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Abstract

Some models for dependence in stochastic processes

by

Zhiyi You

Doctor of Philosophy in Statistics

University of California, Berkeley

Professor James Pitman, Chair

This thesis is composed of five chapters, regarding several models for dependence in stochas-
tic processes. We first discuss the class L of selfdecomposable laws, which is a subclass of
the class of infinitely divisible laws and contains all stable laws. We show an example of
selfdecomposable law whose selfdecomposability is related to path decomposition of planar
Brownian motions. Then we introduce the family of self-similar additive processes, which is
known to have a close relationship with the class L of selfdecomposable laws. The discussion
is suggested by the scale invariant Poisson spacings theorem, which arose in various contexts
including records, extremal processes and random permutations. We are able to show that
the range of a self-similar gamma process is a scale invariant Poisson point process (θx−1dx)
and also conversely, this distribution of the range characterizes the gamma process among all
self-similar additive processes. We then turn to a discussion of counting processes in discrete
times. In particular, when the counting process is stationary 1-dependent, its distribution
is determined by the bivariate probability generating function in terms of run probability
generating functions. A probabilistic explanation is provided, alongside with comparison
to other known encodings including the determinantal representation and a combinatorial
enumeration formula. We also compare the bivariate generating function for 1-dependent se-
quences with similar generating functions derived from other dependence structures. Lastly,
we discuss a positivity problem related to a bivariate probability generating function for re-
newal processes, allowing signed measures. Fascinating graphs and qualitative observational
results are provided, as well as natural but challenging open problems to explain these facts.



i

To my friends, Xiaowei and Kun.



ii

Contents

Contents ii

1 Introduction 1
1.1 Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.2 Interpretations and encodings . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.3 Organization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2 Selfdecomposable laws 8
2.1 Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.2 An example: the Talacko-Zolotarev distribution . . . . . . . . . . . . . . . . 11
2.3 A probabilistic explanation of the selfdecomposability of T-Z distribution . . 13
2.4 Complete Selfdecomposability . . . . . . . . . . . . . . . . . . . . . . . . . . 16

3 Self-similar additive processes 20
3.1 The scale invariant Poisson spacings theorem . . . . . . . . . . . . . . . . . . 20
3.2 Scale invariant point processes . . . . . . . . . . . . . . . . . . . . . . . . . . 25
3.3 Selfdecomposable laws and SSA processes . . . . . . . . . . . . . . . . . . . 26
3.4 Hold-jump description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
3.5 Proof that the range of an SSA gamma process is a PPP . . . . . . . . . . . 33
3.6 Uniqueness of the distribution of the range . . . . . . . . . . . . . . . . . . . 36
3.7 Size-biased permutation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
3.8 Processes associated with selfdecomposable laws . . . . . . . . . . . . . . . . 41
3.9 An open problem on ratios of i.i.d. random variables . . . . . . . . . . . . . 44
3.10 Historical remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

4 Bivariate generating functions 52
4.1 Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
4.2 Main result . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
4.3 Application to descents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
4.4 More examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
4.5 Determinantal representation . . . . . . . . . . . . . . . . . . . . . . . . . . 60
4.6 Enumeration of sequences . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62



iii

4.7 Comparison with other dependence structures . . . . . . . . . . . . . . . . . 63

5 A positivity problem 65
5.1 Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
5.2 Positivity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
5.3 Numerical result on a simple case . . . . . . . . . . . . . . . . . . . . . . . . 68
5.4 A lower bound on f3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
5.5 The twisting branches in powers of polynomials - more examples . . . . . . . 77

Bibliography 81



iv

Acknowledgments

First and foremost, I am greatly indebted to my advisor Jim Pitman, for his guidance,
patience, motivation and understanding. He has helped me generously not just in doing
research, but also in being an independent researcher. I am extremely grateful for what he
has offered. This thesis is adapted from joint works with Jim, including [89, 88].

Secondly, my gratitude goes to my wife, Xuwen Shi for her long-lasting love, support and
company, physically and mentally. It is a great comfort and relief to have her backing me.

I sincerely thank Prof. Alan Hammond, who offered me many help especially in the first
two years of my Ph.D. life. I would also like to thank Prof. Adityand Guntuboyina and
Prof. Thomas Courtade, who kindly accepted to be part of my committee.

My thanks also goes to my friends and fellows: Futianyi Wang, Xiao Li, Chen Dan, Lihua
Lei, Wenpin Tang, Yumeng Zhang, Yuchen Wang, Da Xu, Alexander Tsigler, Theodore Zhu,
Feynman Liang, Ella Hiesmayr and Orhan Ocal. Their assistance, inspiration and support
made my Ph.D. life a memorable experience.

Besides, I would like to thank the Ph.D. graduate advisor of our statistics department,
La Shana Polaris, who has helped me too many times to tell.

Last but not least, my parents Zhongxiao You and Qiaoyan Xu deserve my sincerest
gratitude. They are not only the ones that give birth to me but also the ones make me who
I am today.



1

Chapter 1

Introduction

Generally speaking, a stochastic process is defined as a family of random variables, usually
coming with particular dependence relationship. Stochastic processes are widely employed as
mathematical models to describe phenomena that vary in a random manner but also follow
some patterns. Examples of stochastic processes include the movement of a gas molecule, the
traffic jams occurring in California, the change of stock prices, the global population growth,
etc. Stochastic processes have applications in many disciplines such as biology, chemistry,
ecology, neuroscience, physics, computer science, cryptography, telecommunications and fi-
nance.

The proposal of stochastic processes is also, in many cases, inspired by applications and
the study of phenomena. One of the most well-known and important process is the Brownian
motion, named after the Scottish botanist Robert Brown in studying pollen grains suspended
in water. The second one is the Poisson process, named after the French mathematician
Siméon Denis Poisson despite Poisson himself never having studied the process. A Poisson
process is usually used to describe the number of events occurring during a certain period of
time. The third one is the Markov chain, named after the Russian mathematician Andrey
Markov in studying an extension of independent random sequences.

There are various ways to classify stochastic processes, for example, by the state space, the
index set, or the dependence structure. A common way of classification is by the cardinality
of the index set. Usually, the term stochastic process or random funcion is used when indexed
by the integers or a subinterval of the real line, often interpreted as time. The process is said
to be in discrete time if indexed by integers (or equivalently, a finite or countable number
of elements), and in this case, the stochastic process can also be called a random sequence;
otherwise, if indexed by a subinterval of the real line, the process is then said to be in
continuous time. If the collection of variables is indexed by a higher dimensional space, then
usually the term random field is used instead. In Chapters 2 and 3, the discussion is focused
on processes in continuous time, including Brownian motions, Poisson processes and Lévy
processes. While in Chapter 4, discrete-time counting/indicator processes are considered.

In this introductory chapter, we review some basic facts regarding stochastic processes
that will be used in the other chapters. We also clarify some notations and conventions that
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we will use. All the facts and results mentioned in this chapter can be found quite easily in
any popular graduate level probability theory textbook, see e.g. Kallenberg [63].

1.1 Definitions

Throughout this thesis, we use the notation L := R to indicate that the left mathematical
object L is set to be or defined as the right one R.

Stochastic process and indexing

Formally, a stochastic process, or simply a process is defined as a collection of random variables
defined on a probability space (Ω,F ,P), where Ω is a sample space, F is a σ-algebra and
P a probability measure. And the random variables in this process all take values in the
same measurable space (S,Σ), where S is a mathematical space called the state space of the
stochastic process and Σ is a σ-algebra to which S is measurable. Theses random variables
are indexed by a set I, which, historically, had a meaning of time.

A stochastic process can be written in many ways, including (X(t), t ∈ I), {X(t)}t∈I ,
(X(t)), (Xt), or simple as X(t) or X, or complex as (X(t, ω) : t ∈ I) to reflect the outcome
ω ∈ Ω. To avoid ambiguity,

1. write (X(t), t ∈ I) for a stochastic process with an uncountable set I of indices, where
I is usually an interval of reals, such as the set R of all real numbers itself or the set
R+ := (0,∞) of all positive reals, see Chapter 2 and Chapter 3;

2. write (Xt, t ∈ I) for a stochastic process with a finite or countable set I of indices,
such as the set of integers Z := {. . . ,−1, 0, 1, 2, . . .} or its subset, including the set of
(strictly) positive integers Z+ := {1, 2, 3, . . .}, see Chapter 4;

3. and write {Xt : t ∈ I} for a simple point process (which will be defined later in this
section), where I is finite or countable and the order of the elements is not of our
interest, see also Chapter 3 for more discussion on simple point processes.

This convention is especially helpful when a process in continuous time and one in discrete
time are placed in the same probability space and we wish to use the same capital letter for
some reason, for example in the case of studying the discrete skeleton of a continuous-time
Markov jump process.

As long as there is no conflict in definitions, we may write X := (X(t), t ∈ I), X :=
(Xt, t ∈ I) or X := {Xt : t ∈ I} so that the whole process is shorthanded as X. And
sometimes when the indexing is not important, we may simply write X to denote the process
of our interest.



CHAPTER 1. INTRODUCTION 3

Sample path and stochastic continuity

A sample path is a single outcome of a stochastic process, formed by taking a single outcome
of each component random variable of the process. More specifically, consider a stochastic
process X := (X(t, ω) : t ∈ I) with state space S, then for each ω ∈ Ω, the mapping

X(·, ω) : I → S (1.1)

is called a sample path of X.
We are particularly interested in studying sample paths when the process is in continuous

time. And often times we require the process to be stochastically continuous, or continuous
in probability, i.e. for a continuous-time process (X(t), t ∈ I) and for s, t ∈ I and for each
ϵ > 0,

lim
t→s

P(|X(t)−X(s)| ≥ ϵ) = 0. (1.2)

Independent increments

An increment of a stochastic process X := (X(t), t ∈ I) is the difference X(t)−X(s) between
two random variables X(t) and X(s) of the same stochastic process X. When the index set I
is interpreted as time, an increment X(t)−X(s) is how much the stochastic process changes
over a certain time period t− s. We say the process X is with independent increments if for
all indices t1 < t2 < · · · < tn in I (usually Z,Z+ or a subinterval of R) such that

Xt2 −Xt1 , Xt3 −Xt2 , . . . , Xtn −Xtn−1 (1.3)

are independent.
Lévy processes, named after the French mathematician Paul Lévy, are important examples

of stochastic processes with independent increments. A stochastic process X := (X(t), t ∈
R+) is said to be additive if:

• X starts at zero:
X(0+) = 0; (1.4)

• X has independent increments;

• X is stochastically continuous.

If an additive process X is also with stationary increments, i.e. for all 0 < s < t,

X(t)−X(s)
d
= X(t− s), (1.5)

where
d
= reads equality in distribution, then call X a Lévy process. In particular, Brownian

motion and Poisson process are both well-known examples of Lévy processes.
See, e.g. Kallenberg [63, Chapter 16] for more on independent increments and Lévy

processes.
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Finite-dimensional distributions

For a stochastic process (X(t), t ∈ I), its finite-dimensional distribution for t1, t2, . . . , tn ∈ I
is defined as the joint distribution of (X(t1), X(t2), . . . , X(tn)).

With finite-dimensional distribution defined, we say two processes X and Y are equal in
distribution (in the sense of finite-dimensional distribution) to each other, if they share the
same finite-dimensional law.

Versions

For a stochastic process X := (X(t), t ∈ I), we say another close related process Y :=
(Y (t), t ∈ I) with the same index set I, state space and probability space is a version of X
if for all t ∈ I,

P(X(t) = Y (t)) = 1. (1.6)

In other words, each random variable is modified only on a set of probability 0.
In this thesis, we will be working entirely in a setup where it is well-known that there

exist versions with almost surely càdlàg path.

Random field and point process

The term random field is used when the index of the stochastic process has two or more
dimensions, such as a n(≥ 2)-dimensional Euclidean space.

A point process X is a random collection of points located on some mathematical space
S such as Rn, interpreted as the random counting measure

NX(B) = #{z ∈ Z : Xz ∈ B} (1.7)

counting the numbers of points Xz in measurable subsets B ⊂ S, for some indexing of these
points by the set of integers Z. In the sense of index set, the term random point field is more
appropriate, but we will stick to the term point process in this thesis. A point process is
called simple if all points are distinct. See Sections 3.1 and 3.2 for more discussion.

See e.g. Kallenberg [63, Chapter 15], Daley and Vere-Jones [17, 18] and Khoshnevisan
[66] for more on point processes and random fields.

1.2 Interpretations and encodings

Traditional ways of characterize a real-valued random variable X or the associated distribu-
tion include:

• using cumulative distribution function (c.d.f.)

FX(t) := P(X ≤ t) (t ∈ R). (1.8)
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• using either probability density function (density)

fX(x) :=
P(X ∈ dx)

dx
=

d

dx
FX(x) (x ∈ R), (1.9)

or probability mass function

pX(x) := P(X = x) (x ∈ R), (1.10)

whichever is applicable.

• using characteristic function (ch.f.)

ϕX(t) := EeitX (t ∈ R), (1.11)

or Fourier transform
FX(t) := Ee−itX (t ∈ R). (1.12)

• using moment-generating function (m.g.f.)

MX(t) := EetX (t ∈ R), (1.13)

or Laplace transform
LX(t) := Ee−tX (t ≥ 0), (1.14)

usually for X non-negative.

These characterizations provide us with both an interpretation of the distribution itself
and an encoding that many powerful analytic and algebraic tools can be employed, including
variable transform, Fourier transform, stochastic integral, and many others to be discussed
in the following chapters.

If we further suppose the law of a real-valued random variable X is infinitely divisible,
i.e. the law of X can be expressed as the probability distribution of the sum of an arbitrary
number of independent and identically distributed (i.i.d.) random variables, then it has a
Lévy-Khinchine representation given by its characteristic function:

ϕX(u) := EeiuX = exp

{
ibu− 1

2
au2 +

∫
R−{0}

(
eiux − 1− iux

1 + u2

)
ν(dx)

}
, (1.15)

where b ∈ R, a ≥ 0 and ν is a σ-finite measure on R−{0} called the Lévy measure, satisfying
the following integral condition ∫

R−{0}
(x2 ∧ 1)ν(dx) <∞. (1.16)

And it is well-known that each infinitely divisible law of X corresponds to a Lévy process

(X(t), t > 0) with X(1)
d
= X hence

ϕX(t)(u) := EeiuX(t) = EeiutX =: ϕX(ut). (t > 0, u ∈ R) (1.17)

Therefore, the law of this Lévy process is uniquely determined by the Lévy-Khinchine triplet
(a, b, ν), where the term triplet suggest the three independent components:
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1. a linear drift component b;

2. a Brownian component with variance a;

3. and a Lévy jump process determined by Lévy measure ν.

See e.g. Loève [73, Section 24] and Kallenberg [63, Chapter 7] for more on infinitely divisi-
bility and Lévy-Khinchine representation.

Our discussion of selfdecomposable laws in Chapter 2 is based on the Lévy-Khinchine
representation, while the Lévy measure plays an essential role in the discussion of self-similar
additive processes in Chapter 3.

1.3 Organization

The rest of this thesis is organized as follows:

• In Chapter 2, we introduce the class L of selfdecomposable laws, as a proper subclass
of the class of infinitely divisible laws whose Lévy density is in a special form [71, 65,
95]. We discuss the Talacko [102]-Zolotarev [108] distribution and prove its selfdecom-
posability, as well as interpret the distribution with a planar Brownian motion. We
also show that the Talacko-Zolotarev distribution is not complete-selfdecomposable by
considering an inverse Fourier transform.

• In Chapter 3, we place the scale invariant Poisson spacings theorem [4] in a broader con-
text of self-similar additive processes. The self-similar additive processes are known to
be closely related to the selfdecomposable laws [96]. We give the hold-jump description
of a self-similar additive process from the Lévy density associated with the selfdecom-
posable law. We also provide a history note section to explain early works related or
involved with self-similar processes. This Chapter is mainly adapted from [89].

• In Chapter 4, we introduce the bivariate probability generating functions as a gener-
alization to the ordinary probability generating functions as an encoding of discrete-
time counting processes. Under particular dependence structure, this encoding may
uniquely determine the finite-dimensional distributions of the counting process. We are
particularly interested in counting process associated with the stationary 1-dependent
indicator process and give formulae of its bivariate probability generating function via
its run generating functions. We also compare the formulae with alternative expressions
from the theory of determinantal point processes and the combinatorial enumeration
formula of sequences, as well as with the one of counting processes with other depen-
dence structures. This Chapter is mainly adapted from [88].

• In Chapter 5, we discuss a positivity problem related to a renewal process and the as-
sociated Riordan array, by generalizing the renewal sequence to allow some of the coef-
ficients to be negative while the Riordan array remains positive. We provide some nec-
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essary conditions bounding the negative coefficients. Additionally, we provide graphs
about the coefficients of powers of polynomials which appear in a clear pattern, and
describe some observational results.
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Chapter 2

Selfdecomposable laws

In the probability theory and many mathematical statistic courses, the normal distribution
and the central limit theorem are undoubtedly of great importance. Extensions of the class
of normal distributions include the class S of stable laws and the whole class ID of all
infinitely divisible laws. In this chapter we introduce the class of selfdecomposable laws, as
a proper subclass of ID. In the 1930s’, Lévy [71] generalized the notion of stable laws and
introduced the class of lois-limites, while Khintchine [65] called it the class L. It is known
to be identical to the class of selfdecomposable laws [95, Theorem 15.3]. Recently, selfde-
composable distributions had appeared in mathematical finance [10, 103] and in stochastic
simulation [50].

We will also discuss the Talacko [102]-Zolotarev [108] distribution as an example and
prove its selfdecomposability. Lastly, we mention the sequence of nested classes

ID ⊃ L := L0 ⊃ L1 ⊃ · · · ⊃ L∞ ⊃ S (2.1)

introduced by Urbanik [105], where L∞ is the minimal class containing S closed under
convolution and convergence. We prove that the Talacko-Zolotarev distribution is not of
class L∞.

2.1 Definitions

A random variable X is said to have the class L property if there exists a sequence of inde-
pendent random variables (Yn, n ∈ Z+) and suitable scaling constants bn > 0 and centering
constants cn such that the sums

Xn := bn

n∑
k=1

Yk + cn, (n = 1, 2, . . .) (2.2)

converge in distribution to X and the triangular array of summands (bnYk, k = 1, 2, . . . , n)
is uniformly infinitesimal when n → ∞. The distribution of X is said to be of class L. In
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other words, a distribution is of class L if it is the limit of a sequence of properly normalized
partial sums of independent random variables.

The infinitesimality assumption is necessary, otherwise the property is trivial by setting
bn ≡ 1 and Yn ≡ 0 for n = 2, 3, . . .. If we further assume that (Yn, n ∈ Z+) is an i.i.d.
sequence, then the limits of (2.2) give the class S of stable laws. On the other hand,
the class ID of infinitely divisible laws coincides with the class of the limit distributions of
uniformly infinitesimal triangular arrays with independent entries in each row. Hence

ID ⊃ L ⊃ S . (2.3)

The collection of laws of class L is an important generalization of the normal distributions,
as (2.2) generalizes the central limit theorem in two ways: for one, the scaling constants are
no longer restricted to be n−1/2; for another, the summands can be chosen to have different
orders of magnitude. Meanwhile, in Chapter 3 we will see how self-similar additive processes
are related to the laws of class L.

A random variable X, or its distribution, is said to be selfdecomposable [101, 95] if for
each 0 < a < 1, there is the equality in distribution

X
d
= aX +Ra, (2.4)

for some random variable Ra independent of X. In terms of the characteristic function
ϕ(u) := EeiuX , this means for each 0 < a < 1,

ϕ(u) = ϕ(au)ϕa(u), u ∈ R, (2.5)

with ϕa a characteristic function. It is known [95, Theorem 15.3] that the class of selfde-
composable laws is identical to the class L introduced by Lévy [71] and Khintchine [65].
Lévy showed that such laws are infinitely divisible with a special structure of their Lévy
measure. Specifically, from Sato and Yamazato [97], the Lévy-Khinchine representation of a
selfdecomposable distribution of X is

EeiuX = exp

{
ibu− 1

2
σ2u2 +

∫
R−{0}

(
eiux − 1− iux

1 + u2

)
k(x)

x
dx

}
, (2.6)

where b is real, σ2 ≥ 0 and k(x) is both

(a) non-negative, non-increasing on R+ and non-positive, non-increasing on R−;

(b) subject to the usual requirement for a Lévy density k(x)/x that∫
R−{0}

(x2 ∧ 1)
k(x)

x
dx <∞. (2.7)
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Hence, assuming the distribution of X is infinitely divisible, the distribution is selfdecom-
posable if and only its Lévy measure has a density of the form k(x)/x where k(x) satisfies
condition (a) above.

When X is non-negative with no drift term, formula (2.6) can be simply re-written as:

logEe−tX =

∫ ∞

0

(
e−tx − 1

) k(x)
x

dx, (2.8)

where k(·)

(a) is non-negative, non-increasing on R+;

(b) and satisfies the usual integrable property for non-negative Lévy density k(x)/x∫ ∞

0

(x ∧ 1)
k(x)

x
dx <∞. (2.9)

In spirit of Vervaat [106], Wolfe [107] and Jurek and Vervaat [61] characterized selfde-
composable laws in the manner of stochastic integrals with different proofs. Wolfe focused
on the case of real-valued random variables, while Jurek and Vervaat proved results in the
more general setting of random variables with values in a Banach space. For simplicity, we
still restrict our discussion to real-valued random variables.

Theorem 2.1.1 ([61]) X is selfdecomposable if and only if there exists a Lévy process Y :=
(Y (r), r > 0) such that

X
d
=

∫ ∞

0

e−rdY (r). (2.10)

If so, the finite dimensional distributions of the process Y are uniquely determined, and

E log(1 + |Y (1)|) <∞. (2.11)

The Lévy process Y is called the background driving Lévy process (BDLP [60]) of X. Here,
the stochastic integral (2.10) is understood as

• either a suitable limit as t → ∞ of an integral
∫ t

0
defined by integration by parts, as

in Jurek and Vervaat [61];

• or a stochastic integral, since a Lévy process is a semi-martingale.

To summarize this section, a selfdecomposable law, or the corresponding random variable
X, is characterized by each of the following:

• the limit of a sequence of properly normalized partial sums of independent random
variables as in (2.2);
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• the decomposition in distribution (2.4) for each 0 < a < 1;

• the decomposition in characteristic function (2.5) for each 0 < a < 1;

• the Lévy triple [b, σ2, x−1k(x)] in (2.6) with k(·) satisfying the two conditions below
(2.6);

• the BDLP in (2.10) with Y satisfying (2.11).

2.2 An example: the Talacko-Zolotarev distribution

The Talacko-Zolotarev (T-Z) distribution described in the proposition below was brought to
notice independently in different contexts by Talacko [102] and Zolotarev [108].

Proposition 2.2.1 Let C denote a standard Cauchy variable, Cα := − cos(απ)+sin(απ)C, ∀α ∈
[0, 1]. For α ∈ (0, 1], let Sα be a random variable with the conditional distribution of logCα

given the event (Cα > 0), and the distribution of S0 defined as the limit distribution of Sα

as α ↓ 0. For each fixed α ∈ (0, 1], we have the characteristic function

EeiλSα = ϕα(λ) =
sinhαπλ

α sinhπλ
, ∀λ ∈ R. (2.12)

This distribution of Sα is called here the Talacko-Zolotarev (T-Z) distribution. Talacko
[102] regarded the family of Sα for 0 ≤ α < 1 as a one-parameter extension of the cases
α = 1

2
and α = 0 with

ϕ1
2
(λ) =

1

cosh πλ/2
, ϕ0(λ) =

πλ

sinh πλ
. (2.13)

These characteristic functions were found earlier by Lévy [72] in the study of the random area
swept out by the path of a planar Brownian motion. He showed that S0 and S1/2 are infinitely
divisible and had their Lévy measure computed. Inspired by this work, further studies
were delivered to clarify the relations between various probability distributions derived from
Brownian paths with hyperbolic type Fourier transforms. See e.g. Pitman and Yor [86] for
these distributions and associated Lévy processes, and Pitman [83, section 3.1] for more on
the T-Z distribution.

Jurek and Yor [62, Proposition 1] showed that S0 and S1/2 are selfdecomposable. In
particular, observe that by definition there is an identity in characteristic functions

ϕ0(λ) = ϕ0(αλ)ϕα(λ) (0 ≤ α ≤ 1), (2.14)

which immediately implies the selfdecomposability of S0. We will prove that

Theorem 2.2.2 For each α ∈ [0, 1], Sα is selfdecomposable.
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The result is trivial when α = 1 and is known for α = 0, 1
2
. Therefore, Theorem 2.2.2

follows from the following two lemmas.

Lemma 2.2.3 For α ∈ (0, 1
2
), if S2α is selfdecomposable, so is Sα.

Lemma 2.2.4 For all α ∈ (1
2
, 1), Sα is selfdecomposable.

Before we show the proofs, let s(x) = s(x, λ) := sinh(xπλ) and c(x) = c(x, λ) :=

cosh(xπλ). Hence, ϕα(pλ) =
s(pα)
αs(p)

for simplicity.

Proof [Lemma 2.2.3] Observe that Sα
d
= 1

2
S2α + S1/2 by

ϕ2α(
1
2
λ)ϕ1/2(λ) =

s(2α · 1
2
)

2αs(1
2
)

·
s(1

2
)

1
2
s(1)

=
s(α)

αs(1)
= ϕα(λ), (2.15)

where S2α and S1/2 are assumed to be independent. Then the result follows since both S2α

and S1/2 are selfdecomposable.

Proof [Lemma 2.2.4] We will show by construction that

Sα
d
= βSα + Tα,β, ∀α ∈ (1

2
, 1),∀β ∈ [0, 1], (2.16)

where
Tα,β

d
= U(1−α)(1−β)

(
αβS 1−α

α
+ Sα(1−β)

)
+ (1− U(1−α)(1−β))Sα+β−αβ (2.17)

is independent of Sα with Up a Bernoulli(p) random variable and S 1−α
α
, Sα(1−β) and Sα+β−αβ

are assumed to be independent.
To check (2.16), it is equivalent to check Tα,β a random variable with characteristic

function

ϕTα,β
(λ) =

s(α)s(β)

s(1)s(αβ)
, (2.18)

which is done by calculating the characteristic function ϕRHS(·) of the right hand side of
(2.17)

ϕRHS(λ) =(1− α)(1− β)
s((1− α)β)s(α(1− β))

(1− α)(1− β)s(1)s(αβ)
+ (α + β − αβ)

s((α + β − αβ))

(α + β − αβ)s(1)
(2.19)

=
s((1− α)β)s(α(1− β))

s(1)s(αβ)
+
s((α + β − αβ))

s(1)
(2.20)

=
s(β − αβ)s(α− αβ)) + s((α + β − αβ))s(αβ)

s(1)s(αβ)
(2.21)

=
s(α)s(β)

s(1)s(αβ)
= ϕTα,β

(λ). (2.22)
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2.3 A probabilistic explanation of the

selfdecomposability of T-Z distribution

In this section, Theorem 2.2.2 is explained from the perspective of planar Brownian motions.
We start from recognizing the T-Z distributions as hitting distributions of a planar Brow-

nian motion, which is discussed by Jurek and Yor [62]. Following the notations in Proposition
2.2.1, the Cauchy density of Cα is well known to be the hitting density of XT on the real
axis for a planar Brownian motion (Xt + iYt, t ≥ 0) on the complex plane C started at the
point (− cosαπ+ i sinαπ) on the unit semicircle in the upper half plane and stopped at the
hitting time of real axis T := inf{t : Yt = 0}. In particular, C = C1/2 with the standard
Cauchy distribution has the starting point i.

Let
Xt + iYt = Rt exp(iWt) (2.23)

denote the usual representation of the planar Brownian motion in polar coordinates, starting
from radial R0 = 1 and angular W0 = (1− α)π. Then

Cα
d
= XT = RT1(WT = 0)−RT1(WT = π). (2.24)

According to conformal invariance of Brownian motion, the process (logRt + iWt, 0 ≤
t ≤ T ) is a time-changed planar Brownian motion (Φ(u)− iΘ(u), u ≥ 0)

logRt + iWt = Φ(Ut)− iΘ(Ut), (2.25)

where

Ut :=

∫ t

0

ds

R2
s

and UT = inf{u : Θ(u) ∈ {0, π}}. (2.26)

The arguments above is summarized by the following proposition.

Proposition 2.3.1 The distribution of Sα, as the conditional distribution of logCα given
Cα > 0 may also be represented as

P(Sα ∈ ·) = P(1−α)π(ΦT ∈ ·|ΘT = 0),

where Pθ governs (Θt, t ≥ 0) and (Φt, t ≥ 0) two independent Brownian motions, started at
Θ0 = θ ∈ (0, π) and Φ0 = 0, and T := inf{t : Θt ∈ {0, π}}.

With this proposition, we could easily translate the selfdecomposability of S0, S1/2 and
more generally, every Sα for α ∈ (0, 1) with suitable scaling as displayed in the following
figures.

Figures 2.1 and 2.2 are quite straightforward, by decomposition of the first hitting time
of the corresponding vertical dashed line.
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Figure 2.1: Decomposition for α = 0, β = 0.4. The planar BM starts at point 1 and reaches
point 3 through point 2. In distribution, the vertical difference of black part from 1 to 2 is
a scaled copy of S0 and the one of the blue part from 2 to 3 is a copy of S1−β.
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Figure 2.2: Illustration of Lemma 2.2.3 for α = 0.4. Just like in figure 2.1, the path started
at point 1 until hitting Θ = 0 is cut into two parts. In distribution, the vertical differences
of both parts are selfdecomposable, respectively. (Black: scaled S2α, Blue: S1/2)
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Figure 2.3: Decomposition for α = 0.5, β = 0.4. In order to do the decomposition, we now
need to consider two routes: one is 1 → 2L→ 3L; another is 1 → 2R → 3R. Here L stands
for the event that this BM hits the inner left bound Θ = (1 − α)(1 − β) = 0.3 before the
right one Θ = 1−α+αβ = 0.7, and vice versa. By symmetricity, both black part from 1 to
2L and green part from 1 to 2R are in distribution two scaled copies of S0.5.
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Figure 2.4: Illustration of Lemma 2.2.4 for α = 0.6, β = 0.4. Here the two routes are
1L → 2L → 3L and 1L → 1R → 2R → 3R, where 1R is the hitting point on line Θ = 0.48
given R ∩ (ΘT = 0), which makes the part from 1R to 2R in distribution a scaled copy of
S0.6.
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To explain Figures 2.3 and 2.4, let L denote the event that the planar Brownian motion
hits the inner left bound before the right one and R the event it hits the right one first. Easy
conditional probability calculation shows that

P(L | ΘT = 0) = α + β − αβ. (2.27)

Thus for figure 2.3 we have

T0.5,0.6
d
= 1LS0.7 + 1RS0.3. (2.28)

As for figure 2.4, we need to add in one extra term standing for the green part, which in
fact equals to a scaled S 1−α

α
in distribution. In general, this extra term is

Tα,β
d
= 1LSα+β−αβ + 1R

(
αβS 1−α

α
+ Sα(1−β)

)
(2.29)

which coincides with (2.17).
Another way to check the selfdecomposability is to treat Sα as an infinitely divisible

random variable, and construct the associated Lévy process (Sα(t), t ≥ 0) with characteristic
function

EeiλSα(t) = ϕt
α(λ) =

(
sinhαπλ

α sinhπλ

)t

, ∀λ ∈ R. (2.30)

Let kα(x)/x denote the Lévy density of Sα

log

(
sinhαπλ

α sinhπλ

)
=

∫ ∞

−∞
(eiλx − 1)

kα(x)

x
dx. (2.31)

Here, we solve for ρα in spirit of [15, page 261] and [86, page 311]. Take derivative with
respect to λ to both sides of (2.31)

απ cothαπλ− π cothπλ =

∫ ∞

−∞
eiλx(ikα(x))dx, (2.32)

then by inverting this Fourier transform we get

kα(x) = coth
(πx

2

)
− coth

(πx
2α

)
. (2.33)

As discussed in Section 2.1, Sα is selfdecomposable if and only if kα(x) is non-increasing
for both x > 0 and x < 0, which is true by checking k′α(x) < 0.

2.4 Complete Selfdecomposability

We learn from Section 2.1 that the class L of selfdecomposable laws is a proper subclass of the
class ID of infinitely divisible laws, and contains the class S of stable laws. Between S and
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L, Urbanik [105] introduced some classes of limit distributions of sequences of independent
random variables

ID ⊃ L := L0 ⊃ L1 ⊃ · · · ⊃ L∞ ⊃ S . (2.34)

Urbanik’s original definition is a generalized version of Lévy ’s definition of the class
L = L0, inductively through a triangular array of uniformly infinitesimal random variables,
see Urbanik [105] and Jurek [59]. Here, we use a cleaner equivalent version, due to Urbanik
[105, Proposition 1], by inductive use of (2.4).

Definition 2.4.1 Fix m ∈ Z+, a random variable X is said to be m-selfdecomposable if for
each 0 < a < 1

X
d
= aX +Rc, (2.35)

for some (m− 1)-selfdecomposable random variable Rc independent of X.

Here, 0-selfdecomposable means selfdecomposable. Under this definition, Theorem 2.2.2
can be restated as ‘S0 is 1-selfdecomposable’. As the limiting case,

Definition 2.4.2 A random variable X is said to be completely-selfdecomposable if for each
0 < a < 1

X
d
= aX +Ra, (2.36)

for some completely-selfdecomposable random variable Ra independent of X.

The distribution of a m- (or completely-) selfdecomposable random variable is also said
to be of class Lm (L∞).

It is also shown in Urbanik [105, Corollary 1] that the class L∞ of completely-selfdecomposable
laws is the smallest set containing all stable laws and closed under convolutions and con-
vergence in law. See also [67, 80, 94, 57] for other related works on the class of Lm or
L∞.

To avoid the self-reference in the definition of completely-selfdecomposability above, the
following alternative definition is employed by e.g. Roynette and Yor [93]:

Definition 2.4.3 A random variable X0 is said to be completely-selfdecomposable if for
each n ∈ Z+ and for each 0 < ai < 1, i ∈ Z+,

Xi−1
d
= aiXi−1 +Xi, i = 1, · · ·n, (2.37)

where X1, · · · , Xn is a sequence of independent random variables.

Proposition 2.4.4 The T-Z random variable S0 so defined as in Proposition 2.2.1 is not
completely-selfdecomposable.



CHAPTER 2. SELFDECOMPOSABLE LAWS 18

Proof We show by contradiction. Suppose S0 is completely-selfdecomposable, then for each
n ∈ Z+ and each 0 < γi < 1, i ∈ Z+, there exist random variables Sγ1,γ2 , · · ·Sγ1,··· ,γn such
that

S0
d
=γ1S0 + Sγ1 , (2.38)

Sγ1
d
=γ2Sγ1 + Sγ1,γ2 , (2.39)

...

Sγ1,··· ,γn−1

d
=γnSγ1,··· ,γn−1 + Sγ1,··· ,γn , (2.40)

where these random variables are completely-selfdecomposable hence infinitely divisible.
Suppose S∗ has Lévy density h∗(x)/x, where all h-functions here are non-increasing on R−
and R+ by selfdecomposability.

To calculate these h-functions, notice that

• first,

log(ϕ0(λ)) = log(πλ)− log(sinhπλ), (2.41)

log(ϕγ1(λ)) = log(ϕ0(λ))− log(ϕ0(γ1λ)), (2.42)

log(ϕγ1,γ2(λ)) = log(ϕγ1(λ))− log(ϕγ1(γ2λ)), (2.43)

...

• second,

F∗
(
d

dλ
log(sinhαπλ)

)
= −

coth
(
πx
2α

)
2x

, (2.44)

where F∗ is inverse Fourier transform; and

• third, the linearity of operators d
dλ

and F∗.

For short, set operator

H := xF∗ d

dλ
. (2.45)

Then we get

h∗(x) = x · h∗(x)
x

= xF∗
(
d

dλ
log(ϕ(λ))

)
= H(log ϕ) (2.46)

and
−H(log(sinhπλ)) = 1

2
coth(1

2
πx). (2.47)
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Therefore,

h0(x) =H(log ϕ0) = H(log πλ)−H(log(sinhπλ))

=−H(log(sinh πλ)) =
1

2
coth

(πx
2

)
; (2.48)

hγ1(x) =H(log ϕγ1) = H(log(ϕ0(λ)))−H(log(ϕ0(γ1λ)))

=−H(log(sinh πλ)) +H(log(sinh γ1πλ)) =
1

2

[
coth

(πx
2

)
− coth

(
πx

2γ1

)]
,

(2.49)

hγ1,γ2(x) =
1

2

[
coth

(πx
2

)
− coth

(
πx

2γ1

)
− coth

(
πx

2γ2

)
+ coth

(
πx

2γ1γ2

)]
, (2.50)

hγ1,γ2,γ3(x) =
1

2

[
coth

(πx
2

)
− coth

(
πx

2γ1

)
− coth

(
πx

2γ2

)
− coth

(
πx

2γ3

)
+coth

(
πx

2γ1γ2

)
+ coth

(
πx

2γ1γ3

)
+ coth

(
πx

2γ2γ3

)
− coth

(
πx

2γ1γ2γ3

)]
,

(2.51)

...

An interesting fact is that all these functions above are symmetric with respect to γk’s.
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The counterexample appears when n = 4 and γk = 1
2
, k = 1, 2, 3, 4 since h1

2
,
1
2
,
1
2
,
1
2
is no

longer monotonically decreasing, as shown in figure 2.5. The desired result then follows.

In fact, we proved that S0 is not 4-selfdecomposable. However, it remains open if S0 is
either 2-selfdecomposable or 3-selfdecomposable.
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Chapter 3

Self-similar additive processes

In this chapter, we discuss self-similar stochastic processes with independent increments,
which are closely related to the selfdecomposable laws discussed in Chapter 2. It is shown
that for a non-decreasing self-similar stochastic process T with independent increments, the
range of T forms a Poisson point process with σ-finite intensity if and only if the one-
dimensional distribution of T (1) is of the gamma type. This follows from a general hold-
jump description of such processes T , and implies the known result that the spacings between
consecutive points of a scale invariant Poisson point process, with intensity θx−1dx, are the
points of another scale invariant Poisson point process with the same intensity.

3.1 The scale invariant Poisson spacings theorem

A point process NX(B) = #{z ∈ Z : Xz ∈ B}, counting numbers of points in subintervals
B of the positive half-line R+ := (0,∞), for some indexing of these points Xz by z in the
set of integers Z, is called scale invariant if for each c > 0 the point process NcX , counting
the scaled points {cXz : z ∈ Z}, has the same finite-dimensional distributions as NX , as B
varies over subintervals of R+. Assuming the point process NX is simple, meaning the points
Xz are all distinct, the point process NX is then regarded as encoding the random countable
set

range(Xz,∈ Z) := {Xz,∈ Z}. (3.1)

So the identity in distribution of simple point processes NX and NcX may be indicated by
the notation

range(Xz, z ∈ Z) d
= range(cXz, z ∈ Z). (3.2)

It is well known that a Poisson point process (PPP) on R+ is scale invariant if and only if
its intensity measure is θx−1dx for some θ ≥ 0, when the process is called a PPP (θx−1dx),
or a scale invariant Poisson point process with rate θ. So the parameter θ is the intensity of
such a point process relative to the scale invariant measure x−1dx on the positive half-line,
and for 0 < a < b <∞, the number of points in (a, b) has a Poisson distribution with mean
θ log(b/a).
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The following result on scale invariant Poisson spacings arises in various contexts. The
case θ = 1 is contained in the theory of records and extremal processes, first developed by
Dwass [23, 24, 25] and further studied by Resnick and Rubinovitch [91], and Shorrock [98].
The formulation for general θ > 0 is due to Arratia [3, 2], who sketched a proof which was
later detailed by Arratia, Barbour and Tavaré [4, Section 7].

Theorem 3.1.1 (Scale invariant Poisson spacings) Fix θ > 0. Let (Tz, z ∈ Z), with
Tz < Tz+1 for all z ∈ Z, be an exhaustive listing of the points of a scale invariant PPP with
rate θ. Then

range(Tz+1 − Tz, z ∈ Z) d
= range(Tz, z ∈ Z). (3.3)

Less formally, the theorem states:

• the spacings between consecutive points of a scale invariant Poisson point process on
the positive half-line are the points of another scale invariant Poisson point process
with the same rate.

This chapter places Theorem 3.1.1 in the broader context of stochastic processes T =
(T (s), s > 0) which are self-similar additive (SSA), meaning that

• T is self-similar: for all c > 0,

(T (cs), s > 0)
d
= (cT (s), s > 0); (3.4)

• T is additive: meaning T has independent increments, and T is stochastically contin-
uous with càdlàg paths starting at 0

lim
s→0+

T (s) = 0. (3.5)

Such a process T is also called

• a process of class L [96], as the distribution of T (1) is of class L, a subclass of infinitely
divisible laws studied by Lévy [71], or

• a Sato process [10], and these processes were studied in depth by Sato [96, 95].

Here we focus on range(T ), the set of all values ever visited by T , regarded as a ran-
dom subset of R+, for a non-negative, hence non-decreasing SSA process T with no drift
component. As recalled in Section 3.3, it is known that for such an SSA process T , the
Lévy-Khinchine representation of the Laplace transform of T (1) has the special form

logEe−uT (1) =

∫ ∞

0

(
e−ux − 1

) k(x)
x

dx, (3.6)
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for a uniquely determined right-continuous non-increasing key function k : R+ → R+ subject
to ∫ ∞

0

(x ∧ 1)
k(x)

x
dx <∞. (3.7)

So the Lévy measure of T (1) has a density relative to Lebesgue measure dx of the form
k(x)/x for such a key function k(x).

Consider now the random countable set of jump times of T :

{s > 0 : T (s) > T (s−)}. (3.8)

Let k(0+) := limx→0+ k(x). It follows easily from self-similarity of T that

• either k(0+) = ∞ and the set of jump times is dense in R+;

• or k(0+) < ∞ and the jump times are the points of a scale invariant PPP with rate
θ = k(0+), when we say the SSA process T has (finite) rate θ.

The identification of the rate θ = k(0+) is part of an explicit hold-jump construction of
T with finite rate, provided later in Theorem 3.4.1. Taking the jump sizes into consideration,
as well as the jump times, the Lévy-Itô representation of jumps, discussed in Section 3.4,
shows that the random countable set of ordered pairs of jump times and jump sizes

{(s, T (s)− T (s−)) : s > 0, T (s) > T (s−)} (3.9)

is the set of points of a scale invariant Poisson point process on R2
+. This leads to the

following theorem:

Theorem 3.1.2 For a SSA non-decreasing process T , with no drift component and key
function k(x), if k(0+) = θ is finite, then

(I) range(T ) := {T (s) : s > 0} is a scale invariant point process on R+ with rate θ;

(II) the set of jump times of T is a scale invariant PPP on R+ with rate θ;

(III) the set of jump sizes of T is a scale invariant PPP on R+ with rate θ.

Here, (II) and (III) are just two coordinate projections of the self-similar Poisson point
process (3.9) in the positive quadrant. Note that in (I) it is not asserted that range(T )
is Poisson point process, only that this point process is scale-invariant with mean intensity
measure θx−1dx. Beyond that, we know rather little about attributes of range(T ) as a point
process on R+, such as its higher order factorial moments or Janossy measures, except in
the special case when T (1) is gamma distributed, and range(T ) turns out to be Poissonian.

To provide a more detailed description of the range of a non-decreasing SSA process
T with finite rate, let the scale invariant PPP of jump times of T be indexed by Z in an
increasing way, say

0 < · · · < S−1 < S0 < S1 < · · · <∞, (3.10)
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and define for each z ∈ Z
Tz := T (Sz). (3.11)

So the jump of T at time s = Sz is from Tz−1 = T (Sz−) to Tz = T (Sz). See Figure 3.1 for
an illustration. Then the random countable range of T is

range(T (s), s > 0) = range(Tz, z ∈ Z) (3.12)

so the points in the range of T are also indexed by Z in increasing order

0 < · · · < T−1 < T0 < T1 < · · · <∞, (3.13)

as in the setup in for scale-invariant Poisson spacings in Theorem 3.1.1.
Here we are not specific about how S0 is selected from the random set of jump times of T ,

since the choice is not important when considering the simple point process {(Tz, Tz+1−Tz) :
z ∈ Z} as a random set on R2

+. It will be more convenient to define S0 either so that
S0 ≤ 1 < S1 or so that T0 ≤ 1 < T1.

Thus for a scale-invariant point process constructed as the range of a non-decreasing SSA
process T with finite rate θ, comparing the point process of spacings between points, as on
the left side of (3.3), and the points themselves on the right side of (3.3),

• the spacings between points are the jump sizes of T :

range(Tz+1 − Tz, z ∈ Z) = range(T (s)− T (s−) > 0 : s > 0) (3.14)

which forms a scale invariant PPP with rate θ, no matter what the key function k(x)
of T with k(0+) = θ;

• the points themselves form the range of T :

range(Tz, z ∈ Z) = range(T (s), s > 0) (3.15)

which is a scale invariant point process with rate θ, which might or might not be
Poissonian, depending on the choice of the key function.

So to establish the spacings theorem 3.1.1, for a scale-invariant Poisson process with
rate θ, it only remains to show that for a suitable choice of the key function k(x) with
k(0+) = θ, the range of T is in fact Poissonian. That scale-invariant Poisson feature of
range(T ), with rate θ = 1, was established by Dwass in the 1960s for the SSA exponential
process T , with k(x) = e−λx for some λ > 0, so T (1) ∼ gamma(1, λ) (or exp(λ)) has the
exponential distribution with rate λ, with tail probability

P(T (1) > x) = e−λx1(x > 0). (3.16)

Our main point here is that the Poisson spacings theorem for a general rate θ > 0 is a
similar consequence of the following result, which we establish in Sections 3.5 and 3.6:
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Figure 3.1: An SSA gamma process (T (s), s > 0), its range, and jump times

Theorem 3.1.3 Fix θ > 0. For an SSA process T := (T (s), s > 0),

• range(T ) is a scale invariant PPP on R+ with rate θ,

if and only if

• the distribution of T (1) is gamma(θ, λ) for some λ > 0, with probability density

d

dx
P(T (1) ≤ x) =

λθ

Γ(θ)
xθ−1e−λx1(x > 0). (3.17)

Implicit in this result is a well known consequence of the Lévy-Khinchine formula:

the gamma(θ, λ) distribution of T (1) has key function k(x) = θe−λx. (3.18)

However, some effort is required to pass from this fact to either of the implications of Theorem
3.1.3.

The following sections of this chapter is organized as follows:

• Section 3.2 collects for later use some easy results about a scale invariant PPP.

• Section 3.3 recalls basic facts about SSA processes and selfdecomposable laws.
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• Section 3.4 characterizes an SSA non-decreasing process T with finite rate by its generic
jump distribution, which can be read from the key function in the Lévy-Khinchine
representation. The corresponding hold-jump description of T is the basis of proofs in
Section 3.5.

• Section 3.5 offers proves the “if” part of Theorem 3.1.3, that the range of an SSA
gamma process is a PPP, in two different ways, based on the hold-jump description
provided in Section 3.4.

• Section 3.6 provides a general uniqueness theorem which includes the converse of The-
orem 3.1.3: under a technical condition, the distribution of the range of a SSA non-
decreasing process uniquely determines the distribution of the process itself, up to a
scale factor.

• Section 3.7 investigates the conditional distribution of jump times given all jump mag-
nitudes.

• Section 3.8 briefly discusses three different processes associated with a selfdecompos-
able law, then introduces a two-parameter process which provides a coupling of SSA
processes with stationary independent increments in a second parameter.

• Section 3.9 raises an open question regarding the ratio of i.i.d. copies of a non-negative
random variable, as an extension to results appeared previous sections.

• Section 3.10 offers some historical notes, including how the case θ = 1 of Theorem 3.1.1
arises in the theory of extremal processes, and how the general case θ > 0 is related to
the Ewens sampling formula.

3.2 Scale invariant point processes

If a point process X := {Xz, z ∈ Z} on R+ is scale invariant, i.e.

range(X)
d
= range(cX), ∀c > 0, (3.19)

then X is a simple point process with intensity measure θx−1dx for some θ, with 0 < θ ≤ ∞.
Then we say X is a scale invariant point process on R+ with rate θ. We observe that

• the inversion 1/X := {1/Xz, z ∈ Z} of a scale invariant point process X on R+ is a
scale invariant point process on R+ with the same rate.

By considering L := logX, this corresponds to a well known fact about stationary point
processes on R. Just as not all stationary point processes on the line are reversible, not all
scale invariant point process are invariant under inversion. However, the distribution of a
Poisson point process is entirely determined by its intensity measure, hence:
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• if X := {Xz, z ∈ Z} is a scale invariant PPP then

range(1/X)
d
= range(X). (3.20)

The following lemma provides some useful characterizations of a scale invariant PPP.
Recall that for U with uniform distribution on [0, 1], and θ > 0, the distribution of U1/θ is
the beta(θ, 1) distribution on [0, 1] with probability density

d

du
P(U1/θ ≤ u) = θuθ−11(0 < u < 1). (3.21)

Lemma 3.2.1 Fix x > 0 and θ > 0. Suppose a scale invariant point process X = {Xz, z ∈
Z} is indexed in increasing manner with

0 < · · · < X−2 < X−1 < X0 ≤ x < X1 < X2 < · · · <∞. (3.22)

Then the following three conditions are equivalent:

• X is a scale invariant PPP with rate θ;

• x/X1 and Xz−1/Xz for z ≥ 2 are i.i.d. beta(θ, 1) random variables;

• X0/x and Xz−1/Xz for z < 0 are i.i.d. beta(θ, 1) random variables.

Proof Consider L := {Lz = log(Xz), z ∈ Z}. Then L is a stationary PPP with intensity
measure θdℓ on R if and only if X is a scale invariant PPP with rate θ. The statements of
the lemma are just transformations of well known characterizations of a stationary PPP on
the line.

3.3 Selfdecomposable laws and SSA processes

Following Sato [96, 95], we call a process T := (T (s), s > 0) self-similar with exponent H if

(T (cs), s > 0)
d
= (cHT (s), s > 0) (c > 0), (3.23)

in the sense of equality of finite-dimensional distributions. If T is also additive, as defined in
Section 3.1, we say T is H-self-similar additive (H-SSA). We omitted the prefix ‘H-’ when
H = 1 in (3.4), because it has no impact on our discussion of range(T ) thanks to Lemma
3.3.2 below.

Easily from the definition, for an H-SSA process T , the one-dimensional distribution of
T (1) is selfdecomposable, discussed in Section 2.1. Sato [96] gave the following uniqueness
theorem for the relationship between selfdecomposable laws and H-SSA processes.
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Theorem 3.3.1 For each H-SSA process (T (s), s > 0), the marginal distribution of T (s) is
selfdecomposable. And for each selfdecomposable distribution µ and each H > 0, there exists
an H-SSA process (T (s), s > 0), unique in finite-dimensional distributions, such that T (1)
has distribution µ.

We restrict the discussion to the case of H = 1 for most of the rest of this chapter, thanks
to the following lemma.

Lemma 3.3.2 Suppose (T (s), s > 0) is an H-SSA non-decreasing process. Then the time
change

T̃ (s) = T (s1/H) (s > 0), (3.24)

gives a 1-SSA non-decreasing process (T̃ (s), s ≥ 0) with range(T̃ ) = range(T ).

We are primarily interested in the case of a 1-SSA process T that is non-decreasing and
with no drift. Then (2.6) and (2.7) reduce to the formulas (3.6) and (3.7) for the Laplace
transform of T (1).

So the Lévy density of T (s) at x > 0 is k(x/s)/x. As a result, the distribution of T is
fully characterized by the key function k(x), as detailed further in Section 3.4.

3.4 Hold-jump description

This section presents the relationship between the rate θ <∞ and the key function k(x) of
a 1-SSA non-decreasing process with finite rate θ. The hold-jump description after the jump
over 1 will then be introduced as a framework to describe range(T ) ∩ [1,∞), as required to
check whether range(T ) is Poisson using Lemma 3.2.1.

Rate and generic jump

Theorem 3.4.1 Suppose T := (T (s), s > 0) is a 1-SSA non-decreasing process with no
drift, finite rate θ and key function k(x). Then k(0+) = θ and

T (s) =
∑
z∈Z

SzJz1(Sz ≤ s), (s > 0) (3.25)

where

• the jump times (Sz, z ∈ Z) are the points of a scale invariant PPP with rate θ;

Assuming also that these jump times are listed in an order depending only on their point
process (3.8), for instance in an increasing order with S0 the time of the first jump after
time s = 1,
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• the normalized jumps (Jz, z ∈ Z) form a sequence of i.i.d. copies of a positive random
variable J , called the generic jump of T , with tail probability

P(J > x) =
k(x)

θ
, (x ≥ 0); (3.26)

• the sequence of jump times (Sz, z ∈ Z) is independent of the sequence of normalized
jumps (Jz, z ∈ Z).

Proof The self-similarity of T ensures that there are no jumps at fixed times. Thus, as
a non-decreasing additive process, T (s) has the following almost surely unique Lévy-Itô
representation [63, Theorem 16.3]:

T (s) = as +

∫ s

0

∫ ∞

0

xη(dy dx), (s > 0). (3.27)

where as is a non-decreasing function with a0 = 0 and η(dy dx) is a Poisson point process
on (0,∞)2 satisfying ∫ s

0

∫ ∞

0

(x ∧ 1)Eη(dy dx) <∞. (s > 0) (3.28)

In fact, η characterizes the jump structure of T

η(·) =
∑
y

1{(s,∆y) ∈ ·} (3.29)

where the summation extends over all times y > 0 with ∆y := T (y)− T (y−) > 0. Hence

T (s) = as +
∑
y

∆y1(y ≤ s) (s > 0). (3.30)

We call this η the underlying Poisson point process of the non-decreasing SSA process T .
Taking into account self-similarity of T , it is easy to see that as ≡ a1s. If we further require
T to be a pure jump process, then as ≡ 0. Moreover, as we know the jump times are
from a scale invariant PPP with rate θ, the representation (3.25) follows immediately from
self-similarity. To finish the proof, it remains to show (3.26).

Thanks again to self-similarity, note that {(Sz,∆Sz = SzJz), z ∈ Z} is an exhaustive
listing of points from the underlying Poisson point process η on R2

+ with intensity measure

ν(ds dy) := Eη(ds dy) = θs−1ds P(sJ ∈ dy). (3.31)
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Hence, for each Borel set B ⊂ R+ and a > 0,∫ a

0

θs−1P(sJ ∈ B)ds =

∫
y∈R+

dFJ(y)

∫
s∈R+

θs−11(sy ∈ B, s < a)ds (3.32)

(set s = x/y) =

∫
y∈R+

dFJ(y)

∫
x∈R+

θx−11(x ∈ B, y > x/a)dx (3.33)

=

∫
x∈B

θx−1dx

∫
y>x/a

dFJ(y) (3.34)

=

∫
x∈B

θ P(J > x/a)

x
dx. (3.35)

But the Lévy measure of T (1) is

k(x)

x
dx =

∫
s∈(0,1]

θs−1P(sJ ∈ dx)ds, (3.36)

which implies (3.26) by setting a = 1 in (3.35).

To illustrate Theorem 3.4.1, we give two examples.

Example 3.4.2 Fix θ, λ > 0. A 1-SSA gamma process (T (s), s > 0) with T (1) ∼ gamma(θ, λ)
has exponential generic jump J ∼ exp(λ) and finite rate θ, thanks to the key function given
in (3.18).

Example 3.4.3 This example is implicit in the discussion of the least concave majorant
of a one-dimensional Brownian motion by Groeneboom [45] and Pitman and Ross [84].
Following the notations in [45], let ω denote a standard Brownian motion starting at the
origin. For a > 0, let σ(a) be the last time that maximum of ω(t) − at is attained, and
τ(a) := σ(1/a), a > 0 and τ(0) = 0. The process τ is 2-SSA non-decreasing process with
no drift. By Lemma 3.3.2 it can be reduced to fit our 1-SSA framework through the time
change

T (a) := τ(
√
a) = σ(1/

√
a). (3.37)

Then T is a 1-SSA process, whose range is the random set of times of vertices of the least
concave majorant of Brownian motion. The underlying Poisson point process driving T has
intensity measure ν which can be read from Groeneboom’s description of the process τ :

ν(ds dx) =
1

s
√
x
ϕ

(√
x

s

)
1

2
s−

1
2dsdx = |k′|

(x
s

) ds dx
s2

, (3.38)

with ϕ(·) the standard normal probability density function, and

|k′|(x) = −dk(x)
x

=
1

2
· 1√

2π
x−

1
2 e−

1
2
x (x > 0), (3.39)
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the absolute first derivative of the key function k(x) = P(J > x)/2 for J ∼ gamma(1
2
, 1
2
),

indicating that T has rate 1
2
. Therefore, the known results that

• range(T ) is a scale invariant point process on R+ with rate 1
2

[84, Corollary 9], and

• the set of jump times of T is a scale invariant PPP on R+ with rate 1
2

[45, Theorem 2.1]

are the instances of parts I and II of Theorem 3.1.2 for this particular 1-SSA process T .
Because the key function k(x) of T (1) is not just an exponential, the “only if” part of
Theorem 3.1.3 shows that range (T ), the set of times of vertices of the least concave majorant
of Brownian motion, is not a Poisson point process. See Pitman and Ouaki [81] for a deeper
study of Markovian structure in the concave majorant of Brownian motion.

Theorem 3.4.1 also yields the following hold-jump description of a 1-SSA non-decreasing
process.

Corollary 3.4.4 For each fixed time s > 0, and t ≥ 0, the future of T after time s, condi-
tional on T (s) = t, can be constructed by

• ‘Hold’ - at level t till the random time Hs
d
= sβ−1 for β ∼ beta(θ, 1), i.e.

d

dx
P(Hs ≤ x) = θx−θ−1sθ1(x > s); (3.40)

• ‘Jump’ - up by HsJ , where J is the generic jump and is independent of Hs, i.e.

P(T (Hs)− T (Hs−) > y | Hs = s′) = P(s′J > Y ) = P(J > Y/s′); (3.41)

• then repeat, conditioning on T (s′) = t′ for s′ = Hs, t
′ = t+HsJ .

By setting a fixed starting time S1 = s, (3.40) and (3.41) specify a homogeneous pure
jump-type Markov process ((Sn, Tn), n ∈ Z+) with state space R2

+, whose entrance law is

given by T1 = T (s)
d
= sT (1). Moreover, apart from this entrance law, the same description

applies with the fixed time s replaced by any stopping time σ relative to the filtration of T ,
on the event (σ > 0).

The following corollary of Theorem 3.4.1 gives all possible distributions of generic jumps.

Corollary 3.4.5 For each 1-SSA non-decreasing process T with finite rate θ, its generic
jump J satisfies

E log+(J) <∞. (3.42)

Conversely, for each θ < ∞ and each positive random variable J satisfying (3.42), there
exists a unique 1-SSA process T with no drift, rate θ and generic jump J .
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Proof As per (3.26), each right-continuous, non-decreasing function k(x) uniquely deter-
mines θ and J , and vice versa. So the only thing to check is the integrable condition of the
Lévy density k(x)/x in (3.7),∫ ∞

0

(x ∧ 1)
k(x)

x
dx = θ

[∫ 1

0

P(J > x)dx+

∫ ∞

1

P(J > x)x−1dx

]
<∞, (3.43)

where the integral is restricted on R+ since T is non-decreasing. The first term is finite no
matter what distribution of J is, while∫ ∞

1

P(J > x)x−1dx =

∫ ∞

1

P(log J > log x)d(log x) (3.44)

=

∫ ∞

0

P(log J > r)dr = E log+ J, (3.45)

which finishes the proof.

The convergence condition (3.42) appeared first in Vervaat [106, Theorem 1.6b], in the
discussion of stochastic difference equations. See also Wolfe [107, Theorem 1].

The jump over 1

In considering whether or not range(T ) is a Poisson process, Lemma 3.2.1 shows it is suf-
ficient to examine the ratios of adjacent points in range(T ) ∩ (1,∞) only. The hold-jump
description provides us with sufficient information to calculate the ratios as long as we know
the joint distribution of where and when the jump of T over 1 is made. This is given by the
following lemma.

Lemma 3.4.6 Consider the jump over level t of a 1-SSA non-decreasing process (T (s), s >
0) with no drift and finite rate θ. Suppose the jump is made at time S(t) from Gt :=
T (S(t−)) ≤ t to Dt := T (S(t)) > t. Then

P(S(t) ∈ ds,Gt ∈ dg,Dt −Gt > y) =
θds

s
P(T (s) ∈ dg)P(sJ > y), ∀0 ≤ g ≤ t ≤ g + y.

(3.46)
In particular, for t = 1 and y = 1− g,

P(S(1) ∈ ds,G1 ∈ dg) =
θds

s
P(T (s) ∈ dg)P(sJ > 1− g), ∀0 ≤ g ≤ 1. (3.47)
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Proof Since T has independent increments and the set of jump times is not dense,

P(S(t) ∈ ds,Gt ∈ dg,Dt −Gt > y) = P(T (s−) ∈ dg)P(T (s+ ds)− T (s−) > y)

= P(T (s−) ∈ dg)

∫
x∈(y,∞)

ν(ds, dx)

= P(T (s) ∈ dg)

∫
x∈(y,∞)

θds

s
FJ

(
dx

s

)
=
θds

s
P(T (s) ∈ dg)P(sJ > y), ∀0 < g ≤ t ≤ g + y. (3.48)

Now we give the following theorem as the hold-jump description after the jump over 1.

Theorem 3.4.7 Suppose T := (T (s), s > 0) is a 1-SSA non-decreasing process with no drift
and finite rate θ. Let J denote its generic jump. Let S1 be the time when T jumps over 1

T (S1−) ≤ 1 < T (S1), (3.49)

and S1 < S2 < · · · be the times of successive jumps s of T with T (s) > T (s−) and T (s) > 1,
and define

T0 := T (S1−) ≤ 1 < T1 := T (S1) < T2 := T (S2) < · · · (3.50)

so that T1, T2, . . . is the increasing sequence of values greater than 1 which are attained by
T on the successive intervals [S1, S2), [S2, S3), . . .. Then the joint distribution of the two
sequences (Sn, n ≥ 1) and (Tn, n ≥ 0) is determined as follows:

P(S1 ∈ ds, T0 ∈ dt) =
θds

s
P(T (s) ∈ dt)P(sJ > 1− t), (3.51)

Sn = S1

(
n−1∏
i=1

βi

)−1

(n = 2, 3, . . .), (3.52)

Tn = Tn−1 + SnJn (n = 1, 2, . . .), (3.53)

where β1, β2, . . . and J1, J2, . . . are independent random variables, with

• β1, β2, . . . all with the beta(θ, 1) distribution (3.21);

• J1, J2, . . . identically distributed copies of the generic jump J .

Proof Formula (3.51) is just (3.47) with different notation, while (3.52) and (3.53) are due
to the hold-jump description presented in Corollary 3.4.4.
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Proof of Theorem 3.1.2

Suppose that T is a non-decreasing 1-SSA process with no drift and finite rate θ. Then Part
(II) holds by definition, while (III) is observed by setting a = ∞ in (3.35). To see (I), set
g = t and y = 0 in (3.46) of Lemma 3.4.6. Suppose the rate of range(T ) is α, then for each
Borel set B ⊂ R+, ∫

B

αdt

t
=

∫
s∈(0,∞)

∫
t∈B

P(S(1) ∈ ds,G1 ∈ dt,D1 −G1 > 0)

=

∫
s∈(0,∞)

θds

s

∫
t∈B

P(T (s) ∈ dt)P(sJ > 0)

=

∫
s∈(0,∞)

θds

s

∫
t∈s−1B

P(T (1) ∈ dt)

=

∫
s∈(0,∞)

∫
t∈s−1B

θds

s
dFT (1)(t)

=

∫
t∈(0,∞)

∫
s∈t−1B

θds

s
dFT (1)(t)

(set r = st) =

∫
t∈(0,∞)

∫
r∈B

θdr

r
dFT (1)(t) =

∫
r∈B

θdr

r
, (3.54)

which shows α = θ.

3.5 Proof that the range of an SSA gamma process is

a PPP

This is the “if” part of Theorem 3.1.3. We offer two different proofs.

First proof - through the hold-jump description after the jump
over 1

This argument shows that the description of range(T ) ∩ (1,∞) implied by Theorem 3.4.7
matches that required by Lemma 3.2.1. We follow the notation of Theorem 3.4.7, which
contains a complete description of the joint distribution of the first arrival times and levels
(Sn, Tn) at all levels t > 1 that are ever attained by the path of T . By scaling, it is enough
to consider the case λ = 1. From Example 3.4.2, the generic jump is exp(1) distributed:
P(J > x) = e−x for x > 0, so (3.51) becomes

P(S1 ∈ ds, T0 ∈ dt) =
θds

s

1

sθΓ(θ)
tθ−1e−

t
sdt e−( 1−t

s
) =

s−1−θe−
1
sds

Γ(θ)
θtθ−1dt. (3.55)

That means T0 and S1 are independent, with T0 distributed beta(θ, 1) and S1 distributed as
inverse gamma(θ, 1), meaning S−1

1 distributed as the gamma(θ, 1).
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Hence by the memoryless property of exponential random variables, we may assume
T0 = 1 without hurting the joint distribution of (Sn, n ≥ 1) and (Tn, n ≥ 1). The joint
distribution is now re-written as follows:

Sn =

(
γθ

n−1∏
i=1

βi

)−1

(n = 1, 2, . . .) (3.56)

Tn = Tn−1 + Snεn (n = 1, 2, . . .) (3.57)

where γθ, β1, β2, . . . and ε1, ε2, . . . are independent random variables, with

• γθ assigned the gamma(θ, 1) distribution;

• β1, β2, . . . all with the beta(θ, 1) distribution;

• ε1, ε2, . . . all with the exp(1) distribution.

All the ingredients needed for calculating range(T )∩ (1,∞) are in view. But the descrip-
tion of the levels Tn is tangled up with the description of the times Sn in such a way that
it is not immediately obvious why the sequence of ratios Tn−1/Tn is also a sequence of i.i.d.
copies of beta(θ, 1). However, the argument is completed by the following lemma.

Lemma 3.5.1 Suppose that random variables S1 := 1/γθ and Sn+1 := Sn/βn for n ≥ 1
are defined by the recursion (3.56), along with T0 := 1 < T1 < T2 < · · · by (3.57), from
independent random variables γθ, βi and εi as above. Then for each n = 1, 2, . . ., the n + 1
ratios

T0
T1
, . . . ,

Tn−1

Tn
,
Tn
Sn

(3.58)

are independent, with the first n consecutive T -ratios all distributed according to the common
beta(θ, 1) distribution of all the βi, and with the last of the n+ 1 ratios

Tn
Sn

d
= γθ+1, (3.59)

the gamma(θ + 1, 1) distribution.

Proof
For n = 1, with T0 := 1

T1 = 1 +
ε1
γθ

=
γθ + ε1
γθ

(3.60)

and hence
T0
T1

=
1

T1
=

γθ
γθ + ε1

d
= βθ,1 (3.61)

and this variable T0/T1 is independent of

T1
S1

:= T1γθ = γθ + ε1
d
= γθ+1 (3.62)
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by the beta-gamma algebra mentioned in Lukacs [74]. The case of general n = 1, 2, 3, . . .
now follows by induction on n, starting from this base case n = 1. Multiply the recursion
(3.57) by 1/Tn+1 = βn/Tn to see that

Tn+1

Sn+1

=
Tn
Sn

βn + εn+1
d
= γθ + ε1

d
= γθ+1 (3.63)

because the gamma(θ + 1) distribution of Tn/Sn and the independence of this variable and

βn
d
= βθ,1 makes their product (Tn/Sn)βn

d
= γθ. Moreover

Tn
Tn+1

=
Tn/Sn+1

Tn+1/Sn+1

=
(Tn/Sn)βn

(Tn/Sn)βn + εn+1

d
=

γθ
γθ + ε1

d
= βθ,1 (3.64)

and this ratio Tn/Tn+1 is independent of the ratio Tn+1/Sn+1 in (3.63), again by beta-gamma
algebra. Thus Tn/Tn+1 and Tn+1/Sn+1 are independent with the required distributions. By
inductive assumption, Tn/Sn is independent of the n ratios Ti−1/Ti for 1 ≤ i ≤ n. The
two variables Tn/Tn+1 and Tn+1/Sn+1 are functions of Tn/Sn and two further independent
variables βn and εn+1. Hence the required independence of the n + 2 variables involved in
(3.58) with n+ 1 in place of n.

Second proof - to exploit symmetry

To see the symmetry, consider the time-inversion T̃ := (T̃ (s) := T (s−1), s > 0) of T . It is
obvious that T̃ has a non-increasing staircase path, which is fully determined by its corners,
i.e. points on the left end of each flat of the path.

To describe the corners, we restate, in a time-reversed manner, the backward hold-jump
description of T̃ . Conditional on T̃ (s) = t, the past of T̃ before time s can be fully constructed
by

• ‘Hold’ - at level t till the random time Hs
d
= sβ (this is going backward in time), where

β has the common beta(θ, 1) distribution;

• ‘Jump’ - up by H−1
s J , where J is the generic jump and is independent of Hs;

• then repeat, conditioning on T̃ (s′) = t′ for s′ = Hs, t
′ = t+H−1

s J .

Lemma 3.5.2 Suppose T is a 1-SSA gamma process with T (1) ∼ gamma(θ, 1) and T̃ :=
(T̃ (s) := T (s−1), s > 0) is the time-inversion of T . Then the set C of corners of the path of
T̃ is symmetric about the bisectrix.

Theorem 3.1.3 then follows since

range(T ) = range(T̃ ) = πt(C)
d
= πs(C), (3.65)
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where πt and πs are projections onto the t- and s-axes, and πs(C) is a scale invariant PPP
on R+ with rate θ thanks the invariance under inversion (3.20).
Proof (Lemma 3.5.2)

Consider the joint density pm(a1, · · · , am) of the event that there are N consecutive points
ai = (si, ti) ∈ C for i = 1, 2, · · · , N indexed decreasingly in s-coordinate

s1 > s2 > · · · > sN , (3.66)

hence is indexed increasingly in t-coordinate. Knowing J ∼ gamma(1, 1),

pN(a1, · · · , aN) =
sθ1
Γ(θ)

(t0)
θ−1e−s1t1 · θ

s1
·

[
N−1∏
n=1

θsθ−1
i+1 s

−θ
i

]
·

[
N−1∏
n=1

sie
−si(ti+1−ti)

]
(3.67)

=
θN

Γ(θ)
(t1sN)

θ−1 exp

{
N−1∑
n=2

sntn −
N−1∑
n=1

sntn+1

}
. (3.68)

Everything in the first line is self-explanatory from the backward hold-jump description given
above, except that the second term θ/s1 accounts for a ‘hold’ with β = 1, meaning that there
is an immediate jump at time s1.

Expression (3.68) is invariant under the substitution

(s̃1, s̃2, · · · , s̃N) ↔ (t̃N , t̃N−1, · · · , t̃1), (3.69)

which proved the symmetry as desired.

This proof is inspired by Gnedin [37, Equation (5)] where a similar symmetry was shown
for a different setup of corners constructed from a PPP on R2

+ with unit intensity. We also
remark that the the proof of the Poisson spacing theorem by Arratia, Barbour and Tavaré [4,
Lemma 7.1] is also done by checking the density of consecutive points. However, we manage
to avoid the brutal integration in their proof by exploiting symmetry.

3.6 Uniqueness of the distribution of the range

In this section, we establish the following uniqueness theorem, from which the “if” part of
Theorem 3.1.3 follows immediately.

Theorem 3.6.1 Suppose T and T̃ are two 1-SSA non-decreasing processes with no drift and
the same finite rate θ. Then

range(T )
d
= range(T̃ ) implies T

d
= cT̃ for some c > 0. (3.70)

Proof Following (the results and also the notation of) Theorem 3.4.7, we may write S in
terms of T and J in (3.52), then (3.53) becomes

Tn − Tn−1

Tn+1 − Tn
=
βnJn−1

Jn
, ∀n ≥ 2, (3.71)
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where (still, as in Theorem 3.4.7) 1 < T1 < T2 < · · · is an exhaustive ordered listing of
points of T on (1,∞), βn are i.i.d. Beta(θ, 1)’s and Jn are i.i.d. copies of the generic jump
J .

Similarly, for another 1-SSA process T̃ with rate θ whose range is equal in distribution
as the one of T , we have

T̃n − T̃n−1

T̃n+1 − T̃n
=
β̃nJ̃n−1

J̃n
, ∀n ≥ 2, (3.72)

where every random variable is similarly defined as in (3.71) for T̃ instead of T .
By assumption, T and T̃ are both 1-SSA with the same finite rate θ. So it is sufficient

to show J
d
= J̃ .

Note that range(T )
d
= range(T̃ ) implies

(Tn, n ≥ 1)
d
=
(
T̃n, n ≥ 1

)
. (3.73)

Therefore, by (3.71) and (3.72),(
βnJn−1

Jn
, n ≥ 2

)
d
=

(
β̃nJ̃n−1

J̃n
, n ≥ 2

)
. (3.74)

By Lemma 3.6.2 below, (3.74) can be simplified to(
Jn−1

Jn
, n ≥ 2

)
d
=

(
J̃n−1

J̃n
, n ≥ 2

)
(3.75)

which implies J
d
= cJ̃ thanks to Lemma 3.6.3.

This Lemma 3.6.2 is a multivariate extension of a simplified version of exercise 1.13.1
in Chaumont and Yor [12], since we only need the case when all coordinates are strictly
positive.

Recall R+ := (0,∞). Suppose Y = (Y1, Y2, · · · , Yn) is a Rn
+-valued random variable. Let

Φlog(Y ) denote the characteristic function of log Y := (log Y1, log Y2, · · · , log Yn)

Φlog(Y )(λ) := E exp{iλ · log(Y )}, λ ∈ Rn, (3.76)

where · is the usual inner product of vectors.

Lemma 3.6.2 (Multivariate simplifiable random variables) If the non-zero set of the
characteristic function of (log Y ), i.e. {λ : Φlog Y (λ) ̸= 0}, is dense in Rn, then Y is
multivariate simplifiable, i.e. for all Rn

+-valued random variables X,Z independent of Y ,

X × Y
d
= Z × Y implies X

d
= Z, (3.77)

where × denotes the entry-wise product X × Y := (X1Y1, X2Y2, · · · , XnYn).
In particular, for each θ > 0, if Y1, Y2, · · ·Yn are i.i.d. copies of β ∼ beta(θ, 1), Y is

multivariate simplifiable.
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Proof

Φlog(X×Y )(λ) = E exp[iλ · log(X × Y )] = E exp[iλ · (logX + log Y )]

= ΦlogX(λ)Φlog Y (λ), ∀λ ∈ Rn. (3.78)

and similarly Φlog(Z×Y )(λ) = ΦlogZ(λ)Φlog Y (λ). Hence, X × Y
d
= Z × Y implies

ΦlogX(λ)Φlog Y (λ) = ΦlogZ(λ)Φlog Y (λ), λ ∈ Rn. (3.79)

Then the cancellation of Φlog Y (λ) on a dense subset {λ : Φlog Y (λ) ̸= 0} of Rn shows

logX
d
= logZ (3.80)

which easily implies X
d
= Z.

Now it is left to show that {λ : Φlog Y (λ) ̸= 0} is dense if Y1, Y2, · · ·Yn are i.i.d. copies of
β ∼ beta(θ, 1).

Observe that the characteristic function of log β is non-zero on R

ϕlog β(λ) = E exp[iλ log(β)] = Eβiλ
k =

∫ 1

0

xiλ θxθ−1dx =
θ

θ + iλ
, ∀λ ∈ R. (3.81)

Hence the characteristic function of log Y is non-zero on Rn.

Lemma 3.6.3 Suppose X and Y are two positive random variables, with i.i.d. copies
Xn, Yn, n = 1, 2, · · · , respectively. If for each n,(

X1

X2

,
X2

X3

, · · · , Xn−1

Xn

)
d
=

(
Y1
Y2
,
Y2
Y3
, · · · , Yn−1

Yn

)
, (3.82)

then Y
d
= cX for some constant c.

Proof Identity (3.82) is equivalent to(
X1

X2

,
X1

X3

, · · · , X1

Xn

)
d
=

(
Y1
Y2
,
Y1
Y3
, · · · , Y1

Yn

)
, (3.83)

which implies (
X1

Z2

X2

, X1
Z3

X3

, · · · , X1
Zn

Xn

)
d
=

(
Y1
Z2

Y2
, Y1

Z3

Y3
, · · · , Y1

Zn

Yn

)
, (3.84)

where Zn, n = 2, 3, · · · are i.i.d. copies of Z ∼ exp(1) and are independent of the X- and
Y -sequences.
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The extra randomization Z is only to ensure that the cumulative distribution function
of Z/X is continuous on R+. When n := 2k → ∞, the (k + 1)-th order statistic of the left
sequence of (3.84) converges almost surely to mxX1 where mx > 0 is the median of Z/X.
Similarly, the (k+1)-th order statistic of the right sequence converges almost surely to myY1
where my > 0 is the median of Z/Y .

Hence
mxX1

d
= myY2, (3.85)

which implies

X
d
= cY with c =

my

mx

. (3.86)

3.7 Size-biased permutation

Suppose T := (T (s), s > 0) is a 1-SSA non-decreasing process with finite intensity θ and
generic jump J . We know that the set of pairs of jump times and jump magnitudes

range((s, T (s)− T (s−)) : s > 0, T (s) > T (s−)) (3.87)

is a scale invariant PPP on R2
+ with intensity measure

ν(ds dt) = θs−1dsP(sJ ∈ dt). (3.88)

This is by no means symmetric. However, if we consider the time-inversion T̃ := (T̃ (s) :=
T (s−1), s > 0) which is employed once in Lemma 3.5.2, then

Theorem 3.7.1 The set of pairs of jump times and jump magnitudes of T̃

range((s−1, T (s)− T (s−)) : s > 0, T (s) > T (s−)) (3.89)

is a scale invariant PPP on R+ with symmetric intensity measure

ν̃(ds dt) = θs−1dsP(s−1J ∈ dt) (3.90)

= θt−1dtP(t−1J ∈ ds) (3.91)

= ν̃(dt ds). (3.92)

Proof By easy measure transformation one obtain (3.90) from (3.88).
If J is continuous with density fJ , then (3.91) is also obvious by symmetry

ν̃(ds dt) = θs−1ds(sfJ(st)dt) = fJ(st)dsdt. (3.93)
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More generally, for any Borel sets A,B ∈ B (or simply intervals), expected number of
points in A × B, i.e. expected number of jumps of T̃ whose jump time is in A and jump
magnitude is in B, is given by∫

s∈A
θs−1dsP(s−1J ∈ B) =

∫ ∞

0

dFJ(y)

∫ ∞

0

θs−1ds1(s ∈ A, s−1y ∈ B) (3.94)

(Put t = s−1y) =

∫ ∞

0

dFJ(y)

∫ ∞

0

θt−1dt1(t−1y ∈ A, t ∈ B) (3.95)

=

∫
t∈B

θt−1dtP(t−1J ∈ A). (3.96)

Hence (3.91) follows.

Informally, (3.91) provides us with a way to generate jumps of T̃ given jump magnitudes:

• conditional on the set of jump magnitudes, a jump with magnitude t occurs at time
t−1J , conditionally independent of all other jumps.

Fix s0 > 0. Consider the decomposition

T̃ (s0) =
∞∑
i=1

∆(i), (3.97)

where
∆(1) ≥ ∆(2) ≥ · · · (3.98)

are the ranked valued of the first component of points (∆, S) in a PPP on (0,∞)× (s0,∞)
with intensity measure

ν̃(dt ds)1(s ≥ s0) =
[
θt−1P(t−1J ≥ s0)dt

]
P(t−1J ∈ ds|t−1J ≥ s0). (3.99)

From the intensity measure above, we learn:

• ∆(1) ≥ ∆(2) ≥ · · · are ranked points from

PPP (θt−1P(t−1J ≥ s0)dt) = PPP (t−1k(ts0)) (3.100)

• The jump time Si of ∆(i) is given by

Si = (Ji/∆(i) | Ji/∆(i) ≥ s0), (3.101)

where (Ji, i = 1, 2, · · · ) is a sequence of i.i.d. copies of J independent of all ∆(i)’s.

Theorem 3.7.2 Suppose T is 1-SSA non-decreasing with finite intensity. Set S(1) < S(2) <
· · · the order statistics of Si’s as defined in (3.101) and ∆1,∆2, · · · the corresponding ∆-
values, then (∆1,∆2, · · · ) is a size-biased permutation of ∆(i) if and only if T is a 1-SSA
gamma process.
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Proof (‘If’) For T a 1-SSA gamma process, without loss of generality set the generic jump

J
d
= ε ∼ Exp(1). Then by memoryless property, (3.101) becomes

Si = εi/∆(i) + s0, (3.102)

where εi is a sequence of i.i.d. copies of ε. Hence ordering by S-values is the same as ordering
by εi/∆(i), and the desired result follows by [82, Lemma 4.4].

(‘Only if’) Since (∆1,∆2, · · · ) is a size-biased permutation,

P(S1 < S2 | ∆(i) = δi, i = 1, 2, · · · ) =: Pδ(S1 < S2) =
δ1

δ1 + δ2
. (3.103)

For simplicity we only prove for J continuous with differentiable tail probability g(x) =
P(J > x) = k(x)/θ. Thus,

δ1
δ1 + δ2

= P
(
J1
δ1
<
J2
δ2

| J1
δ1
,
J2
δ2

≥ s0

)
=

P(s0 ≤ J1
δ1
< J2

δ2
)

P(J1
δ1
, J2
δ2

≥ s0)
, (3.104)

δ2P
(
s0 ≤

J1
δ1
<
J2
δ2

)
= δ1P

(
J1
δ1
>
J2
δ2

≥ s0

)
, (3.105)

δ2

∫ ∞

δ1s0

g(dx)

∫ ∞

δ−1
1 δ2x

g(dy) = δ1

∫ ∞

δ2s0

g(dx)

∫ ∞

δ−1
2 δ1x

g(dy). (3.106)

Note that the above equations are true for all non-increasing sequences δ1 ≥ δ2 ≥ · · ·
and s0 > 0, hence by differentiation with respect to s0,

δ2g(δ1s0)
d

ds0
g(δ2s0) = δ1g(δ2s0)

d

ds0
g(δ1s0), (3.107)

d

ds0
ln g(δ2s0) =

d

ds0
ln g(δ1s0), ∀δ1 > δ2 > 0, s0 > 0. (3.108)

The solutions of the differentiation equation (3.108), satisfying the boundary conditions
g(0) = 1 and g(+∞) = 0 are given by

g(x) = e−λx, (x > 0) (3.109)

for all fixed λ > 0, i.e. J ∼ Exp(λ). This implies that T is a 1-SSA gamma process.

3.8 Processes associated with selfdecomposable laws

In this section, we first introduce three different kinds of one-parameter processes associated
with selfdecomposable laws, which are known in the previous study related to selfdecompos-
able laws. Then we introduce a two-parameter process with selfdecomposable margins that
behaves differently along its two parameters.
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One-parameter processes

Let X be a selfdecomposable random variable. According to the result of Sato [96] presented
in Theorem 3.3.1,

• for eachH > 0, there is a unique distribution of anH-SSA process T (H) := (T (H)(s), s >

0) such that T (H)(1)
d
= X.

On the other hand, since X is infinitely divisible,

• there is a unique Lévy process U := (U(s), s > 0) with U(1)
d
= X.

See Sato [96, Section 4] for a comparison between these two processes, where it is mentioned

that T (H) d
= U , in the sense of equality in finite-dimensional distributions, if and only if X

is a constant variable 0 or strictly stable with index 1/H.
A third process associated with selfdecomposable X is known as the background driving

Lévy process (BDLP) first discussed by Wolfe [107] and Jurek and Vervaat [61], and named
by Jurek [60]. A Lévy process Y := (Y (r), r > 0) is called the BDLP of X if

X
d
=

∫ ∞

0

e−rdY (r). (3.110)

The relationship of T (H) and Y is given by

Y (r) =

∫ 1

e−r

s−HdT (H)(s), r > 0, (3.111)

and

T (H)(s) =

∫ ∞

− log(s)

erHdY (r), 0 < s < 1. (3.112)

To illustrate the differences among these three processes, we observe if k(x)/x is the Lévy
density of X, then

• the Lévy density of T (H)(s)
d
= T (1)(sH) is given by k(s−Hx)/x;

• the Lévy density of U(s) is given by sk(x)/x;

• the Lévy density of Y (r) is given by rk(x).

The BDLP, denoted Y , can be easily extended for s ≤ 0 by setting Y (0) = 0 and
(−Y (−s), s > 0) an independent copy of (Y (s), s > 0), whence (3.111) holds for r ∈ R and
(3.112) holds for s > 0. See Jeanblanc, Pitman and Yor [56, Theorem 1].
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A two-parameter process

For simplicity, suppose the selfdecomposable random variable X is also non-negative with
Lévy triple (0, 0, k(x)x−1dx) where θ := k(0+) < ∞. So the associated 1-SSA process

(T (s), s > 0) with T (1)
d
= X is non-decreasing with no drift, finite rate θ and generic jump

J whose distribution is determined by

P(J > x) = k(x)/θ. (3.113)

Moreover, T (s) has the following Lévy-Itô representation

T (s) =

∫ s

0

∫ ∞

0

xη(dy dx) (s > 0), (3.114)

where η is a Poisson point process on R2
+ satisfying (3.28), with intensity measure

ν(dy dx) := Eη(dy dx) = θy−1dyP(sJ ∈ dx). (3.115)

Based on η, define a Poisson point process on R3
+, say η

∗, by setting its intensity measure
ν∗ := Eη∗ = ν

⊗
λ, where λ is the ordinary Lebesgue measure on R+. Now define a two-

parameter process (T (s, w), s > 0, w > 0) by setting

T (s, w) :=

∫
z∈(0,w]

∫
y∈(0,s]

∫
x>0

xη∗(dz dy dx) (s, w > 0). (3.116)

Then the following properties of this two-parameter process are easily checked:

• T (s, w) is non-decreasing in both s and t;

• for each fixed positive integer w, (T (s, w), s > 0) is a 1-SSA process obtained by adding
w independent copies of T ;

• for each fixed w > 0, T(w) := T (·, w) = (T (s, w), s > 0) is a 1-SSA process with finite
rate θw and generic jump J ;

• for each fixed s > 0, T (s) := T (s, ·) = (T (s, θ), θ > 0) is a subordinator;

• the family (T(w), w > 0) is coupled such that it is a “subordinator of 1-SSA processes”,

i.e. for fixed u > v > 0, the increment T(u) − T(v)
d
= T(u−v) is a 1-SSA non-decreasing

process independent of (T (s, w), s > 0, 0 < w < v);

• the family (T (s), s > 0) is coupled such that it is an “1-SSA family of subordinators”,

i.e. for fixed s > 0, T (s) d
= sT (1) and for fixed u > v > 0, the increment T (u) − T (v) is a

subordinator independent of (T (s, w), 0 < s < v,w > 0);

• for each finite interval I, when T is not identically 0, the jumps of T (s) := (T (s)(w) =
T (s, w), w > 0) as a subordinator are almost surely dense on I;
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• however, for fixed u > v > 0, the number of jumps of T (u)−T (v) is almost surely finite
on I.

We only discussed above the case when T is non-decreasing and with finite rate . But it
is easy to see that the bivariate process can be defined more generally. In particular, it is
easy to add a deterministic or Brownian component. But the case when T has infinite rate
and jumps of both signs would require more care.

3.9 An open problem on ratios of i.i.d. random

variables

In Lemma 3.6.3, we have shown that if for each n the equality in distribution (3.82) of ratios
of i.i.d. random variables holds then the distribution is uniquely determined up to a scaling
factor. In fact, under some regularity condition, the identity (3.82) for n = 3(

X1

X2

,
X2

X3

)
d
=

(
Y1
Y2
,
Y2
Y3

)
(3.117)

is sufficient, by writing the identity in joint distribution above in terms of characteristic
functions f(λ) := ϕlogX(λ) = E exp[iλ log(X)] and g(λ) := ϕlog Y = exp[iλ log(Y )]

f(t1)f(t2)f(t3) = g(t1)g(t2)g(t3), ∀t1 + t2 + t3 = 0, (3.118)

which can be easily transformed into Cauchy’s functional equation. This functional equation
is first discovered and proved by Cauchy [11], and later been proved with various weaker
conditions by many others, see e.g. Darboux [20].

On the other hand, we know it is insufficient to only have the identity (3.82) for n = 2,
due to the following counterexample:

Example 3.9.1 ([85, Remark 7.6]) Suppose T := (T (s), s > 0) is a stable(1
2
) subordina-

tor. Let X1 = T (1
2
) and X2 = T (1) − T (1

2
)

d
= X1 since T is a Lévy process. Let Y1, Y2

d
=

gamma(1
2
, 1).

Then
X1

X1 +X2

d
=

Y1
Y1 + Y2

∼ beta(1
2
, 1
2
) (3.119)

hence
X1

X2

d
=
Y1
Y2

(3.120)

and X1 is not equal in distribution to cY1 for any constant c.
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The second appearance of ratios of i.i.d. random variables in this Chapter is implicit in
the proof to the ‘only if’ part of Theorem 3.7.2. To illustrate, consider the case n = 2 as the
left equation of (3.104) in the proof, then take the limit s0 → 0+, i.e.

δ1
δ1 + δ2

= P
(
J1
δ1
<
J2
δ2

)
= P

(
J1
J2

<
δ1
δ2

)
, ∀δ1 ≥ δ2 > 0. (3.121)

In fact, since J1 and J2 are i.i.d., we may replace the restriction ∀δ1 ≥ δ2 > 0 with ∀δ1, δ2 > 0.
Note that for ε1, ε2, . . . i.i.d. copies of a standard exponential random variable ε,

P
(
ε1
ε2
<
δ1
δ2

)
=

δ1
δ1 + δ2

, ∀δ1, δ2 > 0. (3.122)

Hence, (3.121) is equivalent to
J1
J2

d
=
ε1
ε2
. (3.123)

And for general n ≥ 2, (
J1
J2
,
J2
J3
, · · · , Jn−1

Jn

)
d
=

(
ε1
ε2
,
ε2
ε3
, · · · , εn−1

εn

)
, (3.124)

which is identical to (3.82) for X
d
= J and Y

d
= ε, hence rounded back to a special case of

Lemma 3.6.3 with one of the variables exponentially distributed.
The discussion above raises the question that, in Lemma 3.6.3, whether the condition

when n = 2 alone might be sufficient when Y
d
= ε. If so, it will provide a simple proof to the

‘only if’ part of Lemma 3.6.3.
To restate the question, observe the following well-known result

ε1
ε1 + ε2

∼ Unif(0, 1). (3.125)

Thus, it is equivalent to ask

Open Problem 3.9.2 Suppose J1, J2 are i.i.d. copies of a positive random variable J and

J1
J1 + J2

∼ Unif(0, 1). (3.126)

Is it always true that J is exponentially distributed?

Or more generally,

Open Problem 3.9.3 Suppose J1, J2 are i.i.d. copies of a positive random variable J . With
what extra condition does the distribution of J1

J1+J2
characterize the distribution of J?

These questions are related to Lukacs’ characterization of the gamma distribution [74],
where the independence between the sum J1 + J2 and the ratio J1

J1+J2
is assumed. See also

Chou and Huang [13].
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3.10 Historical remarks

Selfdecomposable laws and self-similar processes The class of selfdecomposable laws
was first studied by Lévy [71] and Khintchine [65], as an extension to stable laws as the limit
distributions for sums of identically distribute random variables. Self-similar processes were
first studied Lamperti [69] as a generalization to stable processes, which he called semi-stable
processes.

Theorem 3.10.1 (Lamperti [69]) Let (T (s), s > 0) be an additive process. Suppose (T (s), s >
0) is also semi-stable, that is, for every c > 0, there exists a constant b(c) such that

(T (cs), s ≥ 0)
d
= (b(c)T (s), s ≥ 0), (3.127)

then for some H ≥ 0
b(c) = cH (c > 0). (3.128)

Note that if H = 0, the process is trivial; otherwise, it is an H-SSA process.
The integral representation of selfdecomposable laws was studied by Wolfe [107] for R-

valued random variables and then by Jurek and Vervaat [61] for more general Banach space-
valued random variables. Although they did not consider self-similar processes, the integral
representation

T (1) =

∫ ∞

0

e−sY (ds), (3.129)

for Y (·) the background driving Lévy process (BDLP) associated with T (1), is essentially
the same as our integral representation (3.27) by treating e−s as our index s. See also Jurek
[58] for a recent study of selfdecomposable laws and the associated BDLP.

Sato [96, 95] investigated in detail and built the connection between the class L of self-
decomposable distributions and SSA processes as stated in Theorem 3.3.1. There is also a
detailed background and a comprehensive list of references to earlier results on selfdecom-
posable laws in [96].

Jeanblanc, Pitman and Yor [56] pointed out that either of the two representations by
Wolfe [107] and Sato [96] follows easily from the other. That reference also provides further
background theory of selfdecomposable laws and their representations. Bertoin [5] treats
the entrance law of self-similar processes. Tudor [104] studied the variations of self-similar
processes from a stochastic calculus approach.

Summation representation of T (1) In the setup of Theorem 3.4.1, the identity (3.25)
can be viewed as a decomposition of the selfdecomposable random variable T (s). For sim-
plicity, consider only T (1). Now index Sz such that

0 < · · · < S−2 < S−1 < S0 ≤ 1 < S1 < S2 < · · · <∞. (3.130)
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By Lemma 3.2.1

S1−n =
n∏

k=1

βk (n ≥ 1), (3.131)

where βk are i.i.d. beta(θ, 1) random variables.

Corollary 3.10.2 Suppose T (1) is a non-negative, selfdecomposable random variable. Then
there exists a sequence of i.i.d. non-negative random variables Jz such that

T (1)
d
=

∞∑
n=1

(
n∏

k=1

βk

)
J1−n, (3.132)

where βk are i.i.d. beta(θ, 1) random variables independent of Jz.

The distribution of a random variable T (1) admitting the representation (3.132) for i.i.d.
sequences βk (not necessarily beta) and Jk was studied first by Vervaat [106, example 3.8]
as the solution of the stochastic difference equation

X
d
= A(X + C), (3.133)

with X,A,C independent and |A| < 1. By iteration,

X
d
=

∞∑
n=1

(
n∏

k=1

Ak

)
Cn, (3.134)

where Ak, Cn are i.i.d. copies of A and C, independent of each other. This is identical to
(3.132) by setting An = βn and Cn = Jn.

The following corollary of the fact that a SSA gamma process is associated with an
exponential generic jump, giving a representation of a gamma distributed random variable,
is also given in [106, example 3.8.2].

Corollary 3.10.3 (Vervaat [106]) If C ∼ exp(λ) and A ∼ beta(θ, 1) for some λ, θ > 0,
then the unique solution to the stochastic difference equation (3.133) is X ∼ gamma(θ, λ).

However, Vervaat did not make any connection with SSA processes in his work on stochas-
tic difference equations, as he did not treat (

∏n
k=1Ak) as a time index, and he did not discuss

selfdecomposability of X, only infinitely divisibility.

Extremal processes As mentioned in Section 3.1, the 1-SSA exponential process with
rate θ = 1 arises in the theory of extremal process introduced by Dwass [23].

Starting from an i.i.d. sequence (Xn, n = 1, 2, . . .) of continuous random variables, it is
elementary that the record sequence (Mn := max1≤k≤nXk, n = 1, 2, . . .) is a Markov chain
with state space R and transition probabilities specified by

P(Mn+m ≤ y |Mn = x) = Fm(y)1(x ≤ y), (3.135)
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where F t(y) is the t-th power of the common cumulative distribution function (c.d.f.) of the
Xi. It was observed in 1964 by Dwass [23] and Lamperti [68] that the record process can be
generalized to a time-homogeneous pure jump-type Markov process, known as the extremal
process M := (M(t), t > 0), described by its entrance law

P(M(t) ≤ y) = F t(y), (3.136)

and the hold-jump description: conditional on M(s) = x,

• ‘Hold’ - at level x for an exponential time Hx with rate Q(x) := − logF (x) so that

P(Hx > t) = P(M(t) ≤ x) = F t(x) = e−tQ(x); (3.137)

• ‘Jump’ - at time Hx to a state Lx :=M(s+Hx) with distribution

P(Lx > b) =
Q(b)

Q(x)
(b ≥ x). (3.138)

See Shorrock [98] or Kallenberg [63, Chapter 13] for more details.

Proposition 3.10.4 (Dwass [23] Resnick and Rubinovitch [91] Shorrock [98] ) Let
((Tz,Mz), z ∈ Z) be a listing indexed by integers Z of the times Tz of jumps of (M(t), t ≥ 0)
and the corresponding record levels Mz :=M(Tz), with Tz < Tz+1. Then

range((Mz, Tz+1 − Tz), z ∈ Z) is PPP (Q(dm)e−Q(m)tdt). (3.139)

In particular,

(I) the random set of record times Tz is a scale invariant PPP on R+ with rate 1;

(II) the random set of record levels range(Mz, z ∈ Z) is PPP (Q(dm)/Q(m));

(III) the random set of holding times at these record levels range(Tz+1−Tz, z ∈ Z) is a scale
invariant PPP on R+ with rate 1.

As indicated by Dwass and Lamperti, the extremal Markov process associated with each
continuous distribution F on the line is essentially the same as that associated with every
other continuous distribution F ′, via the monotonic transformation

M ′ = ψ(M), for ψ with F ′(·) = F (ψ ∈ ·). (3.140)

To illustrate the point and see its relation with our Theorems 3.1.3 and 3.1.2, consider the
case of Gnedenko’s extreme value distribution, that is the distribution of ε−1 for ε exponential
with mean 1:

F (y) = exp(−y−1) = P(ε−1 ≤ y) (y > 0), (3.141)
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hence the rate in (3.137) is

Q(x) = − logF (x) =
1

x
, (3.142)

and the jump has distribution

P(Jx > b) =
Q(b)

Q(x)
=
x

b
(b ≥ x), (3.143)

namely x/Jx ∼ beta(1, 1). It is easy to check that the functional inverse (which means the
‘hold’ and ‘jump’ are swapped) coincides with the hold-jump description (3.56) (3.57) of a

1-SSA gamma process (T (s), s > 0) with rate 1 and T (s)
d
= sε ∼ exp(s−1).

Therefore, the path of an extremal process associated with (3.141) has the same distri-
bution as the functional inverse of the path of a standard 1-SSA exponential process. This
matches Proposition 3.10.4(I) with Theorem 3.1.3, and Proposition 3.10.4(III) with Theorem
3.1.2(III). Lastly, in this case the PPP (Q(dm)/Q(m)) in Proposition 3.10.4(II) is a scale
invariant PPP on R+ with rate 1, as in Theorem 3.1.2(II).

It may also be of interest to replace the i.i.d. sequence above with an inhomogeneous
Markov sequence (Xn, n = 1, 2, . . .) defined as follows:

• The first term X1 has c.d.f. F θ;

• Conditionally on Mn = x, let Fx+ be the c.d.f. of X given X > x

Fx+(y) := (F (y)− F (x))/(1− F (x)) (y > x), (3.144)

and Fx−be the one given X ≤ x

Fx−(y) := F (y)/F (x) (y ≤ x). (3.145)

Then the distribution of Xn+1 is the mixture with weights 1 − F (x) and F (x) of the
distribution of a random variable with c.d.f. F θ

x+, and distribution of a random variable
with c.d.f. Fx−, i.e.

P(Xn+1 ≤ y |Mn = x) = (1− F (x))F θ
x+(y) + F (x)Fx−(y). (3.146)

An example of this sequence is obtained by putting X ∼ Uniform(0, 1). Then X1 ∼
beta(1, θ) and conditionally on Mn = x, Xn+1 is the mixture with weights 1 − x and x of
Uniform(0, 1− x) and x+ (1− x)β for β ∼ beta(1, θ).

Theorem 3.10.5 Suppose X is a real-valued random variable without atoms, and the se-
quence (Xn, n = 1, 2, . . .) follows the inductive construction above. Then the maximum in-
dicators (Bn, n = 1, 2, . . .) form a sequence of independent Bernoulli random variables with
EBn = θ/(θ + n− 1).
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This is a generalization to Najnudel and Pitman [79, Corollary 1.4] where they proved
the same result for X ∼ Uniform(0, 1). This generalization works because the distribution
of X has no atoms, hence has no influence on record times.

It is not hard to construct a time-inhomogeneous extremal process M associated with
(Xn, n = 1, 2, . . .) and check that the path of such extremal process has the same distribution
as the functional inverse of the path of a 1-SSA gamma process (T (s), s > 0) with T (1) ∼
gamma(θ, 1). In this case, Theorem 3.10.5 can be read as a discrete-time analogue of Theorem
3.1.3, and an analogue of Proposition 3.10.4 can also be easily given by replacing the rate in
(I) and (III) by θ, and replacing the PPP in (II) by PPP (θ Q(dm)/Q(m)).

Scale invariant point processes Scale invariant point processes, and scale invariant
random sets, including the scale invariant PPP, were studied in [87, 38] by considering the
random partitions of (0, 1) related to the Poisson-Dirichlet distribution. It was observed
in [87] that a random closed set is scale invariant if and only if the associated age process
is 1-self-similar, while [38] remarked on the relationship between scale invariant PPP and
records.

The scale invariant Poisson spacings lemma for general θ ̸= 1 The formulation of
the Theorem 3.1.3 for general θ > 0 was suggested by proofs of the scale invariant Poisson
spacings Theorem 3.1.1, first indicated by Arratia [3, 2], and detailed by Arratia, Barbour
and Tavaré [4], where they make use of a Poisson point process on (0,∞)2 which turns out to
be our η in (3.27). Based on [4], Gnedin [37, Section 4] pointed out that the scale invariant
Poisson spacings theorem for positive integer θ follows from a specialization of Ignatov’s
theorem in the form of [39, Corollary 5.1].

Feller’s coupling and the Ewens sampling formula The parameter θ in the Poisson
spacings theorem is related to the Ewens(θ) distribution [28] as a generalization to the
uniform random permutation of [n]. Feller [30] provided a coupling between the counts of
cycles of various sizes in a uniform random permutation of [n] and the spacings between
successes in a sequence of n independent Bernoulli(k−1) trials at the kth trial. Informally,
this sequence of independent Bernoulli trials is a discrete analogue of the scale invariant PPP
with rate 1 relative to x−1dx.

Ignatov [54] proved that in an infinite sequence of independent Bernoulli(n−1) trials, as
the indicators of record values in an i.i.d. sequence, the numbers of spacings of length k
between successes/records are independent Poisson variables with means k−1. This Poisson
sequence provides another discrete analogue of the scale invariant PPP with rate 1. It
is interesting that this discrete result was obtained many years after theory of extremal
processes by Dwass [23]. Ignatov’s result was generalized by Arratia, Barbour and Tavaré
[4] in the study of cycles of (non-uniform) random permutations governed by the Ewens(θ)
distribution, i.e. a permutation is weighted θk if there are k cycles. See Najnudel and Pitman
[79] for details of the coupling between the random permutations governed by the Ewens(θ)
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distribution and the sequence of inhomogeneous Bernoulli(θ(θ+n−1)−1) trials, as mentioned
in Theorem 3.10.5.
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Chapter 4

Bivariate generating functions

In this chapter, we give a formula for the bivariate generating function of a stationary
1-dependent counting process in terms of its run probability generating function, with a
probabilistic proof. The formula reduces to the well known bivariate generating function of
the Eulerian distribution in the case of descents of a sequence of independent and identically
distributed random variables. The formula is then compared with alternative expressions
from the theory of determinantal point processes and the combinatorial enumeration formula
of sequences.

4.1 Definitions

Counting one-dependent processes

A discrete time stochastic process (X1, X2, · · · ) is said to be 1-dependent if

(X1, . . . , Xm−1) is independent of (Xm+1, . . . , Xm+n) (4.1)

for all positive integers m and n. In contrast to a Markov chain, this independence requires
no knowledge of current position. This dependence structure has been widely investigated
in probability theory [6, 48, 47], and as a tool in statistics [64] and queuing systems [46,
99]. Examples of 1-dependent processes are provided by 2-block factors [53] generated by
a function of two successive terms in an independent sequence. But not all 1-dependent
processes can be constructed this way: Aaronson et al. [1] explicitly gave a two-parameter
family of 1-dependent processes which cannot be expresses as 2-block factors. Other examples
of this kind arise in the theory of random colorings of integers developed by Holroyd and
Liggett [48, 47].

Here, we restrict attention to 1-dependent processes (X1, X2, · · · ) which are also station-
ary, i.e. for all positive integers n,

(X1, X2, . . . , Xn)
d
= (X2, X3, . . . , Xn+1). (4.2)
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In the case of an independent and identically distributed (i.i.d.) sequence, the distribution
of the count Sn(A) =

∑n
k=1 1(Xk ∈ A) is binomial with parameters n and P(Xn ∈ A), for

any measurable subset A of the state space of the sequence. We describe here a bivariate
generating function which determines the distribution of this counting variable Sn(A) for
any stationary 1-dependent process (X1, X2, · · · ).

Bivariate generating functions

Following the work of de Moivre on the distribution of the number of spots in a number
of die rolls, the encoding of a sequence by its generating function was exploited by Euler
[27] and many subsequent authors for combinatorial enumeration [41, 33]. To describe the
distribution of an integer-valued random variable, Laplace [70] introduced the probability
generating function [21]. For a sequence of non-negative-integer-valued random variables
Sn, let QSn denote the probability generating function of Sn:

QSn(z) := EzSn =
∞∑
k=0

P(Sn = k)zk, (4.3)

and let Q(z, v) be the bivariate generating function of distributions of Sn

Q(z, v) :=
∑
n≥0

∑
k≥0

P(Sn = k)zkvn =
∑
n≥0

QSn(z)v
n, (4.4)

for all z, v such that the summation converges, including |z| ≤ 1 and |v| < 1. This bivari-
ate generating function determines the distribution of Sn for every n by extraction of the
coefficient of zkvn from Q(z, v):

P(Sn = k) = [zkvn]Q(z, v), n, k = 0, 1, 2, · · · (4.5)

In our set up for counting processes, Sn := X1 + · · ·+Xn, where (Xn, n ≥ 1) is an indicator
sequence, so each count Sn takes values in {0, 1, 2, · · · , n}, and the series (4.4) is absolutely
convergent for |zv| < 1. See e.g. [33, Chapter III] for further background on bivariate
generating functions.

Run probability generating functions

For an indicator sequence (Xn, n ≥ 1), define its 0-run probabilities

q0 := 1 and qn := P(Sn = 0) = P(X1 = X2 = · · · = 0), n = 1, 2, . . . (4.6)

and the associated 0-run probability generating function

Q(v) :=
∞∑
n=0

qnv
n =

∞∑
n=0

P(Sn = 0)vn = Q(0, v). (4.7)
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The 1-run probability sequence can be similarly defined, treated as the 0-run probability
sequence for the dual indicator sequence (X̂n := 1−Xn, n ≥ 1), with counts Ŝn = n− Sn:

p0 := 1 and pn := P(Sn = n) = P(X1 = X2 = · · · = 1), n = 1, 2, . . . (4.8)

The associated 1-run probability generating function is then for 0 ≤ v < 1

P (v) :=
∞∑
n=0

pnv
n =

∞∑
n=0

P(Sn = n)vn = Q̂(0, v) = lim
z→0

Q(z−1, zv), (4.9)

where Q̂(z, v) is the bivariate generating function of Ŝn, and the last equality is by dominated
convergence as z → 0, using the evaluation for |zv| < 1:

Q̂(z, v) =
∑
n≥0

n∑
k=0

P(Sn = n− k)zkvn (4.10)

=
∑
n≥0

n∑
k=0

P(Sn = k)z−k(zv)n = Q(z−1, zv). (4.11)

In our case of a stationary 1-dependent sequence of indicator variables (Xn, n ≥ 1), it
is known [90, Chapter 7.4][1, Theorem 1] that the distribution of Sn = X1 + · · · + Xn, is
uniquely determined by its sequence of 1-run probabilities, or just as well by its sequence
of 0-run probabilities, through a determinantal formula for the probability function of the
random vector (X1, . . . , Xn). Our main result, presented in Section 4.2, gives a formula
for the bivariate generating function Q(z, v) of distributions of Sn in this case, which is
simpler than might be expected from this determinantal formula. The rest of this chapter is
organized as follows.

• Section 4.3 shows how the Eulerian bivariate generating function is obtained from our
result in the case of descents.

• Section 4.4 displays the bivariate generating function of some other stationary 1-
dependent processes.

• Section 4.5 verifies our result from the perspective of determinantal point processes.

• Section 4.6 makes connection with a combinatorial result in Goulden and Jackson [41]
and provides Corollary 4.6.1 which is suitable for counting a particular pattern in
2-block factors.

• Section 4.7 compares our formula for the bivariate generating function in the stationary
1-dependent case to similar formulae for exchangeable or renewal processes, which are
either known or easily derived from known results.
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4.2 Main result

Theorem 4.2.1 For a stationary 1-dependent indicator sequence (Xn, n ≥ 1), the bivariate
generating function Q(z, v) of distributions of its partial sums Sn is determined either by the
0-run probability generating function Q(v), or by the 1-run probability generating function
P (v), via the formulae

Q(z, v) =
Q((1− z)v)

1− zvQ((1− z)v)
=

P (−(1− z)v)

1− vP (−(1− z)v)
. (4.12)

The particular case z = 0 of (4.12) reduces to the following known result:

Corollary 4.2.2 (Involution [6, Proposition 7.4]) In the setting of the previous theo-
rem, for any stationary 1-dependent indicator sequence, the 0-run generating function Q(v)
and the 1-run generating function P (v) determine each other via the involution of formal
power series

Q(v) =
P (−v)

1− vP (−v)
; P (v) =

Q(−v)
1− vQ(−v)

. (4.13)

Proof (of Theorem 4.2.1 and Corollary 4.2.2)
We will first prove the left equality in (4.12), rearranged as

Q(z, v) = Q((1− z)v) + zv Q((1− z)v)Q(z, v), (4.14)

by establishing the corresponding identity of coefficients of powers of v, that is,

QSn(z) = [vn]Q((1− z)v) + z
n−1∑
k=0

[vk]Q((1− z)v)[vn−1−k]Q(z, v). (4.15)

Recall that qj := [vj]Q(v), whence

[vj]Q((1− z)v) = (1− z)j[vj]Q(v) = (1− z)jqj, j = 0, 1, . . . . (4.16)

So (4.15) for each n = 1, 2, . . ., with j = k − 1, reduces to

QSn(z) = (1− z)nqn +
n∑

k=1

(
(1− z)k−1z

)
qk−1QSn−k

(z), (4.17)

which has the following interpretation. For 0 ≤ z ≤ 1, let (Yn, n ≥ 1) be a sequence of i.i.d.
Bernoulli(z) random variables, also independent of (Xn, n ≥ 1). Employing van Dantzig’s
method of marks [19], treat Yn as a mark on Xn: say the n-th item Xn is z-marked if Yn = 1,
and non-z-marked if Yn = 0. By construction, QSn(z) is the probability that every success
among the first n trials is z-marked. In particular, if z = 0, every success in non-z-marked.
Then the only way every success in the first n trials is z-marked is if there are no successes.
Hence QSn(0) = qn is the probability of no successes in the first n trials. The identity (4.17),
decomposes the event that every success in the first n trials is z-marked according to the
value of Tz := min{n : Yn = 1}, the index of the first z-mark. So
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• Tz has the geometric(z) distribution P(Tz = k) = (1− z)k−1z for k = 1, 2, . . .;

• On the event of probability (1 − z)n, that the first z-mark occurs at Tz > n, no trial
among the first n is allowed to be success, with probability qn;

• On the event of probability (1−z)k−1z, that the first z-mark occurs at Tz = k for some
1 ≤ k ≤ n, no trial among the first k − 1 is allowed to be success, with probability
qk−1, and all success after the k-th (excluding the k-th) are z-marked, with probability
QSn−k

(z), with independence before and after the k-th trial by the assumption that
(Xn, n ≥ 1) is 1-dependent.

This proves the left equality of (4.12). To prove the right, it is easiest to prove Corollary
4.2.2. Recall (4.9),

P (v) = lim
z→0

Q(z−1, zv) = lim
z→0

Q((z − 1)v)

1− vQ((z − 1)v)
=

Q(−v)
1− vQ(−v)

, (4.18)

which yields the P identity in (4.13). To see the Q identity, simply replace v with −v in the
last equation.

Lastly, the right equation of (4.12) is obtained from the left one and the involution

Q(z, v) =
P (−(1− z)v)/(1− (1− z)vP (−(1− z)v))

1− zvP (−(1− z)v)/(1− (1− z)vP (−(1− z)v))
(4.19)

=
P (−(1− z)v)

1− vP (−(1− z)v)
. (4.20)

4.3 Application to descents

In this section, we present the example of Eulerian numbers. We were led to the general
formula for the bivariate generating function of counts of a 1-dependent indicator sequence
by the algebraically simple form of the bivariate generating function of Eulerian numbers,
whose probabilistic meaning is not immediately obvious, but nicely explained by the above
proof of Theorem 4.2.1.

It is well known that a large class of stationary 1-dependent indicator sequences (though
not all, see [1, 7]) may be constructed from an independent and identically distributed
background sequence (Y1, Y2, . . .), as two-block factors

Xn := 1((Yn, Yn+1) ∈ B), (4.21)

for some product-measurable subset B of the space of pairs of Y -values, say [0, 1]2 for Yi ∼
Uniform(0, 1).
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An important example is provided by the sequence of descents Xn := 1(Yn > Yn+1) for
real-valued Yi. In particular, for Yi ∼ Uniform(0, 1) (or any continuous distribution) and
Sn := Dn+1 counting the number of descents Yi > Yi+1 with 1 ≤ i ≤ n:

P(Sn = 0) = P(Sn = n) = P(Y1 > · · · > Yn+1) =
1

(n+ 1)!
. (4.22)

So the run generating functions Q(v) and P (v) in this case are easily evaluated as

Q(v) = P (v) =
∑
n≥0

vn

(n+ 1)!
=
ev − 1

v
. (4.23)

Eulerian numbers

The Eulerian numbers
〈
n
k

〉
are commonly defined by the numbers of permutations of [n] :=

{1, 2, · · · , n} with exactly k descents, i.e. k adjacent pairs with first larger than the second
[42]. So the count Ŝn−1 of descents in a uniform random permutation of [n] has the Eulerian
distribution

P(Ŝn−1 = k) =
1

(n)!

〈
n

k

〉
. (4.24)

Observe that this uniform permutation can be done by taking the ranks of the i.i.d.
background sequence (Y1, Y2, · · · , Yn). Here, we say the rank of Yi is k if and only if Yi is the
k-th smallest among Y1, Y2, · · ·Yn. Then, for Yi ∼ Uniform(0, 1), the ranks are almost surely
a uniform permutation of [n]. Therefore, Ŝn has the same distribution as Sn in (4.22). Now,
applying Theorem 4.2.1 to the descents Xn := 1(Yn > Yn+1) implies the following bivariate
generating function

Q(z, v) =
∞∑
n=0

n∑
k=0

P(Sn = k)zkvn =
e(1−z)v − 1

v(1− ze(1−z)v)
=

ev − ezv

v(ezv − zev)
, (4.25)

which is the classical bivariate generating function of the Eulerian numbers [8, 16, 42, 76,
52].

4.4 More examples

To simplify displays, we work in this section with the shifted run generating functions

Q̃(v) = 1 + vQ(v), P̃ (v) = 1 + vP (v), (4.26)

and the shifted bivariate generating function

Q̃(z, v) = 1 + vQ(z, v). (4.27)
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For reasons which do not seem obvious, the algebraic form of the generating functions asso-
ciated with a 1-dependent indicator sequence is typically simpler when they are shifted like
this. The shifted generating functions of some selected models are shown in the table below,
with detailed explanation later.

There are some benefits for using the shifted generating functions. Firstly, they are
simpler, especially in the Eulerian case; secondly, for 2-block factors, the shifted generating
functions are actually ‘standard’ in combinatorics, since n is set to be the length of back-
ground sequence; thirdly, the formulae in Theorem 4.2.1 and Corollary 4.2.2 are also slightly
simplified: the involution formula (4.13) becomes (see, e.g. [75, 6] for earlier occurrences,
and [35, 9] where this formula was first discovered in the study of 2-block factors)

Q̃(v) =
1

P̃ (−v)
; P̃ (v) =

1

Q̃(−v)
, (4.28)

while our main theorem (4.12) is re-written as

Q̃(z, v) =
(1− z)Q̃((1− z)v)

1− zQ̃((1− z)v)
=

1− z

P̃ (−(1− z)v)− z
. (4.29)

Table 1

Model Shifted 0-run pgf Q̃(v) Shifted 1-run pgf P̃ (v) Shifted bgf Q̃(z, v)
Eulerian ev ev 1−z

e−(1−z)v−z

I.i.d. 1+pv
1−(1−p)v

1+v−pv
1−pv

1+pv−pzv
1−v+pv−pzv

One-pair 1+pv
1−v+pv−pv2+p2v2

1+v−pv−pv2+p2v2

1−pv
1+pv−pvz

1−v+pv−pv2+p2v2−pvz+pv2z−p2v2z

Carries
(
1− v

b

)−b (
1 + v

b

)b 1−z

(1− (1−z)v
b )

b
−z

Flipping
√

q
p
tan
[
v
√
pq

− arctan
(

q
p

)]
√

p
q

/
tan
[
−v√pq

− arctan
(

q
p

)] (1−z) tan[(1−z)v
√
pq−arctan(q/p)]√

p/q−z tan[(1−z)v
√
pq−arctan(q/p)]

Non-2BF 1
1−v+αv2−βv3

1 + v + αv2 + βv3 1
1−v+α(1−z)v2−β(1−z)2v3

We already discussed the Eulerian model in Section 4.3. The rest of Table 1 will be
briefed here row by row. Usually, we only say how one of the run probability generating
functions is obtained, since the other one and the bivariate generating function can then be
found easily through (4.26), (4.28) and (4.29).

Independent and identically distributed trials (I.i.d.) The classical example of i.i.d.
Bernoulli(p) trials is for sure an example of 1-dependent sequence.

Indicator of two consecutive ones (One-pair) Consider the simplest 2-block factors
Xn := 1(Yn = Yn+1 = 1), where (Yn, n ≥ 1) is i.i.d. Bernoulli(p) trials. Its 1-run probability
generating function is easy to compute.
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Considering the coefficient of zkvn in its bivariate generating function gives the recursion

qn,k = (1− p)qn−1,k + pqn−1,k−1 + p(1− p)(qn−2,k − qn−2,k−1), n ≥ 2, k ≥ 0, (4.30)

where qn,k := [zkvn]Q(z, v) = [zkvn+1]Q̃(z, v) = P(Sn = k) with initial values q0,0 = 1, q1,0 =
1− p2, q1,1 = p2 and convention qn,k = 0 for k > n or k < 0.

Setting p = 1/2 recovers the Fibonacci sequence as its 0-run probabilities:

Fn+2 =: 2nqn,0 = 2n−1qn−1,0 + 2n−2qn−2,0 = Fn+1 + Fn, (4.31)

where F0 = F1 = 1 is the first two terms of the Fibonacci sequence we use here. This can
also be interpreted as the chance of not getting any consecutive heads in a row of coin tosses,
which has been recognized by many others, see [78, 26, 32, 49].

Carries when adding a list of digits (Carries) Adding a list of digits using carries is
discussed in [6] as a stationary 1-dependent process. This example also falls into the category
of 2-block factors with i.i.d. Uniform({0, 1, · · · , b − 1})’s as its background sequence, and
B = {(x, y) : b > x > y ≥ 0}. Its 0-run probabilities and generating function are explicitly
given in [6].

Edge flipping on the integers (Flipping) Chung and Graham [14] introduced the
following discrete time model of a random pattern in {0, 1}V indexed by the vertex set V
of a finite simple graph (V,E): pick an edge uniformly at random from E, then the pattern
is updated by replacing its values on the two vertices joined with the picked edge by 11
with probability p and by 00 otherwise, where the choices of edges and update of values on
vertices are assumed to be all independent of the others, for some 0 < p < 1.

They offered an analysis of discrete-time edge flipping on an n-cycle, which can be gener-
alized in terms of a stationary continuous-time (1-dependent indicator) process indexed by
the integers.

In short, we may sample its stationary distribution in the following manner:

• first, generate a sequence (Un, n ∈ Z) of i.i.d. Uniform (0, 1)’s, which works as the
time of last update on the edge {n, n+ 1}. That is to say, if Un > Un−1, then the last
update on edge {n, n+ 1} happened later than the one on {n− 1, n};

• secondly, generate a sequence (Wn, n ∈ Z) of i.i.d. Bernoulli (p)’s, independent of
(Un, n ∈ Z), which stands for whether the last update on the edge {n, n + 1} is 11 or
00.

• lastly,
Xn := 1(Un > Un−1)Wn + 1(Un < Un−1)Wn−1, n ∈ Z. (4.32)

This is apparently a stationary 2-block factor. Its shifted 0-run probability generating
function is given in [14, Theorem 6].
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A non-2-block-factor example (Non-2BF) Aaronson, Gilat, Keane and de Valk [1]
first discovered this family of non-2-block-factor stationary 1-dependent indicator processes.
In short, they forbid the appearance of three consecutive ones, hence the 1-run probability
generating functions are as simple as quadratic functions. Note that not all value pairs
(α, β) make this process not a 2-block factor – only some work, while some others do not
yield stationary 1-dependent processes at all. See [1, Fig. 2].

4.5 Determinantal representation

Any indicator process can be treated as a point process by regarding the indicated events as
points. It was shown in [6, Theorem 7.1] that any 1-dependent point process on a segment
of Z is a determinantal process, as discussed further in [17, 18, 6].

Given a finite set X , a point process on X is a probability measure P on 2X . Its correlation
function is the function of subsets A ⊆ X defined by ρ(A) := P(S : S ⊇ A). A point process
is said to be determinantal with kernel K(x, y) if

ρ(A) = det(K(x, y))x,y∈A, (4.33)

where the right hand side is the determinant of the |A| × |A| matrix with K(x, y) on its
(x, y)-th entry for x, y ∈ A. Now, we may state the following theorem from [6].

Theorem 4.5.1 (Theorem 7.1 [6]) Every 1-dependent point process on a segment of Z is
determinantal with kernel

K(x, y) =

y−x+1∑
r=1

(−1)r−1
∑

x=l0<l1<···<lr=y+1

r∏
k=1

ρ([lk−1, lk) ∩ Z), x ≤ y, (4.34)

K(x, y) = −1 for x = y + 1, and K(x, y) = 0 for x ≥ y + 2.

In the stationary case,

ρ([a, b) ∩ Z) = P(Sb−a = b− a) = pb−a, (4.35)

where Sn and pn inherit the setup in Section 4.1. It is easy to see that then the kernel is
also stationary, i.e.

K(x, y) := k(y − x) = K(x+ c, y + c), ∀c ∈ Z. (4.36)

To better describe the kernel, consider the kernel generating function

Gk(v) :=
∑
n∈Z

k(n)vn = −v−1 + p1 + (p2 − p21)v + · · · (4.37)
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Borodin, Diaconis and Fulman[6, Corollary 7.3] give the following relationship between
the kernel generating function Gk and the 1-run probability generating function P

Gk(v)P (v) = −1

v
. (4.38)

One last interesting (but not hard) result [6, Theorem 4.1] is that we may write the
probability of any string pattern as a determinant. Consider X = [n] := {1, 2, · · · , n}, then
the string with exactly k zeros at 0 < w1 < w2 < · · · < wk ≤ n, which corresponds to the
subset A := {w1, w2, · · · , wk}c, has probability

P(A) = det(pwj+1−wi−1)0≤i,j≤k, (4.39)

where pn = 0,∀n < −1, p0 = p−1 = 1 and w0 = 0, wk+1 = n+ 1.
As shown in [6], this formula (4.39) is obtained by application of inclusion-exclusion

formula on the correlation function. Hence, we may recover our bivariate generating function
(4.12) as follows:

Corollary 4.5.2 The multivariate probability generating function of the indicators Ii of lo-
cation i, i ∈ X = [n] is

Gn(z) := GI1,I2,··· ,In(z1, z2, · · · , zn) = det(gi,j)0≤i,j≤n, (4.40)

where gi,j = pj−i,∀i− j ̸= 1 and gj+1,j = p−1 − zj = 1− zj.

Corollary 4.5.3 The ordinary probability generating function of the number Sn of ones in
X = [n] is

GSn(z) = det(p̂j−i)0≤i,j≤n, (4.41)

where p̂k = pk,∀k ̸= −1 and p̂−1 = p−1 − z = 1− z.

The proof to Corollary 4.5.2 is quite straightforward: just multiply (4.39) by
∏

i∈A zi and
then sum it up over all subsets A ⊆ [n]. Corollary 4.5.3 is then obvious by considering the
ordinary generating function of Sn =

∑
i∈[n] Ii, i.e. treat all zi in (4.40) as z. We are also

aware of the following known determinantal generating function formula for any 1-dependent
process (not necessarily stationary)

GSn(z) = det(I + (z − 1)K), (4.42)

where I is the identity matrix andK is the determinantal correlation kernel given by Theorem
4.5.1. This is not easy to simplify even for the stationary case. But from hindsight, one may
check that this is essentially equivalent to (4.41). Lastly, one may also show Theorem 4.2.1
by the Laplace expansion of the last column of the determinant on the right of (4.41).
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4.6 Enumeration of sequences

We have derived our main Theorem 4.2.1 from a probabilistic point of view, without assuming
the sequences to be 2-block factors. But its enumerative Corollary 4.6.1 on integer-valued
2-block factors can be deduced from a combinatorial result in Goulden and Jackson [41,
Section 4].

Recall (4.21), we defined 2-block factors on V based on the background sequence (Y1, Y2, . . .)
as indicators of adjacent pairs (Yi, Yi+1) falling in some subset B ⊆ V 2, which obviously is
a 1-dependent indicator process. For example, in section 4.3, we discussed the case where
V = [0, 1] and B = {(x, y) : 0 ≤ y ≤ x ≤ 1}.

Say a string on Z+ is a B-string if each adjacent pair belongs to B. Suppose further that
the background sequence (Y1, Y2, . . .) has i.i.d. uniform distribution on [m] = {1, 2, · · · ,m}.
Then, the 1-run probability pk can be used to count the number mk of B-strings of length
k, i.e.

mk = mkpk−1, k ≥ 1, (4.43)

and m0 = 1 by convention. Define the B-string generating function as

G(v) =
∞∑
k=0

mkv
k = 1 +

∞∑
k=1

pk−1m
kvk = 1 +mvP (mv), (4.44)

where P (v) is the 1-run probability generating function. Now the following corollary follows
from Theorem 4.2.1 by elementary algebra.

Corollary 4.6.1 For V = [m], the number of sequences of length n ≥ 1 on V with exactly
k ∈ [0, n− 1] occurrences of pairs of adjacent components in B is

[zkvn]
z − 1

z −G((z − 1)v)
. (4.45)

To see the connection between Corollary 4.6.1 and [41], we need the following definition
from [41]. Let the B-string of length k enumerator be

γk(v) = γk(v1, v2, · · · ) :=
∑
|σ|=k

∏
i

v
τi(σ)
i , (4.46)

where the sum is over all B-string σ of length k and τi(σ) is the number of times that
component i ∈ Z+ appears, with vi being the counting variable associated with i.

Using the B-string of length k enumerator, the following result for enumerating sequences
with a certain number of occurrences of B is shown in [41]:

Theorem 4.6.2 ([41, Corollary 4.2.12]) The number of sequences of length n =
∑

i τi
with exactly τi i’s and k(≤ n− 1) occurrences of pairs of adjacent components in B is

[zk
∏
i

vτii ]

{
1−

∞∑
j=1

(z − 1)j−1γj(v)

}−1

. (4.47)
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By setting v1 = v2 = · · · = v, this becomes equivalent to (4.45) since γj(v1) = mjv
j. A

more generalized version of Theorem 4.6.2, known as the Goulden-Jackson cluster theorem,
allows enumeration of adjacent components of any length (not just pairs), see [40, 36].

In the case of descents, treated Section 4.3, the above discussion does not apply directly,
as since the background sequence is continuously distributed. However, this can be circum-
vented by considering the ranks in the partial sequence instead of the absolute values, hence
it can be treated combinatorially as in [41, Section 2.4.21] by considering only permutations
of {1, 2, · · · , n} instead of all possible sequences.

An application of Corollary 4.6.1 can be found in [34].

Theorem 4.6.3 (a = 4: Florez [34, Theorem 9]) The number of sequences on V = {0, 1, · · · , a−
1} of length n+m with exactly m occurrences of adjacent pair 01 is

f(n,m) = [xmyn]F (x, y) = [xmyn]
1

1− (a+ x)y + y2
. (4.48)

To check this from Corollary 4.6.1, note first that the 1-run probability generating func-
tion is P (v) = 1 + 1

a2
v, hence the B-string generating function is G(v) = 1 + av + v2. (4.48)

is then proved by substitutions k → m,n− k → n, v → y, zv → x.

4.7 Comparison with other dependence structures

Table 2
Dependence structure Q(z, v) in terms of Q(v) Q(z, v) in terms of P (v)

Stationary 1-dependent Q((1−z)v)
1−zvQ((1−z)v)

P (−(1−z)v)
1−vP (−(1−z)v)

Exchangeable
Q( (1−z)v

1−zv )
1−zv

P(− (1−z)v
1−v )

1−v

Renewal Q(v)
1−z(1+(v−1)Q(v))

N/A

Stationary renewal −z+(z−v+(1−z)vQ′(0))Q(v)
z(v−1)+(1−z)v(Q′(0)−1)+z(v−1)2Q(v)

N/A

Apart from stationary 1-dependent processes we have discussed in this chapter, there are
several other dependence structures whose bivariate generating functions can be written in
terms of run probability generating functions. It is interesting to compare these formulas,
but no current theory seems to unify them. Some examples may even belong to more than
one dependence structure, see Table 2 above and explanations below.

Exchangeable A sequence (Xn, n ≥ 1) is exchangeable iff for each n ≥ 1 and each permu-
tations π of [n]

(Xπ(1), Xπ(2), · · · , Xπ(n))
d
= (X1, X2, · · · , Xn). (4.49)

Properties of exchangeable sequences were first studied by de Finetti [31]. The i.i.d. example
in Section 4.4 is also exchangeable.
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Renewal and stationary renewal Consider the partial sum Sn = X1 + X2 + · · · + Xn

of the sequence (Xn, n ≥ 1), and its inter-arrival times T1 = min{n : Sn = 1}, Tk = min{n :
Sn = k} − Tk−1. We say (Xn, n ≥ 1) is delayed renewal, if the renewals T2, T3, · · · are i.i.d.,
and the delay T1 is independent of T2, T3, · · · . In particular, we say the indicator sequence is

1. renewal conditional on X0 = 1 or renewal, if the delay T1 has the same distribution as
the renewals T2, T3, · · · ;

2. stationary renewal, if it is both stationary and delayed renewal.

For these sequences it is not possible to recover the bivariate generating function from
the 1-run probability generating function P (v), since in the delayed renewal case

P (v) = 1 + q1(v + r1v
2 + r21v

3 + · · · )

contains only the information about immediate renewals, which does not determine the
distribution of T1 or the 0-run probabilities.

The bivariate generating formula is an indirect corollary of [51, Theorem 3.5.4]. See [29]
for introductions to renewal theory.

Three examples which appeared earlier in this chapter are both stationary 1-dependent
and stationary renewal: the indicator of two consecutive ones in Section 4.4, the case b = 2
of carries when adding a list of digits in Section 4.4, and the generalized Florez’ example
in Section 4.6. All these three examples can be treated as indicators of time-homogeneous
Markov chains visiting a particular state.
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Chapter 5

A positivity problem

In this chapter, we discuss a positivity problem related to a renewal process in integer times
and the associated bivariate probability generating function, whose coefficients forms a Ri-
ordan array introduced by Rogers [92]. The renewal sequence is generalized such that some
of the coefficients are allowed to be negative, while the entries of the Riordan array remain
non-negative. We provide some necessary conclusions bounding the negative coefficients.
Additionally, we provide graphs as well as qualitative observational results about the coeffi-
cients of powers of polynomials. However, it is challenging to give a quantitative description
or find known results to explain them.

5.1 Definitions

Consider a renewal process on {0, 1, 2, · · · } with its 0-th renewal at 0. Suppose the holding
times T1, T2, · · · are independent and identically distributed Z+ -valued random variable with
distribution

P(T1 = k) = fk, (k = 1, 2, · · · ). (5.1)

Let Xn := 1(there is a renewal at time n), i.e. the indicator if there is a renewal at time
n. In particular X0 ≡ 1 by our assumption that there is a renewal at time 0. Call X the
renewal indicator process. Let Sn :=

∑n
i=1Xn be the number of renewals up to time n. Call

S the renewal process. (Sometimes X is also called the renewal process, but we will avoid
this name for X.)

Other than fk, the 0-run probabilities

qk = P(Sk = 0) = 1− f1 − f2 − · · · − fk, (k = 1, 2, · · · ) (5.2)

also characterize the distribution of this renewal process.
In terms of Riordan array, the ordinary probability generating functions of S1, S2, · · · , as

row vectors, forms a Riordan array (g(x), f(x)) with

f(x) = f1x+ f2x
2 + f3x

3 + · · · =
∞∑
n=1

fnx
n (5.3)
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and

g(x) =
∞∑
n=0

P(Sn = 0)xn = 1 + (1− f1)x+ (1− f1 − f2)x
2 + · · · = 1− f(x)

1− x
. (5.4)

In other words, the k-th column of this array is the coefficients of the polynomial
g(x)fk(x)

P(Sn = k) = [xn]g(x)fk(x). (5.5)

Riordan array was first studied by Rogers [92] as a generalization of the Pascal triangle,
under the name renewal array. Shapiro et al. further generalized the same concept and used
the name of Riordan array. See also, Sprugnoli [100] and Merlini et al. [77] for more on the
theory of Riordan arrays.

5.2 Positivity

We say a polynomial is positive, if all of its coefficients are non-negative. We say a Riordan
array is positive, if all of its entries are non-negative. By natural probabilistic explanation,
we know that for each probability generating function f(·) of holding times, the associated

Riordan array
(
g(x) := 1−f(x)

1−x
, f(x)

)
is positive, namely the probability generating functions

of all Sn’s are non-negative if

• f(·) is positive;

• or equivalently, the associated sequence of 0-run probabilities 1 = q0 ≥ q1 ≥ q2 ≥ · · · ≥
0 is non-increasing.

However, the converse statement is not true: without assuming all fk’s to be positive, or
the 0-run probability to be non-decreasing, the associated Riordan array can still be positive!

Example 5.2.1 Set

f1 =
1

5
, f2 =

2

5
, f3 = −1

5
, f4 =

2

5
, f5 =

1

5
, and fk = 0, k ≥ 6, (5.6)

or in terms of Riordan array,

f(x) =
x

5
(1 + 2x− x2 + 2x3 + x4), g(x) =

1

5
(5 + 4x+ 2x2 + 3x3 + x4). (5.7)

We check the positivity of all coefficients of fn(x)g(x), to examine the positivity of the
associated Riordan array. Since the constant term of f(·) is zero, consider

h(x) =
f(x)

x
= f1 + f2x+ f3x

2 + · · · , (5.8)
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for simplicity. Namely, it is sufficient to check the positivity of hn(x)g(x) instead.
Observe that

h4(x) =
1

54
(1 + 8x+ 20x2 + 16x3 + 26x4 + 88x5 + 48x6 + 24x7

+ 163x8 + 24x9 + 48x10 + 88x11 + 26x12 + 16x13 + 20x14 + 8x15 + x16), (5.9)

and

g(x) =
1

5
(5 + 4x+ 2x2 + 3x3 + x4); (5.10)

h(x)g(x) =
1

25
(5 + 14x+ 6x2 + 15x3 + 17x4 + 9x5 + 8x6 + 5x7 + x8); (5.11)

h2(x)g(x) =
1

625
(5 + 24x+ 29x2 + 23x3 + 74x4 + 54x5 + 45x6 + 61x7 + 38x8

+ 22x9 + 17x10 + 7x11 + x12); (5.12)

h3(x)g(x) =
1

54
(5 + 34x+ 72x2 + 67x3 + 144x4 + 261x5 + 154x6 + 268x7 + 297x8

+ 181x9 + 190x10 + 156x11 + 80x12 + 51x13 + 30x14 + 9x15 + x16). (5.13)

The positivity of hn(x)g(x) then follows immediately, since every n ≥ 4 can be written as
n = 4m+ k for some k ∈ {0, 1, 2, 3} and m ∈ Z+, hence

hn(x)g(x) =
[
h4(x)

]m · hk(x)g(x) (5.14)

has all its coefficients positive.
Note that [x3]h3(x) = [x6]f 3(x) = − 7

625
< 0. Thus it is necessary to check h4(x) and

hk(x)g(x) for k = 0, 1, 2, 3.

Definition 5.2.2 We say a polynomial f(x) = f1x + f2x
2 + · · · is a semi-positive renewal

probability generating function if

1. f1 is not zero;

2.
∑∞

n=1 fn = 1;

3. There exists at least one n such that fn < 0;

4. The associated Riordan array
(
g(x) = 1−f(x)

1−x
, f(x)

)
is positive, namely g(x)fk(x) is

positive for k = 0, 1, · · · .

In fact, Example 5.2.1 has the lowest possible degree among all semi-positive renewal
probability generating functions.

Theorem 5.2.3 If a semi-positive renewal probability generating function f(·) has finite
degree d, then d ≥ 5.
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Proof We show by proving the first two and last two coefficients cannot be negative.
f1 cannot be negative since [x]g(x)f(x) = f1 ≥ 0.
f2 cannot be negative as

[x]g(x)hn(x) = fn
1 (1− f1) + nfn−1

1 f2 = nfn−1
1

(
(1− f1)f1

n
+ f2

)
≥ 0, (5.15)

hence

f2 ≥ − lim
n→∞

(1− f1)f1
n

= 0. (5.16)

The above arguments are true without assuming that f(·) has finite degree. Now take the
assumption that f(·) has finite degree d into consideration, i.e. fd ̸= 0 while fk = 0, k ≥ d+1,
whence

g(x) =
1− f(x)

1− x
= · · ·+ (fd−1 + fd)x

d−2 + fdx
d−1. (5.17)

Hence, fd cannot be negative since

[x3d−1]g(x)f 2(x) = f 3
d ≥ 0. (5.18)

Lastly, fd−1 cannot be negative as

[x(n+1)d−2]g(x)fn(x) = fn
d (fd−1+fd)+nfd−1f

n−1
d fd = (n+1)fn

d

(
fd−1 +

fd
n+ 1

)
≥ 0, (5.19)

hence

fd−1 ≥ − lim
n→∞

fd
n+ 1

= 0. (5.20)

5.3 Numerical result on a simple case

Based on the discussion of Theorem 5.2.3, consider the following ‘minimal’ case:

h(x) = f1 + f2x− (2f1 + 2f2 − 1)x2 + f2x
3 + f1x

4, (5.21)

and
g(x) = 1 + (1− f1)x+ (1− f1 − f2)x

2 + (f1 + f2)x
3 + f1x

4. (5.22)

In spirit of Example 5.2.1, I write a computer program brutally searching for values
of f1, f2 such that g(x)hk(x) is positive for every k ≤ 100. See Figure 5.1 below. f3 =
1− 2f1 − 2f2 is minimized when f1 ≈ 0.222, f2 ≈ 0.445.
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Conjecture 5.3.1 For h(x) and g(x) so defined as in (5.21) and (5.22), the minimal value
of f3 such that g(x)hk(x) is positive for every k is reached when f1 = 2/9 and f2 = 4/9, i.e.

h(x) =
1

9
(2 + 4x− 3x2 + 4x3 + 2x4), (5.23)

and

g(x) =
1

9
(9 + 7x+ 3x2 + 6x3 + 2x4). (5.24)
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Figure 5.1: The dot is blue if g(x)hk(x) is positive for every k ≤ 100, otherwise black.

It is still unclear with two parameters f1 and f2, so let us further simplify (5.21) and
(5.22) with f1 = f2/2 = a, namely

h(x) = a+ 2ax− (6a− 1)x2 + 2ax3 + ax4, (5.25)
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and
g(x) = 1 + (1− a)x+ (1− 3a)x2 + 3ax3 + ax4, (5.26)

which matches Example 5.2.1 when a = 1
5
and Conjecture 5.3.1 when a = 2

9
.

In this case, it seems most interesting when a ≈ 2
9
. Again here are some results from

computer programming:

• When a approaches 2
9
from above, the first k such that hn(x)g(x) is no longer positive

increases. For example, when a = 0.2223, hn(x)g(x) is positive for all n ≤ 85 but not
n = 86. This pattern is true until a = 0.2222223 where hn(x)g(x) remains positive
until n is so large that the accuracy is not enough to detect a negative coefficient.

• When a approaches 2
9
from below, it seems always possible to give a proof by finding the

minimal N := N(a) such that hn(x) and hk(x)g(x), k = 0, 1, · · ·n− 1 are all positive,
just like the proof of Example 5.2.1. The following numbers are accurate:

N(0.21) = 6, N(0.22) = 22, N(0.222) = 180, N(0.2222) = 1740. (5.27)

It is worth-noticing that positivity of hN(x) does not imply positivity of hN+1(x). In
fact, when a = 1

5
in Example 5.2.1, hk(x) for every k > N ; but for each of the four a

values above, hN+1(x) is not positive.

• When a = 2
9
, hn(x)g(x) is positive while hn(x) is not for every n as long as the accuracy

allows.

In addition, when plotting the coefficients (normalized such that the maximum is 1)
of hn(x) for different choices of h, different patterns show up, as displayed in Figures 5.2
through 5.5 below. For n large, the contours are all well approximated by one or two normal
curves, except the negative one in Figure 5.4 which accounts for the case when a = 2

9
.

The most interesting case occurs when f1 = 0.232 > 2/9, f2 = 0.434 < 4/9, shown in
Figure 5.5, where the pattern clearly consists of three branches of functions, each of which
is approximately the same normal curve multiplied by a sin function with a phase shift 2π

3

among one another. We will see this pattern again in Section 5.5
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Figure 5.2: a = 0.222 < 2/9

Figure 5.3: a = 2/9
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Figure 5.4: a = 0.223 > 2/9
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Figure 5.5: f1 = 0.232 > 2/9, f2 = 0.434 < 4/9
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5.4 A lower bound on f3

In this section, we focus on a semi-positive renewal probability generating function

f(x) = f1x+ f2x
2 + f3x

3 + f4x
4 + f5x

5. (5.28)

We know in the proof of Theorem 5.2.3 that f3 is the only negative coefficient. We will show
that

Theorem 5.4.1 If a semi-positive renewal probability generating function f(·) has degree
d = 5, then −1

3
≤ f3 < 0.

Proof
The proof is done by considering the convolution on the quotient polynomial ring

Q3[x] := R[x]/R[x3 − 1] (5.29)

instead of the regular polynomial ring R[x]. In other words, for any polynomial a(x) =∑∞
n=1 anx

n, we consider only the lowest order representative of its equivalence class

a(3)(x) = a(0) + a(1)x+ a(2)x
2 :=

∞∑
n=0

a3n +
∞∑
n=0

a3n+1x+
∞∑
n=0

a3n+2x
2. (5.30)

Hence, we write

f(x) +R[x3 − 1] = f3 + (f1 + f4)x+ (f2 + f5)x
2 +R[x3 − 1], (5.31)

or
f(x) ≡ f3 + (f1 + f4)x+ (f2 + f5)x

2 := c0 + c1x+ c2x
2 = c(3) (5.32)

for short.
Note that in the quotient ring Q3[x], multiplication with f(x) ≡ c(3)(x) can be treated

as left multiplication by the following 3× 3 circulant matrix

C3 :=

c0 c2 c1
c1 c0 c2
c2 c1 c0

 with
2∑

j=0

cj = 1, (5.33)

while the k-th power fk(x) ≡ ck(3)(x) can be written as

(1, x, x2)Ck
3 (1, 0, 0)

t, (k = 0, 1, 2, · · · ), (5.34)

where (· · · )t means transpose of a vector or a matrix. The above power representation
naturally brings our interest to the eigenvalues and eigenvectors of the circulant matrix C3.
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It is not hard to check that for an n× n circulant matrix

Cn :=


c0 cn−1 · · · c2 c1
c1 c0 cn−1 c2
... c1 c0

. . .
...

cn−2
. . . . . . cn−1

cn−1 cn−2 · · · c1 c0

 with
n−1∑
j=0

cj = 1, (5.35)

its normalized eigenvectors are

vj =
1√
n
(1, ωj, ω

2
j , · · · , ωn−1

j )t, j = 0, 1, 2, · · · , n− 1, (5.36)

where i is the imaginary unit and wj = e
2jπi
n , j = 0, 1, . . . , n − 1 are the n-th root of unity.

The corresponding eigenvalues are

λj = c0 + cn−1ωj + cn−2ω
2
j + · · ·+ c2ω

n−2
j + c1ω

n−1
j , j = 0, 1, 2, · · · , n− 1. (5.37)

In particular, λ0 = 1.
Note that

(1, 0, 0, · · · , 0)t = 1√
n
(v0 + v1 + v2 + · · ·+ vn−1). (5.38)

Thus,

Ck
n(1, 0, 0, · · · , 0)t =

1√
n
Ck

n

n−1∑
j=0

vj =
1√
n

n−1∑
j=0

λkjvj, (5.39)

which means when λ0 = 1 is the only dominant eigenvalue, this limit converges to

lim
k→∞

Ck
n(1, 0, 0, · · · , 0)t =

1√
n
v0 =

1

n
v0, (5.40)

and if there exists some |λj| > 1, this limit diverges, since the summation over all entries of
Ck

n(1, 0, 0, · · · , 0)t is always 1.
See Ingleton [55] for a comprehensive study on circulant matrices.
Now getting back to our case of interest when

f(x) ≡ c(3)(x) = f3 + (f1 + f4)x+ (f2 + f5)x
2, (5.41)

g(x) = 1 + (1− f1)x+ (1− f1 − f2)x
2 + (f4 + f5)x

3 + f5x
4

≡ d(x) = (1 + f4 + f5) + (1− f1 + f5)x+ (1− f1 − f2)x
2. (5.42)

and the three eigenvalues are λ0 = 1 and

λ1 = λ2 = f3 + (f1 + f4)ω1 + (f2 + f5)ω
2
1 =

3

2
f3 −

1

2
+

√
3

2
(−f1 + f2 − f4 + f5)i, (5.43)
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where ω1 := e
2πi
3 = −1

2
+

√
3
2
i.

Let Ak := Re(λk1), Bk :=
√
3Im(λk1) where Re(·) and Im(·) stand for the real and imagi-

nary part, repectively, then

ck(3)(x) = (1, x, x2)Ck
3 (1, 0, 0)

t ≡ (1, x, x2)
1√
3
(v0 + λk1v1 + λk2v2) (5.44)

= (1, x, x2)
1

3
(1 + 2Ak, 1− Ak −Bk, 1− Ak +Bk)

t (5.45)

=
1

3

[
(1 + x+ x2) + Ak(2− x− x2) +Bk(−x+ x2)

]
. (5.46)

Then the lowest order equivalent of d(x)ck3(x) is

d(x)ck(3)(x) = [(1 + f4 + f5) + (1− f1 + f5)x+ (1− f1 − f2)x
2]× (5.47)

1

3

[
(1 + x+ x2) + Ak(2− x− x2) +Bk(−x+ x2)

]
(5.48)

≡ 1

3
{[u+ (f2 + f5)Ak + (2f1 + f2 + 2f4 + f5)Bk] + (5.49)

[u+ (−f1 − f2 − f4 − f5)Ak + (−f1 + f2 − f4 + f5)Bk] x+ (5.50)

[u+ (f1 + f4)Ak + (−f1 − 2f2 − f4 − 2f5)Bk] x
2
}
:=

1

3
Lk(x), (5.51)

where u = 3− 2f1 − f2 + f4 + 2f5 remains unchanged when k changes.
We show here by contradiction that |λ1| ≤ 1. Suppose |λ1| > 1. When k is large,

max{|Ak|, |Bk|} ≫ 1 hence we may omit the constant u when considering non-negativity of
Lk(x).

Recall that we say a real polynomial Lk(x) is positive when each of its coefficient is non-
negative. Since [1]Lk(x) + [x]Lk(x) + [x2]Lk(x) = 3u, each coefficient can only range within
[0, 3u].

It is easy to see the following fact since f1, f5 are positive and f2, f4 are non-negative:
when |Ak| > |Bk|, |[x]Lk(x)| ≫ 3u for k large; otherwise, |[x2]Lk(x)| ≫ 3u for k large.
Hence, it is impossible for Lk(x) to be positive for all k ∈ Z+.

Therefore, for f to be a semi-positive renewal probability generating function, it is nec-
essary that |λ1| ≤ 1, i.e.[

3

2
f3 −

1

2

]2
+

[√
3

2
(−f1 + f2 − f4 + f5)

]2
≤ 1. (5.52)

Then f3 ≥ −1
3
follows.

Remark 5.4.2 From the last inequality (5.52), we also obtain a necessary condition for the
extreme case f3 = 1/3 to happen:

f1 + f4 = f2 + f5. (5.53)
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5.5 The twisting branches in powers of polynomials -

more examples

In this section, we display several more examples of powers of a polynomial with similar
pattern as shown in Figure 5.5.

There are actually a whole family of such functions, in the form

h(x) = h3x
3 + h2x

2 + h1x+ h0 (5.54)

where h0 + h1 + h2 + h3 = 1, h3 > 0, h0 > 0 and at least one of h2 or h1 is strictly negative.
For simplicity, only the following cases are displayed:

h(x) = ax3 − (2a− 1)x+ a (5.55)

for a = 0.53, 0.6, 0.8, 1, 3, 10. But these facts are true for many other more general functions
so defined in (5.54) as well.

Central limit theorem does not apply here since h(x) is not positive. Nevertheless, the
positive and negative contours of hn(x) are well approximated by the normal density of
N(c1n, c2n) multiplied by cn3 for c1, c2 determined by h(x) and

c3 = max
t

|h(eit)|. (5.56)

For each h(x), the three branches are approximately from the same normal curve multiplied
by a sin function with a phase shift 2π

3
among one another. The frequency of the sin function

is different for different h(x), but does not change when n is getting larger.
It is known by Greville [44, 43] that when |h(eit)| < 1 for 0 < t < 2π, the convolution

power will be convergent asymptotically, which is not our case of interest. See also Diaconis
[22] for a recent study on convolution powers of polynomials.

Natural open questions include:

• Fix a > 0 and consider h(x) given in (5.55). Are there preferably linear functions
C1(n), C2(n) > 0, a preferably exponential function C3(n) and preferably constants
C4(n) > 0 and 0 < C5(n) < 2π such that the distance between

([xk]hn(x), k ≥ 0) (5.57)

and
C3(n)√
C2(n)

ϕ

(
k − C1(n)√

C2(n)

)
sin

(
C4(n)k + C5(n) +

2π

3
(k%3)

)
(5.58)

is vanishing when n → +∞, in some proper sense such as the L1 or L2 norm. Here
ϕ(·) is the usual standard normal density function, and (k%3) is the remainder of k
divided by 3.



CHAPTER 5. A POSITIVITY PROBLEM 78

• Does the above result generalize to (5.54)? If so, what is the condition for the coeffi-
cients hk such that this result holds?

• More generally, does this generalize to h(x) of higher odd/prime order p such that
there are p twisting branches appearing? A first example to check could be

h(x) = axp − (2a− 1)x+ a (5.59)

for prime number p ≥ 5 and a > 0.



CHAPTER 5. A POSITIVITY PROBLEM 79



CHAPTER 5. A POSITIVITY PROBLEM 80



81

Bibliography

[1] Jon Aaronson et al. “An algebraic construction of a class of one-dependent processes”.
In: Ann. Probab. 17.1 (1989), pp. 128–143. issn: 0091-1798. url: http://links.
jstor.org/sici?sici=0091-1798(198901)17:1%3C128:AACOAC%3E2.0.CO;2-

6&origin=MSN.

[2] Richard Arratia. “On the amount of dependence in the prime factorization of a uni-
form random integer”. In: Contemporary combinatorics. Vol. 10. Bolyai Soc. Math.
Stud. János Bolyai Math. Soc., Budapest, 2002, pp. 29–91.

[3] Richard Arratia. “On the central role of scale invariant Poisson processes on (0,∞)”.
In: Microsurveys in discrete probability (Princeton, NJ, 1997). Vol. 41. DIMACS
Ser. Discrete Math. Theoret. Comput. Sci. Amer. Math. Soc., Providence, RI, 1998,
pp. 21–41.

[4] Richard Arratia, A. D. Barbour, and Simon Tavaré. “A tale of three couplings:
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liés à la fonction gamma d’Euler et à la fonction zeta de Riemann”. In: Annales de
l’institut Fourier. Vol. 55. 4. Chartres: L’Institut, 1950-. 2005, pp. 1219–1284.

[94] Ken-iti Sato. “Class L of multivariate distributions and its subclasses”. In: J. Mul-
tivariate Anal. 10.2 (1980), pp. 207–232. issn: 0047-259X. doi: 10.1016/0047-
259X(80)90014-7. url: https://doi.org/10.1016/0047-259X(80)90014-7.
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(2014), pp. 109–140. issn: 1350-7265. doi: 10.3150/12-BEJ478. url: https://doi.
org/10.3150/12-BEJ478.

[104] Ciprian A. Tudor. Analysis of variations for self-similar processes: A stochastic cal-
culus approach. Probability and its Applications (New York). Springer, Cham, 2013,
pp. xii+268. isbn: 978-3-319-00935-3. doi: 10.1007/978-3-319-00936-0. url:
https://doi.org/10.1007/978-3-319-00936-0.

[105] Kazimierz Urbanik. “Limit laws for sequences of normed sums satisfying some stabil-
ity conditions”. In: Multivariate Analysis–III. Elsevier, 1973, pp. 225–237.

[106] Wim Vervaat. “On a stochastic difference equation and a representation of nonneg-
ative infinitely divisible random variables”. In: Adv. in Appl. Probab. 11.4 (1979),
pp. 750–783. issn: 0001-8678. doi: 10.2307/1426858. url: https://doi.org/10.
2307/1426858.

[107] Stephen James Wolfe. “On a continuous analogue of the stochastic difference equation
Xn = ρXn−1+Bn”. In: Stochastic Process. Appl. 12.3 (1982), pp. 301–312. issn: 0304-
4149. doi: 10.1016/0304-4149(82)90050-3. url: https://doi.org/10.1016/
0304-4149(82)90050-3.

[108] Vladimir Mikhailovich Zolotarev. “Mellin-Stieltjes transforms in probability theory”.
In: Theory of Probability & Its Applications 2.4 (1957), pp. 433–460.




