E,D, MAC, respectively. Also, Update uses a hash

function H.

e Init(1™): Two parties, Alice and Bob, use ECDHE to agree on a session key K and a
set of frames Txames C {1,..., N} to be used during Update. Additionally, Init initializes
F.Data = () and 7 = 0; F.Data will be populated and i incremented throughout the session;

once ¢ = IN, Update is run.

o Comm(Ky, Tames, F-Data, msg,i): This is used for one party to securely send msg to the

other party as long as ¢ < N.

— if 4 > N, both parties do nothing;
— Alice sets F; = (msg, o) where o is a MAC of msg and computes the ciphertext

ct = Ek, (F;) and sends ct to Bob; F; is the payload of the i—th frame.

— if i € Tframes, both parties set F.Data = F.DataU{(4, F})}; both parties increment

i (Bob learns F; by decrypting ct).

e Update(K, F.Data): computes a new key and frame set as (K, T}, ...) = H(Kj, F.Data).

Re-initializes F.Data = @ and i = 0.

Intuition. Fig. shows an overview of Haiku’s operation. In each session, a number
of messages are exchanged (F;’s), the red envelopes correspond to the randomly selected

subset Tfames Whose contents are used during Update to generate the next session key.

34



Both devices have certificates |

- Session Key Updatei lSession Key Updatei |Session Key Updatei

AR XK XXX XK BK] PR R 24 RIPA XK
XX PRIPA KK PR XK XK KIS XA XKL
XA XX KX XKIEE KRR KX XK XKIEL
XXX XXX XXX XK XX XK (XA XRIK)
CAR A [ RIAR KRR PR R B [ KR XKL

Session | Session j+1 Session j+2 Session j+3
Data Exchange I
Time

Figure 3.2: Overview of Haiku operation.
Implementation Details. Often IoT devices possess unique credentials signed by the
manufacturer, and devices use these credentials to authenticate one another before any
interaction takes place [I80]. Our implementation includes this handshake as part of the Init
subroutine. In our implementation, we utilize Authenticated Encryption with Associated
Data (AEAD), namely the Counter with CBC-MAC (CCM) [187] block cipher mode, across
all Haiku phases. CCM mode uses CBC-MAC to calculate a Message Authentication Code
(MAC) for the whole frame (header, nonce and payload) using a secret key (i.e., Ky), and it
uses the Counter mode to encrypt the payload and the MAC using a nonce and K whereas
the header fields (e.g., MAC addresses) are left unencrypted to allow the receiver to process
the frame properly. Using one key with CCM for confidentiality and integrity is provably

secure [93] and saves memory. We choose CCM because it is provably secure, patent-
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free (unlike other modes like OCB [102]), requires small memory [I76] and is faster than
other modes like EAX [28] and GCM when no pre-computed memory is used [125]. When
the number of data messages exchanged during a session reaches an a priori agreed upon
threshold (IN), Update is called, obtaining a new session key; the old key is deleted and a
new session starts. The session keys are never sent over the network, even in encrypted form.
As an optimization, our implementation computes the next session key data: (K., Tf . .c)

incrementally during the current session by initializing (K,

’ﬂrames) = (Ksa Tframes) and then
each time i € Thames updating (K[, T¢ . .o) = H(K||K.||F;). In this way, the parties (who
are limited in terms of space) are not responsible for holding a large fraction of all data sent

during the session. Finally, if a synchronization failure occurs during Update the parties

execute Init to negotiate a new session key via ECDHE key-exchange.

3.2.2 Setup/Reset Phase (Init)

A new IoT device added to the network completes an initial setup to authenticate
the gateway and vice-versa, and establish a symmetric session key. Both nodes depend on
both verification of certificates that have already been provisioned by the manufacturer and
the other node’s signature for authentication, and ECDHE key exchange for negotiating a
random K, which will be used to encrypt and hash subsequent session data messages. We
choose ECDHE because it helps achieve PFS and requires neither communicating secrets
over the network nor using complicated commit protocols. ECDHE key exchange allows
two entities to exchange some public parameters, including random temporary public keys
(each entity generates and sends one), over the network, which allows each entity to use

its own temporary ECDHE private key along with the other entity’s temporary ECDHE
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public key to derive the same symmetric secret (i.e., Kj). This phase allows the gateway
to make sure it is communicating with the legitimate IoT device and vice versa, and thus
they can accept messages received from each other. We build this phase (Fig. based on
the authentication and key exchange process used in Transport Layer Security (TLS 1.3).
This phase can also be used to securely reset a new K when either one’s K is inconsistent

with the other node for any reason (malicious or otherwise) or when either node suspects a

potential attacker.

Message 1. The IoT device uses Message 1 to initiate secure communication with the
gateway and provide the gateway with the IoT’s certificate to learn and verify its verification

key, vk that will then be used to verify data signed by the IoT device. The IoT device selects

Figure 3.3: Setup/Reset (Init).

37



a random pair of ECDHE public-private keys, denoted by K Z{&,T and K ;ﬁlT , that will be used
by ECDHE in order to negotiate a symmetric secret, namely K. As part of Message 1, the
IoT device also communicates KI{ZE{ to allow the gateway to securely derive the symmetric
secret, Ky, and to challenge the gateway with this random value to verify its identity and

verify it is not a spoofing or replay attack. The IoT device sends an ‘init’, its I Dy, its IoT

certificate and its Kgng to the gateway.

Message 2. When Message 1 is received, the gateway verifies the IoT certificate using
vk of the signer (e.g., manufacturer). The gateway also generates another random pair of
ECDHE keys, denoted by K pGu(Ztew“y and Kggteway, to complete the ECDHE key exchange
process and derive the symmetric secret, K. The gateway extracts a shared secret from its
K g?teway and the received K z{ZbT using ECDHE key exchange algorithm. Because directly
using the just extracted shared secret as the symmetric secret key might lead to subtle

vulnerabilities [108], gateway uses HKDF to derive a new proposed value for the session

key, Ky, using the just extracted shared secret, used as a HKDF key, and Kéng and

KG ateway

pub , used as a salt input. Because adversaries might be willing to cause disruptions

at the gateway by spoofing or replaying Message 1 to cause the gateway to change its K
and end up having a different key as compared to the IoT device, K is not changed with
the new proposed value, K, until the gateway receives Message 3 and ensures it is not a
spoofing or replay attack.

The gateway sends Message 2 to respond to the initialization request, provide the
IoT device with the gateway certificate to learn and verify its vk and provide its ECDHE

key share so that the IoT device can derive the same K. The gateway also proposes a
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Tj+1

random set of sequence numbers of future frames, rames’

to be considered when updating
the session key next time. The size of the set is also chosen randomly within the size of
the session. It also hashes all data exchanged between the two entities so far, including
Message 2 parameters. The hash is then signed by the gateway, o, to confirm all the data
exchanged up to this point. The gateway o confirms to the IoT device that the gateway has
received Message 1 correctly and verifies Message 2 integrity and data authenticity. Because
the gateway o includes the gateway signing the IoT’s challenge, Kéng, this proves to the
IoT device the gateway has the correct sk associated with vk contained in the gateway
certificate, and proves this is not a replay attack. Gateway o also includes a signature
on ECDHE keys, K égg and K i%teway, so that their integrity is preserved and man-in-the-
middle attacks are prevented. For example, if ECDHE keys exchanged over the network are
not signed, a man-in-the-middle attack can use each node to authenticate itself to the other
node while exchanging two different symmetric keys, one with the IoT device, Ky _1, and
the other with the gateway, Ky _2. Then, when the authentication is over, confidential data
will be forwarded by such an attacker for/to both sides. Gateway o also includes a signature
on the correct T;;lm .5 S0 that the IoT device is sure it has received the right set of frames
that both ends will use in deriving the next K. This prevents malicious changes to this
set of frames that could cause disruptions in generating the next K. The IoT device can

Tj-i-l

thus authenticate the gateway. Frames’

the gateway’s certificate, and o are confidentially
communicated to the IoT device using Ky, in order to provide adversaries with as little

information as possible. In order to verify Message 2 integrity and data authenticity, the

gateway calculates the MAC of the whole message, including the gateway o using Ky as
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a key. Encrypting and hashing data in Message 2 using K allows the gateway to prove

KGateway and

its knowledge of the key to the IoT device. The gateway sends its IDg, pub

Ek , (gateway certificate, Tit1 o0, MACk , (Message 2)).

Frames?
Message 3. When the IoT device receives Message 2, it extracts the same shared secret
from its Kéﬁ? and the received K g;feway using ECDHE. The IoT device also derives the
corresponding random Ky by using the just extracted shared secret, as a HKDF key, and
KZ{ZbT and K gfgemy, as a salt input. Additionally it verifies the MACk , (Message 2) and
if valid, it knows Message 2 integrity is maintained and the gateway has the correct K.
The IoT device verifies the gateway o with the hash of all datakxchangedSoFar, excluding
the gateway o, that it calculates. This is used along with verifying the gateway certificate
to mark the gateway as authenticated. The IoT device uses Message 3 to prove to the
gateway it is able to sign the received challenge, K gﬁ)teway’ with sk associated with vk that
it sent in Message 1 as part of its certificate, proving its identity and that it is not a replay
attack. The IoT device also signs the ECDHE keys exchanged over the network indicating
that it is deriving the new symmetric secret, K, using these specific ECDHE keys, which

j+1

prevents man-in-the-middle attacks. Message 3 also confirms arrival of the correct 1%~

from Message 2. Moreover, the IoT device signs a hash of all Message 1-3 parameters, [oT
o, to confirm all data exchanged up to this point. By sending the IoT o, the IoT device
confirms to the gateway Message 1’s content, correct receipt of Message 2 and the integrity
and data authenticity of Message 3. The IoT device sends its 1D, an encryption of its IoT
o and MACy , (Message 3) using K. It now sets its K to Ky and removes ECDHE keys.

If the gateway successfully verifies Message 3 MAC, it knows that Message 3’s integrity
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has been maintained and the IoT device has the correct K. The gateway also verifies
IoT o with the hash of all dataExchangedSoFar, excluding the IoT o, that it calculates.
If verified, the gateway can mark the IoT device as authenticated, set its K to Ky and
remove its ECDHE keys. Even if the attacker finds the long-term signature key of either
node later (after this session), this initial K cannot be recovered because ECDHE keys are

deleted.

3.2.3 Normal Communication Phase (Comm)

Both devices use the derived K, which is never exchanged on the wire, to send
(encrypt) and receive (decrypt) data messages securely. For each packet, they also include a
hash of the whole packet (including a nonce) calculated and encrypted using K in order to
prevent malicious packet alterations and replay attacks. Fig. shows session interaction.
While exchanging data messages, both entities incrementally calculate the next session key,

Tj-i-l

Frames® Incremental

K, using the selected messages based on the sequence number set
computation of the next session key allows both devices to avoid storing the content of the
agreed upon data messages in memory till the end of the session. After exchange of the

Tj+1

first session message [, i € T4,

both nodes derive a K using the current K, used
as a HKDF key, and F;, used as an information input. For each of the other messages
Fy,i' >iand ¢ € T jp::llm .s» both nodes continue to update the new Ky using the current

K, used as a HKDF key, and Fjs along with so-far-calculated K, used as an information

input (context and application specific information).
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Figure 3.4: Normal Communication (Comm).

Jj+1
Tframes’

An attacker has no knowledge of the confidentially negotiated and might
also not receive all data messages. Haiku can also be integrated with link layer protocols
(e.g., IEEE 802.15.4, WiF1i or Bluetooth) providing security capabilities. It can provide the
link layer with K to protect confidentiality and integrity of exchanged data. Both nodes

exchange messages till reaching the session threshold, N, after which they transition to K

update.

3.2.4 Session Key Update using SKC (Update)

In order to limit possible cryptanalysis to derive the secret key, provide PFS, and
limit exposure of confidential data if that secret key is discovered by an attacker for any
reason, both nodes need to use frequently updated session keys. This phase allows both

nodes to achieve this goal and switch from their previous K, to the new proposed value,
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Ky, that has been calculated during the session in the Comm phase as in Section [3.2.3

Tj+1

They also negotiate a new random set of Frames

(with a new random size) to construct

Tj-l-l

the next K for the subsequent session. Frames

helps produce random session keys at each
update since it makes use of the randomness existing in the data frames and depends on
such randomness to generate next K. For IoT applications where data frames might have
repetition or low entropy, random data can be periodically injected during sessions to ensure

data considered for key update has high entropy. We also enhance the approach proposed

Tj—f—l

Frames for each

in [1I91] by letting both nodes confidentially agree on that random set of

update of K, which prevents an attacker with a perfect channel from knowing the frames

Tj-l—l

Frames s negotiated at the beginning of

that will be used to construct next K. Because
session j in an encrypted form using K of session j— 1, this prevents an attacker who finds

K of session j and decrypts the session data messages from deriving K of session j + 1

Tj+1

frames and learn the subset of session j frames that needs to

since he/she cannot decrypt
be used to construct K, of session j + 1. K, update is based on TLS 1.3 and shown in
Fig.[3.5 During this phase, nodes exchange messages encrypted and hashed via K.

Message 1. The [oT device sends Message 1 to let the gateway know it wants both sides
to have a new K for this new session. This message helps the IoT device make sure it is

Tj+1

communicating with the right gateway so that it can accept the new random set of Frames

Tj-‘rl

and avoid possible disruptions if a fake Frames

were received; the IoT device challenges
the gateway with a fresh nonce to authenticate it and prevent replay attacks. Nonce; is

encrypted to limit the amount of information adversaries can see. The IoT device uses K

to calculate the message M AC to verify its integrity and authenticity. The IoT device then
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Figure 3.5: Session Key Update (Update).
sends the ‘update’ command, I D; and Nonce;, along with MACg, (Message 1) encrypted
with K, to the gateway.
Message 2. The gateway verifies Message 1 MAC using K. It also uses Message 2 to
challenge the IoT device with Nonces to verify its identity and prevent potential replay

. J+1
attacks, communicate a new random set of Tfr ames?

with the set size also being random,
for updating the next K. In order to enable Haiku to function with lossy links (i.e.,
without link layer reliability or at least one having some residual loss), and allow incremental
update of Ky at both nodes as shown in Section the gateway communicates a flag,
ReceivedRandFrm;_Flag, used to inform the IoT device whether the gateway has received

all agreed upon frames based on T* J to help them decide on this new K. One solution

rames

to solve the problem of enabling the protocol to work under lossy links is to make the IoT
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device share a hash of the content of the frames based on T in this phase; however, we

frames

make sure that such a hash is never exchanged over the network and 7 J is confidentially

rames
exchanged exactly once over the network. This prevents passive attackers who have recorded
all encrypted messages, and who find K in the middle of a session somehow, from being

able to update the K. This is because they do not know the agreed upon frames based

on 77

Frames exchanged at the beginning of previous session using a previous K which is no

longer active or stored anywhere.

The gateway, similar to Section [3.2.2] calculates the HMAC of all data exchanged
between both nodes so far using K, HMAC, (dataExchangedSoFar), to confirm all data
exchanged in Message 1 and 2. The gateway HMACg, (dataExchangedSoFar) confirms
correct receipt of Message 1 and verifies Message 2 integrity and data authenticity. The gate-
way HMACg, (dataExchangedSoFar) also includes the IoT challenge, Noncey, to prove the
gateway identity and prevent replay attacks. The gateway also verifies integrity and authen-
ticity of Message 2, including the gateway HMAC, (dataExchangedSoFar), by calculating
the MAC using K. It then sends I D and encryption of Noncez, Received RandFrm;_Flag,
random T}:;lmes, its HMACg, (dataExchangedSoFar) and MACgk, (Message 2) using K
to the IoT device.

Message 3. The IoT device decrypts Message 2 and computes the MAC using K so
that it can be verified with the received MLAC. If verified, the IoT device knows Message 2
integrity is maintained. It also computes the HMAC of all data exchanged so far, exclud-

ing the gateway HMACk, (dataExchangedSoFar), and checks if it matches the gateway

HMAC g, (dataExchangedSoFar). If verified, the IoT device is confident that the just re-
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Tj+1

Frames is correct. It also knows the gateway is aware of the previously sent Nonce;

ceived
from Message 1 and right K, so it is not a replay attack. Therefore, the IoT device marks
the gateway as authenticated. The IoT device uses Message 3 to prove its identity through
Noncey from Message 2 and that it is not a replay attack. Message 3 also confirms that the
IoT device received correct T* jc;;lm cs 1t also includes an HMAC of all Message 1-3 param-
eters using K, loT HMACk, (dataExchangedSoFar), in order to confirm to the gateway
the content of Message 1, the correct receipt of Message 2, including the gateway challenge
Nonces, and the data authenticity and integrity of Message 3. Message 3 helps the IoT
device tell gateway it now knows whether all agreed upon frames from previous session
were received, and thus the IoT device is able to decide on new K for this new session
too. The IoT device sends I Dy and encryption of its HMACg, (dataExchangedSoFar) and
MACk, (Message 3) using K.

The gateway marks the IoT device as authenticated after successfully verify-
ing Message 3 MAC as well as IoT HMACk, (dataExchangedSoFar). If the value of
Received RandFrm;_Flag is set, both devices set K to the new session key, K, that has
already been calculated from the Comm phase. On the other hand, frames might get lost

due to multiple reasons, and some of those lost ones might belong to the agreed upon ran-

dom frames from last session based on T

Frames that are needed for this session key update.

We accommodate this situation in two ways. First, if the current K, has been used for
only one session, both devices use it also for only one more session in order to lower the
probability of occurrence of such a situation and avoid frequent resets. Otherwise, if the

current K, has already been used for two consecutive sessions, both devices limit its use
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by initiating a reset and exchanging a new random K, which helps achieve PFS and limit
amount of exposure in the worst case. To avoid resets, only the randomly selected frames

corresponding to T have to be correctly identified and captured rather than all frames

rames

in the entire session; the probability of losing a frame in 7 J can be decreased by keeping

rames

the size of T

Frames relatively small to all frames exchanged in a single session. This ends

the key update phase.

3.3 Security

3.3.1 Our Model

We model security as a game between a challenger C and an adversary A. Recall
the three algorithms of the protocol (Init,Update, Comm). Also recall that each session
consists of N communication messages, at which point Update is called and a new session

begins. The game takes place in three stages:

1. Initialize phase: C runs Init(1") between two parties A and B and sends the public
transcript to A. C keeps secret the session key K and a set of frames Tfames. The

game now moves to the query phase.

2. Query phase: A sends C a query; C returns a response. We expand below on the
types of queries A can send. The game remains in the query phase until A decides to
move on. At this point, A will have sent a query which makes C choose a random bit

b € {0,1} to generate its response.

3. Challenge phase: A sends C' a challenge b’ and wins if &’ = b.
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Queries. During the initialization phase, C' sets a session counter count = 0, initializes
a set of old session keys to (), and initializes the current session info to (Ks, Tfames, 0, 0).

During the query phase A is allowed the following queries:

. (communicate, msg, dir); dir € {A_to_B,B_to_A}. When C receives this query it does

the following:

— C obtains (K, Tframes, i, F.Data) from the current session info set; if i = N, C
does nothing;

— C executes Comm(Ky, Thames, F.Data, msg,i) in the direction specified by A’s
query and sends the resulting transcript to A; note this process includes C up-

dating F.Data and incrementing s.
e (update). When C receives this query it does the following:

— C retrieves (K, Tframes, i, F-Data) from the current session info set; if i # N, C
does nothing;
— C executes Update(K, F.Data) and sends the resulting transcript to A;

— C adds (count, Kj) to the set of old session keys, re-initializes the current session

info to (K., T} ,es: 0,0); C also increments count.

e (update_and_reveal). This and the next query are challenge queries; A can ask at
most one such query during the entirety of the query phase. When C receives this

query it does the following:

— C retrieves (K, Trames, i, F.Data) from the current session info set; if i # N, C

does nothing;
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— C executes Update(K, F.Data) and sends the resulting transcript to A;
— C re-initializes the current session info to (K, T}, s 0,?) and sends K, to A,

— C chooses a bit b € {0,1} at random and sends K* to A where K = K/ if b =0

and K is a random string if b = 1.

e (reveal_and_guess, count®). This is also a challenge query. When C receives this query

it does the following.

— C collects all elements of the set of old session keys (count, K) such that count >

count® and sends them to A. C also sends the current session key K to A;

— C chooses a bit b € {0,1} at random and sends K} to A where (count®, K}) is

in the set of old session keys if b = 0, and K7 is a random string if b = 1.

3.3.2 Discussion of Our Model

We now discuss the key features of our security model.

Perfect Forward Secrecy. This means that an adversary A cannot recover past session
keys (or even distinguish past session keys from random) given the current session key.
This is captured in our model by the inability of the adversary to win the game via the
(reveal _and_guess) query. One difference between our security definition and traditional
PFS is that the long-term keys play a minimal role in our protocol, as they are only used
during initialization (and not at all during Update). Most prior PFS schemes maintain a
long-term key and a session key and require that past session keys remain secure even if the

long-term key is compromised (but does not promise security in session i — 1 if the key of
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session i is compromised) [56]. Our scheme also guarantees that past session keys remain

secure even if the long-term key is compromised.

Update Prediction Attacks. In these attacks, A somehow learns the current K and tries
to predict the next K obtained after updating. These attacks are ruled out even if A learns
K as long as it doesn’t learn the agreed-upon random frames to use during Update. This
is captured in our model by the inability of A to win the game via the (update_and_reveal)
query. Although theoretically A who somehow finds two K’s of two consecutive sessions
and all agreed-upon frames can update to next K, the probability that A captures all
previous update frames (including Tfames), and A and gateway together capture all agreed-
upon frames is negligible, especially in environments with imperfect eavesdropping and
inevitable errors like wireless communication [I91]; thus, this prevents A from updating to

next K.

Man-in-the-Middle Attacks and Session Hijacking. We analyze an idealized model
where the adversary cannot compromise the long-term private device keys. In our scheme
these keys are stored in a trusted execution environment (e.g., Intel SGX) and never ex-

changed over the network.

Multiple Users. Our simplified model considers only a single interaction between Alice
and Bob. Security can be proved in a more general model where the adversary is allowed
to spawn and control new users and engage in new protocol instances with the challenger.

We omit this for simplicity.

MAC Forgeries or Semantic Security Breaks. In order to simplify matters, we assume

Alice and Bob are connected by an ideal point-to-point channel. Such a channel is securely
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implemented assuming the semantic security and unforgeability of the symmetric-key en-
cryption and authentication schemes used by our scheme. This prevents an adversary from
injecting or modifying messages. Also, replay attacks are ruled out because each message

has a MAC on both content and a unique nonce.

Forced Reset Attacks. These are attacks where the adversary injects bogus messages
into one of the nodes in the system in order to force the parties to reset the protocol and
run the Init procedure again to generate new session keys. This type of attack scenario
only serves to disrupt the parties in the system and does not compromise data integrity or

privacy.

3.3.3 Proof of Security

We show that for any polynomial time adversary A, the probability that A wins
the security game is at most 1/2+ ¢ for some negligible quantity e. Our proof is by reduction
to the security of the hash function H used during Update. Specifically, we reduce to (a
version of) the following game for a hash function H, parameterized by an integer N, and

played between a challenger C' and adversary A.
1. C chooses a random string K and a random set 7' C [N];
2. A sends N messages x1,...,zyx to C;

3. C computes H(Ks, {z;}icr) = (K,,T"), where K. is another string and 77 C [N],

another subset;

4. A sends either image or preimage to C;

5. C draws a random bit b € {0,1};
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o if A sent image, C sets K} = K/ if b = 0, K} random if b = 1 and returns
(Ks, KX, T") to A;
o if A sent preimage, C sets K; = K, if b = 0, K} random if b = 1 and returns

(K3, K[, T') to A;
6. A returns a bit ' and wins if ¥ = b.

Intuitively, this game captures the hardness of recovering K such that the follow-
ing H(Ks, {zi}ier) = (K5, T') given (K, T") and {x;};cn) but not T'. In fact, it says more:
it is hard even to distinguish the correct K, from a random string. Note that K, can be
recovered in 2V time by trying all possible T C [N]. We assume this game is hard to win
for an efficient adversary. This is the case when H is modeled as a random oracle.

We reduce to a version of the above game where A chooses the N messages in
step 2 adaptively, and each time he or she sends an z; to C, C sends back an encryption
of a related message F; using the secret key K. Then the F; are used to compute the
hash in step 3, rather than the x;. Moreover, we require C to generate (K, T') using
an ECDHE key exchange protocol, and C begins by sending the public transcript of this
protocol. For our reduction, we assume an adversary A plays against C' in the above game
and acts as the challenger against another adversary A’ in the security game for Haiku.
We show how A can use an adversary who wins the latter game to win the former. We
handle separately the cases when A’ enters the challenge phase of Haiku’s security game
by sending the (update_and_reveal) query and the (reveal_and_guess,count®) query; we
assume for simplicity that in the former case, A’ does not invoke the (update) query at all,

and in the latter case that count* = 1. These assumptions are essentially without loss of
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generality; the general case can be handled without difficulty in much the same way. We
now proceed formally with our reduction.

Suppose A plays in the above game against C' as follows:

1. A invokes A’ who plays against A’ in the security game for Haiku.

2. Upon receiving the transcript of the key exchange protocol used to generate (K, T')

from C, A forwards the transcript to A’;

3. Each time A’ sends A a query of the form (communicate, msg, dir), A sends msg to C'
and receives (y, ct), where ct is an encryption of y using K and where y includes msg
and an authentication MAC, A forwards ct to A’; the i—th time this occurs, A sets

Z; = msg.

4. In case of reveal_and_guess:

e The first time A’ sends A the query (update), A sends preimage to C' and receives
(KX K., T") where (K.,T") is the key information for the new session, and K

is either K or a random string; A will have to guess which.

e All subsequent times A" sends A the (update) query, A runs the Update procedure
itself (now A knows (K.,T’)) and sends the resulting transcript to A’; it stores

the old session key.

e When A’ sends (reveal_and_guess, 1) to A, A returns all session keys to A" along

with K; when A’ returns ', A forwards v/ to C.

5. In case of update_and_reveal:
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e When A’ sends (update_and_reveal) to A, A sends image to C and receives
(K5, KX, T") from C; A forwards K, K¥ to A’; when A’ responds with o/, A

forwards ¢’ to C.

It is clear that A wins the hash function game for H whenever A’ wins the security

game for Haiku.

3.4 Implementation and Evaluation

We used Java to implement the following AKE protocols: 1) Haiku, 2) WPA3
personal [12], 3) a simplified version of WPA2 enterprise with EAP-TLS [4] and 4) TLS with
raw public key (TLS-RPK) [190} 199]. In WPA2 enterprise, all nodes communicate with
a certificate authority (CA) using the On-line Certificate Status Protocol (OCSP) [161].
In TLS-RPK, both nodes contact a TTP to get the other node’s public keys and avoid
the overhead of exchanging and verifying certificates. TLS-RPK is utilized to provide
authentication and key establishment for link layer security [85]. Across all protocols,
we used AES (SKC) for symmetric-key encryption with 256-bit keys, SHA-256 (SKC) for
hashing, ECDSA (PKC) for signatures and ECDHE (PKC) for key exchange with 384-bit
keys, CCM mode to encrypt and hash, MACs of 128 bits, X.509 certificates and the NIST

P-384 elliptic curve. For experiments, nodes run a complete instance of each protocol.
3.4.1 Experimental Setup
We compare Haiku with IoT protocols that provide link-layer security and achieve

PFS. Fig. shows the two experimental setups: Haiku and WPA3 use setup 1 whereas
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Figure 3.6: Experimental setups.

WPA2-EAP-TLS and TLS-RPK use setup 2. Two laptops communicate over a wireless
channel through the wireless router. The two laptops, in setup 2, additionally contact a
CA/TTP during authentication to either make sure the received certificates are not revoked
or get the other node’s public key. The third laptop is the CA/TTP, connected with the
gateway over Ethernet. We run a network emulator called NetEm [86], a Linux built-in
traffic controller (TC), at the NIC of the IoT device to emulate delay and packet loss in the
network. We collected 100 data points for each experiment to get statistically reasonable
results and calculate the mean and 95% confidence interval for each metric. For each
message, we set a timeout value of 500ms. The maximum number of times a packet is

transmitted is set to 2, to show the robustness of Haiku even with high residual loss.

3.4.2 Performance Analysis

We discuss the performance measurements for Haiku and the alternatives under

various network conditions.
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Figure 3.7: Latency for setup & key update phases.

To observe the latency for Haiku in an actual wireless network, we performed our

experiments over WiFi. The Haiku update and setup/reset phases show ~4-5 and 1.05-1.5

times latency reduction, respectively, over the alternatives as shown in Fig.[3.7] Fig. also

shows the latency of Haiku and its counterparts for networks with higher delay - we use an

emulated delay of 10, 50 and 100ms. Protocols that require exchanging additional packets

or contacting a CA/TTP add a significant latency especially when there is a large network

delay (e.g., 100ms). Haiku has 1.5-2.5 times lower latency than alternatives when the

network delay is 100ms. Haiku update also achieves ~1.8-3 times lower latency compared

to the update based on PKC in all cases. Thus, Haiku demonstrates good performance even

under varying network delays.
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IoT networks are likely to experience frequent and possibly significant residual
packet loss. Thus, we also test the performance of Haiku in networks with 1%, 2% and %5
packet loss. Fig. shows as packet loss increases in the network, PKC key update and
setup when using extra protocol packets or a CA/TTP have worse latency, by up to 4.5
and 1.7 times, respectively, compared to Haiku. Thus, Haiku provides better performance
in such networks.

In Fig. E we further breakdown the latency of the setup/reset based on PKC
with/without contacting a CA/TTP. The breakdown is across 7 sub-tasks for the setup:
(a) certificate verification using ECDSA, (b) key exchange using ECDHE, (c) network
time, (d) calculation of o for authentication which includes signing and verifying using
ECDSA/MAC, (e) contacting a CA/TTP, (f) encryption and decryption using AES, and
(g) other processing which includes generating nonces and Tfames- Fig. W shows that the
use of PKC constitutes around 33% in the WiFi experiments and around 37% when also
using the CA/TTP. Because WiF1i results in extra latency, this causes the network time to
increase, and thus protocols using extra messages incur a significant additional penalty.

For poor WiFi networks with a 100ms delay, the network time dominates the total
latency as expected, as shown in the case of protocols using extra messages like WPA3 or
others contacting CA/TTP; however, the use of PKC still accounts for around 20% of the
latency. When contacting a CA/TTP under this network condition, it adds a significant
burden, and this along with the use of PKC constitutes almost 37% of the total latency.
For WiFi with 5% packet loss, setup is also impacted from the use of PKC and contacting

a CA/TTP, with almost 31% for the use of PKC and 37% when combined with contacting
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Figure 3.8: Breakdown of setup/reset phase latency.

a CA/TTP. WPA3’s network delays increase (due to increased retransmissions) as it ex-
changes ~3 times more messages than Haiku. Fig. indicates that infrequent use of PKC
and fewer message exchanges are better as these require significant processing and network

time (expensive in IoT environments).

3.4.3 Overhead Analysis

We evaluated the overhead associated with Haiku and alternatives. Table[3.2lshows
Haiku needs at most 3 messages in all phases. The Haiku update and setup exchange up
to ~6 and 1.5 times fewer bytes over the network compared to alternatives. Byte exchange
savings at update are due to reducing the number of protocol messages and eliminating
usage of PKC (signatures and ECDHE key materials) which require exchanging more bytes

compared to SKC; at setup, savings come from omitting exchange of extra messages. This
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Table 3.2: Number of messages and overhead (in bytes).

Phase ‘Numbor of Messages  Message 1 Message 2 Message 3 Message 4 Message 5 Message 6 Message 7 Message 8 Total Bytes

Initial Setup/Reset (Haiku) 3 680 828 151 * * * * * 1659
Tnitial Setup/Reset (WPA3-Personal) 8 194 194 130 130 162 349 402 162 1723
Initial Setup/Reset (WPA2-EAP-TLS with CA) 5 729 885 152 103 665 * * * 2534
Initial Setup/Reset (TLS-RPK with TTP) 5 344 500 152 216 711 * * * 1923
Update (Haiku) 3 73 94 k44 * * * * * 244
Update (WPA3-Personal) 6 194 194 162 349 402 162 * * 1463
Update (WPA2-EAP-TLS) 3 168 297 152 * * * * * 617
Update (TLS-RPK) 3 168 297 152 * * * * * 617

makes the protocol simpler, faster, and helps IoT’s save battery [42]. This is important for
resource constrained IoT devices.

Fig. 3.9| shows Haiku update and setup reduce CPU cycle consumption by up
to ~20 and 1.5 times compared to alternatives, except for WPA3 setup; reducing CPU
cycles at the update is more important since it is the constantly recurring phase, as op-
posed to the setup which occurs only once. Since energy can be scarce in IoT settings,
we also use a power meter that logs power consumption with millisecond precision to al-
low us to make an accurate comparison of energy consumed across different phases. Each
phase is run 100 times across each device with power being logged each millisecond to
get statistically accurate results. Difference of device baseline power (device power when
idle) and logged power is calculated and then averaged to finally calculate energy as follows:
Energy(Joule) = Power (W att)- Duration (Second). Fig.|3.9|also shows Haiku update and
setup reduce energy consumption by up to ~26 and 1.7 times over alternatives. Reductions
in Haiku’s CPU cycle and energy consumption are because it mainly relies on lightweight
SKC which reduces the amount of processing significantly and it exchanges fewer protocol

messages (less effort and fewer bytes sent on the link, which saves battery [42]).
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Figure 3.9: Computational costs.

Fig. shows memory needed by Haiku and its alternatives. The code size forms
most of the memory used in each phase, which can be reduced by code optimization ..etc.
The other category involves memory used for other components when protocol is running
(e.g., global/local variables ..etc). We emphasize the other category as it does not necessarily
change if code size changes. Haiku update and setup reduce memory needed when protocol
is running by ~4 and 1.5 times compared to alternatives. This is because Haiku update
removes space overhead imposed by PKC (e.g., longer ECDHE key materials) as opposed
to alternatives, and its setup removes parameters needed for extra protocol messages. Our

prototype shows Haiku code size is ~1.3 times less than alternatives.
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Chapter 4

MSS: Lightweight network
authentication for resource
constrained devices via Mergeable

Stateful Signatures

With the increasing deployment of resource-limited devices (e.g., sensors and In-
ternet of Things devices (IoTs)) []], designing secure systems with low computational over-
head has become a critical issue. When devices have limited computational power, memory
and/or energy reserves, security often takes a back seat to reducing protocol latency, re-
ducing CPU and memory footprint, and lowering energy consumption. Several high profile
attacks in recent years (e.g., Mirai botnet [54] and BrickerBot [I88]) highlight the need for

better security for these devices [I72] since their high scale can cause serious consequences
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Table 4.1: Profile of typical IoT energy consumption and PKC computational latency on

Arduino Uno running at 16 MHz.

Operation Energy Consumption  Qperation Latency (seconds)

RSA  EdDSA

PKC 51.81% Sign/Decrypt 731.52 6.11
Sensing 48.15% Verify /Encrypt  8.26 9.72
Communication 0.03% - - -

if they are maliciously controlled by adversaries. Such devices include, but not limited to,
smart home, smart cities, ..etc.

Authentication is a central challenge in secure protocol design for edge devices,
where digital signatures — the traditional solution from cryptography — are too costly.
Unlike other settings, the IoT environment often has a special system model in which IoT
devices frequently communicate a small amount of authenticated data to a single server (e.g.,
a gateway/sink). For instance, the Message Queue Telemetry Transport (MQTT [23)]), a
popular IoT networking protocol, uses a publish/subscribe paradigm where IoT devices
periodically publish authenticated data to the same MQTT broker. Quick authentication
of such data can be critical to saving lives and businesses; consider a patient with irregu-
lar heart beats or blood pressure, and thus her doctor must instantly be warned for quick

response in case of emergency. Moreover, IoT devices are often powered by limited recharge-
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able batteries, so the authentication solution must not consume high energy. Traditional
public-key cryptography (PKC) authentication is a computational bottleneck in IoT ap-
plications due to the performance constraints of the IoT device [I1]; Table shows the
high computational latency of two digital signature standards on an IoT board along with
the high percentage of typical IoT device battery that PKC uses. Often symmetric key
cryptography (SKC) is used instead, which imposes key-management issues and introduces
new security vulnerabilities; for instance, SKC requires the server to store IoT authenti-
cation keys, which makes the IoT devices subject to impersonation attacks if the server
is compromised and the keys are stolen. Authentication based on hash chains overcomes
traditional SKC shortcomings, but it has a lifespan and requires expensive computation
(please see Section for details). Therefore, new public-key authentication solutions that
are efficient in the amount of computation and energy usage are needed for IoT.

In this work, we design a novel signature scheme which yields an authentication
protocol with low overhead. Our scheme, which we call (MSS), operates in a model
where the verifier is assumed to always be the same party (e.g., an MQTT broker). This
allows state to be maintained across multiple signatures, which in turn allows for efficiency
improvements over standard signatures. We analyze the security of MSS in the offline/online
model of Even, Goldreich and Micali [63], where the signing algorithm is split into two parts.
The first part is costlier and can be performed offline, but importantly, before the message
to sign is known. The second part is online, and can make use of the result of the offline
computation to provide low cost signature. The efficiency of our online phase is tied to

the length of the message being signed. Our scheme is most efficient for short messages,
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Table 4.2: Example IoT applications for MSS and efficiency gains.

Number of Messages Message Size

Application MSS-RSA vs. base RSA MSS-ECELGamal vs. base ECELGamal
(per Day) (bits)
Speedup  Extra Battery Lifetime Speedup Extra Battery Lifetime
Heart rate monitor [18][I60] 144-1,440 8 39x 2%
Continuous glucose monitor 288 9 28x 2x - -
Temperature sensor [122] [165] 1,440 12 21x 2x - -
Soil moisture sensor [135][52] 1,234 14 18x 2x - -
Vehicle tracker [T15][123] 2,880 57 4x 1.8x
Humidity sensor [I78][182] 1,440 14 18x 2x
Smart electricity meter 24-1,440 40 6x 1.8x - -
People counting sensor [84][16] 96 17 15x 1.9x - -
Water level sensor [I11][83] 96 7 36x 2x - -
Smart lock [1TT]83] 368 21 - - 2x 1.54x
Drone command and control (1hr use) [I1T][83] 36,000 4 - - 2.1x 1.56x

and efficiency degrades as the message length grows. For messages which are 256 bits or
longer (in which case, we would sign a 256-bit hash of the message), the online phase is no
faster than a standard public-key signature. Thus, our intended use case is where the IoT
device is frequently sending small amounts of data to a single server. It is likely that this
pattern will be pervasive in IoT and other cyberphysical systems; for example, Table [£.2]
shows some recent applications that have an IoT client or a sensor communicating with a
single server, and the efficiency improvements introduced by MSS. Furthermore, MSS can
also be utilized to reduce the signature verification cost when the client-server roles are
switched and the IoT device becomes the server/verifier, which makes our scheme versatile
and useful in other applications (e.g., last two applications in Table .

We present MSS abstractly in Section and implement it twice, within two

digital signature standards: RSA signatures and elliptic curve ElGamal signatures. In
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Section we demonstrate a concrete application; specifically, we use MSS to implement
a time-based one-time password (TOTP) authentication protocol. TOTP systems allow a
user to authenticate herself to a server using a “one-time” password that is valid for a short,
fixed time. After the time expires, the user will have to authenticate herself again using
another password.

Our experiments (implemented on Raspberry Pis) show that the new MSS-based
TOTP systems provide appealing efficiency gains (in Section . Our RSA-based system
cuts down authentication latency and energy consumption by 12 and 20 times, respectively,
compared to a traditional RSA-based system. Additionally, our elliptic curve ElGamal
(ECElGamal) based system reduces authentication latency and energy consumption by 2
and 3 times, respectively, compared to traditional ECElGamal/ECDSA /EC-Schnorr-based
system. Our ECElGamal-based system also reduces authentication latency and energy
consumption by ~82 and 792 times, respectively, compared to a recent TOTP system based
on hash chains (with client storage of first hash of each week) [L00] but requires double the
password size.

We also present an asymptotic analysis of MSS’s efficiency in Section[£.4, We show
that MSS can be used in place of hash chains and reduces their online time xspace complexity
from O(N) to O(polylog(/N)) where N is the number of signatures. We further show that
our ECElGamal implementation allows us to reduce the offline time to O(polylog(/N)) using
specifics of the ECElGamal signature scheme. Section presents a formal proof of the
security of MSS, by defining an incremental forgery game and showing that the attacker

cannot win the game (break the system) provided the underlying scheme is secure.
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4.1 MSS via Mergeable Signatures

In this section, we describe our new signature scheme, MSS (Mergeable Stateful
Signatures). MSS allows a client to authenticate herself to a single server efficiently multiple
times typically spread over different transactions/times. As mentioned above, the assump-
tion that the receiver is always the same party allows maintaining state across multiple

signatures which allows improving efficiency.

4.1.1 Signature Preliminaries

Digital signatures [74] are fundamental objects from cryptography. Formally, a

signature scheme consists of three algorithms (KeyGen, Sign, Verify) satisfying the syntax:
- KeyGen takes a security parameter as a unitary input and generates a key pair (vk, sk);
- Sign takes sk and a message as input and outputs a signature o;

- Verify takes a message/signature pair and vk as input and outputs a bit indicating

whether the signature is valid.

Additionally, the two properties correctness and security must hold. Correctness says that
for all messages msg, if (vk, sk) <— KeyGen(1™) and o < Sign(msg, sk), then Verify(vk, msg, o) =
1. Intuitively, security demands that without possession of the secret key, nobody can pro-
duce a valid signature for a new message. We formally prove security of MSS in Section
Our main construction, MSS, builds on top of signature schemes which sup-

port a special malleability property which we call mergeabilityﬂ This property is the

!We present MSS via mergeable signatures for modularity — By abstracting the main part of the con-
struction so it builds on top of a general intermediate primitive, we are able to concretize MSS based on
several different cryptographic assumptions (e.g., RSA, BLS, or even Lattice assumptions).
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same as that of homomorphism. Roughly speaking, a signature scheme is mergeable if
two message/signature pairs (msg;,o1) and (msgy,o2) can be merged to obtain a new
message/signature pair (msg*,0*). This operation must also be invertible in the sense
that given (msg*,o*) and (msg;,01) one can recover (msgy,o2). It is important that this
must be a public operation, so it does not require knowledge of the secret key. Security de-
mands that without the secret key, nobody can produce a valid signature on a new message
even one that can be created by merging together two (or more) message/signature pairs
which they have already seen signed.

Formally, we say that a signature scheme (KeyGen, Sign, Verify) is mergeable if there
exist two additional algorithms Merge and Reconstruct (Merge, Rec) which both take two
message/signature pairs (msg;, o1), (msgy, 02) as input and output a message/signature pair
(msg*,0*). Moreover, two additional properties must hold: 1) Merge and Rec are inverses
of each other; and 2) if the input signatures are valid then so is the merged signature.

Formally, (1) requires that (msg,, 02) equals
Rec((msgl, 01)7 Merge((msgla 01)7 (mngﬂ 02))) :

(2) requires that if Verify(vk, msg;,0;) = 1 for i = 1,2, then Verify(vk, msg*,0*) = 1 where

(msg*,0™) is one of

{Merge, Rec} ((msg;,01), (msgy, 02)).
The reader may wish to keep in mind the example
Merge (msg;, 1), (msgy, 02)) = (msg, - msgy, 1 - ).

This will essentially be the case in both of our constructions (MSS on RSA and on elliptic

curve Boneh-Lynn-Shacham, BLS) with the precise meaning of multiplication (-) customized
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Figure 4.1: MSS overview: 1) Setup: user signs ¢ pairs of random strings (i.e., signs 2/¢
random strings) where each pair is mapped to a bit location and each pair string is a random
value representing either 0 or 1; 2) Offline signing: user apriori signs a fresh nonce and keeps
it in storage, which will exclusively be used for next message; 3) Online signing: user signs
a message by merging/multiplying already stored signatures (in setup and offline signing)

corresponding to the message bits and nonce.

for each cryptographic assumption. For example, it would be modular multiplication for

the RSA assumption and point addition for elliptic-curve based assumptions.

4.1.2 MSS Overview

Fig. [£.] overviews how MSS works. The main idea is, instead of signing a message
string all at once, use pre-computed signatures of “representative random strings” for each
bit of (a hash of) the message. So as a starting (flawed) example, suppose the message hash h
is /—bits long, and the scheme had chosen ¢ pairs of random strings, {r; o, 7;1}i=1,.. ¢, (which
are made public) and individually signed each string obtaining signatures {0, 0i1}i=1,..¢
(which are kept private). Now each pair of signatures is mapped to a bit location to represent
signatures on its bit values (i.e., 0 or 1). Then one could sign a message by sending the
signatures which correspond to the bits of h. So, for example, if h = 101, the signature

would be (01.1,02,0,03,1) such that o3 represents the signature on the value of the third
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digit in h, which is 1. Note that in this naive implementation, signing a single message
requires signing multiple random strings and sending multiple signatures, thus sign time,
signature size and verification time are drastically increased. On the other hand, the signer
can precompute the o;,’s , b € {0,1}, once during a setup phase and reuse them every
time she signs a message, thus obtaining a scheme with very fast online sign-time. The
main problem is that this naive scheme will not be secure since if an adversary sees many
messages signed, she will eventually learn all of the o;;’s and be able to sign new messages
by herself.

To fix this problem with security, we use mergeable signatures and rather than
sending all of the representative signatures in the clear (which is inefficient and insecure),
we merge them into a single signature. For security reasons, we also merge in a signature
on a fresh random nonce (which can be generated offline). So to summarize, the random
representative strings and their signatures (two for each bit) are computed one time during
setup, then several nonces and nonce signatures are computed offline and stored. Then once
this data is in place, all the client has to do to compute the signature is merge together
several of the signatures she has already computed. In our instantiation of mergeable
signatures, the merge algorithm is much faster than the signing algorithm. Thus, the online
cost of signing a message in MSS is greatly reduced.

MSS makes online time/offline time/space tradeoffs available to the signer; while
the signer needs to have one nonce signature ahead of time to achieve fast online signing for
the next message, she typically would store a number of nonce signatures at a time (e.g.,

computed when idle/charging [19], or replenished periodically from a trusted proxy that is
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assigned the offline computation) as shown in Fig. Thus, we do not view the number
of available nonces as a limit on the number of signatures available between the signer and

verifier.

4.1.3 MSS via Mergeable Signatures - The Main Contribution

In this section we build our main contribution “MSS” assuming a general merge-
able signature scheme. In order to make authentication efficient for devices with small
computational power as promised in the introduction, we analyze MSS in the online/offline
model of Even, Goldreich and Micali [63]. In this model, the Sign algorithm is split into
two algorithms (Signg, Sign,,) representing the offline and online procedures. The syntax
is that Signg takes sk (but not the message to sign) as input and produces output 7; Signg,
takes (sk, msg,7) and outputs the signature o. Ideally, Sign,, should be significantly more
efficient than Signgg. The intended use case is that Sign.g is run offline before the message
to sign is known to allow considerable speed and energy advantages for the online signing
procedure.

Assume (KeyGen, Sign, Verify, Merge, Rec) to be a mergeable signature scheme, let
H be a hash function modeled as a random oracle and let £ € N be a length parameter.
MSS consists of four algorithms (KeyGen’, Sign_, Sign’,, Verify’) and supports signatures on
£—Dbit messages. In the following, we assume that verification keys are included as part
of the signing keys (this saves some syntax since it prevents us from having to explicitly
pass the verification keys to the signing algorithms). We allow Merge and Rec to take

many inputs rather than just two, without loss of generality: we can repeatedly apply the

two-input version.
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Algorithm 1 KeyGen'(1")
1: (vk,sk) < KeyGen(1™);

2: Initialize two 2 x £ arrays B, initialized with random strings, and X, empty;
also initialize U = [ | an empty list;
3: Set ¥ = B.map(r — Sign(sk, 7));

4: Output (vk',sk’) = ((vk, B,U), (sk,%));

Algorithm 2 Signl(sk’)
1: Choose a random nonce rg and set og <— Sign(sk, rg);> where vk, sk are part of

sk’

2: Output 7 = (rg, og);

Algorithm 3 Sign) (sk’, msg, ')

1: Parse msg = by - - - by as bits, and parse 7/ = (rg, og);
2: Set (r,0) = Merge({(rmj,ajybj)}j, (r$,0$)); >7jp, € Band 0jp, € %

3: Output ¢’ = (r,0);

Algorithm 4 Verify'(vk’, msg, o’)
1: Parse msg = by ---by and o’ = (r,0);

2: Compute (rg, o) = Rec({(7;,055,)}5, (r,0)); if rg € U, reject and exit; >
This means the nonce rg was used previously
3: U.push(rg)

4: Output Verify(vk,r,0) =1

Remarks. Some remarks on Algorithm are in order.

1. Notice that the offline signing algorithm, Signle, signs a random string, while the

/

on, calls Merge. For all of the mergeable schemes we build

online algorithm, Sign
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in subsequent sections, Merge will be significantly more efficient than Sign. This is

obvious because the number of mathematical operations are much smaller.

2. The list U represents some persistent state maintained by the verifier over time. The
purpose is to keep track of all nonces (the rg values) used so far to force the signing
algorithm to choose a fresh nonce for each new signature. This is important for

security.

3. Note that the runtime of Sign,, grows with ¢ since it requires merging ¢+ 1 signatures

together. Thus our scheme is most efficient when ¢ is small.

We have not yet discussed where one finds a mergeable signature scheme to use
for the construction. Mergeable signatures are, in fact, not hard to find. We show that the
two very common signature schemes, RSA signatures and BLS (or, a discrete log/elliptic

curve based scheme with a formal security proof [37]) signatures, both support Merge and

Rec operations (see sections {4.1.4] and 4.1.5). We have also analyzed the security of our

construction in Section (.41

4.1.4 Mergeable Signatures via RSA

The arithmetic for the RSA signature scheme [157] takes place modulo a composite

integer N = pq which is the product of two primes. The scheme works as follows.

e KeyGen(1™): draws N = pq and e according to the RSA distribution, computes d = e~!
(mod ¢(N)) (using its knowledge of p and q)E| and outputs (vk, sk) where vk = (N, e)

and sk = (N, e,d);

*Here ¢(N) is Euler’s totient function: ®(N) = (p — 1)(¢ — 1)
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e Sign(msg, (N, e,d)): let r = msg (mod N) and output o = r% (mod N);

. Verify((N, e), msg, a): compute r = msg (mod N), if ¢ = r (mod N) output 1, otherwise

output 0.

The Merge and Rec algorithms for RSA are simply modular multiplication:
® Merge((rl,al),(rg,ag)): (7“17’2,010’2)
° Rec((rl,al),(rz,GQ)) = (7'17‘2_170'10-2_1)

Note that if vk = (N, e) and (o1, 02) are valid signatures on messages (r1,72), then of = r;

(mod N) holds for ¢ = 1,2. Therefore, if
(ryo) = Merge((rl,al), (7’2,02)) = (ry-r9,01 - 02),

then

€ e € € —
o :(0‘1.0'2) =01"09=T1"T2=T,

and so o is a valid signature of r.

4.1.5 Mergeable Signatures via BLS

The arithmetic in BLS scheme [37] takes place in a cyclic group G with generator
g that is equipped with a pairing map e : G x G — G for another group Gp (called the
target group) such that e(g,g) # 1 and e(g%, ¢°) = e(g, g)® for all integer exponents a, b.

The syntax of the scheme is as follows:

e KeyGen(1™): draws G and g, and draws a random exponent z, and outputs (vk, sk) where
vk = (G, g,9") and sk = (G, g, z);
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° Sign(msg, (G, g, x)) put r = msg and output (r,7%);

. Verify((G,g,gﬂ”)7 msg, a): parse o = (r,7’); check that (g,¢*,r,r’) is a DDH tuple [38], if

so output 1, otherwise output 0.

The Merge and Rec operations here are also based on multiplication:
e Merge((r1,01), (r2,02)) = (ri72,0102)
° Rec((rl, o1), (e, 02)) = (T1T2_1, 0102_1)

Similar to RSA, the mergeability can be verified as follows. If vk = (G, g,¢") and (o1, 02)

are valid signatures on messages (r1,72), then o; = (r;,r¥) holds for ¢ = 1,2. Therefore, if

(T, O') = I\/Ierge((rl,al), (7“2,0’2)) = (7'1 *72,071 02),

then

o=o01-00=(r1 12,77 -13) = (r1-72, (11 -72)"),

therefore, when the verification algorithm parses o as (r,7’) and checks whether e(g*,r) =

e(g,r"), it passes. This is because, e(g”,r) = e(g®,r1 - r2) = e(g, (r1 - r2)*).

4.2 MSS Application: Time based One Time Password (TOTP)

Systems

Two factor authentication and similar techniques have been introduced to combat
user password weaknesses. Several hardware tokens (e.g., YubiKey [198]) are used today

as second factor authenticators, which rely on standard bidirectional communication based
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challenge-response authentication. As it is becoming more popular to use devices such as [oT
devices as second factor authenticators, it might be the case that such devices are offline or
have only one-way communication (e.g., from second factor device to authenticating device);
in such case, systems like Duo [164] fall back to one-time password implementations (e.g.,
[116]). In these implementations, however, the next password stays valid until the next
authentication (which could be a long time); this makes it subject to various attacks such
as phishing. Time-based OTP systems mitigate this issue by assigning each authentication
time period tp a different password, and thus limiting the password window-of-use and
protecting users from such attacks.

Hash chains have been proposed to implement TOTP systems that do not share
secrets with the server while providing time/space tradeoffs for user efficiency (refer to
Section for hash chain authentication). Assuming N represents the hash chain-TOTP
system lifespan, a standard choice of parameters indicates N =~ 22! (lifespan of roughly 2
years), with each hash in the chain representing half a minute; nonetheless, their time xspace
complexity is O(N), which is expensive for constrained users and servers. MSS can provide
attractive properties (in terms of time and space) compared to hash chains (see Section
for details).

In this section, we implement an MSS based TOTP protocol, which goes through
setup and authentication phases (Fig. [4.2)). It allows the device’s online authentication
algorithm to rely on only lightweight (i.e., non-cryptographic) operations in order to pro-
duce/verify a TOTP for a ¢tp. Our RSA-based implementation of the protocol significantly

speeds up signing at the online time, compared with traditional RSA while our ElGamal-
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Setup: verification key
Authentication: one-time password '

TOTP generator (client) TOTP verifier (server)
Figure 4.2: TOTP system overview.

based implementation improves the efficiency of verification by taking advantage of the
merging construction for BLS. Optimizing verification is important for situations where the
constrained devices are verifiers (e.g., smart locks).

Remark on ElGamal Signatures. Although ElGamal-based signatures are similar to
BLS-based ones in that they are both implemented in discrete-log groups, they lack security
proof [5]. Nearly all of the arithmetic used in BLS carries over to the ElGamal setting, so
we think of the implementation here morally as an implementation of our scheme MSS. We
stress to the reader that the discrepancy here is in some sense unavoidable: had we worked
with ElGamal signatures in Section and we would not have been able to prove
rigorous security since even the basic ElGamal scheme has no security proof. Likewise, if
we were to implement the exact BLS-based protocol our results would have given us an

unfair advantage because base BLS signatures are so much slower than base ElGamal.

4.2.1 RSA-based TOTP System

Setup Whenever a client wishes to use a TOTP system as a means for authentication, it

has to first go through a one-time setup so that both nodes are configured with proper keys
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Algorithm 5 Authentication
1: o < Signyg(argr,args);

2: 0 < Signg, (sk, tp, og, args); > Server runs Verify/()
3: if Verify(vk,tp,d,args) = 1 then

4 ACCEPT;

5: else

6: REJECT;

7: end if

using the steps of KeyGen’ described in Algorithm [1} The client defines B := {r;;, € Z%/]i €
[1,d],b € {0,1}} that represents all the bit values, where every r;; is randomly chosen. The
client computes the set of bit signatures X, which contains Sign(sk, r) for each r € B, where
Sign works as Sign described in Appendix Next, it shares the tuple (B, vk, st) with

the server, where ‘st’ denotes the initial time to use the system.

Authentication Whenever the client wants to authenticate itself, it uses st to infer the
current authentication time period tp represented in binary (i.e., tp € {0, 1} with some pre-
agreed on encoding of the time). The authentication procedure is described in Algorithm

for which details are as follows:
. Defines B := {r;;, € Bli € [1,d],b € {tp;}} and o* := {0, € B|i € [1,d],b € {tp:}};

o Draws a nonce rg and computes H(vk,rg), GCD(H(vk,rg),7) = 1 for all r € B to

avoid signature overlap;
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. Computes nonce signature as og<Signyg(sk,rg) = H(vk,rg)*¢ mod N and sets

o :=0*U{og};

. Runs 64-Sign,,, (sk, tp, og,75) = [[,+co+ 0f mod N;

oi€c

It then sends the TOTP tuple (rg,d) to authenticate itself.
Upon receipt of the TOTP, the server infers the same tp from its own clock and
the shared st to avoid accepting void TOTPs that might have been stolen/replayed. In

order to verify whether the received TOTP is legitimate, it does the following;:
o Creates a verification subset V := B U {H (vk,7g)};

. Runs Verify(vk, tp, 7, 7g), which checks if the following equation holds [, . (v)

mod N;

If successful, the client is authenticated.

Efficiency and Overhead In order to avoid communicating nonces rg during authenti-
cation, both nodes can be configured to derive unique and coprime nonces using a pseudo-
random function (e.g., ry = H(counter)). Since, in TOTP systems, ¢p increases overtime
and that the client uses its TOTP generation algorithm only once in each time-interval,
tp can be used by both nodes to also derive the nonces {rg}; (e.g., r§ = H(tp)) without
loss of security; this releases the server from keeping state in memory as well as allows
both nodes to avoid communicating such nonces over the network during authentication.
The enhancement in [39] can also be used in our case to reduce the size of signature set
>} and bit value set B to half — essential for edge devices with limited storage; instead of

explicitly dealing with values representing 0 for each different digit, we assume presence of
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1 implies absence of 0 and vice versa. This allows clients to store signatures corresponding
to values representing 1 for all digits only, namely ¥’ = {071 € ¥}ic1,q. Similarly, the
server only keeps values representing 1 for all digits, namely B’ = {r;; € B}ie[l,d}- It can
also use one set of coprime values representing different bits (i.e., , the set B’) for all clients
in the system. Clients can also store only one key of the key pair, preferably vk since the
recommended size of the public verification exponent vk.e € {0,1}Z!7 is smaller than the
private signing exponent sk.d € {0,1}2%292IN1 [36], and derive one key from the other as

needed.

4.2.2 ECElIGamal-based TOTP System

In several DDH-based signatures (e.g., ECDSA), the most expensive part of the
signing operation can by design be done offline; however, signature verification still has
to incur at least 2 exponentiations in the critical online time, which can be expensive for
a limited-resource verifier (e.g., a smart lock). Our MSS-based ECElGamal construction
allows us to replace one of the exponentiations with only a few multiplications (e.g., 21
multiplications for a 2-year TOTP system), thus reducing online verification time signifi-

cantly.

Setup When the instantiation of Algorithm [I] is done using ECElGamal signatures, the
output key pair is (sk = (G,g,z),vk = (G, g,zg)); where g is the public base point for
the elliptic curve, sk.x € [2, N — 1] is a secret random scalar and vk.zg is a point on the
elliptic curve GG. In the second step, B is chosen in such a way which guarantees that the

overlap amongst signatures of different authentication times is avoided. Hence, the following

80



constraint: Y .cp.(r*) # > cp(r),VB* # B’ C B must be satisfied. Therefore, we
choose B = {r;p, =¢° mod Nl|icl=[1,d,beJ={0,1},{ € Zy,e € [1,|I|-]]|]}, where
N is a large prime determining the order of an elliptic curve group. KeyGen’ in this case
is the same as the one in Algorithm [I| except that the client sends (B, vk, st) to the server

and the server computes the last step of KeyGen’ as ¥ = B.map(r — g X r).

Authentication This procedure follows the same protocol described in Algorithm [5] and

the three procedures (Signyg, Sign,, and Verify) are computed as follows. The signature of

on
tp (current time to authenticate) consists of the tuple (og, ). Similar to normal ECElGamal
signatures, og = (z1,¥1) is a point on the curve calculated by og = Signyg(rg,g) = rg X
g, where rg € [2, N — 1] is an integer nonce that is coprime with the modulus N (i.e.,
GCD(rg, N) = 1) so that it has a multiplicative inverse r¢ ! that will be needed to calculate
the second part of the signature &; r¢ must be unique and random for each signature to
prevent A from recovering sk [59]. In order to compute any og, we need to only have the
set P={axg: aec{20,...,2°M-111 pre-computed and stored in memory.

In order to calculate &, the client creates the subset B= {rip € B}ie[l,d],be{tpi} that
contains the digit values corresponding to its current ¢p. It then runs 6+Sign,,(sk, tp, og, rg)
which outputs the second part of the signature, 6 = rgl(ETEB(r) —sk.x-o0g.x1) mod N.
It communicates the TOTP tuple (og,d) to authenticate itself. The server now creates a
signature verification subset S =B .map(r — g X r) C %, which contains already computed
values (at setup) corresponding to ¢p; it then runs the procedure Verify(vk, tp, g, ) to check
the validity of og.21 X vk.zg + 6 X og = >

vED v.
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a One-time password

[==)

TOTP generator (client)  Authenticating device  TOTP verifier (server)

Figure 4.3: Offline second factor authentication.

Efficiency and Overhead The technique mentioned earlier that suggests keeping values
corresponding to 1 only for all digits is also applicable here (i.e., ¥’ and B’). Since og
is independent of tp, it can be calculated and sent ahead of time, allowing the server to
calculate part of the left side of the verification equation apriori, namely og.z; X vk.2g; thus,
the only expensive operation left for signature verification becomes & x ogg. This approach
enables our TOTP system to be faster in the online authentication time. It also allows clients
to send only half the signature at the critical time of authentication, namely ¢ € {0, 1}|N B
NIST suggests that elliptic curves with |N| = 256 can provide 128-bit security [24]; if we
follow this recommendation, our system can have clients send only 256-bit TOTP tokens at
the online authentication time. The server can also use one set of values representing the

different digits (i.e., 3') for all clients to avoid per user storage.

4.2.3 Other Considerations

Offline Second Factor Authentication Our systems require one-way communication,
which makes them a good fit for offline second factor authenticators. Mechanisms facili-
tating communication of TOTPs generated by offline devices (e.g., a fridge with a screen)

mentioned in [I00] can be used in our systems (e.g., QR encoding). Fig. illustrates an
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anticipated system model for edge devices using the new TOTP systems for offline second

factor authentication.

Clock Synchronization Similar to standard TOTP systems, our systems require syn-
chronized clocks at the client and server. Natural delay between the time of generating
a TOTP at the client and the TOTP verification at the server can cause authentication
failure. The server can allow a small window of time skew (e.g., 30 seconds before the cur-
rent time) and thus can verify the received TOTP accordingly, as used in standard TOTP

systems.

4.3 Implementation and Evaluation

We implemented a prototype of the RSA and ECElGamal-based TOTP systems
(in Java, and using the mainline Java security and Bouncy Castle Crypto [110] libraries).
For comparisons with counterparts, we implemented TOTP systems that rely on SHA-
256 [57]-based 1-dimensional hash chains (referred to as 1D/1DHC) [100], RSA-based multi-
dimensional hash chain (MDHC) [I33], traditional ECElGamal, ECDSA, EC-Schnorr and
traditional RSA with full domain hash (RSA-FDH). RSA is used with 3072-bit modulus,

and all elliptic curve cryptography (ECC)-based signatures use the NIST P-256 curve.

4.3.1 Experimental Setups

The experiments were taken for TOTP systems that had a lifespan of ~2 years
(i.e., 22 TOTPs). They were done on a constrained Raspberry Pi Zero W (RPi), with

a single-core 1.0 GHz CPU and 512MB RAM, and a laptop, with a dual-core 3.0 GHz
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CPU and 16GB RAM. The client and server play the role of the TOTP generator and the
TOTP verifier, respectively. The setups include: a laptop and a RPi (e.g., a smart lock
scenario); a RPi and a laptop (e.g., a smart watch scenario); and two RPis (e.g., a car gate
scenario). We refer to first and last hash in a chain as head and tail, respectively. For
readers not familiar with hash chain based authentication, it is described in Section [.4]
We set RSA public exponents (used for verification or hashing) to the recommended size,
>17 bits [36]. In case of 1IDHC, the server constantly replaces its tail with the hash used
at last successful authentication. We also consider a case where the client already has
in storage hashes across the chain that correspond to the beginning of each month/week,
which helps expedite calculating any target hash in the chain. We also note that in this
implementation, we use a simpler SHA hash as in the scheme of Boneh et al. [100]. We also
propose and evaluate an MDHC-TOTP system with 21 dimensions (referred to as 21D),
with each dimension being 2 hashes long so as to offer 22! possible TOTPs and decrease
the chain diameter (i.e., make the number of hashes smaller, although we have to use a
commutative hash like RSA). All ECC-based systems calculate the first part of the signature

before knowledge of next ¢p.

4.3.2 Performance and Overhead Analysis

We discuss the performance and overhead of our TOTP systems and the other
alternatives, with focus on the online authentication phase. We break down the authen-
tication phase into two sub-tasks: (1) Generation of a TOTP at the client side, which is
generating a target hash in the chain for hash chains, and a signature for the rest of the

schemes; and (2) Verify of the TOTP at the server side, which is checking if the received
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Figure 4.4: Authentication latency of TOTP systems.

TOTP can hash forward to the tail for hash chain-based schemes, or verifying a signature

for the other schemes.

Fig. demonstrates that our MSS-based ECEIGamal-TOTP system reduces la-

tency to complete authentication compared to the following alternatives as follows: RSA-

FDH (158x reduction), IDHC (best case with client storing hashes of every week beginnings,

82x), MDHC (41x) and traditional ECElGamal/ECDSA /EC-Schnorr systems (2x), respec-

tively for the IoT to IoT scenario. The other proposed RSA-TOTP system also cuts down

authentication latency by ~12, 6 and 3 times compared to alternatives based on RSA-FDH,

1DHC (with client hash storage as in the previous case), and MDHC, respectively. Even

though computations required at the client can be reduced in TOTP systems based on

1DHC by keeping some hashes along the chain as shown in the results, the server cannot
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Figure 4.5: Authentication energy consumption of TOTP systems.

use this technique and keep such hashes since this reveals future passwords and makes

them susceptible to theft in case of server compromise attacks, necessitating the full chain

traversal.

Fig. shows the energy consumption for each scheme (measured using a power

meter). Our MSS-based ECEIGamal-TOTP system provides energy savings of a factor of

1572, 792, 243 and 3 compared to its alternatives: RSA-FDH, 1DHC (with client

hash

storage as in the previous case), MDHC and traditional ECElIGamal/ECDSA /EC-Schnorr

systems, respectively. Our MSS-based RSA-TOTP system also reduces energy consumption

by 20, 10 and 3 times compared to RSA-FDH, 1DHC (with client hash storage as in the

previous case) and MDHC TOTP systems, respectively.
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Table shows the parameters kept at each node and amount of storage needed
for them across all systems. Since online-offline signature schemes keep parameters that
are pre-processed offline, they require more storage than traditional signature schemes. As
an optimization to traditional ECEIGamal, ECDSA, EC-Schnorr and our ECEIGamal, we
during setup pre-compute and store different bases P that allow such schemes to generate 2V
nonce signatures using only O(log V) storage where N is the total number of signatures in
the life of system. For all elliptic curve schemes (including our new ECElGamal), the client
side requires more storage than other systems based on hash chains and RSA; however, this
storage is still less than 16KBytes which is reasonable for modern IoT devices given the
saving in power and computational delay [I85]. The server storage requirement is reduced by
4x and 2x compared to MDHC and RSA-FDH, respectively. Our ECElGamal outperforms
traditional ECElGamal without requiring extra storage at the server side while requiring
only a few extra bytes at the client. The new RSA system improves on traditional RSA,
but underperforms the simpler hash and EC based systems. However, since it offers formal

security proof (not available in ECDSA, EC-Schnorr or ECElGamal), it may be of interest

to high assurance applications.

4.4 Asymptotic Efficiency of MSS

In this section, we analyze MSS’s time and space complexity in comparison to
hash chains. MSS provides similar functional properties to hash chains and can be used in

any context where hash chains are applied. We first provide an analysis of hash chains to
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Table 4.3: Storage for TOTP systems.

TOTP
Storage (bytes)
System
Client Server

Size Param. Size Param.
RSA-FDH 391 st,vk.N, vk.e 388 st,vk.N
1D, 31,

st, salt,

1D mo. sto., 409, 31 st, salt, tazl

head, hashes
1D wk. sto. 1705

MDHC (21D) 817 st vk.N,{vk.e;};, head 772  st,vk.N head

st,vk. IV, vk.e
New RSA 8839 388 st,vk.N,
¥, og
New st,sk.z, T$_1, st,vk.xg,
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Figure 4.6: A one-dimensional hash chain.

be able to provide a baseline. We show that MSS reduces the timexspace complexity from
O(N) to O(polylog(N)).

Given a hash function H, a hash chain (Fig. is a list of vertices {vg,...,un}
where each v; is obtained by hashing the value before it (i.e., v; is labeled by a string z;
such that x;y; = H(x;) holds for all 7). The first vertex vy is called the head of the chain,
v is the tail. The labels in a hash chain can be computed in the “forwards” direction (i.e.,
given x; one can compute x;; efficiently by applying H), while the hardness of inverting H
ensures that it is computationally infeasible to compute labels in the “backwards” direction
(i.e., given x;41, it is hard to find ;).

Given a hash chain, a client holding the head x¢ authenticates herself to the server
holding =y by sending the tail’s preimage: zy_1 = HY " (zg) = (Ho--- o H)(xg). The
server, on receiving xy_1, validates by hashing and comparing with the tail since it is
possible to carry out the forward hash. The server then overwrites the tail with xny_1, and
the next time the client wishes to authenticate, she will send xn_s.

Hash chains offer a low bandwidth alternative to the signature-based solution since
the labels need only have 256 bitsEl The drawbacks of the hash-chain solution are 1) hash-

chain-based authentication systems have a lifespan — a client can use a hash chain with NV

3In fact, 128 bits suffice since we assume the hardness of inverting H, and not that of finding a collision
which halves the required size of the key.
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vertices to authenticate herself only N times; and 2) the client must compute O(N) hashes
in order to authenticate herself. Boneh et al. [I00] observe that there is a time/space tradeoff
available to the client, since hash-chain labels can be precomputed and stored. For example,
if the client stores the labels = 5, z, /5, .., then authentication only requires computing
O(V/'N) hashes. Thus, a more accurate statement is 2) the timexspace required by the
client during authentication is O(V). In any case, there is a tradeoff since one wants to set
N small for client efficiency, but this results in a scheme with a short lifespan.

MSS can be viewed as a hash chain with special hash functions which support
faster traversal from the head label to the (preimage of the) tail label; we call these hash
functions mergeable hash functions. In essence, they allow the generation of any point in
a hash chain of length N using a cost of O(log N), an exponential improvement. The
offline cost of the scheme is the cost of generating a set of basis component hash functions,
leaving the online cost to be that of merging these (which mathematically consists only
of multiplication operations). The scheme requires additional storage space to store the
pre-computed basis hashes, but the total timexspace required by the client is polylog(N).

MSS online signing cost is based only on the number of times the Merge proce-
dure is applied to create a signature for msg = by - - - by, which is O(log N). Regardless of
message bit size |N|, online signing in standard signature schemes requires O(log sk) multi-
plications, and usually [sk| > |N| (e.g., |sk| >~ 3072 in RSA and =~ 256 in BLS). Therefore,
MSS provides two advantages over standard signatures: 1) it gives the ability to fine-tune
the signing cost in different applications, which makes it valuable for applications with

short messages (i.e., small N, which is common in the IoT setting) and perhaps crucial for
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resource-constrained signers. 2) unlike the sk size which usually increases overtimeﬂ appli-
cation requirements usually do not (e.g., a smart thermometer), and therefore MSS cost is
not exacerbated overtime. The amount of storage required by MSS is O(log N) although
storage enhancements are available as discussed in Section As an added advantage,
ECElIGamal-based MSS offline signing cost is significantly reduced to O(polylog N) because

we mainly need to pre-compute the set P to generate any nonce signature.

4.5 MSS Correctness and Security Proof

We first define the conditions under which standard signature scheme are correct
and secure. We then provide formal proofs of correctness and security for MSS.

In standard signature schemes, correctness implies that for all (vk,sk) in the sup-
port of KeyGen, and messages msg, Verify(vk, msg,o) = 1 holds with probability 1 where
o = Sign(msg,sk). On the other hand, the security is evaluated using a game-based
paradigm [73] as follows. For any efficient adversary A4, the chance that .4 wins the signature
forgery game described below is negligible for a secure scheme.

Signature Security Game. The game is played between a challenger C and

adversary A as follows:
1. C draws (vk,sk) < KeyGen(1™), sends vk to A.

2. The following steps are repeated until A decides to move to step 3 (repetitions indexed

by i):

43072-bit RSA, 256-bit ECC and SHA-256 provide security equivalent to 128 bits in symmetric key
cryptography [24]; keys are usually increased due to advancements in hardware and algorithms.
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- A sends msg® to C;

- C computes ¢ « Sign(msg(®), sk) and sends it to A.

3.  Finally, A sends (msg*,¢c*) to C and wins if (msg*,c*) # (msg(?, o) for all i and

Verify(vk, msg*, o*) = 1.

In other words, the attacker wins if she is able to correctly sign a new message after
observing any number of messages and their signature. We will also work with a version of
the above game where the messages to sign are all chosen at random by C. Formally, this

game is identical to the one above except for two changes:

(a) The two repeated items in Step 2 are replaced by the single item: C chooses r® at

random, computes ¢(? < Sign(r(?), sk) and sends (), (@) to A.

(b) Step 3 is replaced by two steps: 1) C sends a random 7* to A; 2) A sends o* to C and

wins if Verify(vk,r*,o*) = 1.

In this modified game, the attacker wins if she forges the signature for a random message sent
by the challenger. We say a signature scheme is secure under random (resp. adaptive chosen,)
message attack if it is hard for A to win the modified (resp. original) game. It is clear that
security under adaptive chosen message attack is the stronger notion of security. However,
in the random oracle model [27], security under random message attacks are sufficient to
trivially construct schemes with security under adaptive chosen message attacks. Moreover,
the scheme with stronger security will have almost exactly the same performance as the
scheme with weaker security. For this reason, we focused on constructing signature schemes

with security under random message attacks given that scheme based on RSA and BLS are
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secure under random message attacks [I57), [37]. This clearly explains the distinction and
why we take this direction in proving security.

Correctness for MSS says that for all (vk,sk), and any msg, the following holds:
Verify(vk, msg, o) = 1, where o = Sign,,(msg,sk,7), and 7 = Signyg(sk). On the other
hand, in the MSS security game, any efficient adversary A wins the incremental forgery
game below is negligible.

Incremental Forgery Game. The game is played between a challenger C and adversary
A and works similar to the adaptive chosen message security game above, except for one

change:

(a) in the second point of Step 2, C computes o) according to Sign,,(msg(®),sk, (")

where 7() = Sign ¢ (sk);

After formally defining the correctness and security of the underlying scheme, we

will now prove in Theorem [1| that the proposed scheme is an MSS scheme.

Theorem 1 Assume (KeyGen, Sign, Verify, Merge, Rec) is a mergeable signature scheme and

that H is a random oracle. Then (KeyGen', Sign’s, Sign_,, Verify’) is MSS.

on?

Proof. The syntax and correctness follow from correctness and mergeability of the underly-
ing scheme (e.g., RSA). We now prove the security by contradiction. Let’s assume that .4
is an efficient adversary who wins the incremental forgery game with non-negligible prob-
ability. We design another adversary A’ who can win the random message attack game
on the underlying mergeable scheme with non-negligible probability. For proof purpose we

consider slightly modified games, where we replace all outputs of H with truly random val-
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ues drawn by the challengers. These games are indistinguishable assuming H is a random

oracle. A’ works as follows:

° A’ receives from the challenger the verification key vk, random r;; and o for j =

1,...,land b € {0,1}.
o A then sends (vk,{r;;}) to A.

° Whenever A’ receives msg from A, A’ parses msg into bits by - - - by, and then receives
(rg,03) from the challenger. Then it computes (r,0) = Merge({(r;4,,0;4,)}, (rs, 05))

and returns o’ = (r,0).
° The challenger sends rg to A’ and it forwards it to A and gets back msg*, o*.

° A’ parses the message msg* as b}, ..., b and computes the following

Rec(l\/lerge({rmf7 ajﬁb;}, (1,0%)), {rj7b;,aj7b;}) to get (rg,0g) and sends it to the chal-

lenger.

In the above reduction, A’ answers A’s queries correctly by inspection and thus emulates
the security game of the constructed scheme for A. Thus, whenever A wins, A" also wins
with the same probability. This contradicts the security of the mergeable signature scheme

(KeyGen, Sign, Verify, Merge, Rec), proving that the proposed scheme is secure.
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Chapter 5

Token-based Vehicular Security
System (TVSS): Scalable, Secure,
Low-latency Public Key
Infrastructure for Connected

Vehicles

Technology which allows road vehicles to communicate with one another and with
pieces of road infrastructure has the potential to drastically improve the safety and efficiency
of the transportation system. Indeed, though this technology is in its infancy, numerous
products have already been proposed. Safety applications such as Basic Safety Messages are

projected to reduce road fatalities by 80%, a decrease of roughly 30,000 per year [131] [64].
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More than 50 intersections in Pittsburgh, PA were fitted with intelligent traffic signal control
systems between 2012 to 2016, which reduced travel times through these intersections by
26% [44]. Coordinated driving applications such as Cooperative Adaptive Cruise Control
allow connected vehicles to travel closely in a convoy/platoon, reducing aerodynamic drag,
improving fuel efficiency, and lowering the carbon footprint of the entire transportation
system by a projected 15% [25].

Needless to say, security in these types of transportation applications is extremely
important as a breach could cause accidents or otherwise disrupt the flow of traffic [6l 34,
35, 149, 114, 13]. In this work, we consider the authentication layer lying underneath these
potential applications. Designing such a system requires addressing some non-standard
security issues having to do with the fact that a vehicle’s identity and position over time

are sensitive information.

Vehicular Public Key Infrastructure Significant prior work on this topic has culmi-
nated in the Security Certificate Management System (SCMS) [134] which has been adopted
by the US Department of Transportation (a similar European standard is outlined in [60]).
These standards provide a public key infrastructure (PKI) for vehicles to use to authenticate
themselves which promises a standard unforgeability security guarantee as well as two ad-
ditional security features called anonymity and unlinkability. Roughly speaking, anonymity
says that a vehicle should be able to authenticate itself without revealing its long-term
vehicle identity; unlinkability demands that it should not be possible to identify the same
vehicle authenticating itself in two different time periods. So if Alice’s car authenticates

itself today on highway 1, anonymity guarantees that no one can deduce “that car belongs
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to Alice”, while unlinkability ensures that no one can say “the same car authenticated itself
yesterday on highway 2”. In this work, we refer to a PKI which guarantees anonymity
and unlinkability as vehicular PKI (VPKI). Such a system is also desirable in other related

domains such as unmanned aerial vehicles (UAVs) [14].

Revocation Given the damage potential of a malicious user in VPKI, a revocation mech-
anism is needed to deactivate a malicious user’s credentials, rendering the user unable to
participate in the system. Revocation solutions involving a global centralized certificate re-
vocation list (CRL) are not ideal for VPKI. On the one hand, the large scale and distributed
nature of the system make it unreasonable to expect that all vehicles would constantly main-
tain an up-to-date local copy of the CRL. On the other hand, network-based solutions where
a vehicle queries a CRL on the cloud before interacting with another vehicle are not ideal
because of latency and network intermittency. Because of these issues, revocation is a major

pain point of all prior VPKI systems.

Pseudonym Certificate Generation Time Typically in VPKI systems, users authen-
ticate themselves on the road using temporary credentials called pseudonym certificates
(PCs). These PCs are periodically refreshed when the vehicle executes the PC generation
protocol with a stationary road-side unit (RSU). An extremely important (and often over-
looked) feature in the design of VPKIs is the execution time of PC generation as this governs
the possible use cases of the system. Essentially, the issue is that a fast vehicle passing by
an RSU would have only a very brief period of network connectivity (less than one second

if traveling at highway speeds). Therefore, if the PC generation protocol is too slow, the
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vehicle and RSU will fail to complete their protocol with high probability, and thus the
vehicle would not reliably be able to update its PC. This issue is aggravated by the fact
that channel uncertainty in wireless networks intensifies in highly mobile environments [79].
Unreliability of PC generation at high speeds means, for example, that cars might wind up
using the same PC for hours at a time, which harms system security. Our results show that,
because of its slow PC generation protocol, attempting to use SCMS in highway scenarios
requires PCs to persist for 6.7 hours, while TVSS reduces this window to 18 minutes (a

~22.5x privacy improvement).

5.0.1 Our Contributions

Edge-based VPKI: We propose Token-based Vehicular Security System (TVSS), a new
system architecture for VPKI with properties which are essential for a large scale
mobile PKI system. The core novel feature of TVSS is that it takes advantage of
the compute power of the network of roadside units (rather than using RSUs simply
as a network of proxies connecting vehicles to the backend servers). We find that
computationally able RSUs fit seamlessly into VPKI, yielding improvements across

the board. Specifically:

1. Low latency PC generation: TVSS has a lightweight PC generation protocol
consisting essentially of just a handshake between the vehicle and an RSU, as
shown in Figure In particular, PC generation requires no online involve-
ment from the back-end. This enables new use cases which were unsupported by

previous systems (e.g., high speed PC generation).
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Simplified SCMS TVSS
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Vehicle Vehicle

Figure 5.1: Simplified SCMS and TVSS architectures.

2. Low Communication Revocation: Utilizing compute power of the RSUs en-
ables reliable revocation where global CRLs are maintained by the (stationary)
RSUs, while only short (location-specific) CRLs need to be shared with the
vehicles. The result is that revocation in TVSS requires drastically less total

communication than in prior systems.
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3. Simple architecture: Passing computation to the RSUs greatly simplifies the
system as a whole. As shown in Figure the overall footprint of TVSS is
much smaller than that of SCMS. Thus, maintenance costs of TVSS would be

much lower with no loss to security.

Formalizing VPKI Security: In order to foster future work on VPKI, we give a formal
game-based security definition for VPKI incorporating unforgeability, anonymity and
unlinkability. Additionally, we consider other attacks on our system and show how to
neutralize them. This discussion includes a new type of attack called a clone attack
which was previously unconsidered in the VPKI literature, and which affects all prior
systems. Clone attacks are similar in spirit to sybil attacksﬂ [55], and occur when an
authorized vehicle shares its credentials with an unauthorized vehicle in an attempt
for both cars to participate in the system in different locations. Similar attacks have
been considered in cryptocurrencies [45], 202], transportation toll collection [159] and
network authorization schemes [140]. We show how to handle clone attacks against

TVSS; no discussion or defense to clone attacks is given in other VPKI systems.

Open Source Testbed: We build and assemble a real testbed of on-board units (OBUs)
and RSUs that have technical specifications similar to commercial OBUs and RSUs.
Specifically, we set up the networking standard specifically designed for connected
vehicles, IEEE 802.11p/dedicated short range communication. Our OBUs and RSUs
are open source and re-programmable and so hopefully will be useful to other research

and application development.

1Sybil attacks occur when a single vehicle obtains several different copies of valid credentials in order to
pretend to be several different vehicles.
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VPKI Implementation and Field Experiments: We implement TVSS and other VPKI
systems on our OBUs and RSUs and conduct a series of highway and in-city street
experiments at different velocities ranging from 25mph to 8 mph. Our tests observed
that TVSS achieves a 28.5x reduction in its PC generation latency and a 13x reduc-
tion in total communication during revocation compared to other systems. At extreme
speeds, TVSS is 3.85x more likely to successfully complete PC generation and 6.5x

more likely to successfully update its local CRL compared to other systems.

5.1 Cryptographic Preliminaries

In this section, we describe the basic cryptographic systems that are utilized in
SCMS and TVSS, namely encryption, digital signatures, decisional Diffie-Hellman (DDH),
and hash chains.
Encryption Schemes. Encryption schemes are used in cryptography to ensure confi-
dentiality of the information being sent over a network. It can be formally defined as a set
of three algorithms (KeyGen, Enc, Dec). The algorithms KeyGen(1™) outputs the key pair
(ek, dk), Enc(msg, ek) outputs a cipher text ct and Dec(dk, ct) outputs the message, msg, by
using the decryption key dk. It satisfies the properties of correctness and the security. Cor-
rectness says that for all messages, if (ek, dk) <— KeyGen(1™), then Dec(dk, Enc(msg,ek)) =
msg. Informally, the security property is that no efficient adversary can decrypt the cipher-
text without having access to the decryption key.
Digital Signatures. Digital signatures are basic schemes used in cryptography and used

for authentication purposes. A signature scheme can be formally defined as a set of three
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Figure 5.2: A hash chain.

algorithms (KeyGen, Sign, Verify). The algorithms KeyGen(1™) outputs the key pair (vk, sk),
Sign(msg, sk) outputs a signature o and Verify(vk, msg, o) checks whether the signature is
valid or not.

Additionally, the correctness and security of the digital signatures must also hold.
Correctness says that for all messages msg, if (vk, sk) < KeyGen(1™) and o < Sign(msg, sk),
then Verify(vk, msg,o) = 1. Intuitively, security demands that without possession of the
secret key, no adversary can produce a valid signature for a new message.

Decisional Diffie-Hellman. We define the decisional Diffie-Hellman (DDH) problem in a
cyclic group G with a generator g. It is defined as follows. Given a tuple (g, g%, h, ') where
x is a random exponent, h € G is random and h’ either equals h* or else is a random group
element, decide which is the case. In DDH based encryption schemes, the private/public
key pair (z,g") corresponds to the decryption and encryption keys (dk,ek), respectively.
Similarly, the key pair (z,¢”) corresponds to the signature and verification keys (sk, vk),
respectively, in digital signature schemes.

Hash Chains. Hash chains are important primitives which appear in electronic currencies
and authentication schemes. Formally, we can define a hash chain as follows. Given a hash
function H, a hash chain is a list of vertices {v1,...,un} where each v; is labeled by a

string x; such that z;4; = H(x;) holds for all ¢ (Figure . Since it is computationally
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infeasible to invert H, hash chains acquire a notion of direction. The first vertex vy is called
the head of the chain, vy is the tail. The property that is required is as follows. Given z;,
one can compute H(z;) = x;41 efficiently, but not the other way because of the hardness

assumption.

5.2 System Overview

The goal of this section is to explain 1) how our system TVSS works at a high
level; and 2) how the three features mentioned in Section are achieved. We stress this

is an oversimplified discussion, the full scheme is presented in the next section.

System Players and the Parameter 7. The main players in TVSS are the vehicles, the
distributed network of RSUs and the certificate authority (CA). Additionally, we assume
that the RSUs are all connected to a backend server called the “RSU backend” which
communicates with, but is distinct from the CA (this is important for revocation). We
model the connection between the vehicles and the RSUs as a secure private channel (in
reality this will be implemented using encryption). Time in TVSS is broken into distinct
periods of T minutes each, for a system parameter 7. Roughly speaking, smaller 7" means

stronger security and greater overhead on the system.

The Infrastructure/Backend Separation Assumption. It is critical to security in
TVSS to assume that the CA and the RSUs are controlled by separate entities which do
not collude; we call this the infrastructure/backend separation assumption. Some version
of this assumption is implicit in all prior work on VPKI. Though not ideal, we believe the

infrastructure/backend separation assumption necessary for security in TVSS is plausible
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since the CA would likely be controlled by a specialized security company while the RSUs
would be part of the public infrastructure. Designing a VPKI system which does not
require any separation assumptions about infrastructure and the backend is an excellent

open problem.

System Setup. Life begins for a vehicle when it obtains an enrollment certificate from
the CA. We think of this as occurring at the manufacturing plant, once during the vehicle’s

lifetime.

Token Generation. Once a vehicle possesses its enrollment certificate, it can request a
batch of tokens from the CA which it will later trade in to the RSUs in order to get PCs.
In order to request tokens, the vehicle simply authenticates itself using the EC in order to
receive a large number of tokens (say 2,880 for a one month’s supply when 7" = 15 minutes).
Each token is signed using CA’s private signing key and can be validated by verifying the
signature using CA’s public signing key. Each token is valid for one specified period of T’
minutes; when the final token expires, v will need to request new tokens from CA. Token

generation can be performed offline.

PC Provisioning. Once a vehicle has tokens, it can request PCs from any RSU. To do this,
the vehicle simply presents the token for the current time period to the RSU who verifies
authenticity against CA’s public credentials and, if valid, returns a PC. The PC is signed
by the RSU and marked with a geographical tag corresponding to the RSU’s location, and
is valid only when nearby this location and during the same time window that the token is
valid for. This means that new PCs must be requested every T minutes. The geographic

radius of validity should be an upper bound on the distance one can drive in T" minutes.
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The RSU sends the token it received to the RSU backend to check for duplicates. If the
same token is used twice to generate two different PCs in two different geographical areas
(i.e., if a clone attack is being launched), then the RSU backend will notice and will begin
the revocation procedure for this vehicle (described next).

Notice that from the vehicle’s point of view, PC generation consists of a simple
“handshake-type” interaction with the RSU. This is in stark contrast to SCMS where PC
generation requires the vehicle’s messages to be forwarded all the way to the RSU backend
which is four “network hops” away from the vehicle. The ability to perform PC generation
over a short-term connection unlocks use cases which are not supported by SCMS. For
example, our experiments in Section demonstrate that PC generation in TVSS can be
performed at high speeds on the freeway, while this would not be possible in SCMS. Indeed,
our experiments indicate that in these driving conditions, our PC generation protocol is at
least 10z less likely to fail than PC generation in SCMS. This is an important improvement
since resolving the issues resulting from failed PC generation attempts consumes extra
system resources. Additionally, because PC generation can be performed with a much
weaker connection between the vehicle and RSU, the frequency with which a connection
occurs which can support PC generation increases considerably. This allows us to set our
system up so that PCs are refreshed more frequently (every fifteen minutes, rather than

once per week) which translates to better security and easier revocation.

Revocation. When the PC of a malicious vehicle is identified, the RSU backend and the
CA are alerted, and they cooperate to recover the current and future tokens of the offending

vehicle. These tokens are shared with the RSUs who update their token blacklists (TBLs),
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thus preventing the offending vehicle from obtaining any new PCs in the future. In order to
deactivate the current PC, the CA shares the offending PC only with the RSUs which are in
the geographic radius of the misbehaving vehicle, these RSUs in turn share the PC with all
vehicles in their region, who update their local CRL (or what we also refer to as pseudonym
certificate revocation lists, PCRLs) and make sure to avoid the offending vehicle.

Note that the honest vehicles receive only the PCs of the misbehaving cars in
their geographical area, not the list of all misbehaving vehicles in the whole system. More-
over, this list must only be maintained for the remainder of the time period, after which
point it can be discarded. Thus, the amount of revocation information which needs to be
downloaded by each vehicle is small. The large TBLs which must be maintained by the
RSUs (consisting of all current and future tokens of all offending vehicles in the system)
represent less of a problem as the RSUs are stationary and so should have a stable connec-
tion. Our experiments in Section demonstrate that this change to requiring the vehicles
only to maintain a geographically-based CRLs leads to a system-wide 13z savings in total
communication size.

We remark that while the idea to use geographic PCs to improve revocation seems,
at first glance, to be a generic solution which can be applied in any VPKI, this is not the
case. The key feature of TVSS which makes it possible is the short lifespan of the PCs (i.e.,
small 7). In SCMS, the PCs are live for an entire week and so it is not possible to constrain
a PC to a small geographic region (one week is enough time to drive from Lisbon, Portugal
to Vladivostok, Russia). The short lifespan of PCs is only possible in TVSS because of the

system-wide efficiency improvements gained by passing computation to the RSUs.
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Security. Anonymity and unlinkability both hold in TVSS intuitively because the tokens
which are used to get the PCs have no information about the vehicle. For example, even if
the RSU is corrupt and can connect the PC to the token, there is no way to connect the
token to the vehicle’s enrollment certificate as long as the RSU does not collude with the
CA. Thus, anonymity should hold under the infrastructure/backend separation assumption;
unlinkability should hold for similar reasons. Formal security definitions and proofs are given

in Section (.4

5.3 TVSS System

In this section, we start by describing the system model and assumptions. We then
illustrate the detailed protocols forming our system, namely (Setup, TokenGen, PseudoGen,

Revoke). We finally discuss some implementation considerations.

5.3.1 System Model and Assumptions

As mentioned before, the TVSS system consists of a network of RSUs and backend
servers residing in the cloud. The backend servers are the RSU backend and the certificate
authority (CA). The CA is the root of trust in the VPKI and it is responsible for providing
vehicles with ECs and tokens while providing RSUs with signing certificates. Vehicles use
ECs to obtain tokens from the CA while RSUs use their signing certificates to generate and
sign PCs for vehicles in exchange for tokens (see Figure . Vehicles use dedicated short
range communication (DSRC/IEEE 802.11p) to communicate with one another, and they

can reach the internet and the backend servers through the RSUs only. The communication
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Figure 5.3: Overview of all protocols of TVSS.

channels between system’s entities (i.e. vehicles, RSUs, backend servers, etc) are assumed
to be always secure (e.g., over TLS). The system protocols described next make use of a

standard digital signature scheme.

5.3.2 System Protocols

The four protocols (Setup, TokenGen, PseudoGen, Revoke) make up the TVSS sys-

tem.

e Setup: This allows a vehicle v € V to acquire a long-term enrollment certificate, EC,,

which acts as the vehicle identity. Explicitly EC, is a signing key pair consisting of
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Algorithm 6 Setup(skca)
1: Compute (vky, sky) < KeyGen();

2: Compute o, < Signg, (Vky)
3: ECy + (vky, 0p)

4: Output EC,

a private signing key and a public verification key, and additionally a signature on
the public verification key using the CA’s private signing key. The vehicle v will use
EC, to request services from the CA when needed using a TLS-style handshake. The
enrollment certificate EC, has a long expiration time and v probably gets it once in
its lifetime or upon ownership transfer. Figure [5.3|shows an overview of this protocol,

the full protocol is given in Algorithm [6]

e TokenGen: This provides a vehicle with a list of authorization tokens T = {71, -+ ,7n}
that can be used to anonymously request pseudonym certificates from the RSUs. Each
token 7 € T is active during a specified time window only, and so once the final token
in T expires, the vehicle will have to rerun this procedure to get more. Explicitly, each
token is a random nonce, a time window, and a signature on the nonce/time window
pair. The vehicle obtains the tokens after completing a TLS-style handshake with the
CA using EC,,.. Figure [5.3] shows an overview of TokenGen, and Algorithm [7] shows

the full protocol.

e PseudoGen: This is used by vehicles to request PCs from the RSUs in exchange for tokens.
Explicitly, a PC is a signing key pair consisting of a private signing key (generated

by the vehicle and kept secret), and a public verification key, and a signature on the
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Algorithm 7 TokenGen(EC,, Req, skca)
1: Parse EC, = (vky, 0y);

2: Parse Req = (st’,et’);

3: if revoked(EC,) = False & hasTokens(EC,,st’,et’) = False then

4: Compute T = {7y, -+ ,7n}, where 7; + (id;, tw;, 0;)
: tc < (id]', th)
6: o; < Signg, (tc)

7 Output T
8: else
9: Output L

10: end if

public verification key using the RSU’s secret signing key. The vehicle simply presents
its token and its verification key to the RSU who validates the token and then signs
the and returns the key. The RSU also shares this token and the certificate with the
RSU backend to detect if token double use occurs; this allows our system to detect and
throttle clone attacks. Figure[5.3]shows an overview of PseudoGen, the full protocol is

shown in Algorithm[8] This protocol is the frequently used to achieve the unlinkability

property.

e Revoke: When a vehicle is identified as adversarial, the RSU backend and the CA cooper-
ate to run this protocol to deactivate the offending vehicle’s credentials. This works,
as described in the previous section, by updating the RSU TBLs to include all future

tokens of the offending vehicle, by updating the vehicle CRLs of all vehicles which are
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Algorithm 8 PseudoGen(7,skgrsu, vkca)

1: Parse 7 = (id, tw, o)
2: Compute (vk, sk) & KeyGen()
3: if timeValid(7) = True & revoked(r) = False & Verify,, , ((id, tw), o) = True then

4: Compute o’ < Sign vk)

skrsu (

ot

Compute PC« (vk, o)
6: Output PC

7: else

8: Output L

9: end if

nearby the offending vehicle to include the malicious PC, and by updating the CA
blacklist BL to include the enrollment certificate (EC,). Figure shows an overview

of Revoke; the full protocol is in Algorithm [9]

5.3.3 Implementation Considerations

RSU Blackout Areas. Suppose a vehicle needs to travel to an area with limited RSU
deployment for an extended period, but wants to precompute PCs for use during its trip.
Normally the RSUs in our system will only give a PC for the current t