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ABSTRACT OF THE THESIS

Learning to walk on rough terrain and collision localization for legged robots with Machine
Learning

by

Chinmay Vijaybhai Shah

Master of Science in Engineering Science (Mechanical Engineering)

University of California San Diego, 2021

Professor Nicholas G Gravish, Chair

Compared to wheeled robots, legged robots can provide a significant advantage in travers-

ing complex, uneven terrain. The advantage is still unrealized because of the lack of effective

algorithms that can give instantaneous reactions like biological systems. In recent years data-

driven methods have gathered the community’s interest due to the ability to learn rules/patterns

from data. The black box data-driven methods remove the need for rule-based strategies while

benefiting from the fast implementation. The data-driven method like Deep Reinforcement Learn-

ing (DRL) has the potential to make the system more reactive, efficient, and less reliant on the

rules. The thesis examines the potential of DRL on rough terrain. While there is a lot of attention
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for reinforcement learning for legged robotics, the many aspects like environment generation,

episode termination criteria are undiscussed in the literature available. We also suggest strategies

of generating random terrain with appropriate parameters, environment design, and we also prove

the use of randomization on the terrain to guarantee higher performance.

Due to imperfect estimation of terrain by the perception system, for legged locomotion,

leg collisions with the terrain are inevitable. Due to the potential of damage, the collision is

an important failure mode and needs to be investigated. The black box data-driven methods

remove the need for rule-based strategies while benefiting from the fast implementation. In this

thesis, we present a temporal convolutional network based CDLnet (Collision Detection and

Localization Network), a single neural network both for collision detection and localization.

Due to the unique nature of the problem, the conventional loss functions can raise a significant

error in the measurements. Therefore a new loss function called CDLloss is introduced. The

CDLloss uses a combination of classification loss and special collision localization loss. Due to

the ability to effectively extract information across time-domain, the network outperforms the

baseline neural network with the same loss function and also outperforms the best performing

physics-based method on minitaur leg. Then we discuss future work directions and potential

use-cases of this method.
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Chapter 1

Introduction

1.1 Legged Locomotion

Wheels are considered one of the earliest human innovations. It has a practical advantage

on flat terrain, and many other innovations like tires and bearings made it the most crucial creation

for humankind. One of the biggest problem with wheels is that it requires special and massive

infrastructure like roads and tracks to be useful. Creating these type of massive infrastructures

are one of the biggest and most celebrated projects in human history. It requires massive capital,

planning, and human labor. These infrastructures then have to be maintained, cleared of obstacles.

On uneven terrain, the wheels are often time found not that useful. The general solution is

to increase the wheel diameter. One infamous example of this is the tsar-tank[5]. It had 9 meters

in diameter. They were so heavy that they started to sink into the ground. One can also look

in nature and find that none of the animals have anything similar to the wheel. The problem of

uneven terrain was solved by the evolution using legged locomotion. The legged locomotion is

seen in the smallest (40µm) organisms like tardigrades [6] to biggest animals like elephants, from

bipeds like kangaroos to millipedes (30 to 400 limbs) [7].
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(a) Historic picture of Tsar-Tank (b) Mountain Goat on verticle cliff

Figure 1.1: Example of failure of wheeled system and extreme example of legged locomotion
from mountain goat [1]

1.2 Related Work

1.2.1 Commercial Legged Robots

Figure 1.2: From Left Go1 (Unitree), Digit and Cassie(Agility Robotics) Boston Spot (Boston
Dynamics)

Due to the advantage over wheeled robots, continually decreasing hardware costs and the

availability of better hardware have caused the surge in legged robotics. The price of commercially
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available legged robots has substantially come down. For example, the Boston dynamics’ factory

survey quadruped robot named spot is now available for the 75,000$. Recently the Go1, a

quadruped robot from Unitree robotics, costs around 8,500$ with a programmable interface. Not

only quadrupeds but also bipedal robots like Digit and Cassie are being commercialized.

1.2.2 Legged Robots Control Algorithms

There is an explosion of research in legged robotics control algorithms with two opposing

approaches. These approaches solve the same control problem in a fundamentally different way.

Both

Figure 1.3: Example of Model Predictive Control [2]

1. Model Predictive Control (MPC): The model predictive control a.k.a. MPC is class of

Control algorithms that utilize an explicit model to predict the future response of dynamical

system[8]. The Model Predictive Algorithm at each time interval optimize the future of the

control system states according to some objective or cost function.

The MPC algorithm is widely used in chemical plant processing. Due to the high reliability

of output and generation of smooth trajectories, the MPC algorithms are the first choice

for controlling most sophisticated robots. In reference to legged robots new whole body

approaches like [9] exist that optimizes the objective functions with constraints for entire

robots.

3



2. Reinforcement Learning (RL): The reinforcement Learning algorithm is class of machine

learning algorithm that maximizes reward or in other sense minimizes cost function by

taking actions according to optimal policy π. A recent trend is to use neural networks for

the policy. The neural network allows to used direct use of images to map out actions[10].

With the possibility of transfer learning of neural network models [11], reinforcement

learning has the potential to perform well on unstructured high dimensional data. For

legged locomotion, learning to walk in the simulator and transfer it to a real robot called

sim-2-real is gaining recognition[12].

1.3 Minitaur

Figure 1.4: Minitaur form Ghost Robotics

The Minitaur was originally invented by ghost robotics [13]. The minitaur is direct drive

quadruped with 8 D.O.F. and weights around 5 kg. Each leg uses 2 T-Motor U8 series motors.

The each motor uses 12V power supply. The motors thermally sustain 100◦C rise in steady state
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with current range 3.25-9A. The upper link and lower link dimention of each leg are 11 and 20

cm respectively. The minitaur can be equiped with lidar and cameras and can be controlled by

remote control.

1.4 Minitaur Pybullet

Figure 1.5: Minitaur in PyBullet

PyBullet is an open-source python wrapper for the Bullet C-API and is fast and easy

to use for robotics simulation [14]. In pybullet, one can simulate forward - inverse kinematics

and dynamics, collision detection. Pybullet can work with many robot description formats like

URDF, SDF, and MJCF. With integration from openAI gym, pybullet provides class for minitaur

robot. OpenAI gym API [15] provides a way to communicate with multiple pybullet instances for

the controlling algorithms. The OpenAI gym API is mainly designed for neural-network-based

reinforcement learning. A typical openAI gym class contains four methods,
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1. Initializer: This method initializes the environment on a separate thread for parallel simula-

tion.

2. Step: This method takes action and simulates the system for the next time step. This method

returns the next state, reward, and episode termination information.

3. Reset: This method is used to reset the robot and environment to their initial state. This

method prevents re-initialization of the environment and makes it more efficient in running.

4. Reward: This is evaluation of action according to some objective function.

Figure 1.6: Control algorithm interaction to PyBullet through OpenAI Gym API

1.4.1 State

The state is a set of variable that can be used to desribe dynamical systems’s future

variables in the absence of external force. The state for the minitaur robot in pybullet environment

is given by 28 dimentional vector. The state of the minitaur is given by,
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1. motor angle : The environment returns motor angle from minitaur’s local up direction.(see

fig) The values are in the range −π to +π radian for each motor

2. motor velocity : The environment returns motor velocity The values are in range of

−167.25 to 167.25 rad/s for each motor

3. motor torque : The instantaneous torque returned by the environment is from −5.7 to +5.7

for each motor

4. minitaur orientation: Environment calculates the instantaneous orientation in quaternion

with respect to world coordinate system. Total 4 values.

Figure 1.7: Leg model for Minitaur

1.4.2 Reward

The reward is a way of the environment giving feedback to the algorithm of its current

performance. Reward functions are designed according to the task. The default reward function

7



in the minitaur is given below.

total reward = f orward reward −dri f t reward − shake reward − energy reward, where

(1.1a)

f orward reward =C1∗min((xt − xt−1), f orward reward cap) (1.1b)

dri f t reward =C2∗ (−|yt − yt−1|) (1.1c)

shake reward =C3∗ ((1,1,0) · vector perpendicular to minitaur body) (1.1d)

energy reward =C4∗ (−| ⃗τmotors · ⃗vmotors| ∗dt) (1.1e)

The default value of C1, C2, C3, C4 are 1.0, 0.005, 0.0, 0.0. The value of the coefficients

are generally ≥ 0.0. The coefficients C1, C2, C3, C4 can be adjusted to serve different needs.

For example, If the C4 value increases, the penalty of energy consumption increases. This

makes algorithms make less energy-consuming steps. But increasing too far may also freeze

the algorithm to do anything at all. Another way of giving feedback to the algorithm is to set a

threshold. For example, The value of the forward reward cap can be used to control maximum

speed for the minitaur. The speed further than the forward reward cap does not increase the

forward reward, but the energy penalty directly related to the velocity of the motors increases.

This discourages further speed increment. The shake reward penalizes the inclination with respect

to the horizontal plane and makes the minitaur more stable.

1.4.3 Action Space

In standard practice OpenAI gym API takes normalized input between -1 to 1. The

minitaur takes 8 commands normalized in -1 to 1 at each time step. For minitaur the leg made of

4 links with link lengths as shown in the figure. The pybullet API takes angle θ1 and angle θ2 as

shown in the figure. The environment takes normalized angles α and β. The minitaur environment

8



change internally this α,βs to θ1,θ2, From fig (a,b), θ1 +β = α and θ1 +θ2 +2β = 2π, solving

for θ1,θ2,

θ1 = α−β (1.2a)

θ2 = 2π− (α+β) (1.2b)

One can derive x,y coordinates from α,β From fig(c),

L1 ∗ sinβ = L2 ∗ sinγ (1.3a)

γ = arcsin
L1 ∗ sinβ

L2
(1.3b)

Now putting γ value for finding R,

R = L2 ∗ cosγ+L1 ∗ cosβ (1.4a)

= L2 ∗
√

1− sin2
γ+L1 ∗ cosβ (1.4b)

= L2 ∗
√

1− (
L1

L2
∗ sinβ)2 +L1 ∗ cosβ (1.4c)

R =
√

L2
2 −L2

1 ∗ sin2
β++L1 ∗ cosβ (1.4d)

Now from fig(b),

x = R∗ cos(
π

2
+α) =−(

√
L2

2 −L2
1 ∗ sin2

β++L1 ∗ cosβ)∗ sinα (1.5a)

y = R∗ sin(
π

2
+α) = (

√
L2

2 −L2
1 ∗ sin2

β++L1 ∗ cosβ)∗ cosα (1.5b)

These x,y coordinates is used in ch.2 for generating leg coordinates.
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1.4.4 Episode Termination

The episode termination function is called every timestep of environment execution. The

termination function ends the episode and closes the environment. The criteria of termination

should be changed according to the task. The termination functions can sometimes change reward

to a huge negative value to give feedback to the controlling algorithm. For minitaur, the episode

is terminated when one of the following criteria is made.

1. If the z coordinate o f the torso < 0.13. It prevents controlling algorithm to learn gaits that

can lay to low to the ground.

2. If k̂ · vector perpendicular to minitaur body)< 0.85

3. If environment reaches 1000 steps

1.5 Neural Networks

Figure 1.8: Some popular neural network architecture

In recent years, data-driven methods exploded in popularity because of the availability

of large labeled datasets and affordable, fast computational hardware. The one important data-

driven method is called neural networks. The neural networks are considered universal function

10



approximators. They can learn to express large variety of functions with proper input and loss

functions. The neural network takes vector I⃗ as input and outputs the O⃗. Hidden layers connect

the input and output layers. The hidden layer contains a number of neurons according to the

network architecture. The input to each layer is multiplied by the weights vector w, and bias b is

added. The summation is then passed through nonlinear function f. Without nonlinear function

whole neural network can be expressed as single matrix multiplication. The mathematical process

of neural networks can be described below.

O⃗ = NN (⃗I,W ) = hn(hn−1(...(h0(⃗I))), where yk+1 = hk(yk) = g(Σn
i=1wk

i ∗ yk
i +bk)

At the beginning of training, the weights of each layer the wi are randomly sampled according

to some distribution. The training of the neural network is done by the optimization algorithm.

Many optimization algorithms like stochastic gradient descent, ADAM, etc., are used to train the

network. The objective function for the neural network is given by,

argmin
W

f (true values,NN (⃗I,W ))

There are many varieties of loss functions can be according to the task and the data. The

dataset is assumed to be from the same distribution and split into train and test sets. The neural

network is then trained on the trainset and tested on the test set. There are numerous neural

network architectures possible. In this thesis, the convolution neural network and feed-forward

neural network are used.
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Chapter 2

Learning to walk on rough terrain with

Reinforcement Learning (RL)

2.1 Walking on uneven terrain with prespecified gaits

Generally, gaits in legged robotics gait trajectories of the legs are handcrafted and turned.

This process makes walking possible for the legged robots, but there is no guarantee of optimal

performance. The fine-tuned gaits works give satisfactory values for a limited amount of scenarios.

For example, the gaits tuned for walking in the planer region fail to perform in the uneven terrain.

The pybullet simulator provides some default gaits for the planer terrain. Later experiments found

the suboptimality of the default gaits.

The default gait generated by antiphase sine waves.

angle f or f ront motor = amptitude∗ sin(speed ∗ t) (2.1a)

angle f or back motor = amptitude∗ sin(π+ speed ∗ t) (2.1b)
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The default parameters for default gaits are, amptitude = 0.5, speed = 40. This sine gait passed

through the forward model (descirbed in CH.1) looks like below,

Figure 2.1: Forward model applied on the gait

The leg trajectory is limited in ±8cm in x axis and −14.5cm to −16.5cm in y axis. This

gait works on planer terrain but it fails for terrain parameters [0.1, 0.1, 0.1, 0.1] (Described in

later in the chapter). Because this gaits are open-loop and does not have any feedback mechanism.

One episode of this gait on planer and rough terrain is visualized in figure(2.2).

The sine gait is tested for 50 episodes for rough terrain, and results are shown in figure

(2.3). The first plot shows the average cumulative reward from the episode. The second and third

plots in the figure indicate average x and y locations after the end of the episode. The planer

13



terrain in pybullet gives the same results every time, so the algorithm maintains the same behavior.

So standard deviation is zero in the case of planer terrain.

Figure 2.2: Left Sine gait on planer terrain and Right Sine gait on Rough Terrain

Figure 2.3: Left Cumulative Reward, Centre X location, Right Y location at end of episode for
Sine gait
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2.2 Introduction to RL

Figure 2.4: The agent-environment interaction in a Markov decision process [3]

In recent years reinforcement learning has gained the community’s attention because of

rapid progress in hardware acceleration and deep learning. Reinforcement learning allows the

controller to learn the task optimally with trial and error. Reinforcement learning is based on

Markow decision processes.

Markov decision processes, also known as MDPs, are a classical formalization of sequen-

tial decision making, where actions influence immediate rewards, but also subsequent situations,

states, and future rewards as well. The learner and decision-maker is called agent, and anything

outside the agent is called environment. The agent decides the actions through the state, and the

environment returns the consequence of the action in terms of following state and reward. The

environment state at time t is given by St . The agent makes decision according to function called

the policy. The probability of action is defined by π(a,s) = Pr(at = a|st = s). The next state and

reward from the environment is given by St+1 and Ra(St ,St+1).

The reinforcement learning objective is to maximize the total reward, also known as the

cumulative reward at the end of the episode. In general, both rewards and transition dynamics can
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Figure 2.5: Reinforcement Algorithm Categories

be stochastic. The objective of reinforcement learning is given below,

T

∑
t=1

Eτ∼p(τ) = [rt ]

2.3 general categories RL algorithms

According to how policy is learned RL algorithm is categorized into different categories.

These methods differ in how data is collected for learning the agent and how it interacts with the

environment.
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2.3.1 Online RL algorithm vs off-line RL algorithm

The online RL algorithms directly interact with the environment. The agent learns to

maximize reward by directly interacting with the environment with actions selected by the agent’s

policy function. While offline reinforcement learning algorithms utilize previously collected data

without additional online data collection. The agent is provided with a static dataset of fixed

interactions and tasked with learning the best policy using data alone. Offline RL fundamentally

supervised learning problem where data is training set.

On-policy RL algorithm vs off-policy RL algorithm

The Online RL algorithms further categorized into on-policy and off-policy algorithms.

The online RL algorithm collects data using latest policy, and then using that experience to

improve the policy. It is considered online interaction. While off-policy algorithm setting, the

agent’s experience is collected in memory buffer also known as replay buffer. The updated policy

collects more data and that data is then added to the memory buffer. The policy trained then

trained on the data. This setting allows use of the old data generated by the old policies. This

improves sample efficiency.

Figure 2.6: Dataflow in Reinforcement algorithm categories
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2.4 Proximal Policy Optimization (PPO) algorithm

The Proximal policy optimization is online on-policy gradient method. In on policy RL,

the algorithm does not have replay buffer and can only learn from data generated by current

policy. Because of the stochastic nature of the environment and policy the data distribution of

states and rewards generated by the policy is changes constantly. This causes instability in the

learning. The ppo algorithm reduces the problem by clipping the gradients.

The agent interacts with environment with fix number of the episodes parallel running

environments and then data generated by the algorithm is used for the training. The deep

reinforcement learning implementation uses policy and value networks. The policy network takes

in current state and outputs a action. The value network takes current state and outputs the value

of that state pair.

The value network Vφ is parameterised by φ [16],

φk+1 = argminφ

1
|Dk|T

Στ∈DkΣ
T
t=0(Vφ(St)− R̂t)

2

The actor netwokr πφ is parameterised by θ [16],

θk+1 = argmaxθ

1
|Dk|T

Στ∈DkΣ
T
t=0min(

πtheta(at |st)

πthetak(at |st)
Aπθk (st ,at),g(ε,A

πθk (st ,at)))

where Dk is dataset of trajectories, R̂t is reward to go, A is advantage is normally given

blow,

Aπθ(st ,at) = Qπθ(st ,at)−V π(st)
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2.5 Parameterized Environment Generation

Current implementations of RL environments consist of the same environment without

any perturbations. The algorithm can learn to solve that particular environment and can have

high performance on it. This creates a problem as policy overfits some environments and fails

to generalize. In the case of minitaur, the environment can be changed by controlling terrain

parameters. As minitaur in pybullet is modeled after real minitaur, it does have a limitation on

which terrain parameters it can walk on without fail. Parameters can include terrain slope, terrain

friction, the distance between nearest hilltop, etc.

2.5.1 Perlin Noise

Figure 2.7: Different type of Noise

In the area of signal processing the noise is considered to be random value that can

fluctuate within maximum and minimum value. The terrain generated according to totally random

values is not useful because the height changes in neighbouring location is not realistic and

minitaur leg can jam in the terrain bumps. The more realistic idea is to generate the terrain
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according to random values that are somewhat correlated with neighbouring values, to ensure

more realistic and smoother values. One popular idea from the computer graphics is to used

perlin noise [17]. The perlin noise uses octaves to generate the pseudo-random numbers. For fast

implementation it is advised to use perlin-numpy library [18].

2.5.2 PyBullet Environment Generation

The terrain generation function takes terrain parameters like size, list of resolution of the

octaves, and list of noise coefficients. The function generated 2D NumPy array was then passed

to the pybullet API for terrain generation. The arrays are generated by the size and resolution

of octaves, and the noise coefficients premultiply them for the appropriate size. This approach

differs from the fractal terrain generation as it allows the individual frequency of Perlin noise to

be controlled.

height(x,y) = Σ
4
i=1NCi ∗ perlin(x,y, resolutioni)

The parameterized environment generation can be used in the curriculum of training of

the agent [19]. One proposed way of generating a curriculum for agent training is described

below.

The parameters are sampled uniformly in the parameter space. The parameter space is a

domain of the parameter that is allowed in the current cycle of the environment generation. The

optimization function of the curriculum generation is the reward function of the environment. The

reward function depends directly on the current policy and the current spread of the parameters.

The environment generally is stochastic and can give different end of episode total rewards for

the same parameters. It is required to frequently sample the environment for given parameters

and use the mean of the total end of episode rewards. The parameter space is defined by the mean

and endpoints for a given parameter.

20



Algorithm 1 Environment Parameter Adaptive Curriculum (EPAC)
Initialize with mid point and corner points for each parameter
while ∆Reward ≤ Reward Change T hreshold do

Calculate numerical Gradient o f mid and Corner Points
Calculate Normalized Direction vector f rom mid point to Corner Point
Repulsive Force = Repulsion Control Force Constant ∗Normalized Direction Vector
∆Corner Point = Speed Control Const.∗(Direction Vector+Cornet Point Corner)

2 +Repulsive Force
Corner Point =Corner Point + clip(∆Corner Point,±Displacement Control Const.)
Corner Centre = average(Corner Points)
Mid Point = Mid Point+Speed Control Const.∗Mid Point Gradient+Corner Centre

2
end while

Figure 2.8: Evolution of Domain for Hypothetical End reward Function from start (iteration 0)
and to iteration 175

The Environment Parameter Adaptive Curriculum algorithm is gradient based algorithm
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that optimizes the parameter domain according to reward function slope. The algorithm expands

and shrinks the domain according to current slope. One such example is shown in fig.(2.8). The

EPAC algorithm expands the domain if the slope is low but clips it when the domain becomes to

large.

Because of random inclination at origin, the minitaur initialization can be stuck inside the

terrain. To prevent this normal vector for terrain at origin is using pybullet’s rayTest command

and minitaur at initialized according to the normal at the origin. One example of such generation

is given below,

Figure 2.9: Minitaur environment with parameterized perlin noise generation
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2.6 Experiment

2.6.1 Experiment Environment

Figure 2.10: Randomly Generated Environment for Training

(a) Example of Big Gap between Plane and Rough
terrain

(b) Example of Small Gap between Plane and
Rough terrain

Figure 2.11: Examples of Gap between Plane and Rough terrain

The environment is generated at each reset is shown above. The plane is placed with the

perlin terrain to help stabilize the minitaur in the beginning of the training. As the perlin terrain is
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randomly generated the edge between the plane and perlin terrain have variable height. Some

of the example of the gap shown in figure (2.11). The RL agent tries to learn falling recovery

from falling. The termination criteria is changed to be more appropriate according to the task in

hand. Walking on uneven terrain demands minitaur’s torso to make larger angle from the z axis.

Allowing larger angle with z axis also helps in fall recovery at the edge and does not terminate

the episode.

New episode termination criteira is given below,

1. If (k̂ · vector perpendicular to minitaur body)< 0.5

2. If environment reaches 1000 steps

2.6.2 Algorithm Details

The algorithm implemetation is taken from [4] [20]. The parameters of implementation

with appropriate changes is given below, The implementation takes 2.5 days to complete 30M

steps. The training of neural networks is several order magnitude is faster than data gathering

(simulation running).

Table 2.1: Network quantity for the experiments [4]

Network Quantity Policy Network Value Network

input dimension 28 28

first layer 200 200

activation function ReLU ReLU

second layer 100 100

activation function ReLU ReLU

output dimensions 8 dim for mean 8 dim total 16 dim for log std 1 dim
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Table 2.2: Parameters for the experiments [4]

Parameter Parameter Value

number of running in parallel agents 30

evaluation episodes 30

policy updating after 30 episodes

initial mean factor 0.1

initial log standard deviation -1

discount factor 0.995

initial kl penalty 1

target kl divergence 1e-2

optimizer name Adam optimizer [21]

optimizer learning rate 1e-4

kl cutoff factor 2

kl cutoff coefficient 1000

total number of environment steps 3e7

maximum episode length 1000

perlin noise parameters 0.1, 0.1, 0.1, 0.1

perlin octave resolutions 2, 4, 6, 8

perlin terrain size 256 x 256

The neural network architecture is shown above. In training time, the policy network

outputs action mean and standard deviation. During training, action is then sampled from mean

and standard deviation. During the testing time, the only mean part of the neural network is used.

The output of the policy network is passed through the Tanh function to bound between -1 to 1.

The value network does not have any activation at the output. The activation function used in

networks according to input value is shown below,
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Figure 2.12: Different Activation Functions

2.6.3 Training Results and Discussion

The training curve for RL trained on the random environment is shown below. The

first curve is the mean score in the episode, and the second is the mean episode length. In the

beginning, the policy network puts random actions. The mean score is low, and episode length

fluctuates between max episode length and lowest episode length. As more training is done, the

mean value of reward increases, and episodes length fluctuates less.

The minitaur starts to go towards the edge of the plane and falls down on the ground. The

policy then tries to learn two things first walking on totally rough ground and do not crash at the

edge of the plane. The recovery from the fall behaviour emerges. The minitaur can not take big

falls many times. This can seen by the lower bound on both plots after 5M steps. The mean score

is approximately lower bounded by 2.2 and mean length is lower bounded around 220 steps. The

minitaur learns to survive more on the fall and upper bound on the mean score and mean length

increases.
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(a) Mean score in training for random environment
RL

(b) Mean episode in training for random environ-
ment RL

Figure 2.13: Training Plots

2.7 With and without environment Randomization for the RL

training

One of the main questions asked is does randomization of the environment is really

necessary. For that one another agent is trained on the fixed environment. The test environment is

25m long in x and y direction. The comparison of such runs are discussed in figure (2.14),

The fixed environment RL agent was 50 times tested on randomly generated environ-

ments. As one can see, the fixed environment RL outperforms the sine gait. It gains a more

cumulative reward and larger average X dimension at the end of the episode than sine gait. But

the performance is not consistent, and the standard deviation is very large on all the criteria. The

trajectory minitaur takes during the test for both planer, and rough terrain is shown in figures

(2.15) and (2.16). Most failures were seen at the beginning of the episode. The agent on random

rough terrain does not reach the end of the environment, and the path is nonsmooth.
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Figure 2.14: from left Cumulative Reward, Centre X location, Right Y location at end of
episode for RL trained on fixed rough terrain

Figure 2.15: Trajectories from Fixed Environment RL for planer Terrain
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Figure 2.16: Trajectories from Fixed Environment RL for Rough Terrain

The random environment RL agent was tested 50 times. The random environment agent

outperforms all the other agents by a significant margin. The failure rate was very lower, and the

robot could reach the end of the environment for more than 50% of the time. As expected, the RL

agent tested on planer terrain achieves a higher mean cumulative reward and higher X location

at the end of the episode than rough terrain, but the difference is rather small. The trajectory

minitaur takes during the test for both planer, and rough terrain are shown in figures (2.18) and

(2.19). The failures were marginally because of large slopes randomly generated by the terrain

generation function. The trajectories are smoother than the fixed environment RL agents.
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Figure 2.17: from left Cumulative Reward, Centre X location, Right Y location at end of
episode for RL trained on random rough terrain

Figure 2.18: Trajectories from Random Environment RL for planer Terrain
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Figure 2.19: Trajectories of Random Environment RL for Rough Terrain
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Chapter 3

Collision Detection and Localization

3.1 Introduction

In this chapter, leg collision is defined as any impact between a robot leg and the envi-

ronment other than on the toe. The chapter explores the motivation, feasibility of doing such

analysis with respect to torque drive types. The chapter then discusses the neural network-based

data-driven approach with a novel loss function.

3.2 Motivation for proprioceptive methods for the collision

detection and localization

Many advanced robots like Boston Dynamics’s spot and ANYbotics robotics’s ANYmal

robot can be equipped with perception systems like cameras and a lidar. These systems gives

mapping of the environment to the robots. Though these perception and mapping systems have

certain limitations.They are also not perfect and can give a noisy estimation of the terrain. They

can be very inefficient in tall grass environments where these sensors cannot map the ground.

Because of this, it is unavoidable not to hit the leg other than the toe. The leg collision analysis
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is vital because the robot can fail in the mission, can damage itself, payload, or the human.

The leg collision is an important failure mode, which should be used to do mitigation analysis.

These points make the collision sensing by way of tactile or other proprioceptive methods more

necessary.

3.3 Feasibility of sensor less leg collision analysis for Minitaur

Figure 3.1: Geared drive in Minicheetah

Figure 3.2: Direct drive in hybrid-bipedal robot from MAE 207
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Most robots in the modern world use some gear-down mechanism to produce high torques

while operating on an optimal power band. This approach is hard in the context of collision

detection and localization because the correlations between motor encoder values and collision

information are diluted. The collision is spread across a large motor turn angle, and the addition

of noise and backlash makes it hard to detect and localize. This is the reason that geared drive can

not be generally used for sensor-less contact analysis. But minitaur does not use the geared-down

approach. It uses direct drive. The direct drive is a torque transmitting mechanism that does not

use any gears or belts. This method is has been relatively simple and intuitive but did not gain

popularity because of the unavailability of motors that can produce sufficient torques. Minitaur is

equipped with T-Motor U8, which provides enough torque. The direct drive can provide a good

correlation between motor reading and collision. Many simple physics-based approaches like

finding a discrepancy between the motor command and motor positions/torques can help to detect

collisions [22]. The constraints of the mechanism and motor torques can be used to predict the

location of the contact [23]. So, in essence, these type of methods requires two steps, namely:

1. Collision detection with discrepancy analysis

2. Collision localization with physics-based methods

These steps use the motor commands and motor readings (e.g., torque, velocity, etc.) for

the prediction of collision detection and localization. It shows that the signal for collision analysis

lies in the motor commands and motor readings. So our data-driven method should also use these

readings for prediction. Due to the ability to work with high-dimensional input-output data, the

neural network approach is selected.

3.4 CDLnet (Collision Detection and Localization Network)

The neural network architecture generally depends on the nature of data, data dimension,

required output nature, and dimensionality. To our best knowledge, The neural-network based
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approach for both collision detection and localization is never examined before. The various

aspects of a neural network like input, output, and loss function is discussed below.

3.4.1 Input to the Network

In recent years many physics-based approaches which been based on forces, torques, and

velocity constraints. (add the citations here). The underlying process is still a time series analysis.

For example, the torque-based method runs online. The torque measurements are then kept track.

The sudden change of the torque values is an indicator of the collision. The sudden change

causes because the point of collision restricts the further movement of the leg. The error between

commanded trajectory and real leg location increases; therefore, current increases, and hence

torque generally increases. Then, this information can be further processed to get the location

of the collision. The time scale of collision is much smaller than the time scale of the gait. As

we are interested in a more recent collision, the values beyond a certain point in past history are

not helpful. From that, one can conclude that the data-driven method should be given the past n

state-action pairs and current state to predict the collision-related information. In our case, the

algorithm should take the entire 28-dimensional state and 8-dimensional action state for n past

time step and current state as input.

3.4.2 Output from the Network and Loss Function

For our problem, One naive way to approach this problem is to use a single network

and predict unattainable coordinates of XY location when contact does not happen and train the

network against that. This approach does not work in reality because there is an imbalance of

classes of training data. The data has significantly more number of data points when the collision

does not happen. Because of this statistical imbalance, the network will learn only to predict

those unattainable values and will predict with a very large error when the collision occurs. The
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other approach is to create two neural networks, one for collision detection and one for collision

localization. At first, the collision detection network is trained, and then the collision localization

network is only trained on data where the first network finds collision. In principle, this approach

can work and be very accurate but is a lot slower and consumes more memory and energy than

using a single network. We propose a neural network-based method that combines the speed

of a single neural network and the accuracy of a double neural network by using a unique loss

function for prediction. The network is from the class of temporal convolutional neural networks.

The temporal convolutional neural networks use filters. The parallel implementation of filters

makes the convolutional network fast. The other advantage is the number of tunable parameters

is way lower than the fully connected networks [24]. In temporal convolutional neural networks

(TCN), the filters (sliding windows) are applied across the time domain to extract useful features

for prediction. The first layer of the network is 1D - convolution, and then the 2D convolution

filters are applied. The 1D convolution extracts the features from time step t, and then the 2D

convolutions are applied to that features. The 2D convolution learns the features across time to

predict the required quantity. The other architectures like the fully connected neural network do

not have any notion for feature extraction in the time-domain, and architectures like the recurrent

neural network suffer from slow training and execution time. The output from convolutional

layers is then combined with current state values and passed through a single layer network. The

current time state is considered because collision can just occur or about to start occurring at the

current timestep. []

The output of each layer is then passed through ReLU non-linear activation function. The

neural network is essentially a BlackBox algorithm and at each time returns a number of the

exact number of the outputs that are programmed when initialized. The last layer activations are

selected according to the prediction requirement.

Our network outputs two type of values.

1. Collision probabilities for each leg: values ranged from 0-1 with a sigmoid activation
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function total of 4 values

2. XY location of the contact for each leg in leg coordinate system: 8 values with no activation

function

The problem is the data has an imbalance of classes, and we wish not to train the XY

location of the contact for each leg when the collision does not happen. The solution of the given

problem is given by the following loss function. Total Loss is given by,

Total Loss = Binary Cross Entropy Loss + µ ∗Special Collision Regression Loss (3.1)

The loss function has two parts

1. Binary cross entropy loss: This loss function is used when data has binary label (0-1) for

each category. It trains the network to give the probability of the collision for each leg for

given time window. The binary cross entropy loss also called as log loss given below,

Binary Cross Entorpy Loss =
−ΣN

i=1[Σ
L
i=1(Ci j ∗ log(p(Ci j))+(1−Ci j)∗ log(1− p(Ci j))]

N
(3.2)

2. Special Collision Regression Loss: The special collision regression loss is inspired by

the YOLO paper [25] and does work in the following way. The network outputs the XY

coordinates of collision for each leg. The loss function takes network output and true

collision values and calculates squared error between two. This squared error is then

premultiplied with the collision binary label. This binary label multiplication works as a

gate and allows the backpropagation algorithm to flow back the gradients if and only if the

collision binary label is 1.

Special Collision Regression Loss =
ΣN

i=1[Σ
L
i=1Ci j ∗ ((Xi j −Xnet

i j )2 +(Yi j −Y net
i j )2)]

N
(3.3)
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Because of the gate mechanism, the value of special regression loss is several orders

smaller than binary cross-entropy loss. The special regression loss is multiplied with tunable

variable µ. The µ value is used to balance values of the binary cross-entropy loss and special

regression loss. The value of µ can be determined by running training script and evaluating values.

Figure 3.4: Baseline Feed-forward network

38



Figure 3.3: CDLnet (Collision Detection and Localization network)

39



3.5 Baseline

For testing the effectiveness of the CDLnet, it should be tested against the baseline. Most

tabular data problem uses a fully connected neural network. There can be a huge amount of

network architecture with different numbers of neurons, activation functions, and hidden layers. It

is not possible to test for all of them. So for the baseline inspired by IMEDnet [26]. The baseline

is trained with the same loss function with the same µ to a fair comparison.

The output of each layer is then passed through ReLU non-linear activation function. The

output of the network is neural network is processed the same as described in the section before.

3.6 Experiment

Figure 3.5: Experiment setup
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Figure 3.6: Potential area of collision

The experiment uses the simulated minitaur environment from the pybullet as described

earlier. The minitaur robot’s torso was put on the rack. The rack restricts the movement of the

minitaur.

The script of generating such environment selects between random leg or the no obstacle at

all to get as many variations in data as possible. The environment can generate random obstacles

in the leg workspace, as shown in the fig below. The pybullet gives contact information by

getContactPonits command. The command provides information in the world coordinate frame.

Appropriate transformation in the local leg coordinate frame is made by the transform library.

For data generation, The script uses sine gait from ch.2 and samples velocity in range 27-47 and

amplitude in the range 0.3-0.5. The training data was generated by 250 such episodes. The saved

data consist of the current observation, action, and next observation for the entire episode. The

same way generates the testing data with a different seed. The training and testing data is saved in

separate files and never mixed. Implementation details of network architectures are given below,
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Table 3.1: Parameters for the experiments

Parameter Baseline CDLnet

Learning Rate 0.0001 0.0001

Max Iteration 100 100

Mini Batchsize 128 128

Optimizer Adam optimizer [21] Adam optimizer[21]

Input dimension 280 past 7 (s, a) and current s

Output dimension 12 12

µ 100 100

Table 3.2: the Baseline Architecture

Layer and Parameters Baseline

Linear Layer 1 input dim = 280, output dim = 750

Linear Layer 2 input dim = 750, output dim = 650

Linear Layer 3 input dim = 650, output dim = 500

Linear Layer 4 input dim = 500, output dim = 300

Linear Layer 5 input dim = 300, output dim = 100

Linear Layer 6 input dim = 100, output dim = 20

Linear Layer 7 input dim = 20, output dim = 35

Linear Layer 8 input dim = 35, output dim = 12

Activation Function Tanh

Total Parameters 1208131
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Table 3.3: the CDLnet Architecture

Layer type Input channel Output channel Kernel size Stride Padding

Conv1D Layer1 36 128 (3) (1,1) (1,1)

Conv2D Layer2 128 64 (2,2) (2,2) (0,0)

Conv2D Layer3 64 64 (2,2) (2,2) (0,1)

Conv2D Layer4 64 64 (2,3) (2,2) (0,1)

Linear Layer 1052 12 NA NA NA

Activation Function ReLU

Total Parameters 72208

3.7 Results

The training curve for the CDLnet and baseline shown figures []. The loss value of the

training curve stagnates above value 0.4. while the CDLnet was able to move below value 0.2.

It is noted that in the beginning the binary cross entropy loss dominates in comparision to the µ

multiplied. When the loss function goes below the 0.4 the network’s accuracy of the collision

detection is above 80 %. As discussed earlier the fully connected network does not able to learn

features across time domain, because of that it cannot lower its loss function below 0.4. The

training loss function for the CDLnet goes below 0.2. In this domain the binary cross entropy loss

is smaller than the special regression loss. The network’s ability of collision detection is above

99.5 %. The CDLnet obtains very high level of collision detection accuracy around 20 epochs.
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Figure 3.7: Train/Test curve for Baseline network

Figure 3.8: Train/Test curve for CDLnet
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The baseline network also not able to learn the xy coordinates of the collision as shown

in the histogram of the distance between true xy coordinates and xy coordinates predicted by

the network. The baseline’s output is really spend almost uniformly. The average error for xy

coordinate prediction over all prediction goes over 3 cm for all runs. But for CDLnet, after 20

epochs the special regression loss becomes major loss function. As the number of epoch increases

the network prediction of the xy coordinates improves. As seen by the plot of the histogram. The

the average value of error on xy coordinates is 1.5 cm over mutiple runs. The CDLnet outperforms

[23] by 0.5 cm.

Figure 3.9: Histogram of distance error between True XY coordinates and Baseline network
output
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Figure 3.10: Histogram of distance error between True XY coordinates and CDLnet network
output

The some of the network outputs are shown for both for baselines and CDLnet. The

results are shown for randomly generated data in figures () and (). The results gathered over

multiple runs. In many cases baseline network also fails to learn and gives some average value

for XY coordinates. The dots represents correct XY coordinates from training data. The star

represents the network output. The dots given red color it network was not able to recognize the

collision detection. As network outputs XY coordinates regardless of the collision probability.

From plots one can see that baseline performs performs far worst than CDLnet.
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Figure 3.11: The CDLnet XY coordinate output wrt to real collision

Figure 3.12: The best Baseline XY coordinate output wrt to real collision
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Figure 3.13: The worst Baseline XY coordinate output wrt to real collision
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