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Summary paragraph

Following the first wave of SARS-CoV-2 infections in spring 2020, Europe experienced a 

resurgence of the virus starting late summer that was deadlier and more difficult to contain 1. 

Relaxed intervention measures and summer travel have been implicated as drivers of the second 

wave 2. Here, we build a phylogeographic model to evaluate how newly introduced lineages, as 
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opposed to the rekindling of persistent lineages, contributed to the COVID-19 resurgence in 

Europe. We inform this model using genomic, mobility and epidemiological data from 10 

European countries and estimate that in many countries over half of the lineages circulating in late 

summer resulted from new introductions since June 15th. The success in onward transmission of 

newly introduced lineages was negatively associated with local COVID-19 incidence during this 

period. The pervasive spread of variants in summer 2020 highlights the threat of viral 

dissemination when restrictions are lifted, and this needs to be carefully considered by strategies to 

control the current spread of variants that are more transmissible and/or evade immunity. Our 

findings indicate that more effective and coordinated measures are required to contain spread 

through cross-border travel even as vaccination begins to reduce disease burden.

Keywords

COVID-19; SARS-CoV-2; Europe; second wave; phylogeography; international mobility

Upon successfully curbing transmission in spring 2020, many European countries witnessed 

a resurgence in COVID-19 cases in late summer. The number of COVID-19 infections 

increased rapidly, and by the end of October, it was clear that the continent was deep into a 

second epidemic wave. This forced governments to reimpose lockdowns and social 

restrictions in an effort to contain the resurgence. While these measures reduced infection 

rates across Europe 3, several countries witnessed a stabilization at high levels or even a new 

surge in infections. The spread of more transmissible variants, in particular B.1.1.7 (Variant 

of Concern 202012/01 or 20I/501Y.V1 4), which was first identified in the United Kingdom 

(UK), has considerably exacerbated the challenge to contain COVID-19.

Already early on in the pandemic, modelling studies warned about new waves due to partial 

relaxation of restrictions 5 or seasonal variations 6. By mid-April, the European Commission 

constructed a roadmap to lifting coronavirus containment measures 7, recommending a 

cautious and coordinated manner to revive social and economic activities. However, the 

early start of the devastating second wave demonstrated that there was insufficient adherence 

to these measured recommendations. Cross-border travel, and mass tourism in particular, has 

been implicated as a major instigator of the second wave. Genomic surveillance 

demonstrated that a new variant (lineage B.1.177 8, 20A.EU1 [nextstrain.org]), which 

emerged in Spain in early summer, has spread to multiple locations in Europe 2. While this 

variant quickly grew into the dominant circulating SARS-CoV-2 strain in several countries, 

it did not appear to be associated with a higher intrinsic transmissibility 2.

Although it appears clear that travel significantly contributed to the second wave in Europe, 

it remains challenging to assess how it may have restructured and reignited the epidemic in 

the different European countries. Even without resuming travel, relaxing containment 

measures when low-level transmission is ongoing risks the proliferation of locally 

circulating strains. Phylodynamic analyses may provide insights into the relative importance 

of persistence versus the introduction of new lineages, but such analyses are complicated for 

SARS-CoV-2 for different reasons. Phylogenetic reconstructions may be poorly resolved 

due to the relatively limited SARS-CoV-2 sequence diversity 9. This is further confounded 
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by the degree of genetic mixing that can be expected from unrestricted travel prior to the 

lockdowns in spring 2020.

Mobility data predicts SARS-CoV-2 spread

We analysed SARS-CoV-2 B.1 (20A) genomes from 10 European countries for which a 

minimal number of genomes from the second wave were already available on November 3rd, 

2020. Using a two-step procedure that relied on subsampling relative to country-specific 

case counts (cfr. Methods), we compiled a data set of close to 4,000 genomes sampled 

between January 29th and October 30th, 2020 (Extended Data Table 1). In order to achieve 

maximum resolution in our evolutionary reconstructions, we constructed a Bayesian time-

measured phylogeographic model that integrates mobility and epidemiological data. Our 

approach simultaneously infers phylogenetic history and ancestral movement throughout 

this history while also identifying the drivers of spatial spread 10. We used the latter 

functionality to determine the most appropriate mobility or connectivity measure. 

Specifically, we considered international air transportation data, the Google COVID-19 

Aggregated Mobility Research Dataset (also referred to here as ‘mobility data’ for short), as 

well as Facebook's Social Connectedness Index (SCI), as covariates of phylogeographic 

spread (Extended Data Figure 1). The Google mobility data contains anonymized mobility 

flows aggregated over users who have turned on the Location History setting, which is off by 

default (cfr. Methods). The Social Connectedness Index reflects the structure of social 

networks and has been suggested to correlate with the geographic spread of COVID-19 11. 

To help inform the phylogenetic coalescent time distribution, we parameterized the viral 

population size trajectories through time as a function of epidemiological case count data for 

the countries under investigation.

Analyses using both time-homogeneous and time-inhomogeneous models offered strong 

support for mobility data as a predictor of spatial diffusion whereas air transportation data 

and SCI offered no predictive value (Extended Data Table 2). The fact that mobility data 

encompassing both air and land-based transport are required to explain COVID-19 spread 

highlights the need to consider both types of transport in containment strategies. To ensure 

that containment strategies were accommodated by our reconstructions, we further extended 

our time-inhomogeneous approach to model bi-weekly variation in the overall rate of spread 

between countries as a function of mobility (cfr. Methods, Extended Data Table 2).

Dynamic viral transmission through time

We use our probabilistic model of spatial spread informed by genomic data, mobility and 

epidemiological data to characterize the dynamics of spread throughout the epidemic in 

Europe. We first focus on the ratio of introductions over the total viral flow in and out of 

each country over time and the genetic structure of country-specific transmission chains 

(Figure 1). For the latter, we use a normalized entropy measure that quantifies the degree of 

phylogenetic interspersion of country-specific transmission chains in the SARS-CoV-2 

phylogeny (cfr. Methods). Although estimates for individual dispersal between pairs of 

countries can also be obtained (Extended Data Figure 2), we remain cautious in interpreting 

these as direct pathways of spread because the genome sampling only covers a restricted set 
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of European countries. The mobility to/from each country within our 10-country sample 

covers between 64% and 96% of the mobility of these countries to/from all countries within 

Europe (Extended Data Table 3, Extended Data Figure 3), except for Norway (27%), for 

which other Scandinavian countries account for considerable mobility connections (61%), 

and the UK (49%), for which Ireland accounts for a large fraction of mobility connections 

(38%).

According to the proportion of introductions, we estimate more viral import than export 

events for Switzerland, Norway, the Netherlands and Belgium throughout most of the time 

period under investigation. According to the estimated phylogenetic entropy, these countries 

also experienced many independent transmission chains since the epidemic started to unfold. 

This is consistent with country-specific studies; for the first wave in Belgium for example, 

about 331 individual introductions were estimated in the ancestry of a limited sample of 740 

genomes 12. For Portugal, we also estimate higher proportions of introductions early in the 

first wave but with a subsequent decline to predominantly export events. France, Italy and 

Spain on the other hand are characterized by a relatively high viral export during the first 

wave. The proportion of introductions remained relatively low for Italy and Spain following 

the first wave, while in France these proportions were high from mid-June until the end of 

July. The absolute number of transitions in our sample are however low during this time 

period. These countries also had comparatively lower entropy values early in the epidemic, 

with an increase for France by the start of summer and a more gradual increase over time for 

Italy. In Spain however, the genetic complexity of SARS-CoV-2 transmission chains 

remained limited. In the UK and Germany, the viral flow in and out of the country was 

initially relatively balanced. A recent large-scale genomic analysis in the UK indicates that 

this can imply very high absolute numbers of cross-country transmissions, as more than 

2,800 independent introduction events were identified from the analysis of 26,181 genomes 
13. Although our sample is limited compared to this analysis, our reconstructions also 

recover major influx from Spain, France and Italy during the first wave in the UK (Extended 

Data Figure 2). We estimate an increase in the proportion of introductions for the UK from 

mid-June, indicating an important viral import relative to export around this time. The 

phylogenetic entropy also peaked around this time. In Germany, the proportions increased 

somewhat later in summer with a concomitant rise in phylogenetic entropy.

Introductions thrive in low incidence

To assess the impact of summer travel on the second wave in the different countries, we use 

our genomic-mobility reconstruction to estimate both the number of lineages persisting in 

each country and the number of newly introduced lineages, and how these proliferated early 

in the second wave. We focus on a two-month time period between June 15th, on which 

many EU and Schengen-area countries opened their borders to other countries, and August 

15th, before which the majority of holiday return travel is expected for many countries. We 

identify the number of lineages circulating in each country on August 15th, and determine 

whether they result from a lineage that persisted since June 15th or from a unique 

introduction after this date (independent of the number of descendants for this lineage on 

August 15th, Extended Data Figure 4). In Figure 2, we plot i) the ratio of these unique 

introductions over the total unique lineages (unique introductions and persisting lineages) 
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(p1), ii) the proportion of descendant lineages on August 15th that resulted from the unique 

introductions over the total descendants circulating on this date (p2), and iii) the proportion 

of descendant tips (sampled genomes) after August 15th that resulted from the unique 

introductions over the total number of descendant tips (p3, cfr. Methods and Extended Data 

Figure 4). We estimate a posterior mean proportion of unique introductions that is close to or 

higher than 0.5 except for Spain and Portugal. This indicates that by August 15th a relatively 

large fraction of circulating lineages in each country was spawned by new introductions over 

summer. Because the B.1.177/20A.EU1 variant that was predominantly disseminated 

through summer travel does not appear to be more transmissible 2, this was unlikely due to 

intrinsic advantages of the newly introduced viruses.

The two proportions of descendants from these introductions on August 15th (p2) and after 

this date (p3) measure the relative success of newly introduced lineages compared to 

persisting lineages, indicating considerable variation in onward transmission. In Figure 2, 

the country estimates are ordered according to decreasing average incidence during the June 

15th - August 15th time period, suggesting that incidence may shape the outcome of the 

introductions. In countries that experienced relatively high summer incidence (e.g. Spain, 

Portugal, Belgium and France), the introductions lead to comparatively fewer descendants 

on August 15th or after. We find a significant overall association between incidence and the 

difference in the logit-scaled proportion of unique introductions and the logit-scaled 

proportion of their descendants on August 15th (p = 0.007) as well as between incidence and 

the difference in the logit-scaled proportion of unique introductions and the logit-scaled 

proportion of descendant tips after August 15th (p = 0.019, Extended Data Figure 5). With 

comparatively few descendants from introductions (Figure 2), Norway may to some extent 

be an outlier because lineages estimated as persisting in this country could in fact be 

introductions from other Scandinavian countries that are not represented in our genome 

sample. We recover qualitatively similar, but more variable and statistically unsupported 

associations between the success of introductions and incidence for the two-month time 

periods before and after the June 15th - August 15th time period (Extended Data Figure 5). 

This indicates that the comparatively higher proportion of introductions as well as the more 

stable and lower incidence between June 15th and August 15th provided the ideal conditions 

for a process of genetic drift by which introductions were able to fuel transmission.

Our estimates show that introductions in the UK particularly benefited from the conditions 

for successful onward transmission (Figure 2), with a considerable fraction of introductions 

originating from Spain (Extended Data Figure 6) reflecting the spread of B.1.177/20A.EU1 

that rapidly became the most dominant strain in the UK 2. Our analysis captures the 

expansion of this variant as well as that of B.1.160/20A.EU2, which together account for 

more than 25% of the genomes in our data set. While Spain was indeed inferred to be the 

origin of B.1.177/20A.EU1, the UK also considerably contributed to its spread (Figure 3). 

The earliest introduction from Spain to the UK was estimated around the time Spain opened 

most EU borders (June 21st, Figure 3). While introductions from Spain to other countries 

soon followed, we estimate a similar rate and amount of spread from the UK to other 

countries before these other countries also further disseminated the virus. Although inferred 

from a limited sample, this illustrates a dynamic pattern of spread and the importance of the 

early establishment of B.1.177/20A.EU1 in the UK that likely served as an important 
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secondary center of dissemination. We note however that this pattern may be impacted by 

the intensive and continuous genomic surveillance in the UK, which may also be reflected in 

our subsample of the available data. While the UK is also involved in the spread of 

B1.160/20A.EU2, this variant has been largely disseminated from France. The simple fact 

that this variant expanded later in France and subsequently also started to spread later 

compared to B.1.177/20A.EU1 (Extended Data Figure 7) may explain why the latter spread 

more successfully.

Discussion

Our Bayesian phylogeographic approach builds on a rich history of identifying drivers of 

spatial spread, with applications to various pathogens at different spatial scales, ranging 

from air transportation for influenza at a global scale 910 to gravity model transmission for 

Ebola in West Africa 14. Such studies use a relatively limited genomic sample to gain 

insights into viral transmission dynamics. This is also the case in our application to SARS-

CoV-2 in Europe for which we further extend the phylodynamic data integration approach to 

confront the lack of resolution offered by SARS-CoV-2 genomic data. A concerted effort in 

containing international spread further sets apart the COVID-19 pandemic from these earlier 

events. For this reason, we have now incorporated variation in mobility over time to account 

for the impact of these measures. Our reconstructions show that the composition of lineages 

circulating towards the end of the summer was to a significant extent shaped by 

introductions in most of the European countries. The relative success of onward transmission 

of the introduced lineages appears to be shaped by local COVID-19 incidence during 

summer.

Our results should be interpreted in light of several important limitations. In addition to a 

limited overall size, the genome data only cover a selection of European countries, implying 

that we are missing transmission events that involve unsampled countries. This may be 

important for Norway for example, which according to our mobility data, is largely 

connected to other Scandinavian countries. We also lack sampling from eastern Europe, 

which was to a large extent spared by border controls and lockdowns during the first wave, 

but witnessed high excess mortality rates during the second wave. The emergence of more 

transmissible variants has led to more intensified genomic surveillance, so similar 

phylodynamic reconstructions may now be performed on a wider scale.

The pandemic exit strategy offered by vaccination programs is a source of optimism that 

also sparked proposals by EU member states to issue vaccine passports in a bid to revive 

travel and rekindle the economy. In addition to implementation challenges and issues of 

fairness, there are risks associated with such strategies when immunization is incomplete, as 

likely will be the case for the European population this summer. A recent modelling study 

for the United Kingdom suggests that vaccination in adults alone is unlikely to completely 

halt the spread of COVID-19 cases and that lifting containment measures early and suddenly 

can lead to a large wave of infections 15. A gradual release of restrictions was shown to be 

critical for minimizing the infection burden 15. We believe that travel policies may be a key 

consideration in this respect because similar conditions may arise as the ones we 

demonstrated to provide fertile ground for viral dissemination and resurgence in 2020. This 
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may now also involve the spread of variants that evade immune responses triggered by 

vaccines and previous infections. Well-coordinated European strategies will therefore be 

required to manage the spread of SARS-CoV-2 and reduce future waves of infection, with 

hopefully a more unified implementation than hitherto observed.

Methods

Sequence data and subsampling

We used a two-step genome data collection procedure. We first evaluated the available 

genomes from European countries in GISAID 16 on November 3rd, 2020. We selected 

genomes from Belgium, France, Germany, Italy, Netherlands, Norway, Portugal, Spain, 

Switzerland and the UK primarily based on the availability of genome data from both the 

first and second wave at that time but also because of their high ratio of genomes to positive 

cases. A total of 39,812 genomes were available for these countries on November 3rd, 2020; 

the available number of genomes by country are listed in Extended Data Table 1. Portugal 

represented an exception because data for this country were limited to the first wave at that 

time, but we included genomes from Portugal because of its potential importance as a 

summer travel location.

We aligned the genomes from each country using MAFFT v7.453 17 and trimmed the 5′ and 

3′ ends and only retained unique sequences from each location. To further mitigate the 

disparities in sampling, we subsampled each country proportionally to the cumulative 

number of cases on October 21st (the most recently sampled sequence at the time) by setting 

an arbitrary threshold of 6.5 sequences per 10,000 cases, with a minimum number of 100 

sequences per country. To maximize the temporal and spatial coverage in each country, we 

binned genomes by epi-week and sampled as evenly as possible, sampling from a different 

region within the country when available. Only sequences from the B.1 lineage with the 

D614G mutation and exact sampling dates were selected for the analyses. From the final 

aligned sequence set, we removed 12 potential outliers, based on a root-to-tip regression 

applying TempEst v1.5.3 18 to a maximum-likelihood tree inferred with IQTREE v2.0.3 19, 

yielding a data set of 2,909 genomes (Extended Data Table 1).

Because of the nature of genome sequence accumulation, fewer recently sampled genomes 

were available for most countries on November 3rd (relative to the case counts at this time). 

Because our primary goal was to assess the persistence and introduction of lineages leading 

up to the second wave, we sought to augment our data set with more recent genomes, having 

already performed analyses on the initial data set. In the section on Bayesian evolutionary 

reconstructions, we outline how we update these analyses accordingly. On January 5th, 2021, 

we updated our dataset by adding over 1,000 non-identical sequences collected between 

August 1st and October 31st (out of a total of 56,395 available genomes; the available and 

selected number of genomes by country are listed in Extended Data Table 1). For Portugal, 

we extended this period back to June 22nd (the most recent sampling date for the previous 

Portuguese selection). We downloaded all new B.1 sequences with the D614G mutation 

collected during the selected time period from GISAID and performed the following 

subsampling. The number of genomes to add by country was obtained by raising the 

threshold ratio of sequences/cases to 8.5 and increasing the minimum number of sequences 
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to 200. To bias the temporal coverage towards more recent samples, the genomes from each 

country were binned by week and sampled such that the number of sequences added by 

week was proportional to an exponential function of the form et/4, where t=0 represents 

August 1st and t=13 is October 31st. For Portugal, we did not use this preferential sampling 

as we needed to include close to all available genomes to raise the number of genomes to 

200. The selected sequences were deduplicated and outliers were removed as described in 

the previous section. With the additional selection of 1,050 genomes, we arrived at a data set 

of 3,959 genomes (Extended Data Table 1).

Mobility data

We analysed four different mobility/connectivity measures: air traffic flows, a social 

connectedness index provided by Facebook, as well as aggregate Facebook 20 and Google 

international mobility data. Air traffic flow data were obtained from the International Air 

Transport Association (http://www.iata.org) and based on the number of origin-destination 

tickets while also taking into account connections at intermediate airports 21. We used 

monthly air traffic data between the 10 European countries under investigation for the time 

period between January 2020 and October 2020. The social connectedness index (SCI) is an 

anonymized snapshot of active Facebook users and their friendship networks to measure the 

intensity of social connectedness between countries (https://data.humdata.org/) 22. In 

practice, the SCI measures the relative probability of a Facebook friendship link between 

two users of the application in different countries. We used the SCI calculated for the 10 

European countries represented in our genomic sample as of August 2020.

The Google COVID-19 Aggregated Mobility Research Dataset contains anonymized 

mobility flows aggregated over users who have turned on the Location History setting (on a 

range of platforms 23), which is off by default. To produce this dataset, machine learning is 

applied to logs data to automatically segment it into semantic trips 24. To provide strong 

privacy guarantees, all trips were anonymized and aggregated using a differentially private 

mechanism 25 to aggregate flows over time (see https://policies.google.com/technologies/

anonymization). This research was done on the resulting heavily aggregated and 

differentially private data. No individual user data was ever manually inspected, only heavily 

aggregated flows of large populations were handled. All anonymized trips were processed in 

aggregate to extract their origin and destination location and time. For example, if users 

traveled from location a to location b within time interval t, the corresponding cell (a, b, t) in 

the tensor would be n ± η, where η is Laplacian noise. The automated Laplace mechanism 

adds random noise drawn from a zero-mean Laplace distribution and yields (ϵ, δ)-

differential privacy guarantee of ϵ = 0.66 and δ = 2.1 × 10–29 per metric. The parameter ϵ 
controls the noise intensity in terms of its variance, while δ represents the deviation from 

pure ϵ-privacy. The closer they are to zero, the stronger the privacy guarantees. We used 

aggregated mobility flows between the 10 European countries and summarized them by two-

week or monthly time periods between January 2020 and October 2020.

Finally, we also considered international mobility data from Facebook mobility data as an 

alternative to Google mobility data. These data are based on numbers of Facebook users 

moving over large distances, like air or train travel. Counts of international travel patterns 
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are updated daily based only on users who have opted to share precise location data from 

their device with the Facebook mobile app through location services. Also in this case, we 

used aggregated mobility flows between the 10 European countries and summarized them by 

month between January 2020 and October 2020. Because international aggregate mobility 

data obtained from Google and Facebook are highly correlated (monthly Spearman 

correlation ranging from 0.84 to 0.92; Supplementary Figure 1), we only included the 

Google aggregate mobility data as a covariate in the phylogeographic analyses. We note that 

the mobility data are subject to limitations as these may not be representative for the 

population as whole and their representativeness may vary by location.

Bayesian evolutionary reconstructions

- Joint sequence-trait inference with a time-homogeneous GLM diffusion 
model—We performed Bayesian evolutionary reconstruction of timed phylogeographic 

history using BEAST 1.10 26 incorporating genome sequences, their country and date of 

sampling, epidemiological and mobility/connectivity data. Because of the relatively low 

degree of resolution offered by the sequence data, our full probabilistic model specification 

focuses on i) relatively simple model specifications and ii) informing parameters by 

additional non-genetic data sources. We modeled sequence evolution using an HKY85 

nucleotide substitution model with gamma-distributed rate variation among sites and a strict 

molecular clock model. Our genome set includes three genomes from an early outbreak in 

Bavaria, which was caused by an independent introduction from China 27,28. We therefore 

constrained these genomes as an outgroup in the analysis, which according to root-to-tip 

regression plots as a function of sampling time resulted in a better correlation coefficient/R2 

compared to the best-fitting root under the heuristic mean residual squared criterion 

(Supplementary Figure 2) 18.

As a coalescent tree prior, we modeled the effective population size trajectory as a piecewise 

constant function that changes values at pre-specified times (following 29), with log 

population sizes modelled as a deterministic function of log COVID-19 case counts 

(following 30). This reduces the nonparametric skygrid parameterization to a generalized 

linear model (GLM) formulation with an estimable regression intercept (α) and coefficient 

(β). In this parameterization, a coefficient estimate centered around 0 would imply constant 

population size dynamics through time. We specified two-week intervals and summarized as 

a covariate the total case counts over these time intervals for the 10 countries of sampling 

(obtained from https://www.ecdc.europa.eu/en/covid-19/data). The earliest interval with 

non-zero cases counts was from 2020-01-14 to 2020-01-28; before 2020-01-14, the log-

transformed and standardized case count covariate was set to the equivalent of 1 case. We 

also tested whether a lag-time was required for the case count covariate using marginal 

likelihood estimation (MLE) 31. Specifically, we shifted the case counts by 1, 2, 3 and 4 

weeks before summarizing them according to two-week intervals and estimated the model 

fit of these covariates against case counts without lag time (Supplementary Table 1). To 

mitigate the computational burden associated with the MLE procedure, we performed these 

analyses on a subset of 1,000 genomes (obtained using the Phylogenetic Diversity Analyzer 

tool 32). We estimated the highest (log) marginal likelihood for a two-week lag time 

(Supplementary Table 1) and used this for the case count covariate in our analyses.
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Similar to sequence evolution, we modelled the process of transitioning through discrete 

location states (countries of sampling) according to a continuous-time Markov chain 

(CTMC) 33. We employed a parameterization that models the log transition rates as a log 

linear function of mobility/connectivity covariates 10. The Bayesian implementation of this 

model simultaneously estimates phylogenetic history, ancestral movement and the 

contribution of covariates to the movement patterns 10. While we mainly use this approach 

to obtain well-informed phylodynamic estimates, we also make use of its capacity to 

identify the most relevant mobility measure to inform our reconstructions. As covariates we 

considered Facebook’s SCI, air transportation data and mobility data. For the two time-

variable mobility measures, we used the average of the log-transformed and standardized 

monthly mobility measures as a single covariate in our time-homogeneous phylogeographic 

GLM model. In this GLM formulation, we estimate positive effect sizes for each covariate 

as well as their inclusion probability through a spike-and-slab procedure 10. Although we 

subsampled the number of SARS-CoV-2 genomes by country in proportion to case counts, 

they do not fully correspond because we used a minimum number of genomes for countries 

with low case counts. We therefore evaluated whether this resulted in signal for sampling 

bias by including an origin and destination covariate in the GLM based on the residuals for a 

regression analysis between genomes and case counts (following 14). We performed this 

analysis using a set of empirical trees (cfr. below) applying both a time-homogeneous and 

time-inhomogeneous model, but found no support for these additional covariates 

(Supplementary Table 2).

We performed inference under the full model specification using Markov chain Monte Carlo 

(MCMC) sampling and used the BEAGLE library v3 34 to increase computational 

performance. We specified standard transition kernels on all parameters, except for the 

regression coefficients of the piecewise-constant coalescent GLM model. For these 

parameters, we implemented new Hamiltonian Monte Carlo (HMC) transition kernels to 

improve sampling efficiency. These kernels use principles from Hamiltonian dynamics and 

their approximate energy conserving properties to reduce correlation between successive 

sampled states, but require computation of the gradient of the model log-posterior with 

respect to the parameters of interest, in addition to efficient evaluation of the log-posterior 

that BEAGLE provides. To accomplish this, we extended our previous analytic derivation of 

the gradient of the log-density from the skygrid coalescent model with respect to the log-

population-sizes 35 to now be with respect to the regression coefficients using the chain rule 

and their regression design matrix.

Due to the data set size, MCMC burn-in takes up considerable computational time. We 

therefore iterated through a series of BEAST inferences, initially only considering sequence 

evolution and subsequently adding the location data, to arrive at a tree distribution from 

which trees were taken as starting trees in our final analyses. The latter was composed of 

multiple independent MCMC runs that were run sufficiently long to ensure that their 

combined posterior samples achieved effective sample sizes (ESSs) larger than 100 for all 

continuous parameters.

- Data augmentation through online BEAST—As we updated our dataset following 

initial analyses of the 2,909 genome collection using the approach discussed in the previous 
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subsection, we sought to capitalize on these efforts to limit the burn-in for subsequent 

analyses of the 3,959 dataset. Specifically, we adopted the distance-based procedure to insert 

new taxa into a time-measured phylogenetic tree sample as implemented in the BEAST 

framework for online inference 36. We subsequently use the augmented tree as the starting 

tree for the analyses of the updated dataset.

- Time-inhomogeneous reconstructions—To accommodate the time-variability of the 

mobility measures, we constructed epoch model extensions of the discrete phylogeography 

approach that allow specifying arbitrary intervals over the evolutionary history and 

associating them with different model parameterizations 37. As a complement to testing 

covariates of spatial diffusion using a time-homogeneous model, we used the epoch 

extension to specify monthly intervals allowing us to incorporate monthly mobility matrices 

(air transportation data were only available as monthly numbers), but assuming time-

homogeneous effect sizes and inclusion probabilities. Monthly covariates were again log-

transformed and standardized after adding a pseudo-count to each entry in the monthly 

matrices.

In addition, we performed another analysis in which we relaxed the constant-through-time 

inclusion probability of the covariates. In this model specification, each interval is associated 

with a specific set of indicator variables to represent the inclusion/exclusion of covariates, 

but we pool information about predictor inclusion across the intervals using hierarchical 

graph modelling 38. This approach uses a set of indicator variables to model covariate 

inclusion at the hierarchical level but allows interval-specific inclusion or predictors to 

diverge from the hierarchical level with a non-zero probability (with the number of 

differences modelled as a binomial distribution 38), which was set to 0.10 in our case. We 

estimated hierarchical and interval-level inclusion using spike-and-slab 38.

Finally, we performed an analysis using the time-inhomogeneous model in which the 

interval-specific transition rates are modelled as a function of the single covariate that is 

supported by the analyses above leveraging aggregate mobility. We incorporated more 

variability through time by specifying two-week intervals (similar to the coalescent GLM 

interval specification). In addition, we add time-homogeneous random effects to the 

phylogeographic transition rate parameterization in order to account for potential biases in 

the ability of mobility to predict phylogeographic spread. While posterior mean estimates for 

these random effects vary, only very few indicate that individual phylogeographic transition 

rates significantly deviate from the mobility data (Supplementary Figure 3). The time-

inhomogeneous GLM approach we employ allows modelling relative differences in 

transition rates, but also the overall rate of migration between countries varies through time, 

and importantly, this is strongly impacted by intervention strategies. To accommodate these 

dynamics, we further extended this model by incorporating a time-inhomogeneous overall 

CTMC rate scaler and parameterize it as a log linear function of the total monthly between-

country log-transformed and standardized mobility (time-variable rate scalar GLM in 

Extended Data Table 2). To generate realisations of the discrete location CTMC process and 

obtain estimates of the transitions (Markov jumps) between states under this model, we 

employed posterior inference of the complete Markov jump history through time 10,39.
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While the epoch model allows us to flexibly accommodate time-variable spatial dynamics, it 

considerably increases the computational burden associated with likelihood evaluations. In 

order to efficiently draw inference under this model for our large data set, we fit the time-

inhomogeneous spatial diffusion process to a set of trees inferred under the time-

homogeneous GLM diffusion model described above. Although likelihood evaluations 

remain computationally expensive, even with the speed-up offered by GPU computation 

with BEAGLE, eliminating simultaneous tree estimation tremendously reduces parameter-

space, requiring only modest MCMC chain lengths to adequately explore it. Model and 

inference specifications for the different analyses are available as BEAST XML input files 
40.

- Posterior Summaries—We assessed MCMC mixing (e.g. using ESSs) and summarized 

continuous parameter estimates using Tracer v1.7.1 41. Credible intervals were computed as 

95% HPD intervals. Trees were visualized using FigTree v1.4.4 (available at https://

github.com/rambaut/figtree/releases). In terms of phylogeographic estimates, we mainly 

focused on i) transitions to each location and from each location (based on Markov jump 

estimates) instead of pairwise transitions, ii) ratios of these transitions and iii) how these 

transitions structured transmission chains in individual countries. Transitions to each and 

from each location avoid drawing conclusions about direct migration between countries, 

which can be tenuous given the incomplete genomes coverage of Europe, while their ratios 

avoid using absolute numbers of transitions, which are highly sample-dependent. 

Phylogeographic inference is limited to reconstructing the transitions in the ancestral history 

of a sample of sequences, which will only be a small fraction of the actual migration events 

especially when these events result in insufficient onward transmission to be captured in our 

limited sample. In addition, SARS-CoV-2 genome data can be poorly resolved and identical 

genomes in different locations are consistent with hypotheses that involve both a sparse and 

a rich number of virus flows between these locations. As the data hold little information to 

distinguish these hypotheses, we only consider sparse scenario's by including only unique 

sequences for each location. A joint inference of sequence evolution and discrete spatial 

diffusion would err on the side of sparse hypotheses anyway because it will tend to cluster 

identical sequences that share a location. Despite the general underestimation of spatial 

dispersal, a phylogeographic inference is still likely to capture the transition events with 

important onward transmission, and evaluating the importance of such events relative to 

persistence is a major focus of this study. Cryptic transmission also complicates the ability to 

reconstruct spatial dispersal, but we expect this to be equally likely for introductions and 

persistence and therefore focus on their ratio for each location.

We provide three new tree sample tools in the BEAST codebase available at https://

github.com/beast-dev/beast-mcmc) to obtain posterior summaries of location transition 

histories using posterior tree distributions annotated with Markov jumps:

• TreeMarkovJumpHistoryAnalyzer allows collecting Markov jumps and their 

timings from a posterior tree distribution annotated with Markov jumps histories 

in a .csv file for further analyses.
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• TreeStateTimeSummarizer decomposes the total tree time into the times 

associated with contiguous partitions of a tree estimated to be in a particular 

location state, with the partitions determined by the Markov jumps. An arbitrary 

lower- and upper-time boundary can be specified to restrict the summary to a 

particular time interval in the evolutionary history. We use the time estimates for 

the separate partitions associated with each state to calculate an entropy measure 

that summarizes the genetic make-up of country-specific transmission chains. 

Specifically, we use for each location a normalized Shannon entropy:

− 1
ln(n) ∑i

n pi ln(pi), (1)

where pi, is the proportion of time associated with that location for partition i of 

a phylogeographic tree and n represents the number of partitions for that location 

in the tree.

• PersistenceSummarizer also uses posterior tree distributions annotated with 

Markov jumps to summarize the number of lineages at a particular point in time 

(evaluation time, Te, cfr. Extended Figure 5), which location states they are 

associated with, since what time point in the past they have maintained that state 

and how many sampled descendants they have after time Te (Extended Figure 5). 

In addition, it allows summarizing how long these lineages have circulated 

independently prior to Te, so before sharing common ancestry with other 

lineages that maintained the same location state. This information allows us to 

determine how many lineages are circulating at Te that stem either from a unique 

persistent lineage (maintaining the same location states) or unique introduction 

event since a particular time prior to Te (Ta in Extended Figure 5). The 

association between incidence and the difference in the logit proportion of 

unique introductions and the logit proportion of their descendants on August 15th 

was evaluated using a p-value obtained by a linear regression analysis.
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Extended Data

Extended Data Figure 1. 
Monthly international mobility data matrices: international air traffic data (a), international 

Facebook mobility data (b), and international Google mobility data (c). For Facebook data, 

we also report the single social connectedness index matrix (SCI, b).
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Extended Data Figure 2. 
Estimated introductions through time in the 10 European countries and circular migration 

flow plots summarizing the estimated transitions between the countries for different time 

intervals throughout the SARS-CoV-2 evolutionary history. (a) The introductions through 

time serve as an illustration and are based on the Markov jump history in the MCC tree. We 

note that the posterior distribution of trees is accompanied with considerable uncertainty 

about the location of origin, destination and timing of the transitions, which is difficult to 

appropriately visualize. The grey box represents the time period from June 15th to August 

15th. (b) The circular migration flow plots are based on the posterior expectations of the 

Markov jumps. The sizes of the plots reflect the total number of transitions for each period. 

In these plots, migration flow out of a particular location starts close to the outer ring and 

ends with an arrowhead more distant from the destination location.
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Extended Data Figure 3. 
Pairwise mobility data among the 10 countries included in the phylogeographic analysis and 

other European countries. Heatmap cells are coloured according to international Google 

mobility data for the time period between January and October 2020.
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Extended Data Figure 4. 
Conceptual representation of persistent lineages and introductions during the time interval 

delineated by the evaluation time (Te) and the ancestral time (Ta). At Te, we evaluate how 

many lineages are circulating in the location of interest, in this case 12 (lineages in other 

locations are represented by thick grey branches). We subsequently identify whether these 

lineages maintained this location up to Ta in their ancestry or whether they result from an 

introduction event in the time interval of interest. By determining whether other lineages 

circulating in the location of interest at Te are descendants of the same persistent lineage or 

whether they share an introduction event, we identify the unique persistent lineages or 

introductions, in this case 2 and 4 respectively. In addition to the proportion of unique 

introductions (p1 = 4/6), we also summarize the proportion of their descendants at Te (p2 = 

9/(9+3) in this case) and the proportion of their descendants in terms of sampled tips after Te 

(p3). Those tips are not shown here but conceptually represented for both introductions and 

persistent lineages by ovals.
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Extended Data Figure 5. 
Scatter plots of the difference in the logit proportion of unique introductions (p1) and the 

logit proportion of their descendants on August 15th (p2) against incidence and the 

difference in the logit proportion of unique introductions and the logit proportion of 

descendant tips after August 15th (p3) against incidence. Both plots are shown for the period 

between April 15th and June 15th, for the period between June 15th and August 15th, and for 

the period between August 15th and October 15th, respectively. The p-values in the lower 

right corner of the plots are the p-values for the hypothesis tests based on the t-statistic 

evaluating whether the regression coefficient in a linear regression model is different from 0.
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Extended Data Figure 6. 
Estimated geographic origin of viral influx over the summer (June 15th - August 15th, 2020) 

in each country. Each bar plot summarizes the posterior Markov jump estimates into a 

specific country. For the bar representing a low number of introductions into Portugal, a 

magnified view is provided.
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Extended Data Figure 7. 
Phylogeographic transitions for lineages B1.1777/20A.EU1 and B1.160/20A.EU2. 

Cumulative phylogeographic transitions are summarized as posterior mean estimates with 

95% HPD intervals over time for four types of Markov jumps. For B1.1777/20A.EU1: i) 

from Spain to the UK, ii) from Spain to other countries, iii) from the UK, and iv) from other 

countries; For B1.160/20A.EU2: i) from France to the UK, ii) from France to other 

countries, iii) from the UK, and iv) from other countries.

Extended Data Table 1.

Genome sampling by country, collected on November 3rd, 2020, and updated on January 5th, 

2021.

country genomes
(Nov. 3rd, 2020)

genomes
(Jan 5th, 2021)

total

Belgium 183 (1,091) 53 (957) 236

France 600 (1,441) 167 (762) 767

Germany 246 (486) 75 (482) 321

Italy 281 (795) 75 (257) 356

The Netherlands 159 (2,387) 47 (1,032) 206

Norway 100 (414) 92 (482) 192

Portugal 100 (1,370) 100* 200

Spain 647 (2,443) 191 (827) 838

Switzerland 100 (3,019) 98 (1,421) 198

The United Kingdom 493 (26,366) 152 (50,175) 645

total 2,909 1,050 3,959

The numbers in between brackets represent the number of available genomes that were subsampled.
*
For Portugal, almost all available genomes were included to increase the number of genomes to 200.
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Extended Data Table 2.

Parameter estimates for the various Bayesian time-measured phylogeographic models 

applied to the SARS-CoV-2 genome data set.

Model Parameter estimates

Time-homogenous spatial 
diffusion

coalescent GLM
spatial GLM

α = 2.604 [2.487,2.735], β = 1.711 [1.603,1.898]
air travel: E[δ] = 0.018, (β∣δ=1) = 0.044 [0.001,0.123]
SCI: E[δ] = 0.004, β(∣δ=1) = 0.013 [0.003,0.032]
mobility: E[δ] > 0.999, β(∣δ=1) = 0.358 [0.258,0.456]

Time-inhomogeneous 
spatial diffusion

spatial GLM, constant 
inclusion probabilities

air travel: E[δ] = 0.018, β(∣δ=1) = 0.029 [0.001,0.105]
SCI: E[δ] = 0.008, β∣δ=1 = 0.024 [0.001,0.078]
mobility: E[δ] > 0.999, β(∣δ=1) = 0.333 [0.229,0.438]

spatial GLM, time-variable 
inclusion probabilities

air travel: E[δh] = 0.010, β∣(δh=1) = 0.047 [0.002,0.139]
SCI: E[δh] = 0.012, β∣δh=1 = 0.018 [0.000,0.062]
mobility: E[δh] = 0.949, β∣δh=1) = 0.357 [0.230,0.503]

spatial GLM
time-variable rate scalar 
GLM

mobility: β = 0.271 [0.118,0.444]
mobility: α = 0.740 [0.618,0.856], β = 0.504 [0.350,0.646]

The coalescent generalized linear model (GLM) parameterizes bi-weekly effective population sizes as a log-linear function 
of COVID-19 incidence data, with α and β representing the log intercept and log regression coefficient. In the time-
inhomogeneous spatial diffusion models, no coalescent prior was used as these models were fitted onto posterior trees 
inferred from the time-homogeneous model (cfr. Methods). For the spatial GLM model, we report inclusion probability 
estimates through the expectations of the boolean indicators (δ) associated with each predictor and log conditional effect 
sizes (the regression coefficient conditional on the predictor being included in the model, β(∣δ=1)). SCI = Social 
Connectedness Index, based on Facebook data. For the model with time-variable inclusion probabilities, we report the 
parameters at the hierarchical level (δh and β∣δh, cfr. Methods). In the model with a time-variable rate scalar, we 
parameterize this rate scalar as a log-linear function of the overall between-country mobility, with α and β representing the 
log intercept and log regression coefficient.

Using a time-homogeneous model of spatial diffusion, we estimate a maximum inclusion probability for the mobility data 
whereas air transportation data and SCI offer no predictive value. We also estimate a strong positive association between 
viral population size change through time and COVID-19 incidence in the coalescent GLM. We further confirm the support 
for the mobility covariate in a time-inhomogeneous spatial model that incorporates monthly mobility measures, with either 
constant or time-variable inclusion probabilities. In addition to parameterizing the relative rates of spread between countries 
according to this covariate, we extend our time-inhomogeneous approach to also model bi-weekly variation in the overall 
rate of spread between countries as a function of mobility measures (time-variable rate scalar GLM). This approach 
estimates a positive association between the overall rate of spatial spread and mobility data.

Extended Data Table 3.

Mobility to or from each country within our 10-country sample as the percentage of the total 

between-country mobility for these countries within Europe.

country Mobility percentage

Belgium 87.2

France 89.5

Germany 63.9

Italy 64.8

The Netherlands 93.2

Norway 27.1

Portugal 94.0

Spain 90.3

Switzerland 84.8
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country Mobility percentage

The United Kingdom 48.6

The pairwise mobility measures summarized in this table are shown in Extended Data Figure 3.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Data availability

BEAST XML input files are available at https://github.com/phylogeography/SARS-

CoV-2_EUR_PHYLOGEOGRAPHY (DOI: 10.5281/zenodo.4876442). The SARS-CoV-2 

genome data required for running these XML files can be downloaded from https://

www.gisaid.org; all GISAID accession numbers are listed in the GISAID acknowledgments 

table (Supplementary Table 3).

The Google COVID-19 Aggregated Mobility Research Dataset and the Facebook mobility 

data are not publicly available owing to stringent licensing agreements. Information on the 

process of requesting access to the Google mobility data is available from A.S. 

(sadilekadam@google.com) and the COVID-19 Community Mobility Reports that were 

derived from the Google data are publicly available at https://www.google.com/covid19/

mobility/. The Facebook mobility data are made available through the Data for Good 

program (https://dataforgood.fb.com) under the terms of a data license agreement which 

defines the allowed terms of use by partners (contact: disastermaps@fb.com). Once a partner 

institution’s request for access is vetted and an appropriate data license agreement is signed, 

then access is granted through a Facebook’s web-based spatial visualization tool called 

GeoInsight. Air travel data were obtained from the International Air Transport Association 

(http://www.iata.org). Log-transformed and standardized among country mobility and air 

travel data are specified in the available XML files. COVID-19 incidence data was obtained 

from https://www.ecdc.europa.eu/en/covid-19/data.
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Figure 1. Mobility, genome sampling, case counts and phylogeographic summaries through time 
for 10 European countries.
The first panel summarizes the country-specific Google mobility influx in the 10 countries 

during two-week intervals, while the second panel depicts the weekly genome sampling by 

country used in the phylogeographic analysis. In the remaining panels, we plot for each 

country the ratio of introductions over the total viral flow from and to that country (for two-

week intervals) and a monthly normalized entropy measure summarizing the phylogenetic 

structure of country-specific transmission chains. The posterior mean ratios of introductions 

are depicted with circles that have a size proportional to the total number of transitions from 

and to that country and the grey surface represents the 95% highest posterior density (HPD) 

intervals. The posterior mean normalized entropies and 95% HPD intervals are depicted by 

dotted lines. These normalized entropy measures indicate how phylogenetically structured 

the epidemic is in each country, and ranges from 0 (perfectly structured, e.g., a single 

country-specific cluster) to 1 (unstructured interspersion of country-specific sequences 

across the entire SARS-CoV-2 phylogeny). The introduction ratios and normalized entropy 

measures are superimposed over COVID-19 incidence (daily cases/106 people) reported for 

each country through time (coloured density plot). The two vertical dashed lines represent 
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the summer time interval (June 15th and August 15th, 2020) for which we subsequently 

evaluate introductions versus persistence (cfr. Figure 2).
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Figure 2. Posterior estimates for the relative importance of lineage introduction events in 10 
European countries and their association with incidence.
We report three summaries (posterior mean and 95% HPD intervals) for each country: the 

ratio of unique introductions over the total number of unique persisting lineages and unique 

introductions between June 15th and August 15th, 2020 (p1), the ratio of descendant lineages 

from these unique introduction events over the total number of descendants circulating on 

August 15th, 2020 (p2), and the ratio of descendant taxa from these unique introductions 

over the total number of descendant taxa sampled after August 15th, 2020 (p3) (cfr. Extended 

Data Figure 4). The dot sizes are proportional to: (1) the total number of unique lineage 

introductions identified between June 15th and August 15th, 2020, (2) the total number of 

lineages inferred on August 15th, 2020, and (3) the total number of descendant tips after 

August 15th, 2020.
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Figure 3. 
Phylogeographic estimates of SARS-CoV-2 spread in 10 European countries. The tree on the 

left represents the maximum clade credibility tree summary of the Bayesian inference. 

Colours correspond to the countries in the legend. The two clades corresponding to 

B1.160/20A.EU2 and B1.177/20A.EU1 are highlighted in grey. The circular migration flow 

plots for these variants are based on the posterior expectations of the Markov jumps. In these 

plots, migration flow out of a particular location starts close to the outer ring and ends with 

an arrowhead more distant from the destination location. For B1.177/20A.EU1, we also 

summarize phylogeographic transitions as posterior mean estimates with 95% HPD intervals 

over time for four types of Markov jumps: i) from Spain to the UK, ii) from Spain to other 

countries, iii) from the UK, and iv) from other countries.
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