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OPTICAL SYSTEMS FOR SYICHROTROI RADIATION 

(A Series of Four ~ctures) 

LECTURE 1: 

IRTRODUCTORY TOPICS 

M., R. Howells 

Center for X-ray Optics, Lawrence Berkeley Laboratory, 

1 Cyclotron Road, Berkeley, California 94720 

1. IRTRODUCTIOI 

In this lecture we consider various fundamental topics which underlie 

the design and use of optical systems for synchrotron radiation. We 

choose to adopt_ the point_ of view of linear system theory which acts 

as a unifying concept throughout the series. In this context the, 

important optical quantities usually appear as either impulse response 

functions (Green's functions) _or frequency transfer functions (Fourier 

Transforms of the Green's functions). 

2. SUMMARY OF LIHEAR SYSTEM THEORY 

Consider a generalised system in which an input signal i(t) leads to an 

output signal o(t). If i 1 leads to o1 and i
2 

to o2 and if, in 

addition, the input ai
1

+bi2 leads to an output ao1+bo
2 

where a and b 

are arbitrary constants, then the system is said to be linear. The 

input signal i(t) = 6(t-t .) is of special importance and the corres-o 
ponding output signal o(t) = g(t,t

0
) is called the impulse response 

function or Green's Function. It should b~ understood as the signal at 

t due to a delta function input.at t
0

• The impulse response function 

contains a full description of the properties of system. 

Any arbitrary input can be synthesised from a series of delta func­

tions and hence using the superposition principle expressed in the above 
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definition of linearity we can write the output quite generally as 

+m 
o{t) & I i{t0 ) g{t,t0 ) dt0 {1) 

In addition to linearity many systems have the additional property 

that g{t,t ) = g{t-t ) i.e. that the response to a delta function 
0 0 

input at t 1 is the ~ as the response to one at t 2 apart from a 

shift of t 2-t1 . For example, in a well corrected microscope the 

response to a point source of light in the object plane is a diffrac­

tion blur in the image plane. If the point source is shifted the 

diffraction blur is shifted correspondingly but retains the same shape. 

Such systems are called shift invariant and for these cases {1) becomes 

+m 
o(t) = I i{t0 ) g(t-t0 ) dt0 {2) 

we recognise this as a convolution integral and from the Convolution 

Theorem we immediately have 

O(w) = I(w).G(w) {3) 

Where 0, I and G are the Fourier Transforms of o, i and g. For 

Linear, Shift Invariant Systems {3) defines the FREQUENCY TRANSFER 

FUNCTION G{w) which is seen to be the Fourier Transform of the 

impulse response function8 . 

We have not so far given any particular physical meaning to the 

independant variable t. However for cases where t represents time an 

additional restriction applies to the system because there can be no 

output until after the input i.e. 

g(t-t ) = 0 for t < t . (4) 
0 0 

Such systems are called causal and we shall see later that the 

restriction (4) leads to the requirement that the real and imaginary 

parts of G(w) form a Hilbert Transform pair. 

We now consider two examples of Linear Shift Invariant Systems which 

are relevant to optical system design. 

3. DAMPED HARMONIC OSCILLATOR 

Consider an electron bound so that its natural oscillation frequency is 

w and lightly damped with with damping constant r. The impulse 
0 

response function is the response to a forcing function -e~ 6(t) 

i.e. the solution1 to the equation. 



« 

': 

\) 

- 3 -

d2r dr 
m dtZ + mf ·d~ + IDial~!: = -el &(t). (5) 

In view of the non-zero inertia of the system we need a sine solution: 

-e(. _r t 
!:(t) :: g(t) "' e 2" siflea)0 t (6) 

lOla> 
0 

By taking the Fourier ~ransform we arrive at the Frequency Transfer 

Function 

G(w) = -e( 1 (7) 
m w2-w2+iwr 

0 

1 now represents the amplitude of a $ine wave input to the system. 

4. FREE SPACE PROPAGATION OF AH OPTICAL FIELD 

Suppose we know the amplitude distribution of a wave over some plane 

surface I of finite area and general point P(x',y') and we wish to 

find the amplitude distribution over another plane surface parallel to 

I, distance z downstream from it and having general point Q(x,y). 

Accordin~ to the Rayleigh - Sommerfeld diffraction formula2 

1 expikr UQ(x,y) =~I u (x',y') cose dx'dy' (8) 
l.."- I P r 

where PQ :: r, k =¥and e is the angle_ between PQ and the normal 

to I. We recognise that (8) is a linear superposition integral like 

(1). To simplify (8) we approximate cose~l and r~z in the 

denominator. In the exponent we approximate 

r = z2+(x-x•)2+(y-y•)2 ~ z[l+~(x;x•)2+~(y;y')2+ ... ] (9) 

With these simplifications which are variously known as the Fresnel, 

Gaussian or Paraxial approximation (8) becomes 

UQ(x,y) 

We note 

finally 

where 

and 

'k.z [ . ] = ~ fUP(x' ,y•) exp H- (x-x' )2+ (y-y• )2 dx'dy' (10) 

that (1<>) is now a .convolution integral (like (2)) and can 

be written, using * to represent convolution as 

(11) 

•<x,y:z) (12) 

~:::ix+jy. 

The function •<~:z) is known as an Optical Propagator or Vander Lugt 

Function. These functions provide a convenient shorthand for problems 
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in Fourier Optics and an extensive algebra has been worked out for 

them3 . 

5. OPTICAL PROPERTIES OF MATERIALS: ELECTROMAGNETIC THEORY 

Let us take as a starting p~int the exact form of Maxwells equations 

• as stated for example by Born and Wolf • We now make the following 

additional assumptions about the properties of the material we are 

considering: 

Ohms law 

jext= Pext = 0 no external currents or charges 

P = X E no non-linear electric or - e-
~ = Xmtt magnetic effects 

medium is isotropic. 

Taking these together with the following equations5 

D = ! + 4•E = c! 

We have 
~ = tt + ··~ = pH 

c = 1 + 4•x e 

\.1 = 1 + ··~ 

(13a) 

(13b) 

(13c) 

(13d) 

(13e) 

(14) 

(15) 

{16) 

(17) 

xe and ~ are the macroscopic electric and magnetic suscepti­

bilities respectively. Otherwise the notation is standard as in 

references 4, 5 and 6. Using (13a), (13b), (14) and (15), Maxwells 

equations reduce to a single wave equation6: 

2 £\.1 a2! 4•o a! 
9!=2-:--:2+--r­

c at c at 
26 iwt If we now assume a time dependance e i.e. a/at _ iw 

then we get the space dependant equation 

2 2 • 
v2E + ~ (c - i~) E = 0 - c2 w -

indicating a simple ha~onic plane wave with complex propagation 

constant k given by 
K2 = ~ lJ(C - i~) 

(18) 

(19) 

(20) 

where w is the angular frequency and ko = ~ Since k = nk where n = c 0 

n-ik is the-complex refractive index of the material, we can write26 

for non magnetic materials (lJ=l) 

2 -2 .4•o (n-ik) = n = c - 1~ (21) 

.. 
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so that 

(22) 

Alte~atively we can rep~esent the last term in (21) as the imaginary 
pa~t of a complex dieleet~ie function ; = c1-ic2 whe~e 

(23) 

Anothe~ common notiation is n = 1-4-iP. In all eases the ~eal 

pa~t ~ep~esents dispe~sion; changes in phase velocity, wavelength etc. 

eompa~ed to vacuum. The imaginary pa~t ~ep~esents absorption. The 

plane wave solution to (19) thus beeomes25 

-E = I exp-i[nk .r~t]exp-kk .~ -o -o- -a- (24) 

The linea~ absorption coefficient p is given by 

p = 2kko = ~ (25) 

In considering these optical constants it is impo~tant to note that 

fo~ ~ > 100 eV, 11-nl : 141 << 1 and k: P << 1. 

6 •. THEORY OF DISPERSIOII 

Initially let us represent an electron in an atom as a damped harmonic 

oscillator with a single natu~al f~equency as in equations (5)- (7). 

Then we can see that wehave an atomic dipole moment 2 = -e£ 

The complex atomic polarisability o is thus from (7) 

0 = !.2 1 
m w2-c.>2+irw 0 

-= cag,. 

(26) 

The mac~oscopic pola~isation ~ = llo~ whe~e II is the number of oscil­

lators per unit volume, so that from (13c) Xe = Ho and from (16) 

c = 1 + 411'110 

or 1 
(27) 

2 2 ·r w -c.) +1 w m 
0 

The behavior of the dielect~ic function in equation (27) is shown in 

Fig. 1. 

In orde~ to be more realistic we need to recognize that atoms effec­

tively contain many oscillators of different natu~al frequencies, each 

frequency corresponding to the ene~gy of an allowed elect~onic 

transition. Suppose the~e are n atoms per unit volume and each 
0 

contains g oscillators of natu~al frequency w . In this case 
s s 

II = n0 ,g8 and (27) becomes 

4•noe gs 
c(w) = 1 + -- I (28) 

m s w~-c.>2+irw. 
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Fig l. Behavior of the real and 
imaginary parts of c = c1 - ic2 
for N oscillators per unit volume, 
each wi·th resonant frequency w0 , 

according to equation (21) 

----.... ............. 
', 

--Coherent 
-·-Incoherent 
--- Photoelectric 

' ' ' ' ' ' \ ' ' -·-,-' ,,..-· ' ·~. 
/ ' ' 

/ ' \ 
' 

Photon energy (keV) 
XBL 8512·12823 

Fig 2. Sample x-ray cross section 
data fr:om reference 12. The curves 
show cross sections for photo­
electric absorption, coherent and 
incoherent scattering and the total 
cross sec~ion for gold. NOte that 
in the entire region of interest 
here absorption is the dominant 
process 

I 
10-2 

f3 & o for Nickel I 
I 
I 

_j 10-3 
I 

I 
I 

J 10-4 
I (3 I 

Normal __ ,.,___/ 
Dispersion 

I 
I 
I 
~10-5 
' 

~ 
I 

100 

Fig 3. Values of P and 6 for nickel in the range 1-looA taken from 
reference 19. Notice the Kedge at 8.3 keV and Ledges at 0.86 keV. The 
inset shows a rectangular pulse and its Hilbert Transform. One can see the 
similarity in the effects of a step in the two cases. 

,-. 

\/ 
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In view of this dedvation it becomes clear that ; (w)-1 is the 

frequency transfer function for the material as the linear system, with 

!(w) as input and ~(w) as output. -From (27) we ean see the limiting behavior of c(w) for w >> w 
0 

i.e. electron binding forces negligible: 

lim 
c.r+cD 

- - ~ [c (w)] = 1 ~ 
Co) 

where~ = 
4•11e2 
-m- and Wp is known as the plasma frequency 

(29) 

This description represents a erude model for dealing with free 

electrons and it has relevance in describing the interaction of low 

energy photons with conduction electrons. In this ease it is know as 

the Drude model. It is also important as the asymptotic form of 

;(w) for deriving sum rules20. 

Ultimately the most important .property of our oscillators is their 

strength as seatterers of an incoming wave. To calculate this we 

first observe that an incoming transverse electromagnetic wave creates 

an oscillating dipole whose dipole moment is perpendicular to the wave 

propagation direction (the axis, say) and has dipole moment ;! which 

is given by (26). The field at an axial point distant r from the 

dipole 

substituting for 2<~~)from (26) we get for our oscillator 
2 2 r 

_ e w !(t-e-> 
~ - meZr wZ-wZ+irw. 

s 
(30) 

Suppose now the electron oscillator were to become a free electron. 

This would be achieved by setting w -+0, r-+o. Then (30) would become s 

~· = e
2 E(t-£) (31) 

meZr - c 

We can now calculate the scattering strength of ou~ oscillator relative 

to a free electron. This quantity is known as the SCATTERING FACTOR 

of the oscillator fs· 

f = -w2 
s w2-w2+iwr 

s 
Bow using c = w~/2• and 

From (29) and (30) fs = ~~~· or 

(32) 

the classical electron radius r given by 
0 

r 0 = e2/mc2 (28) becomes 



- 8 -

n-r ~2 ;(w) = 1 - ·v o I g f • s s s (33) 

Apparently the quantity ~ g5 f 8 is an intrinsic property of an atom. 

It is called the atomic scattering factor and is usually written as 

f=f1+if2- Substituting this in (33) we have 

;(w) = 1 - noro~2(f1+if2) 
• (34) 

and using (22) and (23) with 1~n=~ and k=~ both small we finally get 

(35) 

~ = rono ~2f = A~2f 
~ 2 2 

(36) 

-6 e o-2 13 where A= 2.72 x 10 K A , r 0 = 2.818xlo- em, 
3 and p is the density in gm/cm and M the atomic weight. 

A-knowledge of f 1 and f
2 

or their equivalents is extremely important 

in designing optical systems and there are extensive tabulations in 

the literature. Because of its direct relationship to the absorption 

coefficient and the absorption cross-section a, f 2 is easier to 

measure and is more widely known and tabulated than f
1

. For re­

ference we recall that the linear absorption coefficient is given by 

~ = 4{~ = 2r ~ f = n a 
0 0 2 0 

(37) 

In the next section we show that since c(w) is a frequency transfer 

function of a casual system, its real and imaginary parts must form a 

Hilbert Transform pair. Anticipating this result we find14 

IHw' )w' dw'] 
Cl)2-w i 2 (38) 

This is the relation usually used to derive 6 or f 1 values from a 

set of measurements of ~ or f 2 . (38) has two terms the first or 

"normal dispersion .. term, which describes the dispersion for an atom 

comprising Z free electrons and the second or "anomalous dispersion" 

term which describes the response of the resonant system CQnsisting of 

the oscillators. The second term becomes negligible for frequencies 

much larger than the largest resonant frequency. 

We show in table I a ~urvey of the main compilations of optical 

constants data for both vuv and x-~ay energies. In figures 1, 2 and 3 

J 

I' 

\.-
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we show typical data from such sources. In usint these data we offer 

various points to be noted : 

(i) Unique values of f 1 and f 2 only exist for photon wavelengths 

somewhat larger than the atomic size. For shorter wavelengths the 

useful quantity for us is the scattering factor near the foreward 

direction. 

(ii) The above theory was written with photon energies above 100eV 

in mind. In this case the allowed transitions havint significant gs 

values in (28) are essentially from atomic bound states into the 

continuum. This is not a necessary restriction and transitions 

dominated by solid state effects, interband, intraband etc can be 

included without changing the formalism except that 6 and P (1-n and k) 

may no longer be small. · 

(iii) Tabulations above 100eV depend on measurements or 

calculations that are specifically atomic in character. They do not 

include anything to account for solid state effects such as EXAFS, 

XANES etc. Generally speaking they also make no attempt to follow the 

functions when they are rapidly varying near absorption edges. 

Behavior in these regions is usually approximated as a sharp step. 

(iv) Significant disagreements among the various sources and 

between theory and experiment are quite common. Efforts continue to 

improve this situation. The following32 gives an idea of the 

accuracy with which optical constants are known: 

(v) 

Below 1 keV 

1-5 keV 

Above 5 keV 

30-5~ inconsistencies among theories, 

sparse experimental data 

Sources agree within 5-10~, occasionally 2~ 

Sources agree within 2-5~ except within 1~ 

above threshold when variations are 10~ for 

low Z, 5-1~ for high Z. 

In so.me wavelength ranges f 1 values are bard to find. To 

get f 1 values in these ranges one can either apply equation (38) or 

utilize the universal dispersion curves provided by Parratt and 
10 Hempstead Either way considerable effort is involved. 

(vi) Optical constants of compounds and mixtures can be calculated 

by taking the weighted averages of the elemental constituents. This 

procedure is obviously good only when atomic effects dominate. 
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7. KRAKERS KR05IG RELATI05S 

-Since c(w)-1 is a frequency transfer function there must be a 

causal, shift invariant impulse response function g(t-t0 ), so that 

;(w)-1 =+j g(~)e-2•i~~d~· 
-41) 

where ~ = t-t and g(~) = 0 for ~ < 0. Suppose for the moment 
0 

that w = w1+iw2.(39) then becomes 

c(w)-1 =+j g(~)e-2•iw1~ e2•w2~ d~ 
-41) 

(39) 

(40) 

It is apparent from the last term of the integrand in (40) that for 

~ > 0. The integral remains bounded only if w2 < 0. Thus 

c(w)-1 is analytic only in the lower half plane. We also consider 
that c(w)-1 ~ 0 as lwl ~ m. This is because c(w)-1 

represents a physieal property of a material and no material is 

elastic enough to respond to an input at infinite frequency. 

With these understandings the integral 

I= I c(w')-1 dw' 
(&)'-(&) 

c 
(41) 

9 (with the contour c shown in fig 5) must, by Cauchy's Theorem , be 

equal to zero. Defining integrals that go clockwise round the 

contour as positive we get 

I = !large circle + Ireal axis 
or substituting values 

~ Ismall circle 

0 = 0 + I 
-41) 

where the value of the last term follows from Cauchy's integral 
9 Taking the limit of (43) 6~ we get the result formula . as 

+m 1 c ((&)' )-1 dw' £((&))-1 = -. PI 
1. -G) 

(&)'-c.> , 

where P indicates the cauchy principle value. Taking real and 

imaginary parts of (44) with c=c1-ic 2 
+m ' 

( ) --- l pI £2((&)') A ..• £} (&) -1 uw 
• -41) (&) -(a) 

and 
1 +mi £1 ((&)' )-1 

= - p &.>' 
• -41) w -(a) 

(42) 

(43) 

(44) 

(45) 

(46) 



- 12 -

The signs of (45) and (46) would be reversed25 for c = c1+ic 2 . 

(45) and (46) are a form of the Kramers-Kronig23 relations for -c(~)-1 and indicate that the real and imaginary parts of c(~)-1 
24· 

indeed form a Hilbert Transform pair . The same proof is applicable 

to any causal frequency transfer function. It is usual to apply 
27 certain arguments and rewrite (45) and (46) as 

(47) 

(48) 

where o(o) is the d.c. conductivity. 

It is~ot possible to identify -the refractive index directly as a 

frequency transfer function, however we can still get Kramers Kronig -relations for it by the following argument28. n(~) is analytic in the 

lower half plane since n2 = c and an analytic function of an analytic 
function must be another analytic function. Thus the main argument for 

c(~)-1 can be used for n(~)-1 and {47) and (48) can be shown to become28 

(49) 

(50) 

Useful dispersion relations for many other quantities for example the 

amplitude reflectance6 can be worked out and are important for ana­

lysing ~ptical data. Reviews can be found in references 6, 20 and 28. 

There are further res~rictions on the form of the optical constants 

which can be traced to the fact that all physical systems have some 

inertia and so their impulse response functions must be zero at time 

zero. Such restrictions are called inertial sum rules and are 

-reviewed in reference 20. The best known sum rule is the "f-sum rule" 

and we can derive it easily by considering the high frequency behavior 

of, for example, n(~). Equating the square root of (29) to the high 

freq-uency limit of (49) we immediately get 
CID 

I ~ k(w)dw = ! ~ 
0 4 

(51) 

In view of (39) it is not surpising that the t~o behavior of n(w)-1 

can be studied by considering ~. 

J 
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TABLE 1 

Author Ref. Materials Constants 

absor-ption 

cross sections 

Energies Grid spacing 

McMaster ·et al. 11 all elements 10
3
-1o6ev 10-2~ 

Plechaty et al. · 12 a:ll elements 

Veigele 13 all elements 

Henke et al.(i) 14 all elements 

Henke et al.(ii) all elements 

Kirz et al. 15 Elements ,, --
steps 3,4,8 ... 

only ditto 

ditto 

f1 & f2 

f1 & f2 

Haelbich and 16 Rare gas sols ~ . 
I wan alk halides 

10
2
-1o8ev 

10
2
-1o

8
ev 

100-2000eV* 

100-2000eV(f
1

) 

30-10000eV(f
2

) 

100-10,000eV 

-5-SOOOeV 

(variable) 

Weaver et al. 17 Most metals c:
1

c: 2nk -.1-30eV 

Im(l) normal R (variable) 
c: 

Hageman et al. 18 Kg Al Cu Ag ditto plus 

Au Bi C Al2o3 Heff 

'Zombeck and 

Austin 

Palik. (ed) 

Sasaki** 

Hettrick. 

Auerbach and 

Tirsell 

19 Hi,Au,Pt, 

20 11 metals, 

14 semi cons, 

12 insulators 

n, 1t 

grazing R 

n, 1t 

21 all elements f 1 & f 2 
22 Hi,Au,Ru,Pt, n, 1t 

Ir,Rh,Os,Re,W grazing R 

29 all elements f 1 & f 2 

'30 elements 

1-32 

4 -.01-5x10 eV 

100-10,000eV 

IR-2000eV as 

appropriate 

.1-2.891 

100-10,000eV 

100-10,000eV 

100-1500eV Henke and 

Schattenburg 

Biggs and 

Lighthill 

31 all elements absorption 101-106ev 

cross-sections 

* data up to 10,000eV on digital storage 

**computed values using Cromer and Liberman code 

10-2~ 

10-2~ 

-2.5~ 

-1~ 

(lines) 

102 or 

103 

graphs 

only 

.OSeV 

10-SOt. 

10~ 

various 

.01! 

10"1. & 

graphs 

graphs & 

digital 

storage 

parameter 

fits 

parameter 

fits 
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