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ABSTRACT OF THE DISSERTATION

Practical Recompilation of Multithreaded Binaries: Choreographing Static and Dynamic
Techniques

By

Chinmay Diwakar Deshpande

Doctor of Philosophy in Computer Science

University of California, Irvine, 2024

Professor Michael Franz, Chair

Recompiling legacy programs from source can be challenging due to outdated build environ-

ments, the unavailability of original source code, or lacking vendor support. Without access to

the compiler ecosystem, it becomes impossible to reoptimize legacy software for modern hard-

ware, apply program modifications, or utilize compiler-level hardening features. This limitation

is particularly costly when addressing critical security vulnerabilities that necessitate immediate

patching.

Binary recompilation aims to bridge this divide by “lifting” binary executables to a compiler-

level intermediate representation (IR) and “lowering” them back again. Recompilers hold the

promise of making available the rich analysis and transformation ecosystem of the compiler, that

is typically used with source-level programs, to modify and reoptimize binary programs. But,

state-of-the-art tools in this space have not seen much adoption due to practical concerns.

Current recompilers are entirely static or dynamic in their approach to recompilation. Static tools

are fast, but rely on heuristics for reasoning about possible control flow paths in the program and

recovering stack-local variable information. Transformations that rely on unsound analyses may

lead to divergences from the original program behavior or even faults during recompiled binary

execution. Moreover, static recompilers impose unnecessary size and performance overheads on
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the recompiled output due to their conservative approach to lifting. Dynamic techniques, on

the other hand, offer precision but are inefficient due to their high tracing overheads. Crucially,

none of these tools generally handle multithreaded binaries, that are ubiquitous in the modern

software space.

In this dissertation, we improve the state-of-the-art in binary recompilation along two comple-

mentary directions by composing static and dynamic techniques. First, we present Polynima,

the first practical recompiler that is able to reliably lift and recompile complex real-world multi-

threaded binaries and benchmark suites. We demonstrate the usefulness of our tool by fixing a

critical synchronization issue in an off-the-shelf FTP server binary by leveraging the compiler-

level pass infrastructure. Polynima implements a novel, hybrid control flow recovery strategy

that combines the benefits of static and dynamic lifters, along with soundly handling the in-

herent non-determinism in multithreaded programs. Finally, we design a dynamic procedure to

detect implicit synchronization primitives in binaries and use that to improve overheads induced

due to the conservative handling of shared memory accesses in the lifted IR.

Since maintaining an implicit call stack is central to most modern programming languages and

their compilers, soundly reasoning about stack memory layouts is central to correct and efficient

binary recompilation. We tackle this problem through two novel approaches: StackBERT and

WYTIWYG. StackBERT is a learning-based technique to recover function frame sizes in binary

programs. We show the inadequacy of current static approaches to reason about the program

stack in binaries and provide evidence that our trainedmodels are valuable for target architectures

that are largely unsupported by existing analysis tools. WYTIWYG significantly improves upon

this by designing instrumentation-based dynamic analyses that recover program variables. Our

fine-grained approach tracks the dataflow across stack memory operations at runtime and infers

bounds that helps delineate distinct objects. By using this information to refine the lifted IR, our

findings show that WYTIWYG makes it possible to leverage the full potential of the compiler

ecosystem to recompile and reoptimize legacy binaries.
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Chapter 1

Introduction

1.1 Overview

The maintenance of software distributed as binary executables becomes challenging over time.

Due to obsolete build environments, unavailability of the original source code or the lack of ven-

dor support, recompiling legacy programs from source may not be possible. This denies the users

of such programs the substantial advancements in modern compiler technologies of the past few

decades. The lack of access to the compiler ecosystem prevents reoptimizing legacy software for

modern hardware, apply programmodifications and leverage compiler-level hardeningmeasures.

This limitation can be particularly costly when dealing with criticial security vulnerabilities that

require immediate patching. As replacing such legacy software can be prohibitively expensive or

even infeasible, users may be required to explore ways to work directly with binary programs.

Binary Rewriting techniques aim to analyze and modify a binary program without requiring

access to its source code. They enable the application of various program transformations – such

as those relating to instrumentation, fuzzing, and security – to commercial off-the-shelf binaries.

Binary Recompilation is a specific rewriting technique that “lifts” binaries to a compiler-level
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intermediate representation (IR) with the goal of “lowering” it back down again using the existing

compiler infrastructure. This differs from other rewriting approaches as they use IRs that are

often limited in scope and focused on niche transformations, such as control flow and instruction-

level modifications. Fundamentally, recompilation aims to make available the rich analysis and

transformation ecosystem of the compiler, that is typically used with source-level programs, to

modify and reoptimize binary programs. State-of-the-art recompilers [12, 14, 40, 41, 115] target

LLVM IR [69] due to its active community, modular design and the rich tooling support. However,

most of these tools have not seen widespread adoption due to two major practical concerns, (1)

the reliance on exclusively static or dynamic approaches limits recompilation to be either sound

or efficient, and (2) the failure to handle complex multithreaded binary programs limits the scope

of their practical application.

Precise control flow recovery is an operational necessity for the application of program-wide

transformations on binaries. Failure to do so may lead to imprecise code pointer relocations and,

therefore, run time crashes in the recompiled binary while realizing such paths. In the general

case, this is an undecidable problem [56] as compilers often do not emit any labels that help

differentiate code and data bytes. Existing recompilers are are either entirely static [14, 40, 41, 115]

or dynamic [12] in their approach toward control flow recovery. Static instruction recovery is fast

but employs imprecise heuristics to predict targets of indirect control transfers [89]. Dynamic

recompilers [12], on the other hand, analyze concrete executions of the target program, enabling

them to handle precise instruction recovery and indirect control flows by design. The downside is

that their approach is inefficient due to the high tracing overheads imposed to support a sufficient

subset of the original binary’s functionality.

With the ubiquity of multicore processors, programs are designed to fully leverage the bene-

fits of the underlying hardware which is frequently achieved through multithreading. A central

concern for modern recompilers is the support for multithreaded binaries, as they introduce an

entirely new class of issues. First, such programs may exhibit behaviors that depend on the spe-
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cific sequence of thread interleavings encountered at runtime. Therefore, approaches that claim

to support multithreaded binaries must implement a sound strategy to handle unknown control

flows seen during recompiled binary execution. After lifting to IR, the compiler is free to re-

order shared memory accesses during optimizing transformations, as the binary does not include

any synchronization information. This may lead to erroneous and divergent program outcomes

that break original program semantics [98]. As a result, existing approaches that insert mem-

ory fences to prevent such reorderings may be overly conservative and therefore impede IR-level

optimizations [22]. Besides, to fully support multithreaded binaries, recompilers must also cor-

rectly handle constructs such as hardware-supported atomic instructions, callback functions and

most importantly, the per-thread program stack. Unfortunately, none of the current recompilers

address the above challenges.

Compiler IRs such as LLVM IR [69] are designed to work with abstractions that accurately rep-

resent source-level constructs. One such key construct is the program stack that hosts local vari-

ables, function arguments, saved registers and spills. For the lifted IR to be amenable to off-the-

shelf transformations and optimizations, it is necessary to correctly recover and model the stack.

While binary format standardization and debugging information can help solve this problem to

some extent, they may not always be available, sufficiently precise, or even correct [19, 106] –

particularly in the context of heavy compiler optimizations. This is why most state-of-the-art ap-

proaches currently resort to emulated stack environments for lifted binaries [12, 40, 41]. However,

this leads to the recompiled programs being slower than the original, even after the application

of aggressive optimizations [12].

Recompilers may choose to “refine” the stack memory representation in the IR at two broad levels

of granularity to solve this problem. A coarse-grained approach involves lifting stack frames for

individual functions, where the fundamental challenge is to recover bounds on the maximum

frame size. However, this can be particularly hard due to non-uniform function inlining or if

the frame size is dependent on runtime behaviors. In fact, a function’s stack frame may not be
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bounded at all and programs that call alloca (or one of its many variants) with dynamically

determined size argument or make use of Variable Length Arrays (VLAs) can exhibit differently

sized stack frames for different inputs. Even if frames are conservatively recovered in the IR, the

efficacy of many program analysis techniques is severely diminished without the lack of variable

information. A more fine-grained approach further splits the per-function frame into distinct

objects that loosely represent source-level program variables. This is also difficult, as it requires

precisely identifying and translating (as part of the IR), all references to stackmemory that denote

distinct objects. Some recompilers implement a procedure to recover such a mapping, but they

either rely on unsound heuristics [41] or are heavily conservative in their approach [14, 44].

Importantly, all of these tools are fully static, which also introduces an inherent imprecision [56].

1.2 Contributions and Outline

This dissertation details novel contributions that improve the state-of-the-art in binary recompi-

lation.

Chapter 2 develops the necessary background on binary recompilation. We describe the various

subproblems involved in the process of lifting machine code to IR, refining and lowering the IR

to generate a recompiled binary.

Chapter 3 describes Polynima, the first practical binary recompiler that is able to reliably lift and

recompile complex multithreaded binaries. Polynima implements a novel, hybrid control flow

recovery strategy, additive lifting, that combines the benefits of static and dynamic lifters. Then,

we design novel instrumentation-based dynamic analyses that refine the lifted IR. Specifically, we

construct a way to detect implicit synchronization primitives in binaries and use that to improve

the performance of the recompiled output.

Chapter 4 describes StackBERT, a learning based architecture-agnostic approach to recover in-
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dividual function frame sizes in binary programs. We show that the problem of inferring the

maximum bound on frame sizes in binaries is hard and then detail how current static approaches

are lacking. Then, we demonstrate the efficacy of our trained models with respect to this prob-

lem from the binary function body alone - reporting a 93.44% validation accuracy on standard

benchmarks that were not seen during training.

Chapter 5 details WYTIWYG, a unique instrumentation-based dynamic analysis that precisely

recovers stack objects in the lifted IR. First, we track the dataflow of stack memory operations

at runtime. Based on the collected information, we implement an analysis that infers bounds

to delineate distinct stack objects and use that to refine the IR. WYTIWYG makes it possible to

leverage the full potential of the existing compiler ecosystem to analyze, transform and reoptimize

legacy binaries.

Chapter 6 provides a discussion of the inherent security - correctness gap in binary recompilation

and planned futurework. Here, we outline how known problems in compiler correctness research

manifest in the context of recompilation.

Chapter 7 concludes this dissertation by highlighting our key contributions.
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Chapter 2

Background

2.1 Binary Rewriting

Binary rewriting describes the general process of making modifications to the binary and produc-

ing a new rewritten binary. The eventual goal of the transformations could be instrumentation,

hardening, optimizations, or deobfuscation [111]. In the recent years, industry and academia have

contributed to the growth of interest in rewriting for a wide range of downstream applications

that include security [64], optimization [88], cross-ISA translation [16], and debloating [9, 96].

At a high level, rewriters can be classified as static or dynamic.

Static rewriters operate on the binary while it is stored in persistent memory. Static techniques

range from being direct to minimal-invasive to full-translation [111]. Minimal-invasive (and di-

rect) schemes target specific tasks such diverting the control flow, inserting trampolines, or per-

forming instruction-level modifications. The idea is to modify as few bytes of the binary program

as possible, while achieving the desired outcome. Although this results in an efficient process and

a performant rewritten binary, the overall transformation capabilities of such tools are typically
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limited as they do not recover source-level abstractions.

Full-translation techniques, on the other hand, usually translate programs to specialized IRs and

reassemble a new binary. IRs used by such rewriters aim to faithfully represent the original pro-

gram semantics in an architecture agnostic manner. Examples include VEX IR [108], Binary

Analysis Platforms’s (BAP) [29] IL, and REIL [43]. Crucially, full-translation techniques use the

expressivity of such powerful IRs to recover higher-level constructs such as control flow, basic

blocks, and functions, that enables them to apply complex program-wide analyses and transfor-

mations.

Dynamic rewriters transform the program during program execution. This is achieved by using

an instrumentation engine that inserts fine-grained hooks (PIN [76], DynamoRIO [28]) during

native execution or by running the binary inside a virtual environment (QEMU [23]). Compared

to static rewriters, dynamic approaches can perform much more precise and fine-grained modi-

fications as they can observe control flow and progam state at runtime. However, modifications

performed by such rewriters usually only persist for the duration of the execution run.

2.2 Binary Recompilation

Recompilation is a full-translation rewriting technique that lifts binary programs to a compiler

IR with the goal of lowering it back down again, using the existing compiler infrastructure. The

goal is to make available the rich analysis and transformation ecosystem of modern compilers,

that is typically used with source-level programs, to modify binary programs. State-of-the-art

recompilers, SecondWrite [14], BinRec [12], McSema [41], McSema [115], and Rev.Ng [40], target

LLVM IR [69] due to its active community, modular design and the rich tooling support.
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2.3 Semantics Recovery for Recompilation

Faithfully representing (lifting) a binary program in a higher-level representation, such as a com-

piler IR, requires the precise recovery of various program elements. This includes inferring the

targets of indirect control transfers, marking function boundaries, identifying function proto-

types (arguments and return values), locating program variables and assigning them types. This

is hard as compilation is a lossy process; information about various source-level abstractions is

unavailable in the binary artifact. In fact, the detranslation of computer programs is an undecid-

able problem [56].

Compilers can be instructed to emit metadata, such as debug information, symbol tables, and

unwind tables for exceptions, that embeds useful information as part of the generated binary.

Binary analysis tools such as BOLT [88] make use of relocation information that the linker emits

for reordering functions. However, recovering precise information from binary metadata is a

“best effort” implementation. For instance, optimizing transformations that aggressively inline

functions, move variables from memory to register storage, or reuse stack locations for distinct

variables within the context of a single function, do not make any guarantees about preserving

precise debug information. BOLT also reports missing offsets for position independent code (PIC)

jump tables, as they are removed by the linker. Moreover, as commercial off-the-shelf (COTS)

binaries may be stripped of such metadata, recompilers cannot generally assume their presence.

Figure 2.1 provides an overview of the various sub-tasks that comprise the semantics recovery

process for binary recompilation. We now discuss them in detail.

2.3.1 Instruction Recovery

The first step towards understanding an input binary is to identify and recover all executable

machine code instructions that belong to it. Disassembly deals with decoding a stream of raw
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Figure 2.1: Overview of the various steps involved in the recompilation process. Dashed lines
indicate optional steps.

bytes into individual instructions. This is hard, as compilers do not attach labels to distinguish

between code and data references in the generated binary by default.

For instance, the compiler can embed non-executable data in the code section of the binary.

Padding bytes may be inserted to align functions to page boundaries to improve instruction

caching. Similarly, for source-level switch constructs, the compiler can generate jump tables

and embed them inside the code section of the binary. It can also embed other read-only data in

the code section, as observed in literal pools [6] in ARM binaries, to improve access distance to

constant data.

On CISC style architectures such as x86/x64, variable length instructions can complicate instruc-

tion recovery. Due to the variable size of instructions, the same set of bytes can be decoded as

distinct sets of instructions. Moreover, a specifically aligned data byte can lead to incorrect local

disassembly, but realign itself with the correct disassemly stream at a later offset. As a result, a

static error correction algorithm cannot reliably infer if correct disassembly was performed, as

the two byte streams decode to perfectly valid but distinct x86 machine code. Consider the exam-

ple shown in Figure 2.2. The same set of 5 bytes can be interpreted in 2 different ways depending
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0x0F 0x85 0xC0 0x0F 0x85 jne 0x40f883c6 0x0F // data
0x85 0xC0 test eax, eax
0x0F 0x85 cmp eax, 0x40

Figure 2.2: Different interpretations of the same set of bytes in x86 assembly.

on whether the first byte is considered a data byte (maybe inserted for alignment purposes) or a

code byte. But, the two streams align back at the same code byte.

In practice, there are two static approaches to instruction recovery for binaries. Given a start

address, linear sweep disassembles bytes as code until an illegal instruction is encountered. But,

it does not differentiate between code and data bytes, which may lead to failures due to inline

data being treated as code. For binaries that conform to well-known standards such as ELF [3] or

PE [7], linear sweep can be applied to the entry point address that is parsed from the header.

However, the more commonly used approach is that of recursive descent. Given a start address,

the algorithm performs linear disassembly until a control transfer instruction is hit, at which

point it retriggers the procedure at the discovered target. This way, the worklist-style algorithm

recursively explores the control flow graph to find all reachable code from a given entry point.

Disassemblers may retrieve an initial set of entry points by parsing function start addresses from

the symbol table of the binary. State-of-the-art static recompilers either roll out their own ver-

sion of a recursive descent style disassembly [14, 115] or use disassemblers that implement the

same [2].

Note that recursive descent does not generate any false positives, but the procedure can miss

entire basic blocks if control transfers to those are not correctly resolved. For instance, the basic

block at address 0x40f883c6 in Figure 2.2 may not be discovered if the disassembly starts at

offset 1 instead of 0. Therefore, incomplete discovery of executable code can leave out support for

entire program paths in the recompiled binary. In practice, recursive descent can fail to discover

all executable code due to the imprecise resolution of indirect jump and call transfers. Crucially,

this reveals that the problems of control flow and instruction recovery in binaries are very much
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void* secure_clear_memory(void* ptr, int

size) {

// Alternatives: memset_s,
// memset_explicit
memset(ptr, 0, size);

}

Listing 2.1: Call to memset inside a wrapper
function.

secure_clear_memory:

movsx rdx, esi

xor esi, esi

jmp memset

Listing 2.2: Generated x64 assembly code
with tail call to memset@PLT, gcc 14.1 -O3.

interleaved.

2.3.2 Control Flow Recovery

Control flow recovery is the process of identifying the points of control transfer between vari-

ous instructions in the binary. Resolving control flow for instructions that encode their targets

is trivial. However, complete control flow recovery is hard to achieve due to indirect jump and

call transfers. Indirect jumps implement switch statements, such as jump tables, and position-

independent code (PIC). They may also be used for tail calls, in the case when the function sig-

natures for the caller match the callee. Modern compilers also implement support for tail calls

to imported routines, such as in Listing 2.2. On the other hand, indirect calls implement virtual

function calls in C++ and calls via function pointers in C.

Recovering the targets of indirect control transfers in binaries has been a topic of active research

over the past decade [89, 111]. Static tools often use a combination of heuristics and program anal-

yses, such as value-set analysis (VSA) [17], symbolic execution [101] or techniques like Simple

Expression Tracking (SET) [40]. This enables them to predict an overapproximate set of targets

that can be used to further explore reachable machine code. Disassemblers may also implement

fine-grained heuristics that are tuned after observing numerous compiler generated code patterns

for specific architectures. McSema [41] relies on IDA Pro [2] for recovering control flow informa-

tion, but it performs poorly when recovering targets of indirect calls [89]. mctoll [115] employs

heuristics to identify jump tables and resolve a subset of indirect intra-function control transfers.
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It cannot identify possible targets of indirect calls precisely, either.

Multiverse [20] is a binary rewriter that implements the idea of superset disassembly, where

they disassemble at every single offset in the executable code section of the binary. The various

disassembly streams are then merged into a single control flow graph. Although this approach

increases the generated code size, it is guaranteed to discover all possible code.

Completeness ensures that the recompiled binary supports all control flow paths that were a part

of the input binary. On the other hand, precise control flow recovery is necessary to ensure that

unintended paths are not added.

2.3.3 Static v/s Dynamic Approaches

The previous two subsections describe entirely static approaches to the problem of instruction

and control flow recovery. Although fast, static approaches may suffer from incompleteness and

imprecision due to the undecidability of underlying problem [56].

On the other hand, dynamic approaches observe concrete executions of the program to recover

executable instructions and the control flow. They rely on techniques such as fuzzing using tools

such as AFL [119], and AFL++ [45], to achieve high coverage and explore as many program paths

as possible by providing different inputs [122]. Achieving high coverage for binary-only fuzzing

(black-box) has been a topic of active research [79, 84, 117]. Concolic execution - which can

be thought of as a hybrid between symbolic and concrete execution has also been effective in

program exploration [32, 94, 103].

BinRec [12] is a dynamic recompiler that handles precise code and control flow recovery by de-

sign as it records information about paths realized during concrete execution runs of the input

program. It uses S2E [34], which uses QEMU [23] underneath, as a lifting frontend to trace bina-

ries. S2E implements a translation layer from QEMU’s architecture-agnostic Tiny Code Genera-
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tor (TCG) IR to LLVM IR to facilitate symbolic execution with KLEE [30]. BinRec inserts hooks

that captures the translated LLVM IR along the paths that are exercised during tracing, and later

merges the traces captured across different runs. As enabling deobfuscation of input programs

is one of their goals, BinRec induces a tight coupling between CFG recovery and IR translation

which imposes a significant tracing overhead. Each tracing run needs to setup the emulator-

like execution environment (QEMU) which is inefficient. Overall lifting times are reported to be

orders of magnitude costlier in comparison to a static recompiler [12].

With dynamic recompilers, the recovered binaries only reliably support the program paths that

are observed during the tracing runs. Although this approach is sound, “you get what you see”.

However, a downside is that code paths that are not executed are not recovered - implying that

the completeness of recompilation depends on the coverage of the input domain. BinRec uses a

combination of high-coverage inputs and symbolic execution to achieve maximum coverage of

the binary CFG.

2.3.4 Function Boundary Identification

Recovering functions comprises the problem of identifying function entry points, assigning basic

blocks to them and marking their boundaries (in terms of instructions and basic blocks). The

function abstraction is crucial in the context of recompilation, as it helps to scope program-wide

transformations in the lifted IR. Rather than having to analyze the entire CFG of the program, off-

the-shelf compiler optimizations benefit from analyzing individual functions in isolation. Also, if

security critical vulnerabilities are to be patched in the input binary, it may make sense to replace

entire function bodies with their safer implementations.

But, precise and complete function recovery is hard to perform statically. Functions can havemul-

tiple entry points to specialize for certain constant arguments [18]. This can misguide heuristics

and pattern matching techniques that detect function starts by looking at prologue signatures.
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extern int g(int a, int b) __attribute__

((cold));

int f(int *a, int *b)

{

int result;

if(*a > 0) {

result = *a + *b;

} else {

result = g(10, *a) + 0xdeadbeef;

}

return result;

}

Listing 2.3: C code with function g

annotated with attribute cold.

f(int*, int*):

mov eax, DWORD PTR [rdi]

test eax, eax

jle .L2 ; notice the jump
add eax, DWORD PTR [rsi]

ret

f(int*, int*) [clone .cold]:

.L2:

push rdx

mov esi, eax

mov edi, 10

call g(int, int)

pop rcx

sub eax, 559038737

ret

Listing 2.4: Generated x64 assembly code (-
O2, gcc 11.1), note the jle and the cold clone
of f.

Entire function bodies can be inlined in other functions, for reducing call overheads or to expose

other optimization opportunities.

After correctly identifying function starts, associating basic blocks to functions can be difficult

due to non-contiguous functions and code-sharing [83]. For instance, functions may have code

gaps due to inline data or jump tables or they may share code with other functions for optimiza-

tions reasons.

Tail calls / jumps make it hard to determine function boundaries since they end in a jump or

call-based control flow transfer instruction rather than a return. As a result, function epilogues

that usually consist of a local stack cleanup (e.g. add rsp, 0x80; ret) may be missing for some

functions. Moreover, functions may be non-returning, and calls to library functions like exit()

mark boundary points. In such cases, tools that use known epilogue patterns to identify function

boundaries may incorrectly disassemble beyond the call / jump.

An interesting problem deals with the handling of split functions in binaries compiled with mod-

ern GCC and LLVM. The compiler may split function bodies as an optimization to improve in-

lining [48] decisions based on information collected through profiling or if provided by the user
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through function attributes (such as cold). Consider the examples in Listings 2.3 and Listing 2.4.

As the user indicated that the function g is cold, the compiler generates a clone of the function

f that contains the slow path - condition *a <= 0 and the call to g. Note that a new symbol in

the symbol table for the function f [clone .cold] is created. But unlike usual function calls,

the cold clone is reached through a direct jump (jle) instruction rather than a call instruction.

Another special case is that of callback functions (e.g. comparison function passed as an argu-

ment qsort()), that act as external entry points. It is likely that (direct or indirect) calls to such

functions are not observed in the binary as their pointers are passed externally. However, such

functions typically contain a prologue for preserving saved registers and ensuring the stack setup,

making them easier to be identifiable by a disassembler.

A straightforward approach to identifying function starts is to parse debug information such as

DWARF [36] or symbol table information found in the .symtab and .dynsym sections. In practice,

static tools such as IDA Pro [2], BinaryNinja [109] and Ghidra [85] also use a combination of

patternmatching and heuristics that are derived after carefully observing code patterns generated

by compilers such as GCC, LLVM and MSVC [89, 111]. Moreover, call targets - both direct and

indirect - that are discovered during the instruction recovery process can be used to identify a

subset of function entry points.

NUCLEUS [15] details a compiler-agnostic approach that uses a global call graph, along with a

weakly connected component analysis to identify function bodies based on call-and-return edges.

Dynamic approaches may need to rely on such an algorithm to recover functions using run time

information such as call-and-return edges. BinRec does not implement any such technique due to

which the entire trace of instructions, obtained after merging, is represented as a single function

in the lifted IR. This impedes compiler optimizations and prevents the user from making surgical

modifications to the IR.

Note that, recovering functions also reveals information about the stack layout of the program.
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This can be useful to lift objects from the emulated stack of the program to the native stack,

leading to better off-the-shelf compiler optimizations [44]. Intra-function memory loads and

stores that target the stack can be used for variable detection in binaries [71, 72, 102].

2.4 IR-level Representation Of Binaries

Faithfully representing the semantics of individual hardware instructions in a compiler IR such

as LLVM IR is challenging. This is because there is a fundamental difference in the abstractions

available at the hardware level and at the IR level. For example, the instruction add eax, dword

[ecx] on x86:

• Loads a 32 bit integer stored at the memory address in register ecx.

• Adds it to integer value stored in eax.

• Stores the result back in eax.

• (Side effect) Updates the EFLAGS register based on the result of the operation.

• (Side effect) Advances the PC forward by 4.

There are multiple points of differences when translating such an instruction to LLVM IR. For

instance, LLVM IR defines explicit instructions for load/store/read-modify-write (RMW) memory

operations. So, combining the load frommemory alongwith an addition operation is not possible.

Assuming that the add and the load are broken into two distinct operations, we encounter further

challenges when trying to precisely model the side effects - such as updates the to EFLAGS and

PC registers.

16



%1 = load ptr, ptr @ecx ; load from global ecx

%2 = load i32, ptr %1 ; load from memory

%3 = load i32, ptr @eax ; load from global eax

%4 = add i32 %2, %3 ; perform add

store i32 %4, ptr @eax ; store result back to global eax

%5 = call i32 helper_compute_eflags(i32 %4) ; compute eflags

store i32 %5, ptr @eflags ; update eflags

store i32 4224509, ptr @pc ; store address of next instruction

Listing 2.5: Lifted LLVM IR for add eax, dword [ecx]

To solve this, recompilers typically implement lifting by performing line-by-line translation of

machine code to semantically equivalent LLVM IR. The lifted IR aims to emulate the execution

of each hardware instruction on a virtual CPU state that consists of registers, flags, and stack

memory. This idea is similar to a virtual execution environment such as QEMU, that acts as

an emulator for native binaries. Listing 2.5 shows the lifted IR for this instruction. However,

note that the IR generated this way is highly verbose and unrefined, which is a central cause of

performance slowdown of the recompiled binary.

Emulated Registers. As a byproduct of the emulation, the recompiled binary has two sets of

registers in the IR. The “emulated” set, that belong to the virtual CPU state, models the registers

in the input binary. But, the “emulator” also requires access to registers for passing arguments

to functions and performing function-local computations. This leads to the use of more (virtual)

registers as compared to the input binary (ref. Figure 2.3a). However, on compilation, the two

sets compete for the same hardware registers creating additional register pressure and increasing

the number of spills – negatively impacting recompiled binary performance. An exception case is

when the binary is being recompiled for a different architecture, one with more general purpose

registers (x64 -> AArch64), but that still does not preclude the performance overheads due to

other emulation effects.
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(b) Compiler failing to establish aliasing rela-
tionships between distinct stack pointers.

Emulated Stack. The stack is a critical component of the execution model of binary programs

as it is used for storing local variables and register spills. In the emulator model, the recompiled

binary also works with two stacks - an “emulated” stack and the “native” stack. The emulated

stack models the call stack of the input binary by storing its local variables, spills, function argu-

ments and return values. On the other hand, the native stack is used for storing local variables,

spills, function arguments and return values of the emulator itself.

Typically, recompilers allocate a large byte-array that represents the emulated stack. Before

jumping into recompiled binary execution, instrumentation is inserted to copy over command

line arguments and initialize the emulated stack pointer register to point into this allocation.

But, representing the stack as a global array of bytes negatively impacts memory usage and per-

formance. The fundamental reason for this is that the allocated stack storage (@stack) remains

opaque to the compiler as all stack-based loads and stores target the same memory object (ref.

Figure 2.3b). This prevents precise alias analysis and the formation of use-def chains (even within

function boundaries) which impedes downstream off-the-shelf compiler optimizations that rely
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on this information.

2.4.1 Code and Data Reference Relocation

Relocation is a linker concept for ensuring that program elements defined in different source files

correctly refer to each other after linking. As recompilation imposes a new layout on the binary,

sound program-wide transformations on the lifted IR require that all code and data pointers be

relocatable. Failure to do so may lead to runtime crashes, due to the transfer of control flow to

an invalid code address or the derefence of an invalid data pointer (e.g. access to a non-relocated

global variable).

0x40d67c: mov %rsp,%rsi

0x40d67f: mov 0x0,%edx

0x40d684: call 0x421efb ; direct call, need to relocate

0x40d689: mov %rax,%rdx

0x40d68c: mov 0xffffffffffffffff,%rax

0x40d693: test %rdx,%rdx

0x40d696: jne 0x40d65e ; direct jump, need to relocate

0x40d698: mov 0x10(%rbx),%rax

0x40d69c: mov 0x8(%rax),%rdi

0x40d6a0: mov 0x0,%esi

0x40d6a5: call *%rcx ; indirect call, difficult to relocate

Listing 2.6: x64 assembly code snippet showcasing the necessity to relocate absolute addresses

for control transfer instructions.

For instance, consider the assembly snippet in Listing 2.6. The recompiler has to symbolize the

absolute addresses used as operands for jump (jne) and call (call) instructions, such that they

can be retargeted to their new addresses after the layout changes. This is trivial to achieve for

direct references. But indirect references could bematerialized in registers or memory at runtime,

which imposes the requirement to perform precise pointer tracking. The call *%rcx instruction
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in Listing 2.6 is such an example.

Crucially, differentiating between integers and pointers is hard at the binary level. Most program-

ming language standards do not mandate any specific hardware level representation for pointers.

As a result, there is no inherent bit pattern or binary-level metadata that distinguishes between

them. Binary analysis tools often implement a combination of forwards and backwards data flow

analysis passes for propagating pointer information [111]. For instance, we can infer that a reg-

ister contains a pointer value at its site of use - e.g. if it is used to dereference memory, or passed

as a pointer argument to a known library function. This information can then be propagated

backwards through the CFG. On the other hand, forward passes usually track the data flow of

pointers from their definition site to the various uses. Common examples of def sites are returns

from library calls such as malloc or instructions that perform memory addressing computations

(e.g. lea in x86/x64) using known pointer values, such as the stack pointer.

Code pointers. Relocation of all code pointers requires precise and complete control flow recov-

ery. This way, the recompiler can symbolize constant values by identifying if they point to known

basic block or function start addresses. A simple way of resolving this is to use a pre-computed

lookup table that acts as a trampoline, redirecting control flow by mapping old addresses to new

(relocated) ones [51].

A special case is that of callback functions. To ensure correct support for external entry points,

recompilers need to precisely identify and rewrite all instances of function pointers passed to

external procedures. Rev.Ng supports external entry points through static linking of libraries

and treating them as indirect calls. However, analyzing and rewriting statically-linked code is

generally infeasible, as it incurs a substantial performance overhead and does not scale. McSema

and mctoll try to statically identify function pointer arguments passed to external functions to

rewrite them. But, tracking pointer values in machine code, especially if they are passed across

function boundaries, can be hard. Also, it may be impossible to precisely solve this problem

statically if pointer values are materialized in registers or memory during execution.
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Data pointers. Symbolizing data pointers requires precisely identifying and rewriting all refer-

ences global variables in the binary. Similar to approaches that resolve indirect control transfers,

recompilers use a combination of heuristics and value-set analyses to identify if a register or

memory location contains a data pointer. A common heuristic is to track the propagation of

constant values that lie in the address range of the data section of the binary.

But, incorrect symbolization of a constant value to a pointer may lead to unsound behavior. For

instance, the recompiled binary semantics may completely change if a constant value is incor-

rectly inferred to be a code pointer, and relocated after lowering. This has been shown to be the

case with McSema due to its use of IDA Pro’s heuristics for symbolization [12].

An alternative method to handle relocations, used by BinRec, is to map the entire input binary

at its original load address as part of the recompiled binary image [12]. BinRec does not attempt

to identify and rewrite function pointers passed to libraries, but instead inserts trampolines at

the original addresses of all external entry points that it traces. The trampolines divert control to

helpers that marshal native state into emulated state, execute the lifted code and then translate

the emulated state back to native before jumping back into external library code. This approach

also eliminates the need to rewrite global data references as data objects in the input binary

are retained at their original addresses. But, a major drawback of this approach is the memory

overhead of mapping the entire input binary in the address space of the recovered binary.

Rewriters may use the relocation metadata available in modern position-independent (PIE) bina-

ries. For instance, RetroWrite [42] and Egalito [112] use the insight that for x64 PIE binaries, (1)

all absolute pointers have relocations, (2) the compiler typically uses relative pointers in the data

section for jump tables and, (3) program counter (PC)-relative pointers in code sections are easily

relocatable. However, a central target for rewriting applications are legacy binaries, that may not

contain such metadata.
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2.4.2 Lifting v/s Recompilation

For the rest of the dissertation, we establish a difference between the terms lifting and recom-

pilation. Lifting defines the process of translating machine code to a compiler IR (we focus on

LLVM IR). This includes the sub-tasks of instruction recovery, control flow recovery, function

boundary detection and individual instruction translation to semantically equivalent LLVM IR.

On top of lifting, recompilation involves implementing support for the entire round trip that

generates a new binary with the semantics and behaviors of the original binary. After lifting to

IR, recompilers typically,

• link in support for precisely emulating the virtual CPU state, e.g. adding stack memory, mod-

eling registers and flags, and defining a new entry point.

• perform semantics preserving transformations and optimizations, such as devirtualizing the

lifted IR to improve performance.

• handle code and data pointer relocations.

• lower the IR to generate a new binary.

Tools like Rev.Ng [40], and RetDec [67] exclusively classify themselves as lifters rather than re-

compilers. This implies a fundamental difference in the downstream tasks that they concern with.

For instance, a central goal of RetDec is to lift binaries to LLVM IR for the purpose of decompi-

lation (to C-like pseudo code). As a result, they can afford to use unsound heuristics, such as

to recover program variables, to refine their IR since the decompiled code is not intended to be

recompiled back down. Recent work uses debug information to refine the lifted IR, but they do

not target recompilation [120].
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Chapter 3

Polynima - Practical Hybrid

Recompilation for Multithreaded

Binaries

Although recompilers aim to bridge the divide between the modern compiler ecosystem and

binary programs, the current state-of-the-art tools do not deliver on this promise. Crucially,

they fail to generally handle the various challenges posed by multithreaded programs that are

ubiquitous in the current software space.

To address these challenges, this chapter introduces Polynima, a binary recompiler that reliably

supports x86/x64 multithreaded binaries while introducing a moderate 1.07x slowdown. We pro-

pose a hybrid control flow recovery approach that combines the benefits of static and dynamic

techniques while providing an efficient strategy to handle unknown paths. Polynima enables the

use of the rich LLVM compiler ecosystem to fix and improve legacymultithreaded binaries, which

we demonstrate by mitigating a critical synchronization issue in an FTP server binary. We also

leverage the functional IR to introduce a novel dynamic analysis to detect implicit synchroniza-
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tion primitives in binaries, which we use to further improve performance of the output. Finally,

we evaluate the generality and correctness of Polynima by recompiling a diverse set of real-world,

multithreaded binaries and benchmark suites. To our knowledge, Polynima is the first recompiler

to be able to do so.

Polynima improves over the state-of-the-art by combining sound static lifting with the ability to

perform optional, instrumentation-based dynamic analyses that refine the lifted IR.

3.1 Current Limitations

We first discuss the specific challenges that recompilers have to face pertaining to multithreaded

binaries and the limitations in the state-of-the-art.

3.1.1 Control Flow Recovery

Section 2.3.2 and 2.3.3 provide an overview of the approaches to control flow recovery in current

recompilers. Static recompilers are fast (to lift) but employ heuristics to predict targets of indirect

control transfers which can be imprecise [89]. Dynamic recompilers [12] provide precision but

are highly inefficient due to the tracing overheads and suffer from the problem of coverage. It is

evident that approaching the problem using an entirely dynamic or static manner is not ideal.

Moreover, static and dynamic approaches to control flow recovery both suffer from the problem

of completeness. A control flow miss occurs when, during its execution, the recompiled binary

attempts to perform a control flow transfer to an address that was not discovered during lift-

ing. Such misses are frequently triggered by non-deterministic program behaviors [12] that may

arise due to explicit (getenv(), rand()) or implicit (using pointers as hashmap keys) sources of

randomness. Crucially, due to the various thread interleavings that are possible at runtime, non-
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deterministic behaviors are particularly common in multithreaded binaries. None of the existing

static recompilers implement support for such control flow misses.

A sound way of handling control flow misses is to terminate binary execution at that program

point, as it does not introduce any divergent behaviors. However, this strategy needs to explicitly

encoded as part of the IR as the compiler may optimize certain paths and introduce semantics

that were not a part of the original binary. For instance, if a single target to an indirect call is

known, the compiler may inline the function call and execute the inlined path for all possible

inputs.

BinRec implements incremental lifting to handle this issue. When a control flow miss occurs,

BinRec terminates execution of the running program, records the virtual PC value and initiates

a new trace of the original binary using their lifting frontend. To keep the tracing overhead

manageable, this trace is started at the newly discovered address instead of the beginning of the

program. Since the incremental trace is started at an arbitrary address, it is prone to trigger

runtime faults before discovering any new targets due to uninitialized stack and heap memory.

Tomitigate this, BinRec performs path exploration only until the next conditional control transfer

which is inefficient.

Also, one of the core promises of recompilation is cross-ISA (instruction set architecture) trans-

lation, which is valuable for programs compiled for legacy architectures. But, current dynamic

approaches rely on access to the original execution environment or an emulator to recover the

CFG, which is not guaranteed. Consider the recompilation of a binary originally compiled for

a legacy ISA. Replicating the intended execution environment for a such a binary may not be

possible, as it may depend on a specific version of the operating system, system variables, etc.

However, it may be feasible to write a static translator that performs line-by-line lifting of ma-

chine code to LLVM IR.This way, once a recompiled binary that targets a more modern processor

architecture is obtained, it can be experimented with. This case of on-device lifting, additionally

motivates the use of a combination of static and dynamic techniques for efficient and precise
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binary recompilation.

3.1.2 Hardware Atomic Instructions

Multithreaded binaries leverage program constructs, such as those provided by the programming

language, compiler, or the underlying hardware, that pose new challenges for recompilation.

Atomic instructions are critical for implementing synchronization primitives, such as locks and

semaphores, in machine code. On the x86/x64 hardware, this includes read-modify-write (RMW)

operations (e.g., lock add, lock inc) and compare-exchange operations (e.g., lock cmpxchg).

Atomic memory accesses on the x86/x64 architecture assert that all observers see the access

as having happened or not happened at all, and never partially happened [58]. The executing

thread has exclusive ownership of the data for the duration of the instruction to ensure that no

partial state is ever exposed to other observers on the system. Therefore, precisely mapping these

hardware instruction semantics to LLVM IR is difficult.

Consider the translation of the lock cmpxchg dword ptr [rsi], ecx instruction as a repre-

sentative example. This instruction compares the value in the eax register with the value stored

in the destination operand i.e., memory pointed to by rsi. If the two values are equal, the sec-

ond operand is loaded into the destination, else the destination operand is loaded into eax. The

instruction also updates the zero bit of the EFLAGS register depending on the result of the equal-

ity. Note that all of the sub-operations are executed as part of the same hardware instruction.

However, the programming model and the set of available abstractions in lifted LLVM IR differ

notably from that assumed by the underlying hardware. For instance, it is not possible to repre-

sent the update to the (virtual) eax register and the atomic compare-exchange operation as part

of an indivisible IR instruction.

Of all the recompilers, only McSema supports the lifting (binary to IR) of hardware atomic in-

structions to LLVM IR by using the appropriate compiler intrinsics. Unfortunately, its authors
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conveyed to us that its recompilation capabilities (binary to IR to binary) are experimental and

need an expert operator to fix issues manually.

3.1.3 Handling the Program Stack

Stack memory is critical to program execution as it stores function-local variables, spilled register

values, and arguments for calls. Recompiled programs usually work with two stacks of execution,

(1) the native stack, that contains variables and spills that are a byproduct of the emulation, (2)

the emulated stack, that includes variables and spills of the input program. Recompilers such as

McSema, BinRec, and Rev.Ng model the emulated stack as a global array of bytes. However, their

implementation is not general as they do not handle the multithreaded case, where each thread

of execution needs to work with its own emulated stack.

Some recompilers split the emulated stack into individual chunks and move them to the lifted

program’s native stack to mitigate the resulting performance slowdowns. For instance, mctoll

performs static analysis to identify the maximum bound on the per-function stack frame size and

creates a (function-) local allocation that represents the original program’s stack frame. But, this

approach is not general as, we later show in Chapter 4, statically inferring the maximum frame

size of functions in binaries is hard. In fact, the framemay not be bounded at all for programs that

call alloca (or one of its many variants) with a dynamically determined size argument or use

Variable Length Arrays (VLAs). Insufficiently allocated stack frames could lead to runtime faults

after recompilation due to out-of-bounds frame local accesses reaching into unknown memory.

Moreover, this optimization of recovering the per-function stack frame relies on precisely iden-

tifying and translating all accesses to the local stack frame in the original program. Statically

performing this procedure is largely heuristics-driven, as identifying if any stack reference es-

capes is undecidable in the general case. This issue is critical for lifting multithreaded binaries as

imprecision in identifying stack-exclusive accesses may lead to erroneous and unsynchronized
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shared memory writes. Due to the lack of generality of this approach, previous work [98] that

builds on mctoll could not evaluate specific binaries from the Phoenix benchmark suite [97].

3.1.4 Callback Functions

Correct handling of callback functions is necessary to support multithreaded binaries that use

lightweight processes as a threading mechanism (as opposed to user-level threads). This is be-

cause the underlying interface of clone which is used to spawn threads on Linux requires an

entry point for the new execution context. These are considered to be external entry points, as

the control flows in to the binary program from external library code.

We discussed the various approaches to handling callback functions in Section 2.4.1. Of the static

recompilers, only Rev.Ng implements a sound approach to handling callback functions. But, their

tool is only applicable to binaries that are statically linked which impedes its practical application.

Such binaries are uncommon in off-the-shelf software, as they create a large disk and memory

footprint. BinRec’s approach is sound but it does not handle the case when the entry point may

be executing as part of a different thread. Specifically, it does not correctly initialize the virtual

CPU state and the thread-local emulated program stack on entry which may cause faults at run

time.

3.1.5 Memory Access Reordering

Information about the relative ordering of memory accesses, which may be specified implicitly

using synchronization barriers or explicitly using source annotations, is lost during program

compilation. Hence, the lifted IR obtained from such binaries contains no ordering information.

Failure to preserve the original program ordering may lead to erroneous and divergent program

outcomes due to the compiler reordering shared memory accesses at the IR-level.
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std::atomic<bool> lock;
void thread_func2() {
  while (lock.load(std::memory_order_acquire));
  shared_data += 1;
  lock.store(true, std::memory_order_release);
}

.Loop_Header:
    mov     eax, dword ptr [lock]
    test    eax, eax
    jne     .Loop_Header
    add     dword ptr [shared_data], 1
    mov     dword ptr [lock], 1
    ret

Figure 3.1: Memory access reordering at the IR-level may lead to erroneous outcomes. The write
to shared_datamay be reordered across the critical section during recompilation due to the lack
of original ordering semantics.

Consider the example shown in Figure 3.1 which represents a shared memory access that is syn-

chronized using a spinlock. The source-level memory ordering semantics attached to the acquire

load and the release store of lock assert that write to shared_data will not be reordered across

the critical section. However, the generated machine code implicitly encodes these semantics

due to the lossy nature of the compilation process and the guarantees provided by the underly-

ing x86/x64 ISA. For instance, (1) as naturally aligned stores and loads upto 64 bits are guaranteed

to be atomic, the compiler emits an ordinary mov for the load operation, (2) the strong Total Store

Ordering (TSO) model (with store forwarding) prevents the Store-Store reordering between the

add and the mov, But, after lifting, the compiler is free to reorder these memory accesses in the

IR (such as in the case of shared_data) which may break original program semantics.

To remedy this issue, Lasagne [98] formalizes the idea of the LLVM IRConcurrencyModel (LIMM)

and discusses a sound strategy to lift memory accesses in multithreaded binaries to LLVM IR.

They insert appropriate fences for each memory access preventing the compiler from reordering

29



them. As fences can be costly for performance and hinder off-the-shelf optimizations, they pro-

pose certain optimizations - (1) merging adjacent fences that induce redundancy, (2) removing

fences for stack-exclusive accesses. Note that, the second optimization is not always sound as it

requires an analysis procedure that proves that the stack object does not escape the thread-local

scope.

Recent work [22] has shown that Lasagne’s fence placement strategy may impose stricter restric-

tions than necessary for specific programs, incurring a high performance cost for recompiled bi-

naries. Lasagne primarily targets cross-ISA translation to ARM (a weaker memory model), which

requires that the IR impose the strict x86/x64memorymodel for all memory accesses, except those

that target the thread-local stack. But, when recompiling binaries for the same architecture, al-

most all inserted fences are superfluous for programs that synchronize shared memory accesses

through exclusive use of externally provided barriers and primitives (e.g., those provided by the

pthread library). This occurrence is common, as correctly implementing custom primitives is hard

and programmers often rely on third-party libraries to achieve this. Also, if the programmer can

reliably partition the data such that the different threads access mutually exclusive elements, ex-

plicitly sychronizing accesses to the sharedmemory object is unnecessary. In fact, most programs

in the Phoenix benchmark suite exhibit a combination of these properties [97].

3.2 Design and Implementation

Polynima is a full-transformation recompiler consisting of modules that perform control flow

recovery, translation of machine code to LLVM IR, optimization and lowering. Crucially, recom-

piled output generated through static-only analyses acts as a functional replacement for the input

binary. Although this initial output representation only supports control flows that are recov-

ered through the COTS disassembler, we instrument the lifted IR to handle unknown transfers at

runtime. Our optional dynamic analyses, such as those for optimizing the lifted IR, build on top
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Figure 3.2: Overview of Polynima. Dashed lines indicate optional steps.

of this representation. Figure 3.2 gives an overview of the system architecture.

3.2.1 Compatibility

Our prototype supports a wide range of binaries, but we impose certain reasonable restrictions

on the input for implementation reasons. We support the recompilation of x86/x64 Linux-based

C and C++ binaries for their original architectures. We assume that the program stack grows

downwards and that the stack pointer register (esp/rsp) points to the top of the thread-local

stack.

Stack Switching. Linux threads, in this case defined as lightweight processes, are spawned by

calling the clone system call which is wrapped by library functions such as pthread_create or

thrd_create. Polynima supports external library calls with unknown interfaces through stack

switching, where the native stack pointer points to the emulated stack for the duration of the call.

Consider the example of the fwrite call shown in Figure 3.3. The fwrite function is part of the

libc library that is dynamically linked to the binary. In the generated assembly, the call to fwrite

is made through the Procedure Linkage Table (PLT), with the arguments being passed in registers
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.LC1:
        .string "Simple thread example\n"

        mov     rax, QWORD PTR stdout@GOTPCREL[rip]
        mov     rcx, QWORD PTR [rax]
        mov     edx, 22
        mov     esi, 1
        lea     rdi, .LC1[rip]
        call    fwrite@PLT

size_t result = fwrite("Simple thread example\n", 
                       1, 22, stdout);

Figure 3.3: fwrite call source and the associated assembly code.

per the System V ABI [80] for x64 binaries.

void external_call_trampoline(void* call_addr) {

asm(

// Translate emulated state to native
mov @rdi, %rdi

mov @rsi, %rsi

// ....
// Save native rsp in a call-preserved register
mov %rsp, %rbx

// Switch stack
// Native rsp points to emulated rsp for the duration
// of the call
mov @rsp, %rsp

// Make function call
call *call_addr

// Switch stack back
mov %rbx, %rsp

// Translate output registers to emulated state
mov %rax, @rax

mov %rdx, @rdx

);

}

Listing 3.1: Helper function that implements stack switching.

The core idea of stack switching, as shown in Listing 3.1, is to translate the emulated state into

native for the duration of the call. For calls with unknown interfaces, recompilers have to make
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; Moves into emulated registers
; ...
%1 = load ptr, ptr @fwrite

%ret = call i64 external_call_trampoline

(%1)

Listing 3.2: External call with stack-
switching.

; Moves into emulated registers
; ...
%1 = load ptr, ptr @rdi ; void *ptr
%2 = load i64, ptr @rsi ; size_t size
%3 = load i64, ptr @rdx ; size_t nmemb
%4 = load ptr, ptr @rcx ; FILE *stream
%ret = call i64 @fwrite(%1, %2, %3, %4)

Listing 3.3: External call for functions with
known signatures.

conservative assumptions about the function such as - (1) it may read from all input registers, (2)

it may read/write to the program stack, (3) it may write to all output registers. As a result, the

helper function translates all emulated registers to native and then forces the native stack pointer

to point to the top of the emulated stack.

Listing 3.2 showcases the call to fwrite in the IR where the function signature is unknown. We

create an external symbol for the unknown function, retrieve its address and pass it to the helper.

On the other hand, Listing 3.3 shows how Polynima handles external calls with known interfaces.

Depending on the number and type of the arguments, we query the ABI of the input binary to

extract the specific argument values from the virtual CPU state. Then, we replace the call to the

helper with a direct call to the external function as shown in Listing 3.3.

Note that, in the case that the call enters a new thread context, it would work with its own

thread-local stack. Implementing stack-switching in such a scenario would involve dealing with

four stacks of execution, making the implementation overly complex. For that reason, we require

the knowledge of signatures for library functions that spawn threads, such that we can lift them

to execute in the context of the native stack.

Polynima operates on inputs without relocation information. This is typical of most legacy bi-

naries which are our primary application targets. To handle code and data pointer relocations,

we map the input binary at its original load address as part of the output. Therefore, the output

contains the original binary code in addition to the recompiled lifted code.
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We do not support threading mechanisms that can be achieved through get/setcontext(),

make/swapcontext(), and long/setjmp(). Binaries may use threading models and synchro-

nization primitives as exposed by POSIX threads (pthreads), C++11 standard (std::thread),

C11 standard (thread.h), and OpenMP programming models. Supported programs may also im-

plement custom primitives provided by functions from any of the above interfaces, such as C11

(atomic.h) or C++11 (std::atomic). We also handle compiler builtins, such as the __sync_

variants, that typically lower to use hardware atomic instructions.

We do not handle lifting of the syscall instruction. This occurrence is rare, as portable software

usually relies on the existence of native shared libraries (such as glibc) on the target system to

interact with the kernel. We currently do not support binaries with self-modifying code. Additive

lifting enables us to recompile binaries with overlapping instructions and obfuscated control flow

by design, but we do not evaluate our prototype on that capability barring a hand-written exam-

ple. As emulation-based lifting often lifts individual hardware instructions into multiple LLVM

IR instructions, it is difficult to ensure that intermediate virtual CPU state is not visible to other

observers. Therefore, we assume that the underlying memory model does not imply the support

of precise exceptions as it requires that the recompiled binary preserve semantics for instruction

rollback when interrupted by the CPU.

3.2.2 Control Flow Recovery

For the initial lift, Polynima consumes information about function entry points, the basic blocks

belonging to them, and the direct control transfers between identified basic blocks from a COTS

disassembler. We treat jump and call instructions as basic block terminators and explicitly label

control transfers as jump-based or call-based in the CFG. Basic blocks are labeled as direct if the

terminator instruction encodes the transfer’s target address, and indirect otherwise. For indirect

control transfers, we assume a set of known targets and lift them as switch statements, that select
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their target based on the current value of the emulated / virtual program counter (PC). Each switch

case represents a possible value that the PC could assume in the original program, and is mapped

to the corresponding lifted block in the IR. An example is shown in Listing 3.4 that demonstrates

the translation for the instruction call r14.

; 0x00405bfd mov rsi, r13
; 0x00405c00 mov edi, 0x30
; 0x00405c05 call r14
; ----------------------
BB_405BFD:

; ...
store i64 %r14, i64* %pc

; Switch based on known indirect call targets
switch i64 %pc, label %error [

i64 4213776, label %BB_CALL_indirect1391

]

; ----------------------
; BB that implements call to known target of the indirect call
BB_CALL_indirect1391: ; preds = %BB_405BFD
; ...
%474 = call i8* @Func_default_logger(i8* %473)

; ----------------------
; Additive lifting
; Default case jumps to routine that records new call target
error: ; preds = %BB_405BFD

%1688 = load i64, i64* %pc

call void @binrecrt_record_pc(i64 4217853, i64 %1688)

unreachable

; ----------------------

Listing 3.4: Lifted LLVM IR for call r14

But, as obtaining a set of possible targets for an indirect control transfer is a hard problem, Polyn-

ima implements a hybrid approach that can use static as well as dynamic analysis results. We

currently support three distinct ways to achieve this.

Static. Modern disassemblers implement various heuristics to resolve jump tables and infer tar-

gets of indirect calls. Polynima uses but does not expect disassembler-provided targets for indirect

jumps and calls, benefitting from advances in static CFG recovery [62]. As the control flow is
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conditioned on the actual PC value seen at runtime, Polynima can also graciously handle incor-

rectly predicted targets. However, as statically collected information can be imprecise, we may

observe previously unknown control flows during the execution of the recompiled binary.

Additive. To support dynamically discovered targets, Polynima implements additive lifting. We

achieve this by instrumenting the terminating switch statements of all indirect blocks to jump

to a custom runtime after encountering an unknown PC value. On encountering a new path,

the runtime updates the on-disk representation of the CFG with this information and then stops

program execution. In Listing 3.4, the %error block implements call to the custom runtime that

records newly observed targets.

Starting at this target, we perform a static recursive descent style exploration of the original

binary control flow and integrate back all the discovered paths into the known CFG. This tech-

nique is useful for jump-table style control transfers where the paths from the newly discovered

block eventually join with the rest of the known CFG through direct transfers. We then rerun

the recompilation pipeline to generate a new binary that supports the additional paths. The en-

tire process can be thought of as a recompilation loop, with each intermediate output supporting

statically known and dynamically discovered control flow. Discovering new paths by natively ex-

ecuting the recompiled output is an efficient and complementary strategy to static CFG recovery

techniques for handling control flow misses.

Crucially, additive lifting enables on-device lifting. Users can statically generate a fully functional

recompiled output, that supports known control transfers, for their target environment through

Polynima. This is possible as the recompilation process enables the linking of new libraries,

patching unsupported instructions and compiling for a different ISA. With the newly gained

ability to natively run the program on the target architecture, unknown paths can be additively

recovered during program execution.

Dynamic. We note that the performance of the above approach is directly proportional to the

36



total time required for each recompilation run. This can be inefficient when, (1) the time required

for an individual lift-and-lower step is high, such as in the case of large binaries, (2) unseen control

flows are observed a long time from execution start.

To resolve this, we provide an optional and low-overhead Indirect Control Flow Target (ICFT)

tracer that can be used upfront to augment the statically recovered CFG. Given a set of inputs, it

observes concrete executions of the program and records all targets of indirect control tranfers. It

then merges information recorded across the different runs, providing the benefits of an entirely

dynamic recompiler.

Note that additive lifting complements the ICFT tracer module. Non-deterministic behaviors may

lead to certain program paths never being exercised even after extensive tracing, which necessi-

tates sound handling of the unknown control flows in the recompiled binary. In fact, such behav-

iors are particularly common in multithreaded machine code due to the various thread interleav-

ings that are possible at runtime. We also observed this in binaries from the SPEC benchmark

suite where pointers were being used as keys into hashmaps.

3.2.3 Hardware Atomic Instructions

Support for hardware atomic instructions is necessary to generally handlemultithreadedmachine

code. A naive approach to their translation is to decompose them into distinct loads and stores,

with all the accesses synchronized using a global (spin)lock. This maintains the guarantees of

exclusive access to memory and other ordering constraints. But, a major drawback is that all

threads executing an atomic instruction, irrespective of whether the referencedmemory locations

alias, have to unnecessarily (spin)wait.

To optimize this, we map atomic instructions to the appropriate compiler builtins at the LLVM

IR-level during lifting. Listings 3.5 and 3.6 show the translated IR blocks for both the approaches.
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lock(@global_lock)

%temp = *%rsi

if %eax == %temp:

%flags.z = 1

*%rsi = %ecx

else:

%flags.z = 0

%eax = %temp

*%rsi = %temp

unlock(@global_lock)

Listing 3.5: Naive.

compiler_barrier()

%old = %eax

%new = %ecx

%orig = cmpxchg *%rsi,

%old, %new seq_cst

%flags.z = %orig == %old

if !%flags.z:

%eax = %orig

compiler_barrier()

Listing 3.6: Optimized.

Here, we perform the write to the (virtual) eax as part of a separate instruction that depends on

the result of the cmpxchg. However, we need to ensure that (1) the loads from the virtual registers

(eax, ecx) are not reordered after the cmpxchg and before any other stores that target them. (2)

the conditional store to eax is not reordered after any use of cmpxchg. To prevent such instruction

reorderings, we mark the cmpxchg as sequentially consistent (seq_cst) and surround the trans-

lated IR block with compiler barriers. Since registers are not accessed indirectly, we can be certain

that no other thread will race to write to the storage location of the eax register. We manually

check the correctness of such translations for all supported hardware atomic instructions.

To preserve atomicity guarantees for memory operations asserted by the ISA, we maintain orig-

inal alignments for, (1) global variables, by placing them at their original addresses, (2) program

stack, by initializing the emulated program stack with the ISA mandated alignment.

3.2.4 Per-thread Stack and Callbacks

Polynima-lifted IR operates on a virtual CPU state that consists of registers, flags and stack mem-

ory, that are represented as global variables. For lifted functions, we implement a conservative

version of the prototype recovery algorithm as described in Elwazeer et al. in [44]. Functions take

as arguments output registers (registers they may read and write to) and input registers (regis-
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libpthread.so

pthread_create(
    thread_func_addr,
    ....)

thread_func_addr:
    jmp thread_func_helper

Original binary address space

thread_func_helper:

emulated_state = translate(native_state)

if (new_thread) {
    initialize(thread_local_storage)
    initialize(thread_local_stack)
}

emulated_state = recovered_thread_func(arg_rdi,
arg_rsi...)

native_state = translate(emulated_state)

1. call from recovered binary

2. external entry
point

3. trampoline jump

4. return to libpthread

Figure 3.4: Execution flow on external entry into the recovered binary address space.

ters they they may only read from). All functions only rely on the validity of the stack pointer

register passed in as an argument, and do not make any other assumptions about the stack. To

support multithreaded binaries, we mark variables that represent the global state as thread_lo-

cal ensuring that each thread operates on its own copy of the virtual state. Figure 3.4 shows an

overview of the callback handling process.

External library calls take function pointers as arguments when, (1) performing callbacks, such as

in the case of qsort that requires a user-defined comparator function, (2) spawning new threads

of execution, such as in the case of pthread_create which requires an entry-point in the new

execution context. Statically identifying the values of the arguments to such calls is hard, as

function pointers could be materialized in registers or loaded from memory at run time. To

remain general, recompilers that recover functions must assume that any lifted function could be

used as an external entry point.
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We insert trampolines at addresses of each of the function starts in the original binary that jump

to custom wrappers that enable transition of the execution context from the library code to the

lifted code. We implement them to also support handling the case when the execution is part of

a new thread. This way, irrespective of whether we can statically identify if the original binary

spawns new threads, we perform correct recompilation.

We repurpose the callback wrappers to identify if the binary is in a new thread of execution, and

use it to initialize relevant thread-local CPU state such as the segment registers and flags. We

allocate memory that acts as the emulated stack for the call-graph starting at the thread-specific

entry point, and copy over caller-provided arguments from the native stack into it. The emulated

stack pointer then is initialized to point into this allocation. For callbacks executing in the same

thread, the recovered function observes a different region of memory than the emulated stack.

Specifically, it operates on the locally allocated byte array, as opposed to the emulated stack that

is passed to the recovered main function. However, the library code and the native function do

not assume any implementation-specific details about the memory model and only abide by the

contract specified by the ABI. Hence, original program semantics are maintained irrespective of

whether the callback is executing in a different or the same thread.

Callback Wrapper Optimization. To achieve sound static recompilation, we need to mark all

lifted functions as external at the IR-level since LLVM could optimize away or inline functions

that act as possible external entry points. This increases the overall code size as we need to

preserve all function bodies and their callbackwrapper implementations during the recompilation

process. This approach also hinders interprocedural compiler optimizations which affects the

performance of the recompiled binary.

To that end, we implement a dynamic analysis based instrumentation pass, on top of the lifted

IR, that records the names of functions used as callbacks for a given set of inputs. We merge

information collected across different runs and subsequently remove wrappers for functions that

are not observed as external entry points and unmark them as external. This makes them
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available to the compiler for aggressive optimization, which benefits the recompiled output in

terms of code size and performance. Note that this is an optional optimization step, and that the

recompiled binary provided as input to this stage is a fully functional replacement of the original

input.

Handling Non-Atomic Loads/Stores

We initially adopted the fence insertion strategy formalized by Lasagne [98] for x86/x64 to handle

memory access reordering at the IR-level. However, the fences used in their memory model are

designed to replicate the guarantees provided by the ARM ISA in order to be efficient when

cross-compiling programs from x86 to ARM. These fences provide different semantic guarantees

than the acquire/release fences in LLVM IR. Except for sequentially consistent fences, fences

in LLVM IR are required to be paired with another monotonically ordered atomic operations

to ensure synchronization. This is unnecessary in the LIMM model, where fences that are not

sequentially consistent establish a global happens-before relation between non-atomic memory

accesses. They do not integrate their memory-model fully into LLVM, since that would require

updating the optimization passes to be aware of the special semantics of these fences. However,

their implementation inserts sequentially consistent fence whenever a fence is required.

Ignoring the issue of non-atomic memory accesses, when recompiling x86/x64 programs without

the aim of cross-compilation, this approach imposes unnecessary overhead. The sequentially con-

sistent fences are lowered to the mfence instruction, which is a full memory barrier that prevents

all memory accesses from being reordered. The recompiled binary would be correct (assuming all

accesses are marked atomic besides inserting the fences), but would impose significantly stronger

ordering constraints than the original binary. Instead, we lift every x86/x64 load to a sequentially

consistent load instruction, and every x86/x64 store to a store instruction with release semantics.

This model ensures that the guarantees of TSO are preserved. The release semantics of stores

prevent loads and stores being reordered past them. The sequentially consistent loads prevent
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reordering with other loads, and that stores are observed in a consistent order by all threads. For

x86, this is a more efficient approach than inserting fences, because sequentially consistent loads

and release stores are lowered to the same regular mov instructions they were lifted from.

We note that we have not formally proven the correctness of our translation. However, we have

tested our approach on a wide range of multithreaded programs and have observed no issues. The

alternative would be to mark every store as sequentially consistent. This would be the most con-

servative approach, but would impose unnecessary overhead on the recompiled binary, because

sequentially consistent stores are lowered to the xchg instruction.

3.2.5 Non-Atomic Load/Store Optimization

Programs synchronize shared memory accesses through primitives such as barriers, locks, mu-

texes and semaphores. To achieve this, programmers often rely on external libraries for the imple-

mentations of such primitives, like those provided by std::atomic, pthreads, and OpenMP. But,

they can also choose to implement custom or implicit synchronization primitives when available

constructs are too slow or do not provide specific guarantees and control. Our key insight is that

demonstrating the absence of implicit primitives in the binaries of data-race free programs can

be leveraged to optimize the handling of non-atomic memory accesses during their recompila-

tion. Note that as we recompile binaries for the same architecture, we care about memory access

reorderings only at the IR-level.

Approach

Consider an analysis which identifies if given machine code does not implement any implicit

synchronization primitives. We describe two scenarios where this is the case, and discuss the

issue of shared memory access reordering during lifting in each case. Since all shared memory
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accesses in a data-race free program must be synchronized,

• the code exclusively uses synchronization mechanisms provided by external libraries: In this

case, the compiler is prohibited from reordering memory accesses across an external call as

it is unaware of the possible side effects it may have. Therefore, it conservatively preserves

the original access ordering irrespective of whether originally non-atomic loads and stores

are marked as atomic..

• there exist no shared memory accesses that need synchronization: If no two threads are racing

to access the same location (atleast one thread with a write operation, and another thread

with a read/write operation), each memory access can be considered to be synchronized.

In this case, IR-level reorderings maintain original program semantics.

Hence, if it can be shown that the given program does not implement any implicit synchroniza-

tion primitives, we can relax the atomicity restrictions imposed on originally non-atomic loads

and stores that prevent reorderings in the IR. To that end, we design a dynamic analysis based

instrumentation pass to detect implicit synchronization primitives in machine code.

Prior work [50, 65, 78, 81, 105] identifies that the basic pattern necessary for implementing such

a construct is a spinloop. Since multiple definitions of a spinloop exist in literature, we choose

the most permissive one as described in AtoMig [22]. For each loop that we identify in the lifted

IR, our analysis procedure checks if it is NOT a spinloop. We achieve this by showing that it is

possible to exit the loop due to the influence of a local value that is, (1) not loop-constant and, (2)

lacks external dependencies. A value is defined to have an external dependency if it depends on

a shared memory access through some data flow.

Note that AtoMig detects spinloops to identify potentially racy memory accesses based on in-

struction influence analysis of the spin controls. They transform such operations to be sequen-

tially consistent, to achieve the correct translation of programs written for a stronger memory

model (TSO) to a weaker memory model (WMM). With Polynima, we aim to identify spinloops
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@g = global i32 0

define void @samples() {

%1 = alloca i32

; (a) Spinloop
%op = load i32, i32* @g

; (b) Spinloop
%5 = load i32, i32* @g

store i32 %5, i32* %1

; ...
%op = load i32, i32* %1

; (c) Spinloop
store i32 1, i32* %1

; ...
%op = load i32, i32* %1

; (d) Non-spinloop
%7 = load i32, i32* %1

%8 = add i32 %7, 1

store i32 %8, i32* %1

; ...
%op = load i32, i32* %1

; (e) Non-spinloop
%3 = phi i32 [0, %entry],

[%op, %back]

; ...
%op = add i32 %3, 1

}

Listing 3.5: Examples of spinloops and non-spinloops

to infer if the binary implements custom synchronization primitives as part of its code.

We illustrate the various cases through examples in Listing 3.5. We assume that the value %op is

one of the operands for a loop termination condition and that the rest of the statements for each

of the examples belong to a loop body.

Let us first consider the spinloop cases. (a) has a direct external dependency on @g and (b) has

an indirect external dependency (through store) on @g. In both of these cases, external depen-

dencies (@g) may be modified by other threads between loop iterations, which may invalidate

assumptions about loop termination. This is usually how spinloops are implemented, where one

thread spins until it can get exclusive access to a protected shared resource. (c), on the other

hand, has a local store of a constant value 1. Constant value stores do not affect loop termination

across different iterations. For all of these cases, we mark the loops as potentially spinning.

Now, we consider the non-spinloop cases. (d) depends on a local store of a non-constant value.

This is seen in cases where local program variables are accessed through memory loads and

stores instead of through registers, such as for unoptimized IRs. Whereas, (e) depends on a loop-
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modified value, which demonstrates a typical case of a locally-stored loop index being used to

execute a fixed number of iterations. For both of these cases, we also ensure that there is no

dataflow of an external dependency into %op. The influence of such an operand on the loop ter-

mination condition would be sufficient to mark it as non-spinning according to our definition

above.

Analysis

We first recursively inline all lifted functions in the body of their callers to enable data flow

tracking across procedure calls. Next, we perform the LLVM-provided loop simplification pass

to restructure loops such that they have dedicated exit blocks. This enables the precise analysis

of their termination conditions. Polynima’s functional IR representation enables us to rely on

LLVM’s standard compiler passes to perform these transformations.

We annotate and instrument all memory access sites i.e. loads, stores, RMWs and CmpXCHGs to

record the memory location and the access type i.e. local or shared. Polynima can differentiate

between stack-local and shared memory accesses as we control the allocations for each thread’s

emulated stack. We then run the recompiled binary with a set of concrete inputs to record dy-

namic analysis information for the instrumented memory accesses. After merging data collected

across various runs, we map each memory access site to a list of tuples, each containing the

observed location and the access type.

Next, we iterate over all loops in the lifted IR and analyze them individually. Polynima performs

an instruction influence analysis, which wemodel as a backwards dataflow analysis, for operands

of each of the loop termination conditions. The goal here is to identify if any of the operand values

are influenced by loop-modified local value. It is trivial to perform this analysis for values that

are not influenced by memory accesses, by following their use-def chains in the IR. We typically

observe this for source-level variables that are mapped to a register storage for the duration of
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the loop body, such as loop indices. In this case, we benefit from lifting general-purpose registers

as SSA values.

Performing this analysis for source variables that are stored in memory, and influence the loop

termination condition, requires chasing memory loads and stores. We resolve these queries using

the dynamically recorded information. For all sites that access shared memory locations, we

assume an external dependency and discard checking further. For local accesses, we collect all

intra-loop stores made to that location and trigger another backwards dataflow analysis for the

stored values. If the stored value is, (1) not loop-constant and, (2) lacks external dependencies,

we can assert that the loop is non-spinning.

Once we identify that all lifted loops in a binary are non-spinning, we conclude that the we

can relax the atomicity restrictions for originally non-atomic loads and stores in the lifted IR.

Figure 3.6 shows an overview of the entire process.

Limitations

False positives. Falsely asserting the absence of implicit synchronization may lead to unsound re-

compilation. Our approach can fail for programs that implement implicit synchronization primi-

tiveswithout spinning, i.e. using only loads and stores. This occurrence is uncommon, as construc-

tion of any non-trivial and wait-free synchronization mechanisms requires the usage of atomic

read-modify-write accesses [54].

We do not support programs that use primitives based on sleep-based contention, and other asyn-

chronous methods (e.g. signals and syscalls). But, we argue that through our dynamic analysis

we can detect timeout-based synchronizing loops in atleast one running thread because, (1) we

assume that the programs under analysis are data-race free, (2) for progress to be made toward

program completion, atleast one of the spinning loops has to sucessfully exit. We did not find

evidence of the use of any of the above mechanisms as part of our benchmarks.
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Figure 3.6: Overview of the dynamic analysis pass for optimizing the handling of non-atomic
loads and stores.

False negatives. Our dynamic approach is limited by the loop-coverage that is achieved through

the provided inputs. We may falsely identify that a program uses implicit synchronization if we,

(1) do not realise a loop body during the execution runs, (2) identify a non-spinning loop to be

spinning. Polynima also does not build precise happens-before relationships or perform lockset

analysis to identify shared memory accesses that belong to a loop but are already synchronized.

This may result in false negatives that are not resolvable through dynamic analysis. In such

a scenario, we remain conservative and preserve restrictions on non-atomic loads and stores,

possibly affecting performance but not correctness.
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3.3 Evaluation

Our evaluation is guided by the following research questions:

RQ1: Does Polynimamake available the transformation infrastructure, available as part of LLVM,

to fix and improve legacy multithreaded binaries?

RQ2: Can we recompile a diverse set of complex real-world multithreaded binaries while main-

taining correctness and ensuring a reasonable performance cost?

RQ3: How effective is our load/store optimization approach?

RQ4: Does our hybrid control flow recovery approach improve state-of-the-art?

Environment and Software. We wrote a wrapper around the radare2 [13] disassembler to out-

put a static (JSON-based) control flow graph representation that includes functions and the basic

blocks belonging to them. The ICFT tracer, implemented as a Pin [76] tool, augments this rep-

resentation with dynamically collected indirect control transfers. We then invoke the translator

module, which is built on top of S2E’s [34] RevGen [33] utility. This provides us the infrastructure

to translate individual machine code basic blocks to LLVM IR (LLVM 14). S2E achieves this by

first translating machine code to QEMU’s TCG intermediate representation and then to LLVM

IR. Our translations for atomic instructions are implemented on top of the upstream S2E. In the

lifted IR, we stitch together lifted basic blocks to create functions based on the recovered control

flows. Finally, the rest of our lifting pipeline builds on top of BinRec [12], leveraging passes that

enable us to deinstrument the IR emitted by the translator and its infrastructure for lowering the

lifted bitcode.

Polynima can be accessed through a single command-line utility that provides facilities for project

management, instruction recovery, lifting and (additive) recompilation of binaries. Users need

only provide inputs that exercise control flows for the optional dynamic analyses. Writing patches
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for binaries using Polynima is akin to writing a compiler-level pass for LLVM IR, with the option

of adding a runtime component that can be linked in. A custom transformation pass can be

integrated with the standard compiler infrastructure by registering it with LLVM’s PassManager.

We conducted our experiments on a Ubuntu 20.04 LTS systemwith an Intel i7-8700KCPU running

at a base clock of 3.70 GHz, 32 GB RAM, and 6 cores. To ensure stable performance, we disabled

frequency scaling, hyperthreading, and frequency boosting. We ran each input five times for

performance experiments, summed up their means, and calculated the normalized runtime as a

fraction of the baseline. We compiled all binaries with gcc-8, with stack-protector and position-

independent execution disabled (-fno-stack-protector -no-pie), and optimization level O3,

except for ConcurrencyKit, which defaults to O2.

Comparison with other lifters. We tried running other state-of-the-art lifters identified in Liu

et al. [74] to lift the binaries that we choose for our evaluation. The authors of RetDec [67] suggest

that the tool is designed as a binary lifter, instead of a recompiler, and that the IR is unsuitable

for recompilation. Likewise, McSema’s [41] authors conveyed that the tool’s main focus is bi-

nary lifting and its overall recompilation capabilities are experimental. To evaluate Rev.Ng [40],

we used musl-gcc and statically compiled a multithreaded version of the simple “hello world”

program. Although we recover a translated binary, we observe faults during execution of the

do_fork procedure, indicating a lack of support for multithreaded machine code. Lasagne [98],

which builds on top of mctoll [115], supports the lifting and recompilation of a subset of multi-

threaded binaries. However, we could not lift any other binaries apart from those belonging to

the Phoenix benchmark suite using their prototype.

To our knowledge, Polynima is the only binary recompiler that supports real worldmultithreaded

programs while maintaining original program semantics.

49



3.3.1 Exploit Detection (RQ1)

We focus on detecting and mitigating CVE-2023-24042 [5], a recently discovered synchronization

bug in LightFTP which enabled path traversal and possibly other security issues. The bug mani-

fests because the variable (and the context) used to track the requested file name and the session

user name is reused across the different threads creating a race condition. Below is the sequence

of steps a malicious user would perform for a directory traversal exploit,

• Send the LIST commandwith an existing directory name as the parameter, writing the path

in context->FileName and spawning a blocked handler thread.

• Send the USER command with a filename of choice (e.g., /etc/passwd) as the parameter,

overwriting context->FileName with this value. Note that no checks are performed for

this write.

• Connect to the data socket which unblocks the handler thread for the LIST command. The

handler now uses the value stored in context->FileName, which has been overwritten in

the previous step.

We identify that the program calls stat to check the file status in function ftpLIST before spawn-

ing the handler thread. The handler function list_thread then calls opendir to open a direc-

tory stream corresponding to the requested path and return a list of files. We write an LLVM

pass which records and compares the path arguments passed to the stat and opendir calls.

During benign execution of the program, both would correspond to the same value, but would

be different in the case of an exploit.

The operator is enabled to take various actions in an exploit scenario with a Polynima-recompiled

LightFTP binary. They may divert the code to a custom runtime handler, written in plain C/C++,

similar to a “patch” in source programs. They could also choose to log the event for forensics

or stop the server entirely. Since we lift external calls and their arguments, it is also possible

to replace the value stored in context->FileName with the older value to protect against the
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Table 3.1: Supported Benchmarks. Lasagne builds on top of mctoll.

Benchmark Description LOC Polynima Lasagne McSema BinRec Rev.Ng

memcached [110] Key-Value Store 24.4k 3 7 7 7 7

mongoose [77] Web Server 7.4k 3 7 7 7 7

pigz [8] Compression Tool 6.4k 3 7 7 7 7

LightFTP [55] FTP Server 2.4k 3 7 7 7 7

Phoenix [97] Data Processing 4.4k 7/7 5/7 0/7 0/7 0/7
gapbs [21] Graph Processing 2.8k 8/8 0/8 0/8 0/8 0/8

CKit (spinloops) [11] Sync. Primitives 1.3k 11/11 0/11 0/11 0/11 0/11

exploit. Also, the operator has complete control over the set of valid control transfers in the

lifted IR. They may choose to completely disable certain allowed commands by either rewriting

their handler implementations or by limiting the available targets of a jump-table style command

dispatch.

The actual fix for this bug involved major changes, maintaining a per-handler context structure

consisting of the file’s username and path. We argue that in the cases where fixes for such bugs

are unavailable due to lost source or lack of vendor support, Polynima’s capabilities to generate a

replacement binary are demonstrably valuable. The compiler pass and the runtime instrumenta-

tion code account for only about 70 lines of C++. Thus, we enable a usable and powerful interface

for performing program-wide transformations that can leverage the LLVM compiler infrastruc-

ture.

3.3.2 Compatibility and Performance (RQ2)

We test Polynima on a large and functionally diverse set of binaries that comprises real-world

utilities and benchmark suites listed in Table 3.1. We report correct outputs across all the test cases

that we run.

memcached uses pthreads along with compiler builtins for threading and synchronization. We

use the tool memaslap to check the correctness and benchmark the recovered binary performance
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under load. We runmemaslap for 2minutes with the default configuration of the get/set request

proportion (0.9/0.1) with 2 and 4 threads in each case. In both cases, the recovered binary reports

a less than a 1% difference in the total number of operations performed.

pigz exclusively uses functions provided by pthreads. We benchmark pigz by compressing two

files with compression levels fast, default and slow and across the use of 1 / 2 / 4 threads. We

observe negligible differences in data processed (in mbs per second) and the total time required

for compression in each of the configurations.

mongoose. We compile the default multi-threaded web-server example to test mongoose which

uses pthreads. We configure the siege utility to spawn 25 concurrent threads sending requests to

the server for 2 minutes. The average response time for the original server binary is reported to

be 2.02s v/s the 2.03s for the recovered one, indicating a minimal performance difference.

LightFTP. For LightFTP, which also uses pthreads, we stress test the upload and download speeds

for the original and recovered binary. We achieve this by sending concurrent upload and down-

load requests of 1 MB files for ~45 seconds. The average upload times differ by a margin of 2.4%

and the download times differ by 9%.

Phoenix. Table 3.2 contains the results for the Phoenix benchmark suite, which contains map-

reduce style programs that are used to benchmark parallel executions. Phoenix also uses pthreads

for synchronization and threading. We use the provided small, medium, and large input datasets

to evaluate performance of the recompiled binaries.

We first highlight the performance of Polynima recompiled binaries for the O0 baseline. For

unoptimized binaries, recompiled binaries perform at par or better than the input with an average

speedup of 0.99x, with a maximum speedup of 0.88x in the case of histogram. In these cases, we

observe performance benefits as the compiler, (1) is effective in optimizing the lifted IR, (2) is free

to choose SIMD instructions available as part of the underlying hardware for efficient lowering.

These results show that Polynima could be useful as a post-release optimizer, for binaries that
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Table 3.2: Performance of Polynima recompiled binaries on the Phoenix benchmark suite. Results
in the NA column report performance after relaxing restrictions on non-atomic loads and stores.

Benchmark O0 O0 FO O3 O3 FO

histogram 0.88 0.81 1.06 1.03
kmeans 0.95 0.54 1.32 1.26

linear_regression 0.90 0.82 1.27 1.20
matrix_multiply 1.01 0.95 1.02 1.02

pca 0.94 0.72 (7) 1.13 1.13 (7)
string_match 1.27 0.89 1.35 0.94
word_count 1.03 1.03 1.03 1.03

Geomean 0.99 0.81 1.16 1.08

were originally compiled with little to no optimizations for an older CPU version.

gapbs. The gapbs benchmark suite contains reference implementations of various graph process-

ing algorithms. Programs use the features provided by the OpenMP library for implementing

parellelization, specifically annotating loop bodies with the #omp parallel pragmas for con-

current execution. They also use primitives from std::atomic, that lower to x86/x64 hardware

atomic instructions, for synchronization.

We evaluate all gapbs binaries (Table 3.3) on integer inputs, for which we use uniform-random

graph inputs of size 220 for each binary. With gapbs, we observe similar trends as Phoenix i.e.

close to original performances for unoptimized binaries and slowdowns for the optimized ver-

sions.

Performance Discussion. We use the geometric mean of the results for the unoptimized (O0)

and optimized (O3) Phoenix and gapbs benchmark suites to compute the overall 1.07x slowdown.

We now discuss the major reasons for degradation in recompiled output performance for opti-

mized binaries (O3) in gapbs and Phoenix.

Recompiled output performs memory accesses which are part of the original binary onto an em-

ulated stack, which helps Polynima remain general in its approach to lifting binaries. However,
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Table 3.3: Performance of Polynima recompiled binaries on the gapbs benchmark suite.

32-bit 64-bit

Benchmark O0 O3 O0 O3

bc 1.17 2.59 1.08 1.40
bfs 0.99 0.97 0.79 0.66
cc 0.74 0.94 0.83 1.32

cc_sv 0.89 1.01 0.82 1.25
pr 1.95 2.90 0.80 1.14

pr_spmv 2.01 2.68 0.72 1.22
sssp 0.72 1.06 0.52 1.08
tc 1.35 1.55 1.35 1.35

Geomean 1.14 1.55 0.83 1.17

note that most optimizations in the LLVM ecosystem are designed to work with an IR that con-

tains program variables along with their type information. Since we do not recover this, LLVM

has to treat the emulated stack as entirely opaque, which prevents off-the-shelf optimizations

from being fully effective.

We also notice the cost introduced due to the non-optimal lifting of SIMD instructions and float-

ing point operations. Polynima relies on QEMU [23] helpers to provide translations for such

instructions, which are based on emulating them on the virtual CPU state. We only implement

precise lifting of certain vector instructions, which introduces some performance slowdowns.

For certain vector instructions, LLVM can resynthesize them into intrinsics after lifting, but this

translation is not optimal.

Finally, withOpenMP, each of pragma-annotated loops compile into a distinct functionwhich acts

as an entry point into a new thread context. This involves handling a large number of callbacks,

19 on average, which we identify to be another reason for the performance slowdown. Callback-

handling includes marshaling of the native registers, copying arguments to the emulated stack,

and copying returned registers back to the native state after execution of the lifted function.

We could not reliably recompile most of our benchmark programs with other recompilers. Polyn-
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Table 3.4: Performance of the original and the recompiled output (in terms of number of clock
cycles required) on the latency tests in CKit.

Spinlock Native Recovered

ck_anderson 31 25
ck_cas 26 25
ck_clh 26 26
ck_dec 26 24
ck_fas 26 25
ck_hclh 57 57
ck_mcs 56 54

ck_spinlock 26 25
ck_ticket 36 49

ck_ticket_pb 36 35
linux_spinlock 26 23

ima builds on top of BinRec which outperforms McSema and Rev.Ng recompiled binaries on

single-threaded benchmarks [12]. As a result, we expect Polynima to perform better than or

atleast as well as BinRec in comparison to them. Lasagne reports performance results for a sub-

set of binaries from the Phoenix benchmark suite for the downstream task of cross-ISA translation

to a different architecture (AArch64), which we do not support yet.

ckit. ConcurrencyKit implements custom concurrency primitives using compiler builtins (C99)

that compile down to use hardware atomic instructions. We first successfully perform correctness

checks for all 11 spinlock implementations using the validation test suite. We then use the latency

benchmark test as part of the regressions suite to compute the average latency (in terms of number

of clock cycles required) for each spinlock. Each individual test consists of a sequence of lock

and unlock operations, executed in a loop. As these involve the lifting and lowering of various

hardware atomic instructions, the results help us evaluate our approach to their translation. In

Table 3.4 we report that the recompiled binary performance is close to the original in almost all

cases, which validates our earlier claims of efficiency and correctness.
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3.3.3 Implicit Synchronization Detection (RQ3)

Next, we evaluate the precision of Polynima’s spinloop detection as well as the performance im-

provements that we derive due to the subsequent relaxation of non-atomic loads and stores. We

first validate our approach on the various spinlock implementations in ConcurrencyKit as repre-

sentative examples of implicit synchronization primitives. Then, we evaluate it on the Phoenix

benchmark suite, which explicitly uses external synchronization primitives, where we benefit the

most by proving the absence of implicit synchronization. Recompiled binaries are run against

provided inputs with instrumentation that records information for all memory accesses.

False positives. We do not observe any false positives in the experiments that we perform.

False negatives. In histogram, we fail to cover one loop body that swaps data bytes depending on

the endianness of the underlying architecture. Since no inputs we provide would cover this loop

(on x86/x64), we manually analyze it as a non-spinloop and report the results.

We observe a false negative in the case of the pca binary, as it requires a precise happens-before

analysis for proving that a certain loop is non-spinning. This does not affect correctness how-

ever, as we default to preserving atomic guarantees for all loads and stores. We still report the

results after performing the atomicity relaxation to demonstrate the impact on recompiled binary

performance.

True positives. Apart from the two cases mentioned above, we cover and check that all other loops

from Phoenix are correctly identified as non-spinning.

True negatives. We correctly identify all spinloops in binaries compiled from the validation test

suite for the various spinlock implementations in ConcurrencyKit.

We refer to Table 3.2 for performance discussion of this optimization. We observe that relax-

ing atomicity restrictions on non-atomic loads and stores leads to a notable improvement in
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performance for nearly all test cases. The average speedup observed for unoptimized binaries

is improved to 0.81x, further pushing the case for using Polynima as a post-release optimizer.

Removing ordering restrictions enables off-the-shelf compiler optimizations to be more effective.

Crucially, we observe astounding improvements in performance for the kmeans and string_match

binaries after relaxing non-atomic loads and stores. Improvements are also observed for opti-

mized binaries, where the slowdown is improved to 1.08x.

3.3.4 Lifting Time (RQ4)

Overall lift time. We now compare the performance of our control flow recovery approach with

that of BinRec and McSema. As neither of the above recompilers support multithreaded binaries,

we apply Polynima to O3-compiled binaries from the SPECint 2006 benchmark suite.

For Polynima, we statically collect the CFG and augment it with information from the ICFT

Tracer, which is driven with the ref inputs for each binary. We ensure the correctness of our

control flow recovery process by checking the output of the recompiled binary against the ref

inputs. Our prototype was unable to handle 403.gcc and 483.xalancbmk due to failed IR trans-

lation for certain superfluous code paths.

We report the total time taken to disassemble, trace, and recompile with Polynima in Table 3.5. We

refer to the BinRec paper [12] for relevant numbers for BinRec and McSema. Polynima performs

orders of magnitude faster than BinRec while also providing the same precision in terms of the

recovered control flow. Also, our performance is comparable to McSema, an entirely static lifter.

To highlight the importance of our hybrid approach, we also report the number of indirect control

flows recorded during the tracing process for each program. Consider the case of 429.mcf and

462.libquantum that contain no indirect transfers. In such a case, an entirely static approach

is efficient and preferable as the disassembler generated output can be considered precise and
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Table 3.5: Lifting Times (in s) the for SPEC INT 2006 binaries against ref inputs and the total
number of ICFTs (indirect control flows) recorded in the process.

Benchmark Polynima BinRec McSema ICFTs

401.bzip2 47 69389 3385 21
403.gcc 1380 28468 7378 2350
429.mcf 130 227999 8 0

445.gobmk 634 72307 1063 1241
456.hmmer 427 144529 189 34
458.sjeng 1399 548342 368 69
462.libq. 425 176536 16 0

464.h264ref 1885 65202 586 116
473.astar 265 119436 18 2
483.xalanc. – – 17103 –

Geomean 445 137074 238 –

complete. However, BinRec performs poorly for both the benchmarks as it needs to trace through

the entire program before being able to generate the recompiled output.

On the other hand, for a program such as 445.gobmk it is difficult for a static disassmbler to

precisely resolve such a large number of indirect control transfers (1241). Recentworkwas unable

to functionally verify McSema-recompiled binaries for more than half of the SPEC benchmark

suite [74]. In this case, Polynima’s hybrid approach performs notably better than BinRec, while

providing the same precision.

Additive lifting. We lift all of our multithreaded benchmark binaries using additive lifting to test

the scalability and robustness of the approach. To evaluate its performance, we compare against

BinRec’s incremental lifting and report the results in Figure 3.7. We use the 401.bzip2 binary

from the SPEC benchmark suite as it was chosen as the demonstrative example in the original

paper. We start our measurements by considering a recompiled binary that supports the SPEC

test inputs. We then measure the time taken (represented by the Y-axis) by both approaches for

increasingly complex input files (represented by X-axis).

To summarize, Polynima decouples the process of CFG collection from translating machine code
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Figure 3.7: Lifting times for BinRec’s Incremental lifting v/s Polynima’s Additive lifting for
401.bzip2.

to IR. Performing the IR translation offline is key for recompilation to scale to large binaries.

Unlike BinRec, that executes the input program inside a full-scale processor emulator, we run

the recompiled output natively. That way, we leverage the relatively low overhead of the recom-

piled output and do away with the long startup times and emulation cost. Whenever Polynima

discovers a new control transfer, it statically explores the CFG starting at this block and retrofits

discovered paths backs into the known CFG. As a result, we see recompilation loops only trig-

gered for chicken.jpg and input.program, where we explore yet unknown sections of the input

CFG.

3.4 Conclusion

With Polynima, we demonstrate a meaningful composition of static and dynamic tech-

niques to perform binary recompilation of multithreaded binaries. We start with a sound

static approach and then design optional dynamic analyses that incrementally refine the the lifted

IR.
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Chapter 4

StackBERT: Machine Learning Assisted

Stack Frame Size Recovery on Stripped

and Optimized Binaries

Chapter 3 introduced a practical and sound way to recompile multithreaded binaries. However,

many of the off-the-shelf LLVM optimizations remain unavailable to modern recompilers because

they fail to reason about the program stack.

This chapter presents StackBERT, a framework to statically reason about and reliably recover

stack frame information of binary functions in stripped and highly optimized programs. The core

idea behind our approach is to formulate binary analysis as a selfsupervised learning problem by

automatically generating ground truth data from a large corpus of open-source programs. We

train a state-of-the-art Transformer model with self-attention and finetune for stack frame size

prediction. We show that our finetuned model yields highly accurate estimates of a binary func-

tion’s stack size from its function body alone across different instruction-set architectures, com-

piler toolchains, and optimization levels. We successfully verify the static estimates against run-
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time data through dynamic executions of standard benchmarks and additional studies, demon-

strating that StackBERT’s predictions generalize to 93.44of stripped and highly optimized test

binaries not seen during training.

4.1 Motivation

Although stack symbolization of binary programs would enable many possible applications in bi-

nary rewriting, lifting, and recompilation, it currently remains as a largely open problem. There

are several reasons for this: first, binary programs in principle are free not to use the system’s

call stack and arbitrary binaries that were produced using handwritten assembly, self-modifying

code, or code virtualization obfuscation might explicitly opt not to. Second, even for binaries that

are generated by standard compilers—and which consequently should adhere to the system’s Ap-

plication Binary Interface (ABI)—symbolizing stack accesses is uniquely challenging [27]. In fact,

it can be nearly impossible for human developers to make sense of a program’s stack manage-

ment just by looking at stack traces post mortem: the Linux kernel developer community had

to develop a dedicated stack metadata validator [95] and unwinder [61] to deal with mounting

problems of garbled and unintelligible stack traces in bug reports and crash dumps.

To illustrate some of these challenges concretely let us consider a simple source-code example

in Listing 4.1. It contains two function definitions as well as a global integer variable definition.

Since main takes parameters and also defines local variables, one might expect a dedicated func-

tion frame. Moreover, as the function called by main is annotated with the __inline__ intrinsic,

one might also expect its stack frame to be part of main’s stack frame, given this particular source

code. However, if we look at the disassembly of the binary in Listing 4.2 that is generated by the

two big compiler suites GCC (in version 11.1.0) and LLVM (in version 13.0.0) with only minor

variations under modest optimization levels (i.e., -O2 and -ansi), we discover that neither of these

assumptions hold.
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static volatile int n;

static __inline__ int inlineme(int * i) {

int foo[123] = {};

putchar(foo);

if (*i < 123)

return *i;

lt500:;

char x[n];

putchar(x);

if (n++ < 500)

goto lt500;

return -1;

}

int main (int argc, char *argv[]) {

int *b[10];

n = argc;

b[5] = (int *)&n;

return inlineme(b[5]);

}

Listing 4.1: Example C program (compiles with -O2 -ansi).

The reason is that both compilers determine the stack layout of function inlineme to be incom-

patible with the stack layout of main, and hence, cannot inline the function. They do however

determine inlineme to be tailcall optimizable and directly forward the local variable definitions

through main via constant propagation. The result is that inlineme will be defined as a function

symbol in the binary’s symbol table despite being marked inline and never explicitly being called

anywhere (only jumped to). Consequently, a crashdump of this program’s execution if called

with more than 121 command line arguments (e.g., with “seq 122 | xargs ./example”) will

not show the main function being called. The exact same issue also arises during debugging. If
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this program required live patching in a production system, the call stack would not serve as a

reliable source of its execution state. 1

inlineme:

push rbp

mov rbp, rsp

push rbx

lea rdi, [rbp-512]

sub rsp, 504

call putchar

mov eax, DWORD PTR n[rip]

cmp eax, 122

jg .L3

.L1:

mov rbx, QWORD PTR [rbp-8]

leave

ret

.L7:

mov rsp, rbx

.L3:

movsx rax, DWORD PTR n[rip]

mov rbx, rsp

add rax, 15

and rax, -16

sub rsp, rax

mov rdi, rsp

call putchar

mov eax, DWORD PTR n[rip]

lea edx, [rax+1]

mov DWORD PTR n[rip], edx

cmp eax, 499

jle .L7

mov rsp, rbx

or eax, -1

jmp .L1

main:

mov DWORD PTR n[rip], edi

jmp inlineme

Listing 4.2: AMD64 assembly for the Example program generated by GCC (LLVM output is prac-
tically identical).

Despite being marked inline, the

function is not inlined. Its frame

size is set as 520 bytes in the

prologue.

If 122 < eax the frame size of

inlineme is determined by the

value in eax.

No stack frame is generated for

main.

For this reason, one of the first steps in symbolizing stack accesses for binary code is to bound

the size of each function’s call frame. As we saw in the example above even for binaries gener-

ated by popular and widely used compiler frameworks with standard compilation options, many

functions will not actually have a dedicated call frame, or its size may depend on the context.

Functions that are inlined multiple times by the compiler may be inlined into the caller’s stack

frame with different layouts and sizes. For some functions the size of their stack frames may be
1This is why the Linux kernel requires -fno-omit-frame-pointer for producing reliable stack traces.
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a range of possible values depending on the exercised control flow with an upper limit that can

be computed at compile time. However, in general we saw that a function’s stack frame may not

be bounded at all and programs that call alloca (or one of its many variants) with a dynamically

determined size argument or make use of Variable-Length Arrays (VLAs) can exhibit differently

sized stack frames for different inputs. Since this type of runtime-dependent behavior can cause

various issues with respect to compatibility, debugging, and memory safety it is often actively

discouraged [68].

Assuming the stack frame size is at least bounded at compile time, there are several ways one

could try to statically reconstruct an upper bound for frame sizes of function definitions for a

binary program: (1) do the obvious thing and emit stack frame sizes during compilation ("-

fstack-usage"), (2) count push and pop instructions, also considering all other modifications

of the stack pointer (like "sub rsp, 504") [73], (3) use the entries of the Canonical Frame Ad-

dress (CFA) column in the function’s .eh_frame table to try and determine the frame size, (4) col-

lect all DW_TAG_variable and DW_TAG_formal_parameter entries, as well as registers written

to the stack, calculate their respective sizes in bytes, and sum up the total (while also taking their

stack offsets into account, which might overlap).

While the first option is probably the safest and most precise, since the compiler originally deter-

mines a function’s frame layout, this requires source code and target compiler to both be available.

It further requires recompilation to be an option for deployment—which may not always be the

case even if source code and target compiler are available—and is therefore unfortunately the

least generally applicable among all options listed above. In our example both LLVM and GCC

correctly report the frame size of inlineme as 520 bytes but also mark it as “dynamic”.

In contrast, the second option sounds pragmatic, but requires accurate code discovery and mod-

eling of stack operations for each architecture individually—all of which come with their own

set of complications. As for more complex binaries and instruction-set architectures a simple

linear sweep may not actually be sufficient to discover all stack modifications and symbolically
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-fstack-usage count eh_frame DWARF info

binary-only 7 3 3 3

accurate 3 7 7 7

general 7 3 3 7

complete 3 7 7 7

Table 4.1: Comparison of possible approaches to statically identify stack frame size of a binary
function.

executing functions with global context and intricate control flows would require sophisticated

input generation, this approach is constrained to relatively simple cases in practice.

The third option relies on metadata that is present in the vast majority of binaries (including

stripped binaries), and hence, may seem like an attractive alternative. However, this requires

CFA-entries that are relative to the stack pointer and the compiler may opt to represent CFA

entries as base-pointer-relative (or even use general purpose registers), in which case they are

useless for determining the stack size of the function statically.

The fourth option requires a debug build of the binary, as well as reliable and complete type

information, which is usually not available.

We provide an overview in Table 4.1: in summary, all of the approaches we discussed are lim-

ited with respect to frame size recovery for binary programs and we discuss some of the prac-

tical implications of this in Section 4.4. For our approach, we aimed at combining the accuracy

of a compiler-based solution (which requires source code) with the applicability of binary-only

methods to determine frame sizes statically while forgoing the source code requirement. We

implemented a simple baseline method for the remaining approaches outlined above as part of

our framework to compare against the results using a learned program representation, which we

present in the next section.
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Figure 4.1: Overview of StackBERT: first, we automatically build and pre-process a large cor-
pus of open-source software using two popular and widely used compiler frameworks. We then
automatically extract both features and labels from the compiled artifacts. Next, we pre-train a
state-of-the-art Transformer model (RoBERTa), using byte-wise masking of the function disas-
sembly as pretext task. Since the collected label information are not usually present in stripped
binaries, we then finetune the pre-trained model using one of our custom downstream tasks, by
modeling a key stack symbolization problem as classification with binning. To accurately assess
model accuracy we test and validate the model predictions against unseen inputs and also verify
its outputs dynamically using standard benchmarks with reference inputs.

4.2 Design and Implementation

In this section we present the design and implementation of StackBERT. Our main goal is to stat-

ically recover stack frame sizes of binary functions. For this, we first train a Machine Learning

model based on the popular Transformer architecture using over 600,000 compiled function bod-

ies with masked byte prediction. We then finetune the model to recover an upper bound on each

function’s frame size.

4.2.1 Overview

We designed StackBERT to be able to operate in the form of a continuous, supervised learning

pipeline that consists of a number of components and present an overview in Figure 4.1: 1 a

collection of widely used open-source programs (binutils, coreutils) built with standard compilers

(GCC and LLVM) using a number of different optimization levels, 2 a label generator, including

compiler-based label generation plus tools for parsing ELF binaries using debug information as a
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baseline implementation for function frame size recovery, 3 a training set of pre-processed and

automatically labeled data, 4 a state-of-the-art Transformer model architecture, pre-training

task setup, as well as custom finetuning task through binning, 5 a dynamic verifier for standard

benchmark programs using reference inputs.

4.2.2 Technical Challenges and Baseline Analysis

As outlined in Section 4.1, there are several ways in which one might try to obtain a frame size

per function statically from a binary in principle. To get a sense of how well such “conventional”

approaches perform (and since none of them seemed to be publicly available for general purpose

architectures) we prototypically implemented them as a baseline for our approach (cf., “Binary-

based Label Generation” in Figure 4.1). We make several simplifying assumptions such as dealing

with benign, compiler-generated executables that are unstripped, formatted as standard ELF files,

that may or may not be built using debug information.

First, we utilize the popular pyelftools Python library [25] to parse the binaries and read the

contents of all executable sections, as well as symbol information (.symtab), call frame informa-

tion (.eh_frame),2 and (if present) debug information (.debug_info. heta heta roll).

Next, we associate each call frame information with their respective symbol definition. The frame

descriptor table consists of entries that are intended to be used for scenarios such as frame un-

winding, debugging, and core dumping. An individual entry specifies how the state of the pro-

gram can be interpreted at any given point during that procedure’s execution. For instance, if a

register was saved to the stack prior to calling another function the caller’s frame table should

contain an entry that specifies at which locationwithin the function’s frame that valuewas stored.

The syntax for parsing entries is quite complex, due to a finite-state machine encoding for saving
2We note that although an .eh_frame section is not required by ELF, it is not removed by the strip tool, and

hence, typically present even in stripped binaries. For binaries that do not have an .eh_frame section, it can be
synthesized automatically [19] from a function’s disassembly.

67



space. It is specified as part of the DWARF Debugging Information Format Standard. Although

the call frame information in the .eh_frame does not represent debugging information, it largely

follows the same format.

We parse register rule expressions and generate a preliminary frame layout based on rules that

specify a dedicated stack location for any object within the function’s frame table. Finally, we

collect and propagate any type information that is contained (or can be assumed, e.g., based on

the ELF’s target architecture) in the binary, to obtain a number of bytes for all stack objects.

Although stack slots semantics may depend on the program counter and can, e.g., be reused to

hold multiple objects of varying types and sizes at different times, we ignore complex control

flows for calculating the maximum frame size. We emit three different estimates for each func-

tion’s frame size, according to (i) the function’s disassembly, (ii) the function’s canonical frame

address, (iii) the maximally possible sum of all objects with a dedicated stack frame location and

well-defined size in bytes. We present the numbers obtained using these three different baseline

approaches and a comparison against the estimates obtained using our finetuned Transformer

network in Section 4.3.

4.2.3 Pretraining: Masked Byte Prediction

The core idea andmain component within StackBERT is our pretraining and finetuning of a state-

of-the-art Transformermodel to learn instruction set semantics in a self supervisedmanner, while

supporting a variety of different instruction set architectures—like AArch64 and AMD64—as well

as potential downstream tasks. In this way, StackBERT is able to readily support prediction tasks

largely independently of build toolchain and othermetadata typically used in conventional binary

analysis approaches. Our generic pretraining setup has two important consequences: first, we are

able to leverage the large body of existing software for training without expensive collection of

labeled data. Second, the resulting model only requires a minimal amount of information during
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inference, i.e., binary code of a function.

We pretrain the model using a self-supervised token prediction task, where each token is equiv-

alent to a byte of instruction opcodes as present in the compiled binary function body. Given a

sequence of 512 bytes per sample we randomly mask a byte in the sample with a probability of

20%. The model then has to predict the masked bytes in the sample, minimizing over a variation

of the cross-entropy loss as objective function, tuned for masked language prediction (see Eq. 1).

We refer to Section 4.4 for additional discussion on our pretraining setup. For pretraining, we

use the Adam optimizer with a learning rate of 10−4 and polynomial decay scheduling.

L = −
∑
i

yilog(ŷ) + (1− yi)log(1− ŷi) (4.1)

4.2.4 Downstream Task: Frame Size Prediction

For our downstream task, we use the function body as input sequence to our model and the maxi-

mum size of its stack frame as output. Bounding the size of a function’s stack frame represents an

important part of the stack symbolization problem. Potential applications of frame-size recovery

include binary instrumentation and rewriting, run-time patching, as well as recompilation after

binary lifting to enable use of the native stack. We model frame-size prediction as a classifica-

tion problem via binning: in particular, we define nine different classes that correspond to stack

frame sizes in the range of 8 to 2048 (see Section 4.4 for additional discussion). We use the Adam

optimizer with an initial learning rate of 10−5 and polynomial decay scheduling to finetune the

pretrained model using the sentence prediction task, calculating the maximal score of the function

body over all classes. We utilize groundtruth labels collected from the two big compiler toolchains

GCC and LLVM in recent versions to calculate the loss. We detail our label collection process for

this finetuning step in the next section.
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Task Samples
Dataset Binaries Frame Sizes (Mean/Std)

Training
allutils-GCC-AMD64-O3 124 36,646 (95.24 / 702.64)
allutils-GCC-AMD64-O2 124 38,115 (85.27 / 684.60)
allutils-GCC-AMD64-O1 124 40,105 (82.17 / 668.48)
allutils-GCC-AMD64-O0 124 52,594 (94.40 / 589.58)

allutils-LLVM-AMD64-O3 124 27,660 (90.16 / 853.00)
allutils-LLVM-AMD64-O2 124 27,783 (89.54 / 851.02)
allutils-LLVM-AMD64-O1 124 27,827 (90.08 / 850.12)
allutils-LLVM-AMD64-O0 124 38,066 (123.81 / 770.62)

allutils-GCC-AArch64-O3 124 41,035 (97.38 / 600.54)
allutils-GCC-AArch64-O2 124 42,865 (87.01 / 582.98)
allutils-GCC-AArch64-O1 124 45,650 (84.50 / 565.93)
allutils-GCC-AArch64-O0 124 60,502 (92.00 / 488.92)

allutils-LLVM-AArch64-O3 124 43,200 (90.49 / 585.35)
allutils-LLVM-AArch64-O2 124 43,512 (89.87 / 583.13)
allutils-LLVM-AArch64-O1 124 43,580 (91.49 / 582.37)
allutils-LLVM-AArch64-O0 124 62,450 (118.97 / 605.01)

Testing
SPEC2017-GCC-AMD64-O0 23 27,885 (132.95 / 926.94)
SPEC2017-LLVM-AMD64-O0 23 73,627 (92.35 / 645.73)
SPEC2017-GCC-AArch64-O0 23 28,981 (153.31 / 1049.25)
SPEC2017-LLVM-AArch64-O0 23 70,951 (101.42 / 653.41)

Table 4.2: Overview of our Training and Test Datasets (O1-O3 omitted for brevity on the test set)

4.3 Evaluation and Results

We conduct all of our experiments using Google’s Colab cloud compute engines with GPU sup-

port, the baseline only uses CPU instances.
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4.3.1 Dataset

To train our model on a representative number of input samples we automatically generate a

dataset of compiled binaries and corresponding labels consisting of real-world programs. In par-

ticular, we use the popular and widely used GNU binutils as well as GNU coreutils set of

system programs, combining them into our allutils corpus of compiled programs (we present

an overview in Table 4.2). We compile both program collections with two mainstream compilers,

GCC 11.1.0 and LLVM 13.0.0 and collect groundtruth labels during the compilation process by

adding the -fstack-usage flag. Compiling with two different compiler frameworks targeting

two entirely different ISA’s, using a number of varying optimization levels results in a natural

diversification of the dataset. However, creating even bigger training sets is entirely possible

using our automated data pipeline using these two compilers, possibly including other target ar-

chitectures. While the outputs of -fstack-usagemay be unreliable in the presence of link-time

optimizations (LTO) [86], SPEC2017 does not compile with LTO by default and does not use it

for reference inputs. For this reason, our dataset does not contain any link-time optimized bina-

ries. Each compiler compiles the program for two different architectures AMD64 and AArch64

and across 4 different optimization levels O0 - O3. We design experiments to stress that our

approach is compiler and architecture agnostic.

The range of frame sizes in our collected dataset is quite high, with a maximum frame size for

optimized binaries of 65640 bytes when compiling Coreutils with LLVM (and 65616 bytes when

compiled with GCC respectively), which represents more than 16 full pages of memory. The

function allocating this large stack frame is cksum_pclmul in src/cksum_pclmul.c. 3 Since the

distribution of the data is long-tailed (cf., stackbert/figures 4.2 and 4.3) with very few examples

for sizes larger than a couple hundred bytes, we do not use functions with frame sizes over 8192

bytes for training.
3https://github.com/coreutils/coreutils/blob/4edad9e1210dfaa4c8630bad16d0b2e6090de790/src/

cksum_pclmul.c

71

https://github.com/coreutils/coreutils/blob/4edad9e1210dfaa4c8630bad16d0b2e6090de790/src/cksum_pclmul.c
https://github.com/coreutils/coreutils/blob/4edad9e1210dfaa4c8630bad16d0b2e6090de790/src/cksum_pclmul.c


Figure 4.2: Coreutils Static Frame Sizes (-O3 GCC 11.1.0; x-axis truncated for brevity, since dis-
tribution is long-tailed)

We use the SPEC 2017 benchmark suite as a “holdout” dataset for testing our approach. We

exclude binaries which involve FORTRAN based code from the evaluation.

4.3.2 Training Details

As described in Section 4.2, we use the RoBERTa base model architecture for our experiments

as provided in the Fairseq [87] PyTorch library developed by Facebook, which has around 125M

trainable parameters. As is common practice for language models with self-attention mecha-

nisms, we first use a pre-training task to automatically learn a useful representation of the raw

binary data and subsequently finetune the model on a downstream task.
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Figure 4.3: Coreutils Static Frame Sizes (-O3 LLVM 13.0.0; x-axis truncated for brevity, since
distribution is long-tailed)

For the downstream taskwe use binningwith frame sizes spanningmultiples of two (starting from

8, 16, 32, 64, etc.) and provide a negative log likelihood loss as defined by the pre-defined sentence

prediction task in Fairseq. For each of the models that we train, we use distinct datapoints for

the pretraining and finetuning tasks. This ensures that the pretraining task does not get access

to any of the labeled data used for the finetuning task.

We pretrain the models for 30 epochs and finetune them for 15 epochs. We observe that the

finetuning task converges after 4-5 epochs of training.
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Figure 4.4: Accuracy of StackBERT vs. Baseline frame size predictions for SPEC2017 (on -O3

AMD64)

4.3.3 Baseline Results

As explained in Section 4.2.2 we leverage a combination of pyelftools and dwarf_import

Python libraries to parse the binaries and obtain static estimates of per-function frame sizes using

our baseline analysis tool. It is also important to reiterate that our baseline requires unstripped

binaries, and will not be able to generate predictions if certain metadata (such as the symbol table

and the frame table) is not available. Even with all relevant metadata available the baseline analy-

sis fails tomake predictions in a number of cases for our training and test sets due to parsing errors

such as unsupported DWARFv5 tags, reaching a total accuracy of 53.86% on SPEC2017 compiled

for AMD64. We also evaluate the baseline analysis on SPEC2017 compiled for AArch64, where

we observe a substantial drop to less than 20% mean accuracy (cf., Figure 4.6). The main reason

for the substantial drop in performance appears to be the increased usage of DWARF constructs

that are not supported in libraries utilized by our baseline implementation, as well as inferior

general support for AArch64 binaries. Due to the complexity of the analysis (section parsing,

type propagation, frame-table assignment) as well as the overall size of the binaries generating

predictions with our baseline for the entire testset takes roughly 45 minutes and consumes up to

12GB of RAM.
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4.3.4 StackBERT Results

Next, we evaluate the finetuned model on SPEC2017 binaries—which were never seen during

training. In contrast to the baseline analysis, which relies on metadata embedded in the binary to

predict frame sizes, StackBERT is able to generate predictions from the raw binary disassembly

of a function body alone. This means it can make predictions even in absence of additional in-

formation and only requires raw byte inputs of the binary code, making predictions in a number

of cases our baseline cannot cover. We plot the results of its predictions in blue in stackbert/fig-

ures 4.4 and 4.6. On average, StackBERT achieves an accuracy of 93.44% on SPEC2017 compiled

for AMD64. Even for highly optimized binaries frame size prediction accuracies never fall be-

low the 50% mark, and drop below 60% for just a single case. On AArch64, StackBERT’s mean

accuracy remains high at 93.46%.

We would like to highlight that the finetuned model we present here was trained on both archi-

tectures, i.e., AMD64 and AArch64. However, during our experiments we also trained a number

of dedicated, architecture-specific models to make predictions for each architecture separately.

Results for the same are detailed in Table 4.3.

Interestingly, the jointly trained model achieves an average accuracy that is around 3% higher

than its architecture-specific counterpart for AMD64. We conclude that StackBERT manages

to learn instruction-set semantics across different architectures automatically through our self-

Table 4.3: Mean accuracies across the SPEC2017 benchmark suite for the different models across
optimization levels

Model Type AMD64 AArch64 Unified Unified
Evaluation Dataset AMD64 AArch64 AMD64 AArch64

O0 90.35% 96.58% 93.56% 96.11%
O1 92.72% 95.73% 95.32% 92.85%
O2 90.87% 94.85% 92.38% 92.50%
O3 91.34% 93.75% 92.49% 92.38%

mean 91.32% 95.23% 93.44% 93.46%
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supervised byte prediction pretraining.

While overall inference time depends on the size and complexity of the binary, StackBERT usually

manages to predict stack frame sizes for individual functions in a matter of seconds.

Figure 4.5: Predictions made by StackBERT under targeted modification of frame sizes continue
to remain correct.

4.3.5 Additional Experiments

We conducted additional experiments to evaluate the fidelity of the learned representation by

deliberately modifying stack sizes of binary function bodies. We chose the mcf binary from SPEC
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Figure 4.6: Accuracy of StackBERT vs. Baseline frame size predictions for SPEC2017 (on -O3

AArch64)

2017 compiled with O0 optimization using GCC 11.1.0 for AMD64 for this experiment. From this

binary, we randomly picked function bodies containing direct manipulation of the stack pointer

(e.g., sub rsp, 0x40). We modified the operand of these instructions by subsequently drawing

integer values from a fixed range of numbers between 8 and 2048. We then predict the function’s

stack frame size after each individualmodification. The result is depicted in Figure 4.5. The dashed

black line shows the range of values that was drawn from the list. The dots show the predictions

by StackBERT; as depicted only 0.22% of the predictions lay below the dashed line, meaning

that a vast majority of the predicted values remain correct. We conclude that the trained model

accurately learns which instructions will affect frame size through our pretraining and finetuning

tasks. We also infer that the trained model learns quantitative relationships of tokens within the

instruction and their relevance for the frame size of the containing function.

Last but not least we verified all of the correctly labeled predictions made by StackBERT for the

SPEC2017 binaries by executing the respective binary and recording the stack frame size for each

executing function using the PIN tool. We run the binaries with the test input provided in the

benchmark suite to validate frame sizes of functions covered as part of the trace. While this

severely impacted the execution time of the program, we were able to verify correct predictions

of each of the function’s frame size by checking that none of the static estimates exceeded the

recorded runtime values.
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4.4 Discussion and Future Work

In this Section we briefly discuss assumptions, pretraining, downstream task and binning, as well

as possible applications.

As mentioned in the beginning, static binary analyses typically range from complex to generally

unsolvable [56, 107]. For this reason, we constrain the stack symbolization tasks mentioned in

this paper by making several basic assumptions: we assume standard ELF files that can be loaded

by general purpose operating systems (i.e., the ELF magic is set and the file format conforms to

the existing standards). We further assume that the binary files contain several standard infor-

mation, such as a symbol table and correct function boundary information. While this may not

always be the case in practice (for instance, because the binary was stripped) function bound-

ary identification and symbol recovery are complimentary to StackBERT and several existing

approaches demonstrate that such information can be recovered from stripped binaries in prac-

tice [10, 18, 93, 100]. We refer to Section 4.5.1 for an overview of existing methods. For our

baseline analysis we further assume that the machine architecture matches the target architec-

ture specified in the ELF file and that section headers and parameter settings are provided and

accurate. While StackBERT does not rely on any metadata in the binary, our baseline analysis

checks for a number of binary features in ELF files containing debug information, such as inlined

calls, nested inlining, type information, variable and parameter declarations, and the baseline

analysis assumes all of these to be correct.

For pretraining, it is noteworthy to mention that we also experimented with an instruction-based

pretraining method, where we applied a similar objective as mentioned in Section 4.2.3 to disas-

sembled byte sequences by masking all bytes belonging to an individual instruction at the same

time. However, this instruction-wise pretraining method actually performed worse in our ini-

tial tests compared to the byte-wise masked pretraining in the subsequent downstream task. For

this reason, we used the masked language prediction task as desdribed above. Similar to related
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work [93] we hypothesize that pretraining lets the model learn an instruction-set architecture’s

(ISA) semantics prior to identifying the task-relevant bits, such as the instructions and operands

that relate to the stack pointer. We note that truncating inputs to 512 bytes is a consequence

of the underlying model architecture. In our case, this is not problematic as compilers generate

instructions that define a function’s frame size in the function prologue, i.e., at the beginning

of the function body typically within the first few dozen bytes. However, should a function pro-

logue exceed this limit in the future we could adopt model variations [24, 63, 118] that forgo input

truncation.

Our downstream task uses binning to model stack frame size recovery as a classification problem.

Our rationale for binning stack frame size predictions is two-fold: first, due to data alignment and

performance optimizations compilers already tend to favor certain stack frame sizes over others.

Second, language Transformer models with self-attention (like RoBERTa) are known to exhibit

limitations with regards to counting and regression [26, 52]. However, there is no fundamental

reason for binning frame sizes and we believe that with additional implementation and experi-

mentation a regression model for frame size prediction (possibly using a modified architecture)

should be feasible in principle.

Ideally, we would like to extend our existing downstream task to predict additional information

about a function’s stack frame, such as the number of individual objects and their respective

sizes. While we anticipate StackBERT’s design to be able to handle these additional tasks without

requiring any modifications, the main challenge for this extension lies in the ability to gather

highly accurate ground truth data. clang implements a machine function pass (accessed with

flags -Rpass-analysis=stack-frame-layout) that prints out a textual representation of stack

slots and outputs any debug information thats maps source variables to those slots. We anticipate

that this information can be used to build more precise models.

We envision our results to be broadly useful for recompilation, since knowing a function’s frame

sizewhile lifting it would enable breaking the global stack array into function-local arrays. Know-

ing an upper bound on the function’s frame size should suffice to enable this use case: binary
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recompilers can use this information to lower emulated, function-local stack frame arrays during

recompilation to utilize the native stack, potentially yielding huge performance gains. According

to our evaluation results in Section 4.3 more than 90% of binary functions in SPEC2017 could

potentially have been rewritten to make use of the native stack in the recovered binary, rather

than emulating stack accesses.

4.5 Related Work

Automated static analysis of binary programs has been studied for nearly three decades and a

large body of literature on the topic exists. In the following, we provide a brief overview and

comparison against relevant approaches.

4.5.1 Machine Learning for Machine Code

Machine learning (and in particular “Deep Learning” [70]) demonstrated significant progress over

the past 10 years in a number of challenging and complex domains such as natural-language

processing, computer vision, and robotics that have traditionally proven difficult for conventional

software. It is thus perhaps unsurprising to see increasing adoption of ML-based approaches in

other domains and a number of recent approaches propose to applyML to static program analysis

tasks. Since this area is rapidly growing we focus on a direct comparison with approaches that

explicitly target binary analysis in this section.

Binary Function Identification

Several works tackled binary function identification using ML:
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Byteweight [18] was one of the earliest examples that aimed at a data-driven approach to binary

analysis. They propose a learned prefix tree representation for disassembly with normalized im-

mediate values to classify function start addresses, tackling the function identification problem

and beating IDA Pro (the state-of-the-art at the time) by an order of magnitude, establishing a

new baseline. Shin et al. [100] were the first to demonstate neural networks for function identi-

fication, showing overall improvements in training and inference time over Byteweight (which

was not based on neural networks) while keeping similar performance using a recurrent archi-

tecture with byte-wise one-hot encoding. Function identification approaches are complimentary

to StackBERT, since we assume function boundaries to be known (e.g., through .symtab). Gem-

ini [114] proposes to train a control-flow-based embedding for the purpose of binary function

similarity detection, demonstrating order of magnitudes speedup in training and inference, as

well as improved accuracy. Function similarity detection is orthogonal to our approach, but gen-

erally useful for malware classification and debloating. FUNCRE [10] tackles function inlinining

detection by following up on an earlier approach [93]. Detecting if a function was inlined at a

particular code location represents an important sub-task in analyzing highly optimized binaries.

They are able to improve the F-score of state-of-the-art approaches in function inlining detection

by about 3%.

Since we assume function symbols to be known for our frame size and layout prediction tasks,

function identification approaches are complimentary to StackBERT.

Decompilation

An increasing number of ML-based binary analysis approaches aims to recover source-level in-

formation (commonly called “decompilation”), such as variable and function names, function sig-

natures and line numbers, as well as high-level code constructs like loops, conditions, and switch

statements:
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Debin [53] uses a lifted binary intermediate representation to predict source-level debug infor-

mation. They propose a conditional-random-field-based graphical model using factor graph rep-

resentations and bayesian inference for structured prediction of likely source-level variable types

and names given a particular binary program. Coda [46] presents a neural network architecture

to decode a binary into an Abstract-Syntax Tree (AST) of a high-level source language, that is

then iteratively refined using the target binary in a second step, achieving 82% program recovery

accuracy on short, custom benchmarks built without optimization (-O0). N-Bref [47] proposes a

dedicated structural transformer architecture using an assembly encoder, an AST encoder, and

decoder. They demonstrate improvements of 6.1% and 8.8% accuracy in datatype recovery and

source code generation respectively using short program snippets. Punstrip [91] combines prob-

abilistic fingerprinting with a graphical model to learn relationship between function names and

binary features. They are able to predict semantically similar function names based on code

structure for standard library functions. Perhaps closest to our approach is XDA [93], which pro-

poses a transfer-learning-based disassembly framework that uses masked language modeling as

a self-supervised pre-text task to decompilation. The authors evaluate their approach on function

boundary identification and code discovery as downstream tasks, using standard benchmarks on

x86 and AMD64, achieving 99.0% and 99.7% F1 scores respectively.

Decompilation is orthogonal in principle to StackBERT, since our main goal is to recover low-

level stack memory layout of a given binary function—which none of the existing approaches

target, support, or evaluate.

Binary Type Inference

Another line of work is learned type inference for binaries. For example, Eklavya [35] proposes

use of neural networks for function signature recovery by solving two tasks: function argument

count and argument type recovery. They achieve an accuracy of 84% and 81% for both tasks

respectively using a recurrent architecture with an instruction-wise, skip-gram-based word em-
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bedding model that is trained separately. Function signature recovery partially overlaps with

function frame recovery, as parameters may be passed via the stack. However, in practice many

optimized functions do not receive parameters via stack accesses but through registers instead to

increase runtime performance. Inferring types for local variables—which occupy the majority of

function frames in our dataset—is not supported by Eklavya.

Stateformer [92] improves upon these results by introducing a custom pretraining task to stati-

cally approximate instruction execution effects using Neural Arithmetic Units. They then fine-

tune their model to infer variable type information, adding several functional aspects (floating

point, signedness, pointer types) as well as boosting overall accuracy over Eklavya [35] by 13%

and achieving an average F1 score of 77.9% across architecures and optimizations.

Learned Models for Binary Execution

Finally, Ithemal [82] proposes to model execution timing aspects of complex instruction set ar-

chitectures statically using an LSTM-based neural network architecture. They demonstrate that

cycle-accurate throughput predictions can be learned efficiently for modern microarchitectures,

significantly improving over the prior state-of-the-art (which does not use machine learning).

Modeling timing aspects of instruction sequences represents an interesting but orthogonal task

in static binary analysis.

4.6 Conclusion

With StackBERT, we show that reasoning about the maximum frame size of stack frames

in binary programs is hard and provide a learned, static heuristic to achieve the same.

83



Chapter 5

What You Trace is What You Get:

Dynamic Stack-Layout Recovery for

Binary Recompilation

Chapter 4 introduces a static, learning based heuristic to recover the maximum bound on the

individual function stack frame sizes in binaries. However, the recompiled binary may exhibit

faults at runtime if a frame sizes are underapproximated by the model. For instance, stack local

accesses may reach into the caller frame and change original program semantics.

In this chapter, we present a novel approach, What You Trace Is What You Get (WYTIWYG), to

recover function-local variables within lifted binaries. To facilitate this, WYTIWYG employs an

instrumentation-based approach that tracks pointers to stack variables throughout the program

and observes how the program derives new pointers from existing ones. Improving upon Stack-

BERT’s heuristics-based technique to predict the perf-function stack frame size, WYTIWYG’s

dynamic analysis is sound for the set of inputs that is is traced against. Our approach is fully

automated and preserves functionality for user-provided inputs. We demonstratate that WYTI-
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WYG makes it possible to leverage the full potential of the compiler ecosystem to reoptimize

legacy binaries through an extensive set of careful evaluations on the SPECint 2006 benchmark

suite.

5.1 Motivation

5.1.1 Drawbacks of Stack Emulation

Lifting the stack as an opaque byte array severely limits the recompiler’s ability to reason about

the program. Consider the assignment and use of ptr in lines 4 and 7 of Figure 5.1. Since out-of-

bound accesses are undefined behaviour, the source-compiler can assume that the access to b in

line 5 cannot alias the value of ptr. This information is lost during compilation. Now, in order to

infer that the loaded value of ptr in line 7 is identical to the spilled value in line 5, the recompiler

has to prove that ebp-44+f3(24)*8 cannot alias with ebp-12. Depending on the complexity of

the operations involved in the address computation, this analysis quickly becomes challenging.

Crucially, this prevents generation of precise use-define chains between reloaded values and the

sites at which they are spilled. Although the write through ptr->y can be linked with the value

returned by f2, the compiler also has to consider indirect writes as potential definitions. Because

of this, an alias analysis for example cannot narrow down that access to variables a and b, which

diminishes any ability to reason about the program even further. This analysis hazard affects

not only pointers, but any complex expression spanning multiple instructions involving values

loaded from the stack. We found this to be an issue in all binary recompilers and identified it as

the primary cause limiting the efficacy of program analyses and transformations. Liu et al. have

confirmed this finding in their study of binary recompilers [75].
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(b) Compiled x86

f1:
push %ebp # sav ebp
mov %esp, %ebp
sub $64, %esp
mov $3, -20(%ebp)
mov $4, -16(%ebp)
lea -44(%ebp), %eax
push %eax # arg2
lea -20(%ebp), %eax
push %eax # arg1
call f2 # retaddr2
mov %eax, -12(%ebp)

mov $24, (%esp) # arg1
call f3 # retaddr2
mov -20(%ebp), %ecx
mov %ecx, -44(%ebp,%eax,8)
mov -16(%ebp), %ecx
mov %ecx, -40(%ebp,%eax,8)
mov -36(%ebp), %ecx
mov -12(%ebp), %eax
mov %ecx, 4(%eax)
add $16, %esp
leave # sav ebp
ret # retaddr2

1

2
3
4
5
6
7
8

(a) Input C Code
typedef struct
 {int x;int y;} p;
size_t f3(size_t);
p* f2(p*, p*);
void f1() {
 p *ptr, a, b[3];
 a.x = 3;
 a.y = 4;
 ptr = f2(&a, b);
 b[f3(sizeof(b))]
  = a;
 ptr->y = b[1].x;
}

ptr
a.y
a.x

b[2].y
b[2].x
b[1].y

b[0].y
b[0].x
arg2
arg1

retaddr2

sav ebp

b[1].x

ebp-0

ebp-12

ebp-20

ebp-44
ebp-68
ebp-72
ebp-76

retaddr1

ptr->y

(c) Stack
Layout

b[?].x

sp0

b[1].x

Figure 5.1: An example function and its stack frame. f2 returns one of its arguments. f3 returns
a value less than its first argument. Bold values in (a) and (b) refer to the stack. For (c), assume
f2 returned &a, and f3 returned 2.

5.1.2 Stack Symbolization

Stack symbolization is the process of labeling direct references to the stack with symbols that

denote distinct local variables. Direct references to local variables are only found within the

program text of the function owning the frame. They are indirectly encoded as a series of constant

offsets relative to the initial value of the stack pointer sp0 at the start of a function. For example,

consider the array-access b[1] in line 7 in Figure 5.1. The function computes the address to this
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element using the value of ebp as base. The ebp register itself holds the value sp0-4. Hence, the

pointer computed by this instruction can be expressed as sp0-4-36. To symbolize this access, the

stack frame has to be partitioned into individual variables. Ideally, an analysis would determine

that the frame contains an array b̂ at an offset of sp0-4-44 with a size of 24 bytes. Using this

information, the aforementioned reference ebp-36 can be labelled with an expression relative to

the recovered variable b̂+8.

Despite the apparent low complexity of this function, it is remarkably difficult to identify distinct

local variables. Accesses to members of composite types, such as in lines 2 and 3, are folded

into direct offsets to the frame pointer in optimized binaries and do not reveal their underlying

structure. For example, in order to determine the bounds of variable a, an analysis has to establish

that the access through ptr to ebp-20 in line 7 can refer to the 8 byte memory area allocated to

a. If this condition is met, the offset of 4 and the following write reveal a’s total size of 8. At the

same time, the indirect access to b in line 5might access a or any other object in the frame, unless

an analysis can provide explicit bounds for the return value of f3. As mentioned in Chapter 2,

this is often not possible. If the bounds of the access cannot be determined, conservative static

approaches are forced to label all references to local variables of a function with a single symbol.

Even if the stack frame has been perfectly partitioned into its individual variables, labeling all

references in the function with the correct symbol is another challenge. In C and C++, any ex-

pression that results in a pointer that is out-of-bounds relative to its underlying array is undefined

behavior, even if the pointer is not dereferenced [59]. However, that does not prohibit compilers

from generating code that computes pointers lying outside the objects they refer to. For instance,

compilers can turn certain index-based iterations over arrays into pointer-based iterations. Com-

binedwith other optimizations, the “end”-pointer that is used in the termination condition of such

loops points, in rare cases, outside its corresponding array.
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5.2 Design and Implementation

Figure 5.2 illustrates WYTIWYG’s binary recompilation process in two phases. First, we rely

on BinRec [12] to recover the target binary’s CFG. BinRec uses a binary tracer (S2E [34]) that

records all control transfers of the program with a user-provided set of inputs. Based on the CFG,

a machine code to LLVM translator lifts the binary to LLVM IR using the instruction emulation

approach outlined in Section 2.4. This program can already be recompiled, but it lacks variable

information.

BinRec

Input
Binary

LLVM
Translator

Compiler
+ Linker

Instrumentation
Runtime

Recovered
Binary

Refinement
Passes

Instrumentation
Passes

Optimization
Passes

WYTIWYG

ExecuteExecuteExecute

Binary
Tracer

Binary
Tracer

Binary
Tracer

Merge
CFGsInputInputInputs

Merge
Trace
Data

Lifted
IR

Figure 5.2: Overview ofWYTIWYG.The upper section corresponds to the original BinRec recom-
piler. The lower section outlines our contribution. The red highlighted transitions correspond to
the Refinement Lifting process.

We split the symbolization process into multiple steps with dedicated dynamic analyses and IR-
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level transformations, as shown in Figure 5.2. This is similar to how certain passes are used to

simplify and canonicalize the IR in regular compiler pipelines. In this phase, WYTIWYG itera-

tively symbolizes local variables in each function using dynamic analyses.

5.2.1 Dynamic Stack Symbolization

To symbolize local variables, WYTIWYG employs two refinements. The first identifies all direct

stack references and rewrites them into expressions relative to sp0. The second then determines

the maximal offsets of pointers derived from each direct stack reference, uses this information to

compute a stack layout for each function, and labels all direct references with symbols referring

to variables within the stack layout.

5.2.2 Stack Reference Identification

To symbolize local variables comprehensively, we first need to identify all values throughout

the program that constitute a direct reference to the program’s stack memory. As explained

in Section 5.1.2, direct stack references are pointers within a function that are computed as a

sequence of constant displacements to sp0. By folding all uses of sp0, we can identify all direct

stack references, and simplify them by replacing them with expressions of the form sp0+offset.

Consider the push instruction corresponding to arg1 of the call in line 4 in Figure 5.1. It is

initially lifted to this pseudo-IR:

@vcpu.esp = @vcpu.esp - 4;

*@vcpu.esp = @vcpu.ebp - 20;

After identifying all displacements, these instructions are replaced with the following expression:

89



  *(%sp0 - 4 - 64 - 4 - 4) = %sp0 - 28;

push %ebp push %eax # arg2

push %eax # arg1sub $64, %esp

However, not all uses of sp0 can be trivially simplified, since registers holding intermediate stack

references are frequently spilled onto the stack in function prologues and epilogues. In our ex-

ample, f1 saves and restores the ebp register during the first push and the leave instructions.

From the recompiler’s perspective, it is not apparent that the value of ebp is preserved across the

invocation of f1. Instead ebp appears to be assigned an opaque value loaded from memory be-

fore returning from the call. If ebp holds an intermediary stack reference (e.g., the frame pointer

of the calling function) before the call, none of the pointers derived from it after the call can be

folded into an offset of sp0.

To address this, we determine for each register used in a function, whether it is merely saved

on the stack for the duration of the call, or whether it is part of the function’s signature. Un-

fortunately, indirect accesses, as for example the write to b in line 5, could modify any value

stored on the stack and therefore complicate determining whether ebp is a saved register (refer

to Section 5.1.2).

Saved registers are often identified through heuristics, that rely on platform ABI conventions to

codify, which registers are to be saved to the stack before they can be used in a function, and

which registers are used to transfer arguments and return between the caller and the callee (such

as the System V ABI [80]). However, compilers (and sometimes developers) can disregard these

conventions for functions that are not exported to other translation-units and define their own

conventions on a per-function basis. Additionally, if function recovery cannot be performed with

perfect accuracy, registers might not be saved and restored at the start and end of the function,

and they can be saved multiple times. This can happen when tail-called functions are merged

into their caller (refer to Section 2.3.4). For these reasons, identifying stack references based on
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heuristics is not reliable.

To avoid these issues, we use a dynamic analysis instead. Upon function entry, we assign each

register a symbolic value and track how this value is used throughout the function. We consider

a register saved, if the following conditions are met:

• Its symbolic value is only used in load- and store-operations from and to the current func-

tion’s stack frame. If the symbol is written to any other location or used in any operation,

we treat the register as an argument to the function.

• When the function returns, the virtual register contains its initially assigned symbol.

Sometimes, a register used to pass an argument is not explicitly used throughout the called func-

tion’s entire body, but is “forwarded” to another function. For example, in Figure 5.1b, the register

edx is not used once. Without knowledge of function signatures, f2 could either save edx to the

stack, or use it as an argument. If edx is used as an argument within f2, we also need to make it

an argument to f1. In a situation like this, we examine a register’s usage within the function it

is forwarded to in order to determine whether it is saved. We consider each forwarded register

as saved, unless we classify it as an argument in any of the functions it is passed to.

Since registers can be forwarded through multiple functions until they are used, we defer eval-

uating the state of forwarded registers until tracing is complete. During tracing, we only record

whenever a register symbol is forwarded to another function. Afterwards, we use this infor-

mation to generate constraints for each forwarded register. In our example, we would produce

the constraint “if edx is used as an argument in f2, then it is also an argument to f1”. If that

constraint is fulfilled, edx will be explicitly marked as an argument to f1.

Having identified saved registers for all functions in the binary, we preemptively save and restore

these registers at all call sites:

%tmp_ebp = @vcpu.ebp
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call f1 # saves ebp

@vcpu.ebp = %tmp_ebp

This transforms the indirect dependency on the value of ebp saved to and restored from the stack

within f1 into a direct dependency on the register’s value %tmp_ebp from before the call. This IR

refinement therefore substantially simplifies the identification of stack references through regis-

ter spills. After folding all constant offset to sp0, all direct references to objects on the emulated

stack are expressed in terms of sp0. These rewritten references serve as “base pointers” to local

variables in the next refinement.

5.2.3 Object Bounds Recovery

Having identified all direct stack references, this refinement’s purpose is to determine the layout

of each stack frame and assign stack references to the identified variables. WYTIWYG uses a

bottom-up approach to divide a stack-frame into distinct variables. At this point, it is unknown

which references refer to the same object. Hence, we initially consider each stack reference

provided by the previous refinement as a base pointer to a distinct local variable. Then, we use a

dynamic analysis to record the relative minimum and maximum offsets of pointers derived from

each base pointer. This yields an interval for each base pointer that indicates the underlying

object’s size. Expressing these intervals as ranges in terms of sp0 yields continuous sections

within each stack frame that belong to the same variable.

To generate the stack layout, we merge all ranges that are overlapping with each other and assign

their associated base pointers the same symbol. For example, consider the references %ebp-44

and %ebp-36 to variable b in lines 6 and 7 of Figure 5.1. Initially, we assume that these two

pointers belong to different objects. Once the dynamic analysis observes an access to the third

element of the array, the former pointer’s interval will be recorded as [0;20] (offset of 16 and

access size of 4). Since this subsumes the latter pointer’s interval [0;4], they belong to the same
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Figure 5.3: Overview of our tracing runtime.

object.

This also means that if f3 returns 0 in every invocation across all traces, the array will be split

into two distinct symbols. Since the generated layouts are the product of actual executions, this

approach ensures, for the provided set of inputs, that all base pointers are associated with the

correct symbol and that the symbolized variables are sufficiently large without causing unpre-

dictable out-of-bounds accesses.

5.2.4 Runtime Overview

To track direct and indirect stack references, we employ a runtime, which is illustrated in Fig-

ure 5.3. We associate every previously identified base pointer with a unique id. For every id,

we allocate a StackVarwithin our runtime, which records the bounds of the corresponding base

pointer. We do not track the address of the associated base pointer in its StackVar, because one

StackVar can be associated with the same variable in multiple stack-frames of the same function

in recursive call-chains. As the program executes and derives new pointers from existing ones,

the instrumented binary informs the runtime to update the bounds of individual StackVars.

To track whether an LLVM-value refers to a StackVar during execution, we associate each
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LLVM-instruction with a PointerInfo. Apart from a pointer to the currently referenced Stack-

Var, this metadata also records the offset from the variable’s base pointer. We allocate these

PointerInfo objects for each function on the native stack, because a single logical LLVM-value

can point to multiple different objects in recursive calls to the same function. Since x86 does

not distinguish between pointers and integers, it is not always possible to determine statically

whether a value loaded from memory is a pointer. Hence, we track this metadata for every

pointer-sized integer. Additionally, we maintain a mapping of memory-addresses to Pointer-

Info which is updated whenever a pointer to a stack variable is written to or read from memory.

5.3 Implementation

We implemented WYTIWYG as an extension to BinRec, because it is, to our knowledge, the only

dynamic binary to LLVM IR lifter and recompiler capable of translating COTS binaries reliably.

We upgraded the LLVM version used by BinRec from 3.8 to 14 and rebased the S2E plugins used

for exporting traces onto upstream S2E [34]. Rather than translating the machine code to LLVM

IR while the program is running, we use a modified version of RevGen [33] to lift the program

offline after completion of the initial tracing. We found this to accelerate the initial tracing dras-

tically and eliminate complexity originating from merging LLVMmodules containing the unpro-

cessed traces. Finally, we incorporated a driver that executes tracing, translation and application

of refinements automatically.

At the time of development, BinRec did not support lifting of x86 64-bit binaries. Therefore, our

prototype targets only x86 32-bit binaries. This does not affect the generality of our approach,

because there are no fundamental differences between these two architectures in terms of how

the generated code interacts with stack memory.
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5.3.1 Function Recovery

We implemented a function recovery similar to the approach detailed in Nucleus [15].

Initially, we create an inter-procedural control-flow graph of the entire binary based on the con-

trol transfers that were logged during tracing. Then, wemark any block that is the target of either

a direct or indirect call instruction as a function entry. Before function bodies can be computed

accurately, all tail-calls have to be identified. Tail-calls are jump-instructions inserted by compil-

ers in place of regular call-instructions. This can happen if a function f1 calls another function f2

with the same signature and the call to f2would be the very last instruction of f1 before it would

return. Like regular calls, tail-calls can be indirect and/or have a variable number of arguments.

The majority of tail-calls can be identified by checking for each direct or indirect jump, whether

any of its targets match the entry address of an already identified function.

Sometimes a function has no regular callers and is only encountered as a target of tail calls. Nu-

cleus would merge such functions with their callers and classify the result as a function with

multiple entries. Because LLVM IR lacks a natural representation for functions with multiple

entries, our implementation splits functions such that there are no overlaps and have only one

entry. Our algorithm for this simple: we compute for each function entry the set of blocks reach-

able through jumps. Then we count in how many functions each block is contained. If a block

is contained in more functions than any of its predecessors, it is marked to be a function entry.

We found this approach to work reliably across all our inputs, including ones that contain nested

and/or indirect tail calls. Functions that are exclusively reachable through a single tail-call and

have no regular call sites throughout the entire program are merged with their caller, however.

We verified our results by cross-referencing all detected functions with the binary’s symbol table

(if available) and did not encounter any false positives.
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5.3.2 Variable Argument Library Calls

Since arguments of calls to external functions are passed on the stack, recovering the operands

of these calls is a prerequisite to full stack symbolization. If their prototypes are known, BinRec

lifts such calls by loading the corresponding arguments from the emulated stack and specifying

them as operands to an LLVM call instruction. Fortunately, identifying the arguments of external

functions is trivial for most system library functions, because their signatures are known. How-

ever, functions that have prototypes with a variable number of arguments, such as open or the

printf-family of functions, require special handling.

To lift calls to these functions, BinRec uses a mechanism called stack switching. Because the lifted

program pushes all arguments on the emulated stack as required by the external function, the

lifted program instructs the native stack pointer to point to the emulated stack for the duration

of the external call. However, this approach is not compatible with stack symbolization. During

symbolization, WYTIWYG eliminates the emulated stack, so it is no longer possible to perform

stack switching. Hence, arguments to these calls have to be recovered, before WYTIWYG can

proceed with symbolization.

There is no uniformway to determine the number of arguments at call sites for variable argument

functions. The full prototypes for individual call sites to such functions can usually be determined

by inspecting the values of the functions’ named arguments at runtime. Therefore, WYTIWYG

uses an additional refinement before stack symbolization to fully lift calls to these functions. For

example, this refinement inspects the format string passed to printf-style functions at runtime

to determine an exact signature for each call site.
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5.4 Evaluation

To evaluate our prototype, we first examine whether our approach retains the functionality of

the original binary. We then measure the performance of symbolized binaries to assess whether

our approach improves LLVM’s ability to reoptimize lifted binaries. Finally, we compare the

recovered stack-layouts with the ground-truth provided by the compiler to quantify the accuracy

that can be achieved using our approach.

We target the SPECint 2006 benchmark suite, which has been widely used in previous binary

lifting and recompilation literature [12, 14, 51, 75]. This benchmark-suite comprises real-world

programs, which makes them an ideal target to evaluate the impact binary recompilers have on

performance and correctness. We exclude the omnetpp and perlbench, because our prototype

does not handle setjmp/longjmp and exceptions. We do not evaluate on the SPECfp 2006 set of

programs, because x87 instructions are translated using QEMU’s software float emulation, and

our current implementation does not convert these to LLVM floating-point instructions.

Liu et al. identified BinRec [12], McSema [41], RetDec [66] and mctoll [115] as the best available

binary lifters targeting a compiler-level IR [75]. According to their paper, McSema is the only

static lifter able to recompile a subset of the SPECint 2006 benchmarks. Although McSema can

symbolize stack variables using IDA Pro’s stack analyses, the authors admit this process is not

automatic because of the heuristic nature of IDA Pro’s analyses [49]. For these reasons, we com-

pare WYTIWYG with SecondWrite, which was provided to us by its authors. To our knowledge,

it is the only binary to LLVM IR lifter that claims to be capable of recompiling most of the SPECint

2006 benchmarks and supports symbolization of stack variables.
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5.4.1 Functionality

The primary goal of our approach is to recover high-level semantics in binaries without rely-

ing on heuristics tailored to the program, compiler or optimization level. To assess whether we

achieve this, we compiled each benchmark in multiple configurations. We use the latest GCC

12.2 and Clang 16 compilers at their highest optimization level -O3. Additionally, we compiled

one set of unoptimized benchmarks with GCC 12.2. SecondWrite could disassemble none of the

benchmarks because certain SIMD instructions are not handled by their translator. Hence, we

also compiled all benchmarks using GCC 4.4.3 with optimizations enabled on Ubuntu 10.04. This

is very close to the GCC version used in the original evaluation of SecondWrite (GCC 4.4.1). We

note that, while we did not pass any flags to GCC 12.2 or Clang 16 to emit architecture-specific

instructions, older versions of GCC do not emit SSE instructions by default. Since BinRec im-

plements SIMD instructions in software using helper functions provided by QEMU, instruction

compatibility is not a concern for WYTIWYG.

We used the ref datasets as inputs to trace and validate the recompiled binaries. WYTIWYG suc-

cessfully lifts and recompiles all binaries and inputs with no manual intervention. Because the

gcc and xalancbmk benchmarks make use of hash maps using pointers as keys, different execu-

tions would explore different paths in the lifted binary. We used the additive lifting approach de-

scribed in Section 3.2.2 to generate sufficient coverage for these binaries. For the same two bench-

marks, we increased the maximal allowed stack-sizes (using ulimit -s) due to deeply nested

recursive call-chains. WYTIWYG turns tail-calls into regular calls, and the LLVM-signatures of

the caller and caller do not always exactly match up in the recovered binary. This prevents LLVM

from lowering these calls back to tail-calls.

We recompiled binaries with SecondWrite using default optimizations and disabling speculative

disassembly. Without stack splitting, all binaries could be recompiled, except xalancbmk and

gobmk. xalancbmk could not be linked and gobmk could not be processed by SecondWrite’s disas-
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Table 5.1: Normalized runtime of recompiled binaries relative to the runtime of their respective
input binary for each configuration (SW = SecondWrite).

BinRec / CN SW
no symbolize 7 GCC 12.2 Clang 16 GCC 4.4 GCC 4.4
symbolize ✔ -O3 -O0 -O3 -O3 -O3
bzip2 7 1.15 0.74 1.21 1.06 0.94

✔ 1.03 0.51 1.13 0.85 0.91
gcc 7 1.39 0.82 1.58 1.18 —

✔ 1.22 0.49 1.25 0.89 —
mcf 7 0.99 0.75 1.09 0.97 0.98

✔ 0.92 0.65 1.07 0.88 1.08
gobmk 7 1.25 0.99 1.20 1.20 —

✔ 0.99 0.79 0.97 0.91 —
hmmer 7 2.38 0.67 1.59 0.72 0.99

✔ 3.04 0.48 1.30 0.60 0.98
sjeng 7 1.06 0.79 1.13 1.09 1.16

✔ 0.85 0.62 0.87 0.82 1.11
libquantum 7 1.15 0.92 1.57 1.16 1.26

✔ 1.21 0.70 1.14 0.89 —
h264ref 7 1.35 0.83 1.60 1.05 1.75

✔ 1.01 0.48 1.23 0.84 1.73
astar 7 0.95 0.69 1.04 0.96 1.08

✔ 0.79 0.47 0.91 0.80 1.08
xalancbmk 7 1.13 0.55 1.23 1.17 —

✔ 0.90 0.10 0.87 0.77 —
Geomean 7 1.24 0.76 1.31 1.05 1.14

✔ 1.10 0.48 1.06 0.82 1.12

sembler. gcc crashed on every single ref input, even after disabling all of SecondWrite’s heuristic

optimizations and enabling speculative disassembly. libquantum crashed during execution if we

enabled stack splitting.

We also noticed that SecondWrite cannot lift binaries that have been compiled with position

independent code (PIC). It does not handle some types of relocations, that GCC 4.4 emits for

position independent code. This is only a minor engineering defect, and we were able to produce

a working binary for mcf by manually patching these relocations. A more significant issue that

we encountered was limited support for jump wytiwyg/tables. For example, the jump table in the

PIC version of the function BZ2_decompress from the binary bzip2 was entirely missing. Even
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Figure 5.4: Normalized runtime of input (∗) binaries, binaries recompiled and symbolized with
WYTIWYG (†), and binaries recompiled and symbolized with SecondWrite (‡) relative to the
runtime of the respective binaries compiled and optimized with GCC 12.2.

when enabling speculative disassembly, the jump-targets were not present in the lifted LLVM IR.

We assume that SecondWrite cannot identify speculative control transfer targets if the references

to them are not encoded as absolute addresses in the binary’s data.

5.4.2 Performance

Our performance experiments were conducted on a system running Ubuntu 22.04 with an AMD

Ryzen 9 3900X running at a base clock of 3.8GHz. We disabled frequency boosting, clock fre-

quency scaling and simultaneous multithreading to produce consistent results. We instructed

LLVM to target the pentium4 architecture, to avoid measuring the impact of newer CPU features

that are available on our target machine.

Table 5.1 contains the relative performance impact of recompilation and stack symbolization on

each of our input binaries. Across almost all benchmarks, our stack symbolization approach sig-

nificantly improves the runtime overhead of recompiled binaries, with the worst case average

runtime for heavily optimized binaries at 1.10x. However, binaries that were not compiled with

the latest state-of-the-art compilers can experience a significant uplift in performance: programs

compiled with GCC 4.4 see a 1.22x speedup, despite being compiled at the highest optimiza-

tion level. Unoptimized binaries are more than twice as fast, with an average speedup of 2.10x.

Compared to the non-symbolized versions of those binaries, these performance improvements

confirm our hypothesis that recovery of fine-grained stack symbols is central to enhancing the
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IR-quality of lifted programs and consequently, allows for full-scale program reoptimization.

We also improved the non-symbolized baseline for unoptimized binaries compared to the original

version of BinRec from 0.98x [12] to 0.76x. This is partly due to upgrading BinRec from LLVM 3.8

to LLVM 14, but we found that performing function recovery enhances the results even further.

Without function identification, calls were translated into jumps to the function’s entry basic

block and return instructions were turned into LLVM switch-instructions that determine the re-

turn target based on the return-address stored on the stack. In the resulting control-flow graphs,

frequently called functions act as “chokepoints”, because calls appear to return to entirely differ-

ent call-sites. This optimization hazard is particularly prevalent in unoptimized binaries, where

small functions with many call sites are not inlined.

To understand the relationship between recompiled and native binaries, we compared all run-

times in Figure 5.4 with the baseline of native binaries generated by GCC 12.2. The performance

of the recompiled binaries across all -O3 configurations approaches the GCC 12.2 baseline, al-

though -O0 is slightly behind. This disparity can be attributed to WYTIWYG not yet recovering

global or heap variables, because accesses to these variables are not optimized when compiling a

program with -O0. Since we do not symbolize these, LLVM’s ability to reoptimize these accesses

in the lifted program is limited.

Despite symbolization enhancing performance in most cases, there are some outliers: hmmer and

libquantum, when compiled with GCC 12.2 and optimization level -O3, experience a degradation

in performance. This indicates that LLVM’s optimization heuristics are not optimal when applied

to the lifted programs. Especially the 2.28x (3.04x if symbolized) slowdowns of hmmer contradict

existing binary recompilation literature, where recompiling this benchmark often exhibits one

of the greatest performance improvements across SPECint 2006 [12, 14]. However, Figure 5.4

reveals, that more recent compilers are able to drastically reduce the runtime of this benchmark,

to where a 3.04x slowdown relative to the GCC 12.2 binary is still faster than the binary produced

by GCC 4.4.
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We found that vector instructions in the original binaries can cause non-optimal code after lifting.

Although LLVM often synthesizes the software-emulated SIMD instructions into LLVM intrinsic

vector instructions, the generated sequences are usually more verbose and less efficient. Further,

if a function accesses a vector register only partially, it creates a false dependency on the value of

that register before the entry of this function. If a program uses SIMD instructions only sparsely

(such as gcc), these false dependencies can cause vector register values to be copied across mul-

tiple function boundaries. Hence, we believe that there is room for improvement by lifting vector

instructions more effectively.

Our measurements for SecondWrite diverge with the reported results [14]. Without stack split-

ting, in the original evaluation, they measured speedups for libquantum, h264ref and astar

rather than slowdowns. Similarly, we did not observe a 1.38x speedup for hmmer. We verified

that SecondWrite is compiling the lifted IR with optimizations enabled and could not identify

a reason for this disparity. After enabling function splitting, we measured an improvement of 2

percentage points, which appears consistent with the results reported in their paper. We note that

SecondWrite does not lift using a separate, emulated stack, and always inlines stack frames as

allocations into the lifted LLVM functions. This explains to some extent the smaller improvement

compared to the binaries recompiled without stack splitting.

5.5 Discussion and Limitations

5.5.1 Binary Compatibility

Naturally, WYTIWYG can only recover local variables if we can identify functions that have

regular stack-frames. Our implementation requires functions to have exactly one entry point,

and control transfers between functions to be implemented using call- and ret-instructions

(except for tail calls). The programs are also required to use the stack pointer register and have

102



it point to the bottom of the stack.

Since our approach relies on observing how pointers are used throughout the program, pointer-

values need to be “trackable”. Thismeans that any operations to derive new pointers from existing

ones can be simplified into terms comprising addition and subtraction only. We cannot correctly

analyze binaries employing code obfuscation techniques, such asmixed boolean-arithmetic [121],

to hide data-flow of pointers.

5.5.2 Coverage

Aprimary concern of dynamically driven analyses is attaining comprehensive coverage across the

whole program. For WYTIWYG, achieving full coverage encompasses identification of all stack

objects and their sizes correctly, and association of all code references with those objects. Albeit

our approach yields functional binaries, our evaluation reveals that insufficient coverage leads to

function layouts that miss some objects, split them, or assign insufficient space to them. At run-

time, this can cause out-of-bound accesses with inputs that were not traced. This affects especially

variable-sized stack objects (variable-length arrays and C-style alloca) as these are converted

into allocations of constant size by our implementation. Although this can be partially remedied

by augmenting the binaries with AddressSanitizer [99], this incurs a significant performance

penalty. For practical purposes, such errors are to be treated as incorrect recompilations.

However, previous work suggests that static approaches are plagued by similar problems. As

mentioned in Section 5.1.2, these approaches operate either conservatively (i.e. splitting only if

boundaries are provable) or heuristically (i.e. splitting based on assumption made by developers).

Particularly complex functions that would benefit the most from local variable symbolization are

also the most difficult to process for these tools. Conservative symbolizers are usually incapable

of symbolizing such functions, whereas heuristics will fail eventually and lead to a broken binary

with no recourse for fixing except manual intervention.
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WYTIWYG provides a path forward in lifting complex programs that exceed the capabilities of

static approaches. Using dynamic analysis, complex functions can be symbolized, and we can

guarantee that the recompiled program retains the correct functionality for traced inputs. If a

new input exhibits invalid behaviours in the recompiled binary, the program can be easily fixed

by incrementally reanalyzing it. Further, in the scope of this work, we considerWYTIWYGpurely

in a vacuum. In practice, our approach could be combined with a robust, heuristics-based static

analysis. Such an integration would not only provide the same functional guarantees, but would

also minimize issues caused by insufficient coverage.

5.6 Conclusion

With WYTIWYG, we implement a novel, and fully automated, dynamic analysis based

approach that recovers function local variables within lifted binaries. We demonstrate that

moving stack objects from the emulated to the native stack this way enables us to significantly

reoptimize legacy binaries.
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Chapter 6

Discussion and Future Work

Chapters 3, 4, 5 detail our contributions in improving the state-of-the-art in binary recompila-

tion. However, a fundamental question that rises amongst the users of recompilation is - “what

guarantees do we get as part of the recompilation process?” For instance, if the recompiled bina-

ries are to be deployed with critical security fixes, it is necessary to reason about their security

and correctness.

In this chapter, we discuss certain semantic and correctness differences in the recompiled output

that may result due to the design decisions made by recompilers and the underlying compiler

infrastructure that they rely on. We show that well studied source-level miscompilation failures,

such as those relating to code removal due to aggressive optimizations, also translate to recom-

pilation. Then, we discuss how memory corruption-based exploit primitives in the input binary

manifest in the recompiled binary. Finally, we provide an overview of the planned future work

in the areas of cross-ISA recompilation.
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6.1 Compiler-Induced Correctness Gaps

Chapter 2 demonstrates that precise and complete recovery of semantics from binary code is a

hard problem. Moreover, Section 3.1.2 shows that there is an inherent difference in the abstrac-

tions provided by the hardware and that available as part of the lifted IR. This makes it difficult to

precisely map the exact semantics of the various individual hardware instructions to LLVM IR.

Previous work that attempts to verify binary lifters using translation validation [37], leverages

formal semantics defined for x86/x64 hardware instructions and for LLVM IR. The core idea is to

first perform symbolic verification of the translation of individual instructions to LLVM IR. This

validation approach is then scaled to the full-program level, after a subset of IR-based optimiza-

tions are applied.

Verification failures at the instruction level suggest bugs in the machine code to LLVM IR trans-

lator. On the other hand, full-program verification failures suggest that certain optimizing trans-

forms may not be semantics preserving. However, we note that verifying the translation of ma-

chine code to LLVM IR, i.e lifting, may not be enough to ensure correct recompilation. Sec-

tion 2.4.2 emphasizes the differences between lifting and recompilation. We elaborate on some

key concerns along this direction.

6.1.1 Code Removal

The removal of critical code due to IR-level optimizations may lead to changes in program be-

havior that impact correctness and security guarantees [113, 116]. For instance, consider code as

shown in Listing 6.1 that scrubs sensitive buffer memory to prevent information leaks. Since the

result of the memset call is not used, aggressive compiler optimizations may mark such code as

“dead”, and remove it.
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/* Commit: d4c5efdb97773f59a2b711754ca0953f24516739 */

// drivers/char/random.c

static ssize_t extract_entropy(struct entropy_store *r, void *buf,

size_t nbytes, int min, int reserved)

// ...

/* Wipe data just returned from memory */

memset(tmp, 0, sizeof(tmp));

// + memzero_explicit(tmp, sizeof(tmp));

}

/* Implementation of memzero_explicit */

// include/linux/string.h

static inline void memzero_explicit(void *s, size_t count)

{

memset(s, 0, count);

barrier_data(s);

}

// include/linux/compiler.h

# define barrier_data(ptr) __asm__ __volatile__("": :"r"(ptr) :"memory")

Listing 6.1: Call to memset that scrubs sensitive data from memory, and kernel

implementation of memzero_explicit that uses compiler barriers.

In fact, the Linux kernel had to introduce a new routine memzero_explicit that uses compiler

barriers to ensure that the call to memset does not get optimized away. But, the compiler barri-

ers inserted to convey this programmer intent to the compiler do not generate any binary-level

artifacts. As a result, when the binary is lifted to IR for the purpose of recompilation, this cru-

cial information has already been lost. Off-the-shelf optimizations that are applied as part of

IR refinement may consider the call to memset as dead code and eliminate it, unintentionally

reintroducing information leaks that the original binary was protected against.
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// Implementation of memset_explicit from LLVM's libc

// https://github.com/llvm/llvm-project/blob/main/libc/src/string/memset_explicit.cpp

[[gnu::noinline]] LLVM_LIBC_FUNCTION(void *, memset_explicit,

(void *dst, int value, size_t count)) {

// Use the inline memset function to set the memory.

inline_memset(dst, static_cast<uint8_t>(value), count);

// avoid dead store elimination

// The asm itself should also be sufficient to behave as a compiler barrier.

asm("" : : "r"(dst) : "memory");

return dst;

}

Listing 6.2: LLVM libc implementation of memset_explicit, added as part of the C23 stan-

dard

Previous work details multiple remedies against the problem of harmful dead store elimina-

tion [116] in compilers. However, most of them fail to translate to recompilation (in the context

of Linux-based operating systems) -

• Reliance on platform-provided functions : Listing 6.2 details the implementation of memset_-

explicit as added to LLVM’s libc as part of the C23 standard. Note that, the underlying

implementation uses an inline memset call, and pairs it with a compiler barrier to ensure that

it does not get optimized away. However, the recompiler is only going to observe the call to

memset, as no hardware instruction is emitted for the compiler barrier, which leads us back to

the original problem.

• Disabling optimizations : Section 2.4 shows how emulation-based lifting introduces significant

overheads. Recompilers rely on aggressive off-the-shelf compiler optimizations to remove re-

dundant register and flag computation, improve inlining, etc. to improve performance of the

recompiled output. Doing away with optimizations will be detrimental to the code size and

runtime performance of the output.

• Hiding semantics : Programmers may hide the semantics of the scrubbing memset operation
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from the compiler to prevent it from identifying the code as dead. For instance, the function

may be defined as part of a different compilation unit, invoked through a volatile function

pointer or by using inline assembly snippets. When the binary is lifted to IR, we lose the

abstraction boundary of distinct compilation units. The IR can be considered to similar to

what is seen when Link-Time Optimization (LTO) is applied, which completely defeats the

original goal of hiding semantics. Moreover, looking at the binary, it is impossible to know

whether the volatile attribute was applied to a function or not. Inline assembly snippets are

treated similar to compiler-generated machine code during lifting, as it can be impossible to

differentiate between the two in the binary.

• Forcing memory writes : Although memory barriers and volatile data pointers may not work,

using complicated computations that surive compiler optimizations in the binary-to-binary

round trip may prevent dead store elimination.

Another possible solution is to implement an analysis pass that identifies “sensitive” functions

through user-provided annotations or heuristics and marks them as no_optimize. As the size of

such sensitive code is usually quite low, the performance penalties may be manageable.

6.1.2 Lifting Exact Semantics

Certain x86/x64 instructions impose side-effects that can be difficult to model at the LLVM IR

level. Consider the example of the movntq instruction. This instruction bypasses the cache hi-

erarchy and directly writes the value to main memory to minimize cache pollution. However,

analysis of modern lifters (e.g. Remill) suggest that they handle this instruction similar to an

ordinary store. Another example is that of prefetchntq, which is used to prefetch data into

the non-temporal cache structure and into a location close to the processor to minimize cache

pollution. Incomplete modeling of this instruction forced Dasgupta et al. to exclude 6 programs

from their evaluation [37]. They also do not handle system-level instructions such as those re-
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lating to operating systems (e.g. cpuid), protection levels, I/O, concurrency, etc. Though this

may not lead to severe security implications, the examples demonstrate that verifying seman-

tic equivalence between LLVM IR and the underlying hardware instruction may not be always

possible.

Recent work has shown that microarchitectural side-channels are a major privacy threat [104].

An attacker can learn minute details about a running victim program by monitoring its hardware

resource utilization (such as the cache), precisely observing timing differences across different

inputs or tracking power draw [60]. We discuss timing side-channels for the purpose of brevity.

A timing side-channel may leak information about which code paths are exercised in a program

depending on the time it takes to execute certain inputs. To thwart such attacks, programmers

may adopt “constant-time” programming techniques for secret sensitive parts of the code [31].

Here, divergent control flows are written such that they clock the same number of cycles or

execute in the same time regardless of which branch is taken. “Timing safe” instructions, that do

not leak any information about the operands, are encouraged to be used. The generated machine

code captures the programmer intent informally, within the chosen hardware instructions and the

control flow. Note that, binary-level analyses cannot reliably infer if a certain function is timing

sensitive as no accompanying metadata can be extracted. Depending on how the lifter chooses

to translate individual instructions in the diverging branches and the impact of the downstream

optimizations, it is difficult for the recompiler to precisely ensure that the timing characteristics

are maintained. Even if instruction translation can be verified to be “safe”, the compiler may

reorder instructions around introducing new side-channels that did not exist earlier.

We envision recompilers in the future that enable “selective” recompilation, such as restricting

translation to certain call trees of the binary while keeping the rest of it intact. This helps rid the

overheads due to instruction emulation for parts of the binary that do not need to be rewritten.

For downstream applications such as patching that deal with modifications at the granularity

of individual functions or instructions, support for partial recompilation may be useful. Such
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an ability also enables resolving the problem of recompiling timing-sensitive functions by pre-

serving them “as is” in the recompiled binary. The recompiler will have to sink the values of

emulated input registers before making a call to such a function, and add reloads for values of

the corresponding output registers.

An alternate approach is to use a microarchitectural timing analyzer such as llvm-mca [1] to

estimate precise timing differences between the patched and the unpatched versions of the bi-

nary [57]. Recompilers may implement a flag that forces similar timing characteristics on the

recompiled output per the original binary. However, this will require tuning instruction selection

heuristics in the compiler to honor these constraints, leading to a tradeoff between performance

and timing equivalence.

6.2 Out-of-bounds Exploits

A central application of recompilers is modernizing legacy binaries. However, legacy binaries

are rife with out-of-bounds vulnerabilities such as buffer and heap overflows. In this section, we

discuss the transformation of exploit primitives, that are a part of the original binary, on lifting

and how they manifest as part of the recompiled output.

6.2.1 Stack Management

Stack-based buffer overwrites are powerful exploit primitives. In the absence of a stack canary, an

attacker could overwrite the return address of the function and hijack control flow. Or, depending

on the layout of the stack they could also mount a data-oriented attack by overwriting critical

control variables stored on the function-local stack frame. Overreads, on the other hand, can leak

crucial variable information which can be combined with other primitives to mount more reliable

attacks.
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Figure 6.1: Buffer overflow in the recompiled binary with an emulated stack.

The stack can be lifted in roughly 3 levels of granularity -

• Emulated stack : A global byte array is allocated that models the entire program stack of orig-

inal binary (eg. McSema, BinRec, Rev.Ng, Polynima).

• Lifted stack : After inferring bounds on the maximum frame size, the recompiler allocates a

per-function byte array that represents the stack frame for the particular function (eg. mctoll).

• Lifted objects : Individual objects, that roughly represent program variables in the original

binary, are identified and they are moved from the emulated stack to the native stack (eg.

SecondWrite, WYTIWYG).

In the context of recompilation, stack-based out-of-bounds primitives manifest in different ways

depending on how the stack is handled.

Consider the case of the emulated stack as shown in Figure 6.1. To emulate the call instruc-

tion, the recompiler pushes the original return address value on the emulated stack. However, if
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functions are recovered as part of the IR, the value pushed to the native stack is the one used to

return to the caller. So, buffer overwrites that aim to hijack control flow by controlling the return

address are thwarted by design. But, notice from Figure 6.1, that the overwrite may actually be

more powerful in certain cases.

Figure 6.2 highlights the case with a lifted stack. Depending on how the individual objects are laid

out, the original buffer overflow primitive may become even more powerful and allow overwrit-

ing control variables of the emulator as well as the return address. These issues become all the

more complicatedwith lifted objects and under the influence of aggressive compiler optimizations

such as inlining.

6.2.2 Heap Management

Temporal memory safety errors such as double-free, and use-after-free are leading weaknesses

in modern software [4]. Exploits may also attempt to use heap-based buffer overflows to perform

control flow hijacks or non-control data attacks by predicting storage reuse or other strategies

used by the allocator.

For non-static binaries, heap management is typically performed through APIs provided by an

external library such as glibc. Therefore, heap management operations (such as those relating to

allocation and freeing of memory) manifest as external library calls and are lifted as such. Exam-

ples are calls to functions such as malloc/free in C, and new/delete in C++. As recompilers

often do not implement explicit tracking of heap objects, heap exploit primitives persist as is.

Recompilers may choose to symbolize heap pointers and implement a pass that identifies possible

heap overflows at the IR level. It is also possible to link in a safe allocator library that prevents

out-of-bounds accesses at the cost of performance.

The above problems point to a much larger issue of the inherent gap in recompilation to
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Figure 6.2: Buffer overflow in the recompiled binary with lifted stack.

maintain security and correctness guarantees with respect to the original binary while

also focusing on optimizations.
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6.3 Extensibility

6.3.1 Integrating Polynima and WYTIWYG

The two major pieces of our recompilation work, Polynima and WYTIWYG, are developed as

parts of the same high-level project structure which allows us to leverage solutions to shared

sub-problems. In the future, we aim to extend our stack symbolization approach to better opti-

mize legacy multithreaded binaries. Fundamentally, we believe that our approach to use instru-

mentation to recover bounds of stack variables and lift them in the IR can reliably work with

multithreaded binary programs. We are currently extending the tracing runtime to implement

guards that synchronize concurrent accesses to shared structures. Note that the additive lifting

runtime already implements a version of this, as we ensure that only a single new control flow is

recorded across different threads.

6.3.2 Cross-ISA Recompilation

A significant appeal of developing techniques that improve the state-of-the-art in recompilation

is to enable the cross-ISA translation of binaries. Newer processor architectures, and therefore,

the corresponding ISAs such as ARM and RISC-V, are gaining mainstream adoption for build-

ing desktop and server compute. Even though source languages such as C and C++ are mostly

hardware agnostic, performance critical applications often make use of target specific intrinsics

or inline assembly. So, modifying large source projects to reliably compile for a different ISA can

be a major hassle in terms of the time and the effort involved. In such a case, binary recompi-

lation offers an alternative path to support legacy programs for newer architectures as we can

reuse much of the existing compiler infrastructure (in this case LLVM) to retarget the lifted IR

to compile for another ISA.
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A naive approach to support cross-recompilation is to update the data-layout of the LLVM IR

module to reflect that of the target architecture. However, care must be taken to ensure that the

IR is amenable to such a transformation. For instance, inline assembly written in x86/x64, which

we use for stack-switching, will not be compatible with a different target ISA.Therefore, we need

to know signatures of all external library calls. More generally, we need to eliminate all instances

of inline assembly and the use hardware specific intrinsics (if any) in the lifted IR.

Care must be taken to ensure that pointers and structures that are used to interface with ex-

ternal libraries are correctly laid out in memory. For instance, certain libc functions may have

different ordering of arguments depending on the underlying ISA. Moreover, translating for an

architecture with a different pointer width, such as from x86 (32 bit) to AArch64, requires pre-

cisely identfying and extending all pointers which is a hard problem. The current approach we

use for handling unknown callbacks, i.e. inserting trampolines at original function addresses,

will also fail to work. As a result, it is imperative to apply refinements to the lifted IR and recover

as much information as possible (either statically or dynamically) before translating to a different

ISA.

Our recompiler currently implements basic support for cross-recompilation of x86 binaries to

ARM32 and x64 binaries to AArch64. We have tested it on the mcf binary from the SPECint 2006

benchmark suite.
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Chapter 7

Conclusion

Binary recompilation holds the promise of making available the rich analysis and transformation

ecosystem of the compiler, that is typically used with source-level programs, to modify and re-

optimize binary programs. But, state-of-the-art tools in this space have not seen much adoption

due to practical concerns.

Current recompilers are entirely static or dynamic in their approach to recompilation. Static tools

are fast, but rely on heuristics for reasoning about possible control flow paths in the program and

recovering stack-local variable information. Transformations that rely on unsound analyses may

lead to divergences from the original program behavior or even faults during recompiled binary

execution. Dynamic techniques, on the other hand, offer precision but are inefficient due to their

high tracing overheads. Crucially, none of these tools generally handle multithreaded binaries,

that are ubiquitous in the modern software space.

In this dissertation, we demonstrated improvements to the state-of-the-art in binary recompi-

lation across two complementary axes. We presented Polynima [39], the first practical recom-

piler that is able to reliably lift and recompile complex real-world multithreaded binaries and

benchmark suites. Polynima implements a novel hybrid control flow recovery strategy that com-
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bines the benefits of static and dynamic lifters, along with soundly handling the inherent non-

determinism in multithreaded programs. Finally, we designed a dynamic procedure to detect

implicit synchronization primitives in binaries and used that to improve overheads induced due

to the conservative handling of shared memory accesses in the lifted IR.

Then, we tackled the problem of inferring stack layouts in binary programs through two novel

approaches: StackBERT [38] and WYTIWYG [90]. StackBERT is a learning-based technique to

recover function frame sizes in binary programs. We showed the inadequacy of current static

approaches to reason about the program stack in binaries and provided evidence that our trained

models are valuable for target architectures that are largely unsupported by existing analysis

tools. WYTIWYG significantly improved upon this by designing instrumentation-based dynamic

analyses that recover program variables. Our fine-grained approach tracks the dataflow across

stack memory operations at runtime and infers bounds that helps delineate distinct objects. By

using this information to refine the lifted IR, we showed that WYTIWYG makes it possible to

leverage the full potential of the compiler ecosystem to recompile and reoptimize legacy binaries.
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