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Abstract

Motivation: Most proteins consist of multiple domains, independent structural and evolutionary

units that are often reshuffled in genomic rearrangements to form new protein architectures.

Template-based modeling methods can often detect homologous templates for individual do-

mains, but templates that could be used to model the entire query protein are often not available.

Results: We have developed a fast docking algorithm ab initio domain assembly (AIDA) for assem-

bling multi-domain protein structures, guided by the ab initio folding potential. This approach can

be extended to discontinuous domains (i.e. domains with ‘inserted’ domains). When tested on ex-

perimentally solved structures of multi-domain proteins, the relative domain positions were accur-

ately found among top 5000 models in 86% of cases. AIDA server can use domain assignments

provided by the user or predict them from the provided sequence. The latter approach is particu-

larly useful for automated protein structure prediction servers. The blind test consisting of 95

CASP10 targets shows that domain boundaries could be successfully determined for 97% of

targets.

Availability and implementation: The AIDA package as well as the benchmark sets used here are

available for download at http://ffas.burnham.org/AIDA/.

Contact: adam@sanfordburnham.org

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

Domains are evolutionarily, structurally and functionally independ-

ent units in proteins. Proteins, especially large, eukaryotic ones are

often composed of multiple domains, mostly due to the duplications

and recombinations of the coding regions during evolution

(Bjorklund et al., 2006; Chothia et al., 2003). Average eukaryotic

and prokaryotic proteins have 2.1 and 1.5 domains, respectively

(Apic et al., 2003; Brocchieri and Karlin, 2005; Ekman et al., 2005;

Zmasek and Godzik, 2012)—a low estimate, as only known Pfam

domains were used in the count, and new domains are continuously

being discovered. Domains usually have compact 3D shapes and

specific functions that are, at least to some extent, conserved be-

tween homologous domains in different proteins. The same domains

are often found in proteins with different domain architectures,

including standalone, single-domain ones. Moreover, structures of

many domains are solved only as single-domain constructs. As a re-

sult, domain assembly is a necessary step for structure predictions of

full-length proteins. Correctly arranged domain structures are often

crucial for full understanding of the function of multi-domain pro-

teins (Ben-Zeev et al., 2005).
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Residues within each domain usually have strong interactions

with each other, stabilizing the conserved domain structure, while

only a fraction of all residues are involved in the interactions with

other domains (Han et al., 2007). This increases the difficulty of ac-

curate determination of the relative domain positions and orienta-

tions. The interactions involved in domain–domain interactions and

those between different protein chains are very similar, therefore the

domain–domain and protein–protein docking pose exactly the same

challenges (Kanaan et al., 2009) and could be approached with the

same tools (Cheng et al., 2008; Inbar et al., 2005; Lise et al., 2006).

However, due to the restriction of polypeptide chain connectivity,

the search space for domain position and orientation is much

smaller than that for protein–protein docking. The problem of do-

main assembly could also be regarded as a special case of the folding

process, in which only the conformation of the linker region is

changing and domain structures are rigid. Hence, potentials and al-

gorithms for single-domain protein structure prediction, such as

Rosetta (Wollacott et al., 2007), could be applied to this problem.

In this article, we describe a fast energy minimization method for

domain assembly guided by the ab initio folding potential (Xu and

Zhang, 2012). This method is implemented in the first publicly avail-

able server in the field, AIDA (ab initio domain assembly), available

at http://ffas.burnham.org/AIDA/ (Xu et al., 2014a,b). This server

also provides access to a recursive protocol, which combines tem-

plate-based modeling with domain assembly in an iterative method

suitable for automated domain assignment, modeling and assembly

for a one-stop structure prediction of multi-domain proteins.

2 Methods

2.1 Statistics of protein domain structures
We first split all the individual chains from the set of non-redundant

protein structures in the Protein Data Bank (PDB) (Berman et al.,

2000) into domains, using the automatic tool DomainParser (Xu

et al., 2000). The statistics of the number of domains in the non-

redundant set of protein chains are shown in Figure 1a. Most of the

protein chains in the PDB contain only one domain, while only

32.7% contain multiple domains. Very few chains have more than

five domains and the maximum number of domains is 20 (in

Human Complement Factor H protein, PDB ID 3gaw, chain A).

This is clearly a bias introduced by constraints of experimental

structure determination, because the distribution of domains in

known proteomes is strongly biased toward multi-domain proteins.

As expected, the probability of finding multiple domains in a

chain increases with its length. As shown in Figure 1b, more than

half of the chains longer than 275 amino acids contain at least two

domains. We also analyzed the length distribution of the domains

(Fig. 1c). Majority of them (71.3%) have lengths around 150 resi-

dues and very few contain more than 600 amino acids. The max-

imum domain length is 1317 [the third domain of fungal fatty acid

synthase (PDB ID 2uv9, chain D)]. Definitions of domain boundaries

are often somewhat fuzzy and may differ between different domain

parsing algorithms and even between manual assignments by differ-

ent experts. Here, we consistently use DomainParser definitions.

2.2 Potential describing domain–domains interactions
AIDA represents protein structures by a reduced model, where each

residue contains four backbone atoms and a single point representing

the side-chain center. In the reduced model used by AIDA, the pos-

itions of side-chain centers are always estimated based on the back-

bone geometry. Because we only change the conformations of the

linker regions, keeping domains’ conformations unchanged, intra-

domain energies remain constant. Therefore, energy for the

assembled multi-domain protein structure Etot (Equation 1), that

needs to be minimized, is the sum of inter-domain interaction energy

Eint and the conformational energy of the linker Elink. The potential

for domain–domain and domain–linker interactions contains five

terms, which were already tested in ab initio folding calculations.

Eprm and Eprs describe the pairwise short-range interactions between

main-chain atoms and side-chain center, which originally were intro-

duced in Distance-scaled, Finite Ideal-gas REference (DFIRE) (Zhou

and Zhou, 2002) knowledge-based potential. Excluded-volume term

Eev prevents atomic clashes between different domains. Ehb is the

backbone hydrogen-bond potential, especially important in describ-

ing interaction between two strands belonging to different domains.

When domains come close to each other, solvent accessibilities of the

interface residues become smaller, as compared with those in sepa-

rated domains. Esa compares the solvent accessibility in the

assembled structure with that predicted by a neural network. Even if

solvent accessibility prediction contains some degree of error, this

term generally could guide the simulation to find the correct min-

imum of the domain–domain interaction energy.

Because the linker region is often lacking any regular secondary

structure and we need its conformation to be thoroughly sampled,

we only use two basic terms to control the quality of its structure.

ECa is the penalty when the distance between every two consecutive

Ca atoms exceeds the standard distance while Edh is the dihedral-

angle potential, which prevents unfavorable torsion angles in the

Ramachandran plot (Ramachandran and Sasisekharan, 1968).

Etot ¼ Eint þ Elink

Eint ¼ Eprm þ Eprs þ Eev þ Ehb þ Esa

Elink ¼ ECa þ Edh

(1)

By default, four residues around the domain boundary are

treated as a linker. AIDA users may truncate terminal residues in the

domain structures and they will be included in the linker region as

well.

2.3 Energy minimization simulation
Due to the chain connectivity constraints and fixed domain struc-

tures, the conformational sampling space is significantly reduced.

Fig. 1. (a) Distribution of domains in protein chains in PDB. (b) Probability of

finding multiple domains in protein chains of different lengths. (c) Length dis-

tribution of all protein domains
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In the AIDA program, we only perform a single-trajectory energy

minimization to obtain one assembled structure at a time. During

each energy minimization, the new conformation resulting from a

random movement in the linker region is accepted only if it has

lower total energy than the previous one. The simulation stops when

the total number of attempts exceeds 1000L (where L is the length

of the entire sequence) or the assembled structure reaches the local

or global minimum state (i.e. conformation with lower energy can-

not be found after 200 consecutive random movements). At the end

of the simulation, all side-chain atoms are added to the reduced

model using SCWRL4 (Krivov et al., 2009).

We use nine types of local movements adopted from QUARK

program (Xu and Zhang, 2012) to change the conformation of the

linker region. Those movements include the change of bond lengths,

bond angles and torsion angles of one residue in the torsion-angle

coordinate system and perturbation of coordinates of backbone

atoms in a short segment in the Cartesian coordinate system.

2.4 Assembly of continuous domains with

non-continuous domains
If all the domains are continuous at the sequence level, such as the

2-domain protein in Figure 2a, then the position and orientation of

the second domain is completely flexible and dependent only on the

conformation of the linker (colored in red). However, if there is a

domain that contains two discontinuous parts in the sequence, such

as in the 2-domain protein shown in Figure 2b, then we treat the

two parts of the discontinuous domain as the first and third domains

and the whole region in the middle as the second domain. We recal-

culate the conformation of the two linkers and the position of the

middle domain and keep the positions of the first and third domains

fixed. In the beginning of the simulation, the second linker and the

third domain may be disconnected, but the penalty potential ECa

gradually pulls them together. Sometimes, the distance between the

two ends of the predicted middle domain is significantly different

from the distance between the two break points of the discontinuous

domain. In this situation, it is impossible to generate a model with-

out breaking the chain if we only change the conformation of a

small number of residues in the two linkers. To address such situ-

ations, the program gradually extends the length of the linker region

until it fulfills conformational constraints.

2.5 Recursive domain splitting, modeling and assembly
The first step of template-based structure prediction is usually

threading, where one tries to identify the best template and generate

the alignment between the query sequence and the template. We use

local–local alignment programs such as FFAS (Fold and Function

Assignment System) (Jaroszewski et al., 2005; Xu et al. 2014a,b) for

threading, since in the local–local alignment, template selection is

not affected by the length difference between the query and the tem-

plate. Based on the initial threading alignment, at most three do-

mains can be defined (N-terminal unaligned region, aligned region

in the middle, C-terminal unaligned region), as shown in Figure 3.

The middle region, which is aligned to the template, may contain

multiple domains. It is noteworthy that Phyre2 server (Kelley and

Sternberg, 2009) also enables basic prediction of domain architec-

ture by presenting threading alignments in a graphical form.

The region matched to a template is modeled by the Modeller

program (Sali and Blundell, 1993) based on the threading alignment

from FFAS-3D. However, the alignment of this part may contain a

large gap in the middle, which is treated as an additional domain

and modeled separately. Hence, the original modeling result of this

gap region by Modeller is deleted and the other two parts, which

now form a discontinuous domain, will be assembled together with

the middle domain (see the modeling procedure of Dom2 in Fig. 3).

For the two unaligned terminal regions outside the central domain,

two separate threading procedures are performed. In the example

shown in Figure 3, most of the N-terminal region is aligned with a

template. We stop splitting of the terminal regions if the number of

unaligned residues is smaller than 20 (which in many cases is a signal

peptide) or if <30% of that region is predicted to be in alpha-helical

or beta-sheet structures. In the example shown in Figure 3, few un-

aligned residues are built by Modeller as a random coil. The C-ter-

minal region is split into two domains, one of which will be modeled

directly since it is aligned with the template. The procedure of splitting

and modeling is continued until remaining regions cannot be further

divided into smaller domains. If models of all the sub-regions have

been generated, then AIDA will assemble them together in a hierar-

chal fashion to build a model covering the entire protein (Fig. 3). We

want to stress here that, while many other servers can also generate

full-length models for multi-domain proteins, they can do it only if a

multi-domain template is available (otherwise the relative orientations

of individual domains become arbitrary).

3 Results

3.1 Construction of the benchmark set
We first obtained a non-redundant set of protein chains from the

PISCES (Protein Sequence Culling Server) (Wang and Dunbrack,

2003) server. We selected structures solved by X-ray crystallography

Fig. 2. Continuous and discontinuous domains. (a) GammaB-crystallin (PDB

chain: 1ammA) contains two continuous domains (in blue and green, respect-

ively). (b) Azotobacter vinelandii periplasmic molybdate-binding protein (PDB

chain: 1atgA) contains one discontinuous domain (in blue and yellow) and one

continuous (in green), inserted in the middle of the first one. Linker regions are

colored in red

Fig. 3. The schema of the domain splitting, modeling and assembly proced-

ure. ‘�’ and ‘:’ denote gap and aligned region after the threading. ‘�’ and ‘j’
stand for coil and reliable region after template-based modeling
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with resolutions better than 2.5 Å, clustered at sequence identity cut-

off of 40%. We then used DomainParser to determine the number

of domains in each chain. Single-domain proteins were discarded

and multi-domain proteins whose domains have no contacts (i.e.

there is no pair of atoms in two domains with a distance below 5 Å)

were also not considered. For multi-domain proteins, whose do-

mains interact with other molecules in heterocomplexes, domain ar-

rangements usually cannot be correctly predicted if no additional

information is provided. We manually selected 13 proteins with

more than three domains. Based on the distribution of the numbers

of domains in Figure 1a, we then selected 136 2-domain proteins

and 36 3-domain proteins pro rata. All the domains in these 185

proteins are continuous. The 76 2-domain proteins used in the ear-

lier work (Wollacott et al., 2007) are also included in this set for the

purpose of comparison. We also picked up 20 2-domain proteins

containing discontinuous domains and inserted domains. This set

was used for testing the assembly of discontinuous domains.

For an additional, more realistic test, we selected multi-domain

protein structures where individual domains have also been solved

independently. Because structures of separate domains are usually

slightly different than the corresponding domain structures in multi-

domain proteins, this test is more realistic and more demanding

than the test described in previous paragraph. In the first step, we se-

lected 4222 non-redundant 2-domain structures (as assigned by

DomainParser) from PDB. Then for each domain in a 2-domain

structure, we searched for single-domain proteins by running PSI-

BLAST (Altschul et al., 1997) against the entire PDB database. From

PSI-BLAST output, we selected PDB coordinate sets that were

aligned with each individual domain. We selected examples where

independently solved single-domain structures were highly similar

to corresponding domains in multi-domain proteins (sequence iden-

tity of at least 80% and alignment covering at least 75% of a single

domain). The above procedure yielded 122 examples where both

domains in a 2-domain protein have corresponding single-domain

structures. We then removed cases where two domains in the

2-domain protein had no strong interactions or the linker structure

was not determined. The final set (called 2unbound) includes 24 ex-

amples of 2-domain proteins where both domains have independ-

ently solved structures.

The five categories of multi-domain proteins (229 in total)

included in the benchmark set are shown in Table 1. Because for the

first four categories, individual domains are directly taken from the

original multi-domain proteins, each domain was randomly rotated

and translated in a 20�20�20 box before running the tests.

Domain boundaries were determined manually. Lengths of linkers

in the benchmark examples range from 4 to 31 residues.

3.2 Assembly of native domain structures
In this test, the structures of individual domains were adapted dir-

ectly from native protein structures. The initial conformation of the

linker regions was constructed based on the secondary structure

types predicted by PSIPRED (Jones, 1999). Solvent accessibility of

each residue (used in energy calculation) was predicted by a 2-layer

neural network (Xu and Zhang, 2012).

We generated 5000 assembled structures for each of the 76 2-

domain proteins. We assumed that domain assembly procedure failed

when none of the assembled structures in that set had Root Mean

Square Deviation of C-alpha atoms (RMSD)<3.0 Å to the native

structure. In total, AIDA failed for 11 targets, which is slightly lower

than 13 cases where Rosetta (Wollacott et al., 2007) failed by the

same criterion on the same set, as shown in Table 2. Five unsuccessful

predictions are common for both methods. We can reason that these

failures are due to the relatively small interface between the two do-

mains and the relatively long linker regions (�20 residues), which sig-

nificantly expand the search space. There are also eight targets, which

were not correctly predicted by Rosetta but were successfully

assembled by AIDA, three of which are shown in Figure 4. The pre-

dicted model in Figure 4a has RMSD¼0.5 Å to the native structure

(PDB ID 1nkr, chain A). Domain–domain interaction is weak there

since the two domains are separated. However, three residues in the

linker region form a parallel beta-sheet with three residues in the se-

cond domain. AIDA correctly predicted the domain orientations as

well as the conformation of the linker region.

In Figure 4b, the four residues in the linker region of the N-ter-

minal domain of N-ethylmaleimide-sensitive factor (NSF) (PDB ID

1qcs, chain A) form a coil structure, which has no interaction with

the two adjacent domains. However, the two domains have strong

side-chain atomic interactions with each other. The best AIDA

model has RMSD¼0.5 Å to the native structure, which correctly

captured those interactions. The success in this case is mainly due to

the synergistic effect of pairwise side-chain potential and solvent ac-

cessibility term. Interestingly, only one residue in the middle of the

linker shows a big deviation from its position in the native structure.

The realistic energy function is expected to guide the simulation to-

ward the native domain assembly. Hence, we expect higher number

of near-native models in the resulting set of models and significant

correlation between RMSD and TM-score (Zhang and Skolnick,

2004) (Supplementary Fig. S1a and b in the Supplementary

Materials). In contrast, inaccurate potential would not guide the

simulations toward native assembly and as a result, simulations gen-

erate very few near-native models (Supplementary Fig. S1c and d).
Table 1. Domain numbers and assembly result for different catego-

ries of examples in the benchmark set

Number

of

domains

Number

of

proteins

Number of

proteins with

correct

predicted

assembly

Number of

proteins with

correct assembly

in five lowest-

energy models

Success rate of

energy-based

selection (%)

2 76þ 60 88 73 83.0

3 36 21 14 66.7

>¼4 13 3 1 33.3

2dis 20 19 14 73.7

2unbound 24 13 7 53.8

2dis: 2-domain proteins with one discontinuous domain. 2unbound:

2-domain proteins with each domain solved independently.

Table 2. Comparison with Rosetta on 76 2-domain proteins

Method Number of

assembly

attempts

per protein

Number of pro-

teins with as-

sembly having

RMSD< 3.0 Å

to native

Number of pro-

teins with five

lowest-energy

models having

RMSD< 3.0 Å

to native

Success

rate of en-

ergy-based

selection

(%)

ROSETTA 5000 63 38 60.3

AIDA 50 51 46 90.2

AIDA 200 58 49 84.5

AIDA 1000 61 52 85.2

AIDA 5000 65 52 80.0
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Sulfur-substituted rhodanese (PDB ID 1rhs, chain A) in Figure 4c

has a long linker of 19 residues, which wraps around one half of the

first domain. The two domains have a large interface, which

allowed AIDA to correctly identify their relative positions. The

RMSD between the model and the native structure is 1.7 Å. From

the figure, we can find that higher RMSD is probably a result of the

slight shift of the first domain and the structural error in the long

linker.

From six targets which were not correctly predicted by AIDA

but were correctly predicted by Rosetta, three have unusually long

inter-domain linkers and for the other three, AIDA failed probably

because of the insufficient accuracy of the folding potential. One

may anticipate that the inadequate sampling in structures with long

inter-domain linkers may be another key factor affecting the accur-

acy of domain assemblies. In order to gain insight into this, we split

all the 136 2-domain proteins into three subsets according to their

linker lengths. As we can see from Supplementary Table S1, the suc-

cess rate decreases dramatically for proteins with longer linkers.

When the linker is short, domains can only occupy relatively limited

space with respect to each other and their interactions usually in-

volve residues that are close to the linker. In contrast to that, when a

linker is long, one domain can interact with another domain via

many possible interfaces, which dramatically increase the search

space for the simulation. This observation is in agreement with the

general trend—the accuracy of simulation decreases with the

increasing sequence separation between interacting residues (Xu and

Zhang, 2012).

From Table 2, we can see that using more models increases the

probability of obtaining a correctly assembled structure among gen-

erated models. Unfortunately, it is difficult to identify the best model

without knowing the native structure. We selected five models with

the lowest total energies as the representative output of each protein.

The total energy is calculated based on the reduced model using

Equation (1). We list the cases that contain low-RMSD (<3.0 Å)

model in the five selected models in Table 2 for different numbers of

generated models. If we only generate 50 models per target, 51 of

the 76 targets contain low-RMSD models and we successfully select

good models for 46 of the 51 targets. It is much higher than 38 as

reported for Rosetta, where five models were selected from 5000

models based on the Rosetta’s high-resolution energy. Each of these

low-resolution models was refined via energy minimization and

subject to side-chain repacking to generate a full-atom model. The

comparison between domain assembly results obtained with AIDA

and Rosetta reveals that the model selection by AIDA’s coarse-

grained energy not only increases the accuracy, but also reduces

computational cost (Table 2).

With the increasing number of generated models, the number of

targets where correct models were selected is also increasing, con-

firming the accuracy of the energy terms used in AIDA. However,

the success rate, which is defined as the ratio of the number of tar-

gets with successful selection to the number of targets contain-

ing good models, is generally decreasing. Obviously, the cost of

generating 5000 models is 100 times higher than for 50 models.

Therefore, in our tests, we generated 50 models for each target in

the benchmark set.

Because RMSD is sequence-length dependent, the assembled

multi-domain structure may have RMSD>3.0 Å if the sequence is

long, even when the arrangement of the domains is correct. Hence,

we used TM-score, which takes the length dependence into account

to evaluate the difference between each model and the native struc-

ture. The highest TM-score TMmax of all the individual domains is

normally from the longest domain. The assembled structure should

have TM-score larger than TMmax even when the domain arrange-

ment is completely wrong. We consider the assembly result is correct

if the remaining domains (other than the one which individually

yields the highest TM-score) contributed at least half of the total

TM-score value (Xu and Zhang, 2010). Hence, the TM-score cutoff

value for correct domain arrangement is defined by Equation (2).

Here, TM-score of the ith domain structure is denoted as TMi and

their sum should be close to 1 if each domain was directly extracted

from a multi-domain protein.

TMcutoff ¼ TMmax þ 0:5� ð
Xm

i¼1

TMi � TMmaxÞ

¼ 0:5� ð
Xm

i¼1

TMi þ TMmaxÞ (2)

We then check the 50 models for each benchmark target to see if

any good model was generated and if it was selected by the AIDA

potential. The detailed results for proteins with different number of

domains are shown in Table 1. From the last column of the table,

we can find that the probability of finding a good model among 50

models becomes lower for a larger number of domains in a protein.

It seems that the success rate of energy-based selection is also de-

pendent on the number of domains. This is caused by the larger

search space and higher chance of selecting incorrect domain assem-

bly for proteins with a larger number of domains.

One successful domain assembly result for 5-domain beta-

galactosidase from Arthrobacter sp. C2-2 protein (PDB ID 1yq2,

chain A) is shown in Figure 5a. All the five domains in the model are

in the correct position as compared with the native structure. The

most challenging part was the arrangement of the fifth domain since

the linker between the fourth and fifth domains is 12-residue long.

Even if this linker is not predicted accurately, the fifth domain con-

tacts with the third domain via the correct interface. For some of the

failed cases, we still can assemble some of the domains correctly

when domain number is larger than 2. One failed case, human

cytosolic X-prolyl aminopeptidase (PDB ID 3ctz, chain A) in

Figure 5b contains three domains, whose TM-score 0.719 is lower

than the cutoff value 0.742. The third domain in the native structure

and the model match with each other, but at most it can lead to the

Fig. 4. Three examples of 2-domain assembly. Predicted assembly is repre-

sented by thick backbone while native structure is by thin backbone. (a) The

inhibitory receptor for human natural killer cells 1nkrA, linker length¼4,

RMSD¼0.5 Å. (b) The N-terminal domain of NSF 1qcsA, linker length¼4,

RMSD¼0.5 Å. (c) Sulfur-substituted rhodanese 1rhsA, linker length¼ 19,

RMSD¼1.7 Å
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TM-score gain of 0.480. Part of the second domain in the model has

the correct position and orientation, which contributes to the final

TM-score. The first domain is in the correct position, but the orien-

tation is completely wrong.

For the set of proteins with discontinuous domains, 19 out of 20

targets are successfully assembled. Because there are two linker re-

gions between the discontinuous domain and the ‘inserted’ domain,

the position of the ‘inserted’ domain is more restricted, which makes

the assembly of those 2-domain proteins much easier than for the

proteins with two continuous domains. All the 19 targets have mod-

els with TM-score>0.9. The only case, where assembly failed is

ATP-Phosphoribosyltransferase(hisG) from Thermus thermophilus

HB8 (PDB ID 1ve4, chain A) with TM-score¼0.747 which is close

to the cutoff value 0.796.

3.3 Assembly of independently determined

domain structures
Unlike the reassembly of domains directly extracted from the native

proteins, assembly of independently solved domains reflects a scen-

ario that is likely to be encountered in a real research problem. Our

dataset contains 24 such examples and similarities between structures

of individual domains and corresponding domains in 2-domain pro-

teins vary from 0.5 to almost 1.0, as evaluated with TM-score. For

example, the second domain in FADD (MORT1) protein (PDB ID

2gf5, chain A) and the first domain in SMT fusion Peptidyl-prolyl

cis-trans isomerase (PDB ID 3uf8, chain A) only share the same folds

with single-domain proteins—human FADD death domain (PDB ID

1e41, chain A) and ubiquitin-like protein Smt3 (PDB ID 1l2n, chain

A) separately and the details of their backbone and side-chain con-

formations are quite different.

We performed domain assembly experiment for those proteins by

generating 50 assembled models for each of them using independently

solved domain structures and selected top five models based on en-

ergy. The overall result is shown in the last row of Table 1. As com-

pared with the benchmark result on the 136 pairs of domains

extracted from multi-domain proteins, the success rate of generating

good models decreases from 65 to 54%. It indicates that structural

difference in independently solved domain structures indeed affects

the accuracy of the method. However, there are still several successful

examples of domain assembly using unbounded domain structures.

As shown in Supplementary Figure S2a, the result of the assembly of

independently solved domains structures is generally correct for

2gf5A. In particular, the single-domain protein 1e41A matches well

with the second domain of 2gf5A after the superposition even if the

TM- score between them is only 0.57. We also didn’t find that the

linker length is the major factor affecting the success rate. Two out of

the four proteins, which have linker lengths >20 are correctly

assembled. For example, the linker between the two domains in scFv-

IL-1B complex (PDB ID 2kh2, chain B) consists of 21 residues and,

despite the fact that the predicted linker conformation significantly

differs from the real one (shown in Supplementary Fig. S2b), the two

domains were correctly assembled by AIDA. This is probably due to

the strong interactions between them (two pairs of beta-sheets are

formed between the two domains).

The success rate of selecting correct domain configuration by en-

ergy is significantly lower for assembly of independently determined

domains than for domains extracted from the structure of the same

protein (53.8 and 83%, respectively). The lower success rate indi-

cates that small changes in the independent domain structures

(including side-chain positions) cause some incorrect domain config-

uration results to have low energies. More importantly, the correct

(near-native) assembly result may contain significant clashes when

built from independently solved structures. For instance, for the

human ATP-dependent splicing and export factor UAP56 (PDB ID

1xtk, chain A), AIDA generated relatively accurate domain

Fig. 5. Two examples of multi-domain assembly. Domains are colored differ-

ently and linkers are shown in red. Predicted assembly is represented by thick

backbone while native structure is by thin backbone. (a) Successful assembly

of 5-domain protein beta-galactosidase from Arthrobacter sp. (PDB ID 1yq2,

chain A), RMSD¼3.1 Å, TM-score¼ 0.936. (b) Partially successful assembly of

3-domain protein human cytosolic X-prolyl aminopeptidase (PDB ID 3ctz,

chain A), RMSD¼9.1 Å, TM-score¼0.719

Table 3. Domain splitting, modeling and assembly result on 95

CASP10 targets

Number

of

domains

Number

of

proteins

Number of

success-

fully split

proteins

Number of

proteins

with all

domains

correctly

folded

Number of

success-

fully

assembled

proteins

1 71 71 63 63

2in1 9 9 4 0

2 11 9 3 1

3 1 1 1 0

6in3 1 1 0 0

dis 2 1 1 1

Total 95 92 72 65

2in1: two domains are modeled together on one two-domain template.

6in3: six domains are modeled as three parts, with four domains modeled to-

gether on one four-domain template. dis: targets with one discontinuous

domain.
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configurations but they don’t have low energy values. In

Supplementary Figure S3, we show the superposition of 1xtkA with

two incorrect domain configurations with the lowest energies. In the

native structure, only a few atoms in one helix of the second domain

interact with the first domain (the structure shown in red).

However, AIDA generated domain configurations with stronger in-

ter-domain interactions which have comparable or lower energies

(models shown in green and blue). Model selection based on cluster-

ing may be a better solution in such cases.

3.4 Automated prediction of CASP10 targets
The assembly of predicted domain structures whose domain boun-

daries are determined automatically is obviously more challenging

than predicting arrangement of domains derived from native struc-

tures. We conducted a blind test of the iterative AIDA protocol on

the 95 CASP10 (The 10th Community Wide Experiment on the

Critical Assessment of Techniques for Protein Structure Prediction)

targets. In the automated protocol, FFAS-3D is used to generate se-

quence-template alignments, which are then used to determine do-

main boundaries.

In this protocol, the accuracy of the prediction of domain boun-

daries depends on the accuracy of the FFAS-3D alignments. As sum-

marized in Table 3, only two 2-domain proteins T0671, T0724 and

one 3-domain protein T0726, which includes discontinuous domain,

have incorrectly predicted domain boundaries. For targets T0724

and T0726, the best template is correctly found for one domain, but

the alignment also covers half of the next domain. Because most of

the CASP10 targets are either single-domain proteins or 2-domain

proteins with corresponding 2-domain PDB templates (rows 2–3 in

Table 3), domain assembly is not applicable to them. The detailed

analysis of these examples is given in the Supplementary Materials.

Below we only analyze the small subset of 15 targets, where non-

trivial domain assembly was needed (rows 4–7 in Table 3). It is note-

worthy that domain assembly using homology-based models is a

more demanding test for AIDA than domains extracted from multi-

domain proteins and independently solved domain structures.

There are total 15 multi-domain targets for which AIDA was

used to assembly the models of individual domains. For the nine 2-

domain targets, whose domains are correctly identified but built

from different templates, only three have both domains’ structures

correctly predicted, while each of the six remaining targets contains

at least one free-modeling domain. Supplementary Figure S4a shows

one successful assembly result for target T0674, whose domains

have TM-score¼0.600 and 0.845 to the corresponding native struc-

tures. In particular, one beta-hairpin is incorrectly predicted for the

first domain. However, the final assembled model still has accept-

able TM-score of 0.539. As it is shown in the Supplementary Figure

S4a, majority of the first domain and part of the second domain

align well with the native structure.

The 3-domain protein T0651 is correctly split into domains and

modeled, but the real linker region between the first and second do-

mains is more than 15 residues long, which probably led to the

wrong assembly prediction. Target T0719 contains six domains, but

the protocol split it into two parts, the first of which contains four

domains and the second contains two. Five of the domains were

modeled correctly while the last one is a free-modeling domain.

Unfortunately, the arrangement of the four domains in the model,

which is directly copied from the template, was not correct.

For the discontinuous 2-domain protein T0755, we split it into

two continuous domains. The modeling results of the two domains

are still mostly correct, with TM-scores of 0.696 and 0.606. The

assembly result for this target is shown in Supplementary Figure

S4b. Most of the first domain in the model matches the native struc-

ture well and part of the second domain is placed in the correct pos-

ition, which resulted in the TM-score¼0.538. The C-terminal part

of the whole structure is modeled as part of the second domain,

while in fact it belongs to the first domain.

FFAS-3D outputs a significance score (Z-score) for each

alignment. If this score falls below accepted cutoff (�34), then the

resulting model is expected to have correct fold. Thus, AIDA

assembly procedure should only be applied when all individual

domains can be modeled based on alignments with significant Z-

scores.

4 Conclusions

Proteins, especially eukaryotic ones, often contain multiple domains.

Fold prediction programs can often identify boundaries of individual

domains even in the absence of the template containing all the do-

mains present in the target but are typically not able to correctly pre-

dict the full-length structure because of the lack of appropriate

template. We developed the AIDA server for modeling and assembly

of domains in such cases. AIDA supports the assembly of any

number of continuous domains and can be used for discontinuous

domains. The method was tested using a benchmark set of 229

proteins, which includes multi-domain proteins with different num-

ber of domains, 2-domain proteins with one domain inserted in the

other, and 2-domain proteins whose individual domains’ structures

were solved independently. AIDA could generate accurately

assembled models (RMSD<3.0 Å to native structure) within 5000

models for 65 out of 76 cases, which is slightly better than the cur-

rent best result reported in literature. AIDA also has a high success

rate in selecting the most accurate model based on the final energy

value. Due to the presence of two linkers, which significantly reduce

the search space, discontinuous domain assembly is easier than the

assembly of continuous domains. Results of the assembly of inde-

pendent domain structures are less accurate than results for domain

structures extracted from the original multi-domain proteins.

Apparently small difference in domain conformations interferes

with the generation of near-native models and affects the energy-

based model selection.

AIDA also provides an iterative protocol for automatic domain

splitting, modeling and assembly, which is useful for automated pro-

tein structure prediction. The protocol was tested on 95 CASP10

targets, whose sequences were split and aligned with templates using

FFAS-3D. Then models were built for each domain by Modeller. As

many as 97% of the targets were correctly split into domains by the

local–local alignment program FFAS-3D. From the blind test on

CASP10 targets, we also observed that the arrangements of domain

structures in different proteins are not necessarily the same even if

structures of individual domains are similar. However, only for 5

out of the 15 multi-domain targets, all individual domains were

correctly modeled. The low prediction accuracy of domain

models made it difficult to assemble them correctly. Nevertheless,

AIDA still could predict two out of five domain assemblies correctly

(in cases when structures of individual domains were correctly

predicted).
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