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Abstract

We consider the problem of predicting how humans learn inter-
actively in an adversarial Multi-Armed Bandit (MAB) setting.
In a cybersecurity scenario, we designed defense algorithms to
assign decoys to lure attackers. Humans play the role of cyber
attackers in an experiment to try to learn the defense strategy
after repeated interactions. Participants played against one of
three defense algorithms: a stationary strategy, a static game-
theoretic solution, and an adaptive MAB strategy. Our results
show that humans have the most difficulty learning against the
adaptive defense. We also evaluated five different models of
attack behavior and compared their predictions against human
data. We show that a modified version of Thompson Sampling
and a cognitive model based on Instance-Based Learning The-
ory are the best at replicating human learning against defense
strategies. We discuss how these models of human attacker can
inform future cyberdefense tools.
Keywords: Cognitive Modeling; Reinforcement Learning; In-
telligent Agents; Decision Making; Cybersecurity

Introduction
With the popularity of autonomous systems, the question of
how humans interact with these systems becomes increas-
ingly important (Gershman, Horvitz, & Tenenbaum, 2015).
Humans are imperfect agents, but they are capable of learn-
ing and in some settings able to adapt to novel situations. Our
ability to anticipate human behavior, to represent human deci-
sion making computationally, and to use these predictions to
improve autonomous agents is critical to making autonomous
systems more capable and secure.

We study an adversarial decision making setting framed in
the context of cybersecurity. Humans attackers try to compro-
mise a network while automated defender algorithms deploy
decoys in the network (i.e., honeypots) to detect and thwart

attackers. Honeypots are designed to waste the attacker’s re-
sources and provide information to the defender (Spitzner,
2003). Attackers try to avoid detection by honeypots. De-
ploying a fixed configuration of honeypots (i.e., a static de-
fense) may capture an attacker in a single interaction. How-
ever, an adaptive attacker may learn the static honeypot de-
fenses and actively avoid them in future interactions. A de-
fender who can predict this attack learning dynamic should
be able to deploy defensive strategies that are harder to learn
and defeat over the long term. Our goal is to determine how
human attackers behave against defense algorithms of vari-
ous complexities, and to test cognitive models of adversarial
behavior against other common behavioral models.

We model a cybersecurity scenario as a repeated Multi-
Armed Bandit task (MAB) where a human attacker plays
against an automated defender. MAB tasks have been use-
ful in the study of human decision making, characterizing the
common exploration-exploitation tradeoff (e.g., (Steyvers,
Lee, & Wagenmakers, 2009)). However, our goal is to de-
termine how a human attacker is able to learn the defender’s
deception strategy and avoid honeypots based on previous ex-
perience.

In a standard MAB, a decision maker select arms on a “slot
machine” in each round and observes the outcome, typically
with the value of each arm in the range [0,1]. The adver-
sarial MAB considers an adversary (i.e., the algorithmic de-
fender) who has control over the rewards of each node. Here,
we consider a variation of the MAB in which each node i
has bounded support interval {−ca

i ,vi − ca
i }. This allows

the MAB agent to make more informed decisions in earlier
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rounds. This maps naturally to an attacker who has probed
the network prior to making an attack, and it relates to recent
approaches to study learning and decision making under con-
textual MAB, where information about rewards is provided.

Learning in Multi-Armed Bandits
In a MAB, individuals learn by repeatedly choosing among
multiple options that have varying probabilities of different
rewards that are observed through immediate feedback af-
ter a choice. In theories of decisions from experience, two-
arm bandit problems are a classical research paradigm used
for modeling human decisions and learning from experience
(e.g., (Gonzalez & Dutt, 2011)).

Experiments of human behavior have demonstrated that
humans are able to learn in MABs by gradually transitioning
from exploration of the available alternatives to exploitation
of the most rewarding options while learning from feedback
and experience (Gonzalez & Dutt, 2016; Mehlhorn et al.,
2015). Sripa et al. notably ran an experiment with 451 human
participants playing the MAB (Sripa et al., 2009), and applied
a Bayesian learning model to explain the human data. Zhang
et al. extended this work by improving the participant behav-
ioral prediction with a Knowledge Gradient model (Zhang &
Angela, 2013). Our current work differs from these works in
that we consider differences in reward distributions. Specif-
ically, the previously mentioned authors address human per-
formance in stochastic settings. In this work, we consider
humans in static, stochastic, and adversarial MABs settings
and analyze the effects of each environment. Furthermore,
we provide context to the human decision makers by adver-
tising the potential gains and losses of each arm of the MAB.

Recent research has shown that humans are able to learn
well in contextual MABs, and various algorithms have been
used to replicate this human behavior, including Thompson
sampling (Agrawal & Goyal, 2012; Speekenbrink & Kon-
stantinidis, 2015). In contrast to these models often used in
MAB tasks, cognitive models of human behavior represent
the cognitive mechanisms (e.g, memory, learning, forgetting)
which are essential elements for human learning (Gonzalez,
Lerch, & Lebiere, 2003). We offer a unique paradigm to test
cognitive models of human learning and decision making and
pair them against other representations of behavior in MAB
tasks, playing against defense algorithms of various complex-
ities.

Honeypot Cybersecurity Game
In the Honeypot Cybersecurity Game (HCG) a defender
places decoys to protect network resources (nodes) and the
attacker aims to capture those resources. A screenshot of the
user interface shows a network with 5 nodes (Figure 1). Each
node in the network has the following values: vi is the value of
node i, ca

i is the cost to attack node i, and cd
i is the cost to de-

fend node i. The reward vi− ca
i for attacking a non-honeypot

appears as a positive number on top of each node. The cost
for attacking a honeypot −ca

i appears as a negative number at
the bottom of the node.

Game 1 / 50

Defender Budget: 40

Time Remaining: 6 seconds

Total Points: 0

PASS

node 1 node 2 node 3 node 4 node 5

+10
-5

+20
-20

+15
-10

+15
-5

+20
-15

Figure 1: User interface for the HCG.

Table 1 shows the specific values used in the HCG for
our experiments. We designed the node values to fit com-
mon risk-reward archetypes (e.g., low-risk/low-reward, high-
risk/high-reward, low-risk/high-reward). The explicit values
shown in each node give an attacker the possibility of making
informed decisions that will be combined with experiential
decisions as in (Lejarraga, Dutt, & Gonzalez, 2012).

pass node 1 node 2 node 3 node 4 node 5
vi 0 15 40 35 20 35
ca

i 0 5 20 10 5 15
cd

i 0 10 20 15 15 20

Table 1: Node parameters for online human experiment.

At the beginning of each round, the defender spends her
budget D to turn some subset of the nodes into honeypots,
such that the total cost is ≤ D. Once the defender deploys
honeypots, the attacker selects a node to attack or passes. If
the attacker’s chosen node i is not a honeypot, the attacker
receives the reward vi− ca

i , and the defender receives a re-
ward of 0. If the attacker’s chosen node i was a honeypot, the
attacker receives the negative reward −ca

i , and the defender
receives the positive reward vi

1. At the end of a round with n
trials, the game resets and a new round begins. The attacker
and defender are only informed of the rewards they receive af-
ter each action, and do not directly observe the other player’s
choices (known as incomplete or semi-bandit feedback).

Defender Algorithms
We consider 3 different defender algorithms to investigate
their impact on human adversarial decision making and learn-
ing. We expect these to create varying levels of difficulty for
the human attackers to learn the defense policy.

The Static Pure Defender algorithm employs a “set and for-
get,” defense that implements an unchanging, greedy strategy
that spends the budget to protect the highest valued nodes.
For the scenario in Figure 1, the defender always sets nodes
2 and 5 as honeypots, leading to nodes 3 and 4 being the op-
timal ones to attack. Against this defender, the attacker can
gain a maximum of 750 total points in this specific scenario
by always attacking node 3 or 4 for all 50 rounds.

1We assume vi ≥ ca
i and ∑i∈N cd

i > D.
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The Static Equilibrium Defender plays according to a fixed
probability distribution over the possible combinations of
nodes to be honeypots. A new combination is selected ran-
domly each round according to the distribution shown in Ta-
ble 2. This is a game-theoretic Mixed Strategy Nash Equilib-
rium that optimizes the defender’s expected utility assuming
a single, non-repeated interaction against a fully rational at-
tacker. The optimal strategy for the attacker against this strat-
egy is to attack node 4, with an expected total value of ≈ 447
points for the attacker.

defended nodes {1,3,4} {2,3} {2,5} {3,5}
probability ≈ 0.303 ≈ 0.095 ≈ 0.557 ≈ 0.0448

Table 2: Static Equilibrium Defender probabilistic strategy.

Algorithm 1 Learning with Linear Rewards (LLR)
If max

a
|Aa| is known, let L = max

a
|Aa|; else, L = N

for t = 1 to N do
Play any action a such that t ∈ Aa
Update

(
θ̂i
)

1×N ,
(
mi
)

1×N accordingly
end for
for t = N +1 to ∞ do

Play an action a which solves the maximization:

a = argmax
a∈F

∑
i∈Aa

ai

(
θ̂i +

√(
L+1

)
lnn

mi

)
, (1)

Update
(
θ̂i
)

1×N ,
(
mi
)

1×N accordingly
end for

The Adaptive Learning with Linear Rewards Defender
(LLR) (Gai, Krishnamachari, & Jain, 2012) plays an adap-
tive, learning defense strategy that tries to maximize reward
by balancing exploration and exploitation using an approach
designed for MAB learning. Aa in LLR is the set of all in-
dividual actions (nodes to defend). In the scenario from Fig-
ure 1, Aa is the set containing all 5 nodes. LLR uses a learning
constant L, which we set to L = 3 since this is the maximum
number of nodes we can play in a defense. LLR has an initial-
ization phase for the first N = 5 rounds where it guarantees
playing each node at least once.

(
θ̂i
)

1×N is that vector con-
taining the mean observed reward θ̂i for all nodes i.

(
mi
)

1×N
is the vector containing mi, or number of times node i has
been played. The vectors are updated after each round.

After the initialization phase, LLR solves the maximization
problem in equation 1 and deterministically selects the subset
of nodes that maximizes the equation each round until the end
of the game. The algorithm tries to balance between nodes
with high observed means (i.e., have captured the attacker
often in the past) and exploring less frequently played nodes
(which the attacker may move to in order to avoid capture).
While LLR has no concept of an opponent, it indirectly adapts
to the attacker based on the observations of previous rewards

that depend on the attacker’s strategy.
In this scenario, it is difficult for the attacker to fully ex-

ploit the strategy of the defender due to incomplete informa-
tion. When facing a static defender in a static environment,
the optimal node(s) will remain the same, but when facing
LLR or another adaptive defender the node(s) providing the
highest expected value may change from round to round.

Experimental Design
We recruited 304 human participants on Amazon’s Mechani-
cal Turk (AMT) where 130 reported female and 172 reported
male with 2 participants reporting as other. All participants
were above the age of 18, and the median age was 32. Partic-
ipants interacted with one of the 3 defense algorithms for 50
rounds. 101 participants played against the Static Pure De-
fender; 100 played against the Static Equilibrium Defender;
and 103 played against the LLR defender. Participants took
roughly 10 minutes from start to finish. They were paid US
$1.00 for completing the experiment and were given a bonus
payment proportional to their performance in the 50 round
game, ranging from US $0 to an extra US $3.25.

This task did not require cybersecurity knowledge and par-
ticipants were given detailed instructions and definitions of
the concepts needed to perform the task (e.g., honeypot). Par-
ticipants were told that the defender has a budget D = 40 that
limits the number of honeypot configurations (i.e., combina-
tions of defended nodes). In each round, the participant at-
tacks a node and receives either a positive reward vi− ca

i or a
negative reward−ca

i depending on the defender’s action. The
setup in Figure 1 was the same for every participant.

We analyzed 4 measures associated with participants’ per-
formance, and we compared predictive algorithms using the
same measures. Switching is a common measure of explo-
ration used in human decision-making and learning studies
(Gonzalez & Dutt, 2016; Todd & Gigerenzer, 2000). High
switching indicates high exploration and low switching indi-
cates exploitation in the case of a static defender and static
environment. Switching with Honeypot is a measure of
switching after attacking a honeypot (i.e., receiving a nega-
tive reward). This corresponds with the “Lose-Shift” aspect
of Win-Stay-Lose-Shift (WSLS) (Robbins, 1985), a common
strategy studied in economics. Switching without Honeypot
measures switching after attacking a real node (i.e., receiving
a positive reward). This opposes the “Win-Stay” aspect of the
WSLS (i.e., “Win-Shift”). Finally, Optimal Play is the frac-
tion of decisions that have the actual highest expected value.

Behavioral Results
The results for the 4 dependent measures are shown in Fig-
ure 2. The rightmost graph in Figure 2 shows the frequency
of optimal decisions over the 50 rounds. We note that par-
ticipants playing against the static pure defender learn very
early to play optimally and significantly improve over time,
while the difference between the static equilibrium defender
and adaptive LLR defenders is not clear early on. A signifi-
cant advantage for LLR only emerges after at least 20 rounds.
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Figure 2: The proportions of participants switching nodes and playing optimally over time. The high switching after triggering
a honeypot seen in round 26 from participants facing the static pure defender is a small portion of the population.

We also observe in the leftmost graph in Figure 2 that the
overall proportion of switching decreases over time, particu-
larly when participants face the static pure defender. When
the participants face the adaptive LLR defender, they seem to
have a high proportion of switching throughout the 50 rounds.

The middle left graph in Figure 2 describes the partici-
pants’ switching behavior after triggering a honeypot. For
the static pure defender, the attackers show noticeable spikes
because only a few participants attacked the 20 point nodes
(triggering the honeypots), upon which the players immedi-
ately switched. There are few differences between switching
behavior when triggering honeypots of the participants who
faced the equilibrium defender and those who faced adap-
tive LLR. We see a downward trend, hinting that the partici-
pants are moving from an early exploratory state to a more
exploitative state. Since adaptive LLR updates it’s beliefs
about a node’s expected payoff after playing it, if it captures
an attacker that node will be more likely to be selected in
the immediate future. Due to this adaptive behavior, switch-
ing when triggering a honeypot against adaptive LLR will be
more beneficial than against the static equilibrium defender.
When facing the static equilibrium defender in this scenario
the attacker should always attack node 4, regardless of trig-
gering a honeypot or not.

The middle right graph in Figure 2 shows distinct differ-
ences when the attackers did not trigger a honeypot (i.e.,
received a positive reward). Concerning the static pure de-
fender and static equilibrium defender, decreases in switch-
ing demonstrate a move towards a more exploitative strat-
egy and understanding of the static defense. Compare this
with participants who faced the adaptive LLR defender where
the switching remains high in comparison to the defenders.
In general, adaptive LLR tries to react to the observed re-
wards and slowly moves from exploration to exploitation over
time. High switching and remaining mobile is a good strategy
against adaptive LLR. However, when we compare the par-
ticipants’ switching behavior with their performance versus
adaptive LLR, it appears the participants were largely unable
to learn the LLR strategy.

Overall, the pure defender predictably performed the worst
(best for the human attackers), yielding an average score of
611.93 points. The equilibrium defender performed signifi-
cantly better, yielding an average of 247.81 points. Finally,
LLR was the most resilient defender against the human at-
tackers with an average of 172.6 points yielded to the partic-
ipants. Table 3 shows the aggregate statistics of the human
attacker performance in terms of end-game attacker points.

average std. dev. median min max
Pure 611.93 168.88 675 -375 750
Equ. 247.81 149.60 290 -185 570
LLR 172.6 123.02 160 -85 640

Table 3: Aggregate data of participants’ end-game attacker
points.

Adversarial Models
We evaluated 4 behavioral models and one cognitive model
(IBL) (Gonzalez et al., 2003) to emulate participants’ perfor-
mance in the experiment. These models can give insights into
the underlying mechanisms that influence decision making
and support the development of better defense algorithms that
hinder human attacker learning in cybersecurity settings. The
models selected below are representatives of behavioral pre-
dictors that have been known to capture human performance
in numerous MAB settings (Sripa et al., 2009; Zhang & An-
gela, 2013; Agrawal & Goyal, 2012).
Win-Stay-Lose-Shift: WSLS plays uniform randomly on the
first round. If WSLS receives a positive reward, it attacks
the same node again in the next round. Otherwise, it attacks
another node uniform randomly. The “pass” action does not
count as a positive reward.
ε-Greedy: This model addresses the exploration-exploitation
dilemma directly with the parameter ε ∈ {0,1}. With proba-
bility ε, ε-Greedy attacks uniform randomly (exploration) and
with probability (1−ε), attacks the node with the highest ob-
served average reward (exploitation).
ε-Greedy Decreasing: ε-Greedy Decreasing dynamically
changes the parameter ε in order to prefer exploitation to-
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LLR Pure Equilibrium
Sw Sw| h Sw|¬h OP Sw Sw| h Sw|¬h OP Sw Sw| h Sw|¬h OP

ε-G 0.2 0.317 0.258 0.353 0.153 0.146 0.325 0.121 0.163 0.189 0.245 0.164 0.138
ε-GD 0.236 0.173 0.309 0.205 0.39 0.259 0.392 0.239 0.211 0.179 0.25 0.159

WSLS 0.221 0.364 0.486 0.190 0.211 0.079 0.191 0.254 0.104 0.434 0.26 0.285
TS 0.091 0.121 0.140 0.137 0.210 0.318 0.21 0.076 0.124 0.156 0.123 0.070

IBL 0.109 0.118 0.139 0.127 0.084 0.347 0.094 0.057 0.136 0.163 0.164 0.152

Table 4: The distances of the predictions of individual predictors or IBL models from human data, calculated using RMSE
metric. The measures we use are switching (Sw), switching after triggering a honeypot (Sw|h), switching after not triggering a
honeypot (Sw|¬h) and optimal play (OP). Bold font indicates the lowest value in each column.

wards the end of the interaction. The predictor starts with
ε = 1 and decreases it linearly towards ε = 0 at the end of the
interaction, given a known finite horizon.
Thompson Sampling (TS): We follow the description of the
TS algorithm as detailed by Agrawal and Goyal for Bernoulli
Bandits (2012). We extend this version of the TS algorithm
for the Bernoulli MAB by incorporating a support function
Wi(θi) instead of selecting the action i with the maximum
sample θi as described by Agrawal and Goyal. For this set-
ting, we use a support function Wi(θi) = vi · θi − ca

i where
θi ∼ Beta(Si + 1,Fi + 1) samples from a Beta distribution,
thus the algorithm favors successes (Si) over failures (Fi).
Instance-Based Learning: An IBL model (Gonzalez &
Dutt, 2011) describes a learning attacker with an ability to
recall and identify similar “instances” of past decisions using
memory. An IBL instance represents a decision made in a
specific situation, and the outcome feedback. The feedback
here is the net payoff calculated as a difference between a
successful and a failed attack, i.e., vi− 2ca

i . The IBL deci-
sion process has three main parameters: (1) decay, d, which
specifies how past experiences are considered in current de-
cisions based on time; (2) noise parameter σ, capturing ran-
dom variability between experiences; and (3) the similarity,
S, capturing the influence of the past on the present based on
the similarity of the situations.

In the HCG game, an attacker can observe two possible
outcomes of an attack on node i: a positive reward (vi− ca

i )
when she attacks a real resource (success si) or a negative re-
ward (−ca

i ) if the target is a honeypot (failure fi). We denote
an instance in memory representing a combination of situa-
tion, decision and outcome that was experienced in the past
as o(t ′) ∈

⋃
i∈N{si, fi}. In round t, an attacker targets a node

i∗t which maximizes a blended value (BV) as follows:

i∗t ← argmax
i∈N

BVt(i) (2)

BVt(i) = (vi− ca
i )

eAt (si)

eAt (si)+ eAt ( fi)
− ca

i
eAt ( fi)

eAt (si)+ eAt (si)
(3)

At(oi) = ln ∑
t ′∈{1,...,t−1}:o(t ′)=oi

(t− t ′)−d−

−S ∑
i′∈N

(sim(i, i′))−σ ln
1− γ

γ
,

(4)

where γ ∈ (0,1] is uniformly randomly sampled and sim is a
similarity function. We used a linear similarity function that

normalizes the net payoff from a decision based on the max-
imal payoff of 20 and is calculated as sim(i, i′) = 1− |(vi−
2ca

i )− (vi′ −2ca
i′)|/20.

We fit a separate IBL attacker model to human data when
playing against each of the algorithmic defenders. We cali-
brated parameters values using exhaustive search over a wide
range of values for each parameter with 350 repetitions for
each combination. We used a multiobjective optimization
minimizing average RMSE (see Equation 5) of all measures.
The resulting three sets of parameters were: (σ = 0.2,d =
0.1,S = 0.6) for the LLR defender, (σ = 0.35,d = 1.2,S =
0.4) for the Pure defender and (σ = 1.4,d = 0.5,S = 0.5) for
the Equilibrium defender.

Simulation Results
To analyze the predictors’ effectiveness in emulating human
behavior we did a simulation with identical settings to the hu-
man experiment. Each predictor played against the 3 defend-
ers in the same scenario 100 times. We consider the same
performance measures as before. How well a predictor ap-
proximates human behavior is determined by a distance of a
prediction {p}T

t=1 from human data {hd}T
t=1, calculated us-

ing the RMSE metric below where where m is a performance
measure and T is a number of rounds.

RMSEm(p,hd) =

√
∑

50
t=1 (m(pt)−m(hdt))

2

T
(5)

In Table 4, IBL accounted for the “most human” behavior
on most of the measures when playing against the Pure and
LLR defenders. In contrast, TS plays most closely to human
performance when playing against the Equilibrium defender.
This may be because the static equilibrium defender most
closely reflects the standard stochastic MAB setting that TS
was designed for. ε-Greedy, ε-Greedy Decreasing and WSLS
perform poorly in general as predictors of human behavior.

However, these observations may only paint part of the pic-
ture. The actual overall point performance of human partici-
pants versus LLR is much lower than the 4 behavioral predic-
tors as shown in Table 5. Nearly all 4 of the behavioral predic-
tors double the median score of the human participants when
facing the LLR defender. In contrast, the IBL model plays
the most closely to human performance versus LLR. The IBL
model comes rather close to the human data in relation to the
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Figure 3: Comparison of the strategy predictions of TS and IBL with human data.

average and median scores. When considering all this infor-
mation, it appears that the adaptive LLR defender exploited
the human participants’ learning mechanisms as well as IBL
predicts. We can also see that humans may adopt different
strategies depending on an opponent’s strategy. Thus, when
choosing a modeling approach there is a need to carefully se-
lect the granularity level at which predictions are needed: ag-
gregate or individualized behavior. The IBL model can pro-
duce predictions at both levels.

µ σ median min max
Human 172.6 123.02 160 -85 640
ε-G 0.2 303.9 140.3559 320 -75 640

ε-GD 265.1 99.55705 275 -115 480
TS 332 109.6275 330 90 585

WSLS 292.4 114.2686 287.5 35 590
IBL 198.9 193.44 220 -335 685

Table 5: Performance of predictors against the LLR defender
in attacker points.

Conclusion
We study how humans learn in a novel version of an adver-
sarial, contextual multi-armed bandit scenario motivated by a

real-world cybersecurity scenario where defenders use decep-
tive decoys and attackers must learn to avoid them. We eval-
uated three different types of defensive strategies and showed
that an adaptive defensive strategy was clearly the strongest
against human players, and the hardest for them to learn. We
also made novel comparisons between predictive models for
emulating how humans learn in this type of adversarial set-
ting, comparing leading models from both the MAB literature
and cognitive science. We find that the best models (Thomp-
son Sampling and IBL) are able to predict human behavior
quite effectively, but that human attackers use different strate-
gies depending on the adversary they are up against, and the
best predictor may depend on this context. There are many
interesting opportunities to improve both types of models es-
pecially in making personalized predictions for individuals
and specialized context. However, the results so far have im-
mediate practical implications for how we can design better
strategies for deploying decoy systems to enhance cybersecu-
rity. In particular, these systems must be adaptive to prevent
attackers from easily learning the defensive strategy. The pre-
dictive models of attacker learning we have developed will
also allow us to develop defenses that actively mitigate the
ability of attackers to learn the defensive strategy.
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