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Abstract

Design, Modeling, and Control of Soft Robots

by

David Arthur Haggerty

Beginning in the second half of the 20th century, robots have played a growing role

in numerous manufacturing sectors. As we move toward the second quarter of the 21st

century, robots are still primarily in the factory, with few successful attempts to address

new applications outside the factory – in less structured environments that require close

interaction with humans. In the past decade, soft robotics has emerged as a potential

alternative design direction due to its inherent safety and embodied intelligence, but

its reduction to practice on a commercial scale has been limited, in part due to the

nonlinearity and associated control complexity of soft systems. In this work, we seek

to advance the performance of soft robots via insights gained from analytical and data-

driven modeling efforts, which enable new design and control capabilities.

We begin by first seeking to understand the fundamental behaviors various soft robotic

systems. In Chapter 2, we develop closed-form models of "vine robots," a type of soft,

growing robot that changes length by adding material to its tip and their interactions

with the environment. Next, we leverage those insights to design novel mechanisms

that overcome performance limitations in Chapter 3,developing a novel mechanism that

enables vine robots to access larger workspaces.

We then turn to data-driven modeling, leveraging a modern modeling technique to

gain physical insights from a continuum soft arm performing dynamic tasks. In Chapter

4 we apply this method to enable accurate control of two soft robot arms in new regimes,

controlling inertial motions that allow a soft arm to both catch and throw a ping pong

x



ball.

Finally, in Chapter 5, we describe the culminating work aimed at translating soft

robotics to broad commercial application, as we develop the world’s first soft robotic

intubation system that enables life-saving, expert-level performance in novice hands.

While there is yet more work to be done, this body of scientific knowledge will help set

the groundwork to advance soft systems into everyday life.
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Introduction Chapter 1

Robotics has played an integral role in shaping modernity from medicine to manufac-

turing. Whether it is the Intuitive Surgical Da Vinci Robot in the Operating room, or the

KUKA arc welding robot arm on the Tesla manufacturing line, such systems have proven

invaluable in delivering repeatable, accurate, and precise results previously unattainable

by humans alone [1,2].

Unfortunately, a significant limitation arose when trying to translate these systems

to novel, unstructured and dynamic environments: the same control architechtures that

provided precision and repeatability in controlled environments were ill-suited to pro-

viding dynamism and flexibility in uncontrolled environments [3–6]. More generally, the

recognition that there are insufficient stability and safety margins in novel environments

has required the introduction of new methods of modeling in control - primarily via large

troves of data from which learning algorithms develop a rough view of the nonlinear

modeling and control landscape [7].

Alternatively, soft robots have become an object of keen study over the past decade

in response to these challenges [8–10]. By looking to bioinspiration for new frontiers in

robotics, researchers have started an exponentially growing new field [11]. While past

efforts have looked to capture the span of possibilities for a given operating environment

in the source code of the controller, soft robotics realizes that "embodied intelligence"

via compliance allows for much of this complexity to be offloaded to the mechanical

system itself [12–14]. Unfortunately, this comes with a Faustian bargain: what you get

in mechanical intelligence, you give in nonlinear dynamics.

Thus, there is a major obstacle in the translation of soft robotics research for mean-

ingful societal impact: they are extraordinarily difficult to effectively model and control.

This realization has been central to my work throughout my Ph.D., setting the inten-

tion to use both analytic and data-driven modeling to unlock new capabilities in soft

robotics. Once effectively understood, the subsequent design cycle can be accentuated
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Introduction Chapter 1

via insight-driven design decisions, with some a priori understanding of what variables

are inside and outside the "controllable subspace," so to speak. This practice is shown in

the following chapters, with Chapters 2 and 4 describing analytic and data-driven mod-

eling techniques, respectively, and by Chapter 3 applying modeling insights unearthed

in Chapter 2. Finally, Chapter 5 attempts to take this effort to the logical continua-

tion: applying model-based insights to develop a human-enhancing technology in airway

management.

1.1 Soft Robotics and Vine Robots

Soft robotics, as defined by Kim et al. in [15], is a field concerned with the study

of systems with "bioinspired capabilities that permit adaptive, flexible interactions with

unpredictable environments" (examples in Figure 1.1). While there have been early

applications of this practice since at least the 1950s, the field began a period of rapid

growth in the early 2010s with the work of a few pioneering researchers [16–20].

Since then, numerous different embodiments of this class of system have been de-

veloped, including the two subtypes of focus in this work: the "vine robot" (as con-

ceived in [25] and [26]), and the static-length continuum arm (as inspired by the elephant

trunk, and shown in such works as [16,27–29]. Both of these systems intentionally include

compliance that enable unique capabilities compared to rigid robots, as will be shown

throughout the following chapters.

1.1.1 Vine robots

Vine robots move via tip extension, which is distinct from locomotion or other animal-

like whole body movements. Whereas movement strategies like locomotion are defined

by translation of the body from one location to another [30], movement by tip extension

3



Introduction Chapter 1

Figure 1.1: (A) The wearable exoskeleton powered by soft artificial muscles, made
by McKibben in 1957 for his daughter with a paralyzed hand [21]. (B) The Orm, a
soft pneumatic continuum manipulator from 1966 [22]. (C) A soft pneumatic elephant
trunk–inspired manipulator from 1984 [23]. (D) A flexible microactuator (12 mm
diameter) from 1992 [24]. Figure from [11], reprinted with permission from AAAS.
Credit: Kellie Holoski/Science Robotics.

functions by lengthening the body [31], reducing or completely eliminating the need to

translate relative to the environment. This form of movement seen in nature across scales

and kingdoms, from single-cell pollen tubes [32] and micro-scale hyphae [33] to creeping

vines [34] and the proboscises of certain worms [35,36].

Replicating elements of tip growth in robotic systems has two main benefits (Fig-

ure 1.2b). First, because only the tip moves, there is no relative movement of the body

with respect to the environment which enables easy movement through constrained en-

vironments. Second, as the tip moves, the body forms into a structure in the shape

4



Introduction Chapter 1

Figure 1.2: The biological inspiration for and basic properties of tip growth, and
our implementation of artificial growth via eversion. (a) Examples of biological sys-
tems that grow to navigate their environments. (b) Schematic representing growth by
tip-extension. (c) Artificial growth created by pressure-driven eversion of a flexible,
thin-walled tube. Licensed from Frontiers under CC-BY 4.0.

of the tip’s path, which can be used for payload delivery, force transfer or self-support,

and physical construction. Unlike locomotion, which depends on the reaction forces and

mechanical properties of the environment, growth allows vine robots to transfer forces

through their bodies, back to their fixed base. Therefore forces can be generated inde-

pendent of the contact conditions between the robot tip and the local environment. Tip

growth as presented in [26] (utilizing pressure-driven “eversion" (i.e., turning inside out)

of flexible, thin-walled material) is the focus of this work.

1.1.2 Soft continuum arms

Continuum arms are those that exhibit a high slenderness ratio (i.e. a small diameter

relative to its length) and high degrees of freedom. Soft continuum arms are additionally

constructed out of a soft backbone (cast silicone, thin-film plastics or fabrics), and inherit

their structural stability via pneumatic or hydraulic pressurization [15,37,38]. Actuation

mechanisms can include tendon-driven and pressure-driven techniques, such as pneumatic

artificial muscles (PAMs), inverse pneumatic artificial muscles (IPAMs), and series pouch

5



Introduction Chapter 1

motors (SPMs). Compared to the rigid robots mentioned above, they are significantly

safer to cooperatively operate with and amongst humans. In this work, we focus on

PAM-driven soft continuum arms constructed out of thin-film airtight fabrics (such as

those described in [39]), including with some helical actuation as described in [40].

1.2 Permissions and Attributions

1. The content of Chapter 1 is, in part, adapted from a collaboration with Laura Blu-

menschein, Margaret Coad, Elliot Hawkes, and Allison Okamura which originally

appeared in Frontiers in Robotics [41]. Reprinted with permission under CC-BY

4.0.

2. The content of Chapter 2 is the result of a collaboration with Nicholas Naclerio

and Elliot Hawkes. It originally appeared in IROS 2019 [42]. DOI: https://doi.

org/10.1109/IROS40897.2019.8968137.

3. The content of Chapter 3 is the result of a collaboration with Nicholas Naclerio

and Elliot Hawkes. It originally appeared in Robotics and Automation Letters [43].

DOI: https://doi.org/10.1109/LRA.2021.3072858.

4. The content of Chapter 4 is the result of a collaboration with Michael Banks, Ervin

Kamenar, Alan Cao, Patrick Curtis, Igor Mezić, and Elliot Hawkes. Major findings

originally appeared in Science Robotics 2023 [44]. DOI: https://doi.org/10.1

126/scirobotics.add6864. Early results were published at arXiv [45]. DOI:

https://doi.org/10.48550/arXiv.2011.07939.

5. The content of Chapter 5 is a collaboration with James Cazzoli, Elliot Hawkes,

David Drover, Daenis Camire, Lichy Han, and numerous other physicians, paramedics,
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Introduction Chapter 1

and medical providers. This work is due to be presented at various conferences in

2023, and is preparing for submission for publication in 2024.

Note: In reference to IEEE copyrighted material which is used with permission in

this thesis, the IEEE does not endorse any of the Univeristy of California’s products

or services. Internal or personal use of this material is permitted. If interested in

reprinting/republishing IEEE copyrighted material for advertising or promotional

purposes or for creating new collective works for resale or redistribution, please go
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Chapter 2

Analytical Modeling: extracting design

insights from closed-form solutions
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As my first manuscript in grad school, this work is one of my more humble publica-

tions. Yet it is arguably the one I most rely on in my day-to-day life, be it on the specific

findings or abstractly. This reflection is I think emblematic of the extreme value to be

found in some degree of (hopefully useful) mathematical modeling of a physical system.

These efforts unearth the fundamental design variables that inform the dimensions along

which the designer has or has not agency, enabling either quick exploit or intelligent

avoidance of specific design avenues.

2.1 Background

At this point in 2018 / 2019, we had a relatively primitive understanding of the

kinetic nature of environmental interactions of vine robots. Previously, work by Greer et

al. [46] and Blumenschein et al. [47] had focused on interaction kinematics and free-space

kinetics, respectively, but left unexplored the quantification of interaction forces during

both glancing and head-on collisions with the environment. My work was an effort to

synthesize and extend the two, enabling the development of a composite model of growth

forces required to traverse a constrained path.

This effort unearthed a variety of design insights based on this modeling - how material

properties affect performance, how path planning enables design contraints, and how

design choices enable new capabilities. As such, while just a conference paper published

in my first year, it both set the intention for my work in grad school, and enabled ongoing,

thoughtful review of design choices in future projects.

2.1.1 Abstract

Soft, tip-extending devices, or “vine robots,” are a promising new paradigm for navi-

gating cluttered and confined environments. Because they lengthen from their tips, there
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is little relative movement of the body with the environment, and the compressible nature

of the device allows it to pass through orifices smaller than its diameter. However, the

interaction between these devices and the environment is not well characterized. Here

we present a comprehensive mathematical model that describes vine robot behavior dur-

ing environmental interaction that provides a basis from which informed designs can be

generated in future works. The model incorporates transverse and axial buckling modes

that result from growing into obstacles with varying surface normals, as well as internal

path-dependent and independent resistances to growth. Accordingly, the model is able to

predict the pressure required to grow through a given environment due to the interaction

forces it experiences. We experimentally validate both the individual components and the

full model. Finally, we present three design insights from the model and demonstrate how

they each improve performance in confined space navigation. Our work helps advance

the understanding of tip-extending, vine robots through quantifying their interactions

with the environment, opening the door for new designs and impactful applications in

the realms of healthcare, research, search and rescue, and space exploration.

2.2 Introduction

In contrast to traditional rigid robots, which are well suited for strength, precision,

and repeatability, soft robots easily adapt to changing environments without complex

mechanisms and control schemes [38,48]. Tip-extending, vine-inspired robots, or “vine

robots,” are a particularly exciting new class of soft robots that can lengthen like a vine

to navigate challenging environments. Various skin-eversion robots have been presented

[25,49–52], with the most recent showing the ability to lengthen by thousands of percent,

steer autonomously, and move at rates comparable to animal locomotion [26]. These

pneumatic robots are composed of a thin-walled membrane, inverted inside itself, such
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Figure 2.1: Characterization of the environmental interactions of a soft tip-extending
robot. Top: Sequence of photos showing the extending “vine” robot navigating a
constrained, tortuous path. Bottom: The required pressure to cause growth as a
function of position along path. Letters correspond to positions shown in images.

that when pressurized, new material passes out through the tip, allowing it to “grow.”

This characteristic behavior eliminates the need for friction between the robot body and

its environment in order to progress along its path. Further, because the tube remains

largely stationary with respect to its surroundings, there is little sliding with respect to

the environment, and the robot can squeeze through tight spaces. Finally, it is able to

passively buckle around difficult obstacles with minimal force applied to the environment,

avoiding the control complexity of other continuum robots while ensuring the safety of

both the device and its surroundings [53–55]. These advantages have led to further work

on vine robots including active steering [46], medical applications [56], archaeology [57],

and burrowing [58].
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While these demonstrations show the potential of vine robots, a systematic and rig-

orous formalization of the principles underlying vine robot behavior is lacking. Toward

this goal, the contributions of this paper are: i) a refinement of the model for vine robots

moving in free space as initially presented by Blumenschein et al. [47], ii) a new model

of vine robots moving in constrained spaces that characterizes environmental interaction

forces on the robot, and iii) implementations of design insights derived from this model

that show substantially improved performance over previous vine robot designs.

What follows is a description of the analytical model we developed, followed by a

results section that validates the model. We then present three design implications in

real systems inspired by our analysis. We conclude with a discussion of the strengths

and limitations of the current investigation, as well as the planned next steps.

2.3 Modeling

The goal of this section is to present our mathematical models describing the indi-

vidual components governing the behavior of vine robots as they move through uncon-

strained and constrained environments. The modeling will provide the required pressure

to extend based off the varying interaction forces produced by contact with its environ-

ment, dictated by the morphology and materials of the robot body and the shape of

the path through which it is passing. We begin with a description of the device moving

through an unconstrained environment, where we refine the model previously presented

by Blumenschein et al. [47]. We then build upon this to develop a new model that

considers the constrained case where sharp turns and obstacles are present.
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2.3.1 Extension in an Unconstrained Environment

The physics governing the growth of pressure-driven, tip-everting devices in uncon-

strained environments can be described by two basic components: a path dependent term

and a path independent term. This mathematical description was introduced in Blumen-

schein et al. [47], inspired by the Lockart-Ortega equation describing plant cell growth.

The contribution of this section is to better characterize the effect of large amounts of

total curvature on required growth pressure.

The basic equations from Blumenschein et al. [47] can be expressed as follows:

(PA)evert = (PA)ind + (PA)dep

where : (PA)ind = Y A+ (
1

ϕ
v)

1
nA,

(PA)dep = µswL+
∑
i

Ce
µcLi
Ri ,

(2.1)

where the subscripts evert, ind, and dep indicate eversion pressure (i.e. pressure required

to grow from the tip), the path-independent terms, and the path-dependent terms, re-

spectively. P is the internal pressure, Y is the yield pressure required to evert body

material, A is the device’s cross-sectional area, ϕ is the material extensibility, v is the tip

velocity, n is a power term close to unity, µs is the length dependent friction coefficient,

w is the normal force exerted per unit length by the internal robot tail (i.e. the length of

robot body inverted inside itself), L is the length of the soft robot body, C is a curve-fit

constant, µc is the curvature dependent friction coefficient, Li is the length of robot tail

experiencing the ith instance of curvature, and Ri is the radius of said curvature.

For this work, we are interested in paths less than 5 m long and average growth speeds

less than 0.05m/s. Accordingly, certain terms dominate in both the path independent

and path dependent equations in (2.1), rendering others negligible. In the path de-

pendent case, the curvature component exponentially increases, overpowering the linear
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length dependent friction force, allowing us to neglect it. Further, with a growth velocity

under 0.05m/s, the velocity term constitutes roughly 5% of the yield term in the path

independent equation, allowing us to also neglect it. As such, the general solution in

(2.1) simplifies to:

(PA)evert = Y A+
∑
i

Ce
µcLi
Ri . (2.2)

To add to this work, we characterize the C coefficient in the path dependent term.

Blumenschein et al. used an experimental setup that required a multi-parameter best

fit that found values for both C and µ simultaneously. Unfortunately, this resulted in

nonphysically large variations in µ and accordingly inaccurate values of C. To address

this challenge, we note that the curvature dependence term is based on the capstan

equation,

Tout = Thold e
µθ, (2.3)

where Tout is the output tension after a curve, Thold is the input tension before the curve,

and θ is the angle of the curvature experienced. The C coefficient corresponds to Thold,

but is not readily measurable in the case of normal extension of the robot, given its

very small magnitude. This tension is due to the frictional force of the tail inside the

body of the device before the curve. In order to estimate this capstan coefficient, we

systematically vary this input tension with known loads and yield values, determine the

exponential parameter, then solve for the capstan coefficient when no load is applied.

Section 2.4.1 describes our experimental setup for this characterization.
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2.3.2 Extension in a Constrained Environment

Fundamental to the operation of vine robots is movement through constrained en-

vironments where movement is impeded by obstacles. Due to the axial stiffness of the

materials generally comprising vine robots, body buckling becomes the only appreciable

form of reconfiguration around obstacles or in paths with turns. Self-buckling, or buck-

ling caused by the forces the growing robot applies to the environment, occurs in two

modes: axial and transverse. The pressure required to cause these self-buckling modes

can be much higher than during growth in unconstrained environments, meaning we

must consider an additional, higher pressure when the device is required to pass through

a tight curve or around an obstacle. We present an appropriate model here.

The simplest buckling mode is that of the transverse case, where buckling occurs due

to loading perpendicular to the direction of growth. These deflections have been shown

to be predictable [46], however in a kinematic model the internal pressure of the robot

and the forces applied to the environment were not considered. Hammond et al. [59],

among others [60,61], have shown that this restorative internal moment is simply

Mint = πPR3 = FtrL, (2.4)

where Mint is the restorative moment due to internal pressure, r is the device radius, P

is the internal pressure, Ftr is the transverse load applied, and L is the unconstrained

length. In the case of a vine robot navigating a closed path, the force Ftr is produced by

internal pressure and its magnitude is a function of the angle of incidence with its path

boundary. Taking a moment balance about the nearest constrained point along the body

of the robot, illustrated by Figure 2.2, and assuming quasi-equilibrium just prior to the

point of buckling yields:
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Figure 2.2: Illustration of free body diagram used to determine relationship in (2.6).

Mint = NLsinθ − µNLcosθ, (2.5)

where N is the normal force generated by an interaction with the path and L is the

unsupported length. Realizing N is a function of internal pressure, (2.5) reduces to a

simple geometric relationship:

R

L
=

sinθ − µcosθ

cosθ + µsinθ
, (2.6)

where θ is taken to be the angle of incidence with respect to the surface normal and µ is

the coefficient of friction between the device and its boundary.

However, this relation simply represents the smallest value of the ratio of radius to

unsupported length at a given angle, and as such can be treated as a lower angle bound.

This allows for a conditional requirement to be developed: for a given robot radius and

unsupported length, transverse buckling will occur at any angle of incidence larger than

that which satisfies the equality in (2.6), denoted θmin.

The other mode of buckling encountered in constrained paths is axial buckling. Axial
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buckling mechanics for soft, inflated bodies differ markedly from those of traditional, rigid

beams. While rigid body axial buckling is easily expressed through the Euler equation,

the compressibility of air and the large ratio of tensile to compressive strength of polymer

films is not captured in this model.

Here we invoke the work of Fichter [62], who presents a Euler-inspired, linearized axial

buckling model for inflatable beams derived from a virtual work approach. This theory

characterizes the inflatable beam critical load Fcr (i.e., the load that causes a complete

loss of tension in one side of the beam and thus wrinkling) as the ratio product of beam

stiffnesses (Euler buckling stiffness and shear stiffness, P + Gπrt) to the sum of beam

stiffnesses in a purely axial loading condition, expressed as:

Fcr =
EI π2

L2 (P +GπRt)

EI π2

L2 + P +GπRt
, (2.7)

where, E is Young’s Modulus, I is the second moment of area of the inflatable beam, L

is the unconstrained length of the member, P is the force due to internal pressure, G is

the shear modulus, r is the radius of the cylinder, and t is the wall thickness. When the

everting robot extends into an obstacle, there is not an external load applied to the beam,

but rather there is an interaction force produced by the robot attempting to lengthen.

Thus the critical load becomes the force produced by internal pressure:

PcrA =
EI π2

L2 (PcrA+GπRt)

EI π2

L2 + PcrA+GπRt
where Fcr = PcrA (2.8)

Solving this equation for critical buckling pressure, Pcr, generates a second degree poly-

nomial. Isolating Pcr via the quadratic equation and taking the right-half plane solutions

yields
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Pcr =
1

2

√(
GπRt

A

)2

+
4EGIπ3Rt

A2L2

− GπRt

2A
.

(2.9)

From this equation, we immediately see that resistance to buckling decreases with larger

unsupported free lengths and lower elastic and shear moduli. As well, while not as readily

apparent, upon plotting Pcr with varying R, we see smaller device diameters similarly

lower resistance to buckling. Experimental validation of this relationship is presented in

Section 2.4.2.

2.3.3 Full Model for Tortuous Path with Self-buckling

With the models from Sections 2.3.1 and 2.3.2, we are prepared to write a single

equation for the case of a tortuous path with turns that produce both axial and transverse

self-buckling. To form this full model, we estimate the direction of the contact normal

between the tip of the device and the path. At larger contact angles, transverse buckling

occurs and the device will follow the obstacle with it’s tip [46]. When the angle between

the surface normal and the direction of growth, S, falls below θmin (see (2.6)) axial self-

buckling occurs instead. When axial buckling occurs, we add the self-buckling pressure

from (2.9) to the predicted pressure on a smooth path from (2.2):

Pevert =
Fy

Acs

+
∑
i

Ce
µLi
Ri +

 Pcr,i for S < θmin,

0 otherwise.

 . (2.10)

Here the effect of curvature is applied based on the summation of curvatures ex-

perienced by the remaining inverted tail, and buckling pressure only influences growth

pressure at the leading instance of curvature producing a surface normal contact angle

less than θmin.

18



Analytical Modeling: extracting design insights from closed-form solutions Chapter 2

Tracking the remaining inverted tail is completed by creating a piecewise relationship

between total device length and starting device length, knowing for each increment in

robot body length there is a corresponding increment or decrement in tail length (for

example, as the robot grows the tail length will first increase, matching the length of

grown robot until half the material is deployed, and then will decrease until no tail

remains inside the robot). While this composite model is only an approximation, future

sections will show it usefully captures the observed basic behavior of the device (see

Section 2.4.3).

2.4 Results

This section presents experiments verifying both the individual elements of the model

((2.10)) as well as the model as a whole, which predicts growth pressure as a function of

device materials and morphology, and the shape of the path traversed.

2.4.1 Characterization of Capstan Coefficient

To characterize the capstan coefficient and expand upon the model presented by

Blumenschein et al. in (2.2), we first determined the yield pressure inherent in our robot.

Blumenschein et al. showed that yield force (force required to evert material from the

tip), while dynamically complex, is a constant dependent on material, with yield pressure

a function of cross sectional area. As such, multiple devices were tested with varying tail

lengths, with pressure slowly increased until the device sustained tip growth.

These values were recorded using a Dwyer Instruments 626 Series pressure transmitter

(0-205 kPa range, 0.25% full scale accuracy), and the minimum, maximum, and mean

values were found to be 2.301, 4.036, and 3.210 kPa, respectively, based on 27 trials

with a standard deviation of 0.509. These tests were conducted in both horizontal and
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vertical orientations with little variation, likely due to tail weight contributing negligibly

to the relatively high-force required to unfurl the tip material; rather, the range of values

measured appeared to be mainly dependent on material condition at the tip. Thus, both

vertical and horizontal orientation test values were used in averaging the yield pressure.

Next, we tested the pressure required to grow with various resisting tensions applied

to the tail of the device. Two values of Thold which were expected to dominate the latent

tension produced by the loose tail were chosen. These values were produced by two

masses (15 g and 20 g) suspended from the tail. A 9.25 cm rigid cylinder was cantilevered

from a table with its axis parallel to the ground. The masses (first 15 g then 20 g) were

adhered to the fully everted tip of the device, which was then completely inverted. With

the axis of the device vertically oriented, such that the mass would produce a pure tension

in the tail, wrap angles, in radians, between π and 4π, incremented by π, were tested

(see Figure 2.3 for an illustration of the experimental setup). In each case, the pressure

was slowly increased to the point of sustained tip growth, with pressure measurements

recorded using the same Dwyer Instruments 626 Series pressure transmitter.

Four tests for each mass, at each wrap angle, were conducted, followed by the same

regimen for a device with zero added mass. Figure 2.4 shows these results graphically,

alongside the model presented in (2.10), while Table 2.1 presents the average value of

each trial.

The exponential parameter, µc in (2.10) was determined in the first two cases by

using the known values of Thold and Y via curve fit in Matlab. This produced a value for

µc of 0.222 in the 15 g case, 0.245 for 20 g, producing a mean value of 0.234 and a 9.25%

difference between the two. Using this average value for µc and the measured values for

Y , the value of Thold was the subsequently determined to be 0.0824N.
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Wrapped Vine Robot

Internal tail experiencing

capstan friction

Rigid Cylinder

F
grav

Figure 2.3: Illustration of capstan coefficient experimental setup. In this drawing, the
suspended mass would be found in the lower left of the sketch noted as Fgrav.

Table 2.1: Wrap Test Results (kPa)

Wrap Angle (rad) π 2π 3π 4π

20 g mass 5.882 9.145 14.917 20.106
15 g mass 4.615 5.828 8.543 13.101
0 g mass 3.552 4.900 6.387 9.076

2.4.2 Validation of Self-buckling Model

Transverse buckling in vine robots occurs when a transverse interaction force produces

a moment about the nearest supported point that exceeds that produced by internal

pressure, as expressed in (2.4). Knowing that this force is similarly produced by internal

pressure, no additional pressurization is expected to produce a transverse buckle, but

instead the geometric relation shown in (2.6) need be satisfied. To verify this, a robot

with a diameter of 2.4 cm was grown into a barrier at four different unsupported lengths
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Figure 2.4: Three wrap tests, conducted with varying tail weights, with wrap angles
ranging from π radians to 4π radians. Top and middle: Here, known tail masses give a
known Thold, allowing a single parameter fitting to yield values for µc. Bottom: Using
the average value of µc found from the two cases above, we perform a single parameter
fitting to yield the value of Thold for no tail mass.

across four different angles.

In each case, the robot was secured at the specified buckle lengths (15.24, 22.86, 30.48,

and 38.10 cm) oriented to the test angle with respect to the surface normal. Pressure was

increased to just above the yield point and the robot was allowed to grow into a barrier.

A success was recorded in the event of a natural buckle at no increased pressure, and a

failure when no buckle occured. These results are presented in Fig. 2.5, alongside the

theoretical minimum angle as predicted by (2.6).
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Figure 2.5: Experimental results of geometric conditions required to achieve transverse
buckling. Unsupported length increases from right to left. The model from (2.6) is
shown as the blue line.

The predicted axial buckling pressure in (2.9) depends on the Young’s and shear

moduli of the material, the device diameter, and the the length of the buckle section.

The literature value of Young’s modulus of LDPE used in this model was 303MPa,

alongside a shear modulus of 206MPa [63,64].

Inserting these measured quantities into (2.8), and formulating (2.10) with zero curva-

ture, expected values for critical pressure, Pcr, were developed for body lengths ranging

from 25 cm to 76 cm and a device diameter of 2.4 cm. The robot body was inverted,

constrained at the buckle length in question, pressurized to the point of slow, sustained

growth, and allowed to grow into a barrier perpendicular to the direction of growth. Pres-

sure was then slowly increased until the point of buckling, with measurements recorded

using the pressure transmitter introduced in Sec. 2.4.1. This test was repeated four times

for each length.

The results of these tests are displayed graphically in Figure 2.6, alongside the mod-

eled behavior curve from (2.10), and average values are presented in Table 2.2. As seen in

Figure 2.6, at large body lengths the device tracks closely with modeled values, however,

at small body lengths the observed quantities begin to show higher variation.
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Table 2.2: Critical Buckling Pressure (kPa)

Buckle Length (cm) 25.4 38.1 50.8 63.5 76.2

Pcr,ave, measured 27.689 15.763 9.993 6.170 4.654
Pcr, predicted 29.418 14.738 9.472 7.011 5.668
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Figure 2.6: Experimental results of pressure required for axial buckling versus free
length. The model from (2.10) is shown as a blue line.

2.4.3 Validation of Composite Model in a Constrained Path

The outcomes of Sections 2.4.1 and 2.4.2 were then combined to create a discretized

path traversal model. Using (2.10) as the governing equation for the behavior of our

device, a script was developed in Matlab to predict behavior. The shape of the path

was discretized into a series of nominally straight sections interrupted by short curved

sections. The instances of curvature were treated as point sources with known wrap

angle. To track the amount of tail experiencing curvature, a simple linear relationship

was developed relating initial device length to tail length reduction, knowing each unit

increase in device length produces a unit decrease in remaining inverted tail (note: the

vine robots in this investigation utilized a loose inverted tail, as opposed to the tail

reel some vine robots employ [59]). The free length of the device, required for the

critical buckling pressure in (2.10) and the transverse condition in (2.6), was estimated
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Figure 2.7: Experimental validation of the composite model, as also shown in Figure
2.1. The expected pressure produced by the composite model is shown by the blue
line.

by the distance between curves. This composite model produced a tip location-specific

pressure estimate to traverse the entire path. The value of S from (2.10) was estimated

by estimating the obstacle tangent at the point of contact and measuring the resulting

contact angle.

A rigid path was created for evaluation out of foam-core board. An arbitrary path was

designed to include both axial and transverse buckling events, as well as to accumulate

curvature. Using foam-core board as the substrate, 7.5 cm tall sections of foam-core was

then used to form the outline of the path, and a clear acrylic sheet was used to enclose

it. After construction, physical measurements for the path were input into the discrete

model, and four tests were conducted to validate its accuracy. The device was inserted

into one end of the physical model, and pressure was slowly increased until the point of

sustained growth. Measurements were taken along straight lengths approximately every

20 cm, and peak pressure was recorded in instances of buckling. Fig. 2.7 shows the

outcomes of each of these trials, overlaid on the predicted values created by the discrete

model from (2.10) across the course presented in Fig. 2.1.
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2.5 Design Implications

The model presented in (2.10) provides insights on how different design parameters

of a vine robot affect its ability to navigate a given path. Below, we examine three such

insights, as well as provide comparative tests for each.

2.5.1 Increased Membrane Compliance

The effect of membrane compliance on pressure reduction has as of yet not been

investigated. To date, vine robots have been designed using a membrane material for

which the modulus was selected to be high enough that negligible axial extension would

occur while in operation. Such stiffness similarly meant that negligible bending occurred

before buckling. While these materials are useful for creating free-standing structures [26],

we see from the results of Sec. 2.3, that decreasing this modulus can have advantages

when navigating a tortuous path. Examining (2.9), we see that the modulus of elasticity

of the membrane increases the required pressure to buckle. Further, a lower modulus

allows additional bending to occur in the body before buckling.

Such bending changes the tip contact angle, and can enable transverse buckling to

occur in a situation that initially would have resulted in axial buckling. Critically, as can

be seen in (2.6), transverse buckling requires no additional pressure to initiate, provided

its geometric condition is met. We thus constructed two robot bodies out of anisotropic

ripstop nylon - one with increased compliance, one traditionally rigid - and compared

their ability to navigate the same tortuous path.

Each robot was constructed out of 50µm thick, silicone impregnated ripstop nylon

fabric. By varying the thread orientation, compliance can be built in to the robot body.

In the rigid case, the grid pattern was arranged parallel to the longitudinal axis, and at

45° to take advantage of the fabric bias [65] in the compliant case; this modification allows
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Figure 2.8: Effect of membrane compliance for traversing a path consisting of all axial
buckling events. The solid lines denote the mean value for each case.

for variable strains when subjected to the same forces. As can be seen in Figure 2.8, the

device built from axially elastic fabric performs significantly better than the inelastic,

reducing the maximum pressure required to navigate the same path by a factor of nearly

7.

While these results are exciting, they are only preliminary and there is yet work to

be done to fully characterize their behavior. Specifically, measuring their mechanical

properties and verifying their behavior with the model presented are the immediate next

steps, as the effect of a low material modulus may eliminate the axial consideration in

(2.10) due to the significant bending produced prior to axial buckling.

2.5.2 Decreased Scale

The effect of scale on a vine robot’s ability to navigate a constrained environment

has not been previously investigated. Accordingly, we examine (2.10) and note that

the diameter of the robot body has conflicting effects on different terms. A smaller

diameter increases the internal pressure required to evert [47], however, a smaller diameter

decreases the angle required for a transverse buckle to occur and, while not immediately

clear in (2.9), a small diameter similarly reduces the pressure required to create an axial
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Figure 2.9: Effect of diametral scaling for traversing a path consisting of all axial
buckling events. Solid lines denote the mean value for each case. Note: the 4.86 cm
scale burst at the first buckle.

buckle. From this insight we conclude that, for a given path, the design objective should

be to minimize device radius to the furthest extent possible, informed by maximum

allowable pressures within the path. To investigate this, three different diameter devices

were subjected to the same path and their traversal pressures were recorded, with results

found in Figure 2.9. What was found is a balance exists between growth pressure and

buckle pressure, wherein an optimal scale can be found. Specifically, growth pressure goes

with r2 whereas buckle pressure goes with r, and burst pressure goes with 1/r (as hoop

stress goes with r). The 4.86 cm robot exceeded its burst pressure at the first buckle,

while the 1.62 and 2.4 cm robot were both successful, and the 2.4 cm variant traversed

at the lowest gauge pressure. It is similarly worth noting the 1.62 and 2.4 cm robot

completed the path at roughly the same percentage of burst pressure (∼65%).

2.5.3 Decreased Internal Tail Length

The most pernicious element of the model provided in (2.10) for navigating closed,

tortuous paths is the pressure required to overcome capstan friction. The exponential
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Figure 2.10: Illustration of method used to evaluate effect of reducing internal tail
length. The Side View shows how the unfurling “pulls” the tail roll along, and the
Rear View expresses the rolling method.

nature of the capstan component quickly approaches the burst pressure of these devices,

and as such puts a strict limit on the lengths of tortuous paths accessible. Figure 2.4

verifies this relationship. As such, we investigate the impacts of eliminating this tail

friction by rolling the inverted material into a tight wind, allowing it to ‘ride’ along

with the tip of the device as it grows, illustrated in Figure 2.10. While there are many

conceivable methods to store this tail material, such as S-folds, bellows, or simply stuffing

the material at the tip, the rolled configuration was chosen for its ease in preparation

using mechanical means.

Figure 2.11 highlights the effect of eliminating the tail for navigating tortuous paths.

Two vine robots traversed a path constrained between concentric cylinders. The first

robot was tested with a traditionally inverted tail, wherein the robot body is forced

through the core of its body. In the second case, the robot body was first tightly rolled

up, and the remaining 15 cm were inverted over the rolled material. As the body was

inflated, the roll unwound at the tip of the device as it grew.

The traditional vine robot exhibited an exponential increase in growth pressure and

burst after three complete revolutions, while the rolled tail robot extended through its

full length to six revolutions with near constant pressure. It must be noted, however,

that having the rolled tail ride along at the tip affects the dynamics of tip eversion and

growth, thereby increasing the pressure required to do so. These results are exciting, and
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Figure 2.11: Wrap test showing effect of reduced internal tail length.

continued exploration can commence in this area.

2.6 Discussion and Conclusion

Vine robots are an exciting new paradigm in the field of soft robotics, as their unique

growth modality opens the door to a wide array of applications. The aim of this work was

to better understand their various passive behaviors and lay a foundation upon which

future work towards active and autonomous operation and control can be built.

The characterization of the two buckling conditions, as well as the effects of scale,

compliance, and capstan friction elimination will allow for more than traversal pressure

prediction - it will inform the design as these robots are deployed across the applications

introduced in Section 2.2. Further, the fundamental understanding of the forces at play in

creating body deflections offers insight into design requirements for creating mechanical

components capable of manipulating, articulating, and shape locking these robots, from

which unique active/passive hybrid system can be designed.

While our initial results are promising for predicting the macroscopic behavior of these

robots in constrained environments, the model presented fails to capture some modes,
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such as the coupling between buckles in close proximity. Future investigations can be

conducted to refine our generalized model to capture these behaviors. Further, to date

the working fluid examined has been exclusively air, and the question of using water to

drive growth is another open topic for inquiry.

In this work, we presented a mathematical model of the interaction between a soft,

tip-extending vine robot and its environment. Our experimental results confirm this

model and show that it can predict the effect of environmental contact forces on the

behavior of the robot. Importantly, the model can inform the design of robots tailored

to specific environments. The model suggests that increasing membrane compliance,

containing the tail in the tip, and intelligently choosing the diameter of the robot will

allow it to most easily navigate constrained environments. This work contributes to the

field by providing a more fundamental and informed starting point for the development

of new soft, tip-extending vine robots for navigating difficult environments with varied

requirements, ranging from navigating through rubble during search and rescue missions

to more delicate applications such as medical endoscopy.
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As a direct consequence of the findings in Chapter 2, we sought to develop technical

components inspired by the design insights uncovered in that effort – namely, overcom-

ing the length limit of base-station-controlled vine robots traversing tortuous paths. At

approximately the same time, I was considering ways to overcome some of the workspace

limitations inherent to constant-curvature vine robots. This two-pronged design inspi-

ration led me to the so-called steering-reeling mechanism (SRM) design, that enables

tip-based length control and localized deformation control. In cases such as search and

rescue, where one might encounter a combination of constrained and unconstrained paths

in close proximity, this sort of design overcomes some of the limitations in traditional

constructions.

3.1 Background

Traditionally, soft robotics has sought to produce the "fully soft" system, but as

perspectives such as those in [11], softness for softness’ sake is likely an inappropriate

design constraint. For instance, while the fully-soft arm such as in [66,67] may have utility

in environments wherein contact forces need to be controlled, they sacrifice dexterity in

terms of workspace access. Simultaneously, the base-located retraction present in [59,68]

necessarily requires all curvature the body experiences to result in exponential capstan

friction that inhibits growth length in tortuous paths. Thus, the SRM was born: a

single, rigid, mechanical system that lives inside the vine robot body and enables both

tip-based length control (via the internal reeling mechanism), and localized trajectory

control (via the internal steering mechanism). This hybrid system, while a divergence

from the "fully soft" ethos, provided novel capabilities for vine robots inspired by the

mathematical modeling done previously.
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3.1.1 Abstract

Continuum robots have high degrees of freedom and the ability to safely move in

constrained environments. One class of soft continuum robot is the “vine” robot. This

type of robot extends from its tip by everting or unfurling new material, driven by

internal body pressure. Most vine robot examples store new body material in a reel at

their base, passing it through the core of the robot to the tip, and like many continuum

robots, steer by selectively lengthening or shortening one side of the body. While this

approach to steering and material storage lends itself to a fully soft device, it has three key

limitations: (i) internal friction of material passing through the core of the robot limits

its length in tortuous paths, (ii) body buckling as the robot’s body material is re-spooled

at the base can prevent retraction, and (iii) constant curvature steering limits the robot’s

poses and object approach angles in a given workspace. This work presents a hybrid

soft-rigid robotic system comprising a soft vine robot body and a rigid, mobile, internal

steering-reeling mechanism (SRM); this SRM is equipped with a reel for material storage,

a bending actuator for steering, and is capable of actuating the robot at any point along its

length. This hybrid configuration increases reach along tortuous paths, allows retraction,

and increases the workspace. We describe the motivation for the device, generate its

mathematical models, present its methods of operation, and verify experimentally the

models we developed and the performance improvements over previous vine robots.

3.2 Introduction

The field of robotics began with rigid robots, whose powerful and precise movements

make them invaluable for manufacturing [38,48]. However, unstructured, sensitive en-

vironments such as Fukushima can provide serious challenges [69]. Soft robots’ ability

to deform and adapt to their environment offer an alternative approach to navigating
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complex real-world environments.

One such variety, “vine” robots, are of particular interest for negotiating complex

environments. First presented in 2003, skin-eversion robots have taken many forms

[25,49–52]. Our work is inspired by a more recent design by [26], capable of navi-

gating cluttered environments autonomously [46], or via teleoperation [57], burrowing

through loose media [58], creating deployable structures [70], and achieving complex

shapes through intelligent design [71]. Made of a thin-walled membrane inverted in-

side itself, these robots “grow” when inflated, passing new material through the body to

emerge at the tip to achieve extension. Their bodies do not move relative to their sur-

roundings, reducing environmental interaction forces, making them promising candidates

for a variety of applications from medical to search and rescue. However, there are three

key limitations to many of the current vine robots that we seek to address in this work.

First, internal friction of body material passing through the core of the robot grows

exponentially with the total path angle, limiting the robot’s length in tortuous paths

[42,47]. Since most vine robots store their body material in a reel at the base [59,68,72],

body material has to pass through the entire length of the body from the base to the tip,

accumulating friction along the way.

Second, while simply re-spooling material onto the reel at the base can retract the

body, the tension in the internal body material causes buckling for long bodies. Ref. [68]

identified that this behavior can be prevented by reducing the tension in the internal

body material via a tip-based, tethered motor; while retraction is greatly improved, the

length restrictions imposed by the internal body material and additional wiring still limit

the robot’s achievable length.

Finally, constant curvature steering limits the possible poses and tip orientations

of the robot, restricting its reachable workspace. Most vine robots have been steered

by selectively lengthening or shortening one side of the robot via tendons or artificial
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Figure 3.1: Overhead view of the presented robot (A) navigating across a gap wider
than the internal mechanism (SRM) is long, (B) turning acutely into an opening, (C)
turning again to steer at a target object (4.5 kg exercise ball), (D) pushing the ball off
of the table, and (E-F) retracting back to its starting location.

muscles [67,71,73,74]. While this allows entirely soft devices, it restricts turning to ap-

proximately constant curvature deformation, reducing its ability to navigate some ob-

stacles. A number of attempts have been made to overcome this limitation, such as

tendon actuation coupled with pneumatic shape locking [67]; discrete, reversible body

stiffness modulation [72] and mechanical interlocks [26]; and active and programmable

heat sealing [75].

What follows is a description of our design concept to address these limitations, a

mathematical description of the various behaviors of this device, and the details of our

design informed by this modeling. We then verify the models, and present experimental

data showing an increase in tortuous path length, an integrated retraction ability, and an
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Figure 3.2: The SRM (A) controls both the steering and reeling of the external vine
robot. Internal actuators enable both steering (B) and length control by reeling (C).
The SRM (D) extends the tip of the robot by unreeling new body material (E) while
the internal pressure (shown on gauge at bottom) is low. To move the SRM forward
to a desired point, the reel is locked and the body pressure is increased so that the
friction between the SRM and the robot body is overcome. This allows the everting
body to pull the SRM towards the tip of the robot (F). The SRM then bends to
steer around an obstacle and unreels more material (G). The reel is again locked and
pressure increased to pull the SRM towards the tip of the robot (H), where it makes a
new bend (I). It then retracts by reeling in vine body material (J) while it is located
at the tip.

expanded workspace. We conclude by discussing the potential impacts and future work

planned for this new design.

3.3 Concept

To address length, buckling, and steering limitations, we present a hybrid soft-rigid

robotic system (Fig. 3.1 and 3.2) comprising a soft vine robot body and a rigid, mobile,

internal steering-reeling mechanism (SRM). The SRM is designed to fit inside the vine

robot body with sufficient radial clearance to easily allow for sliding and for air to inflate

the entire vine robot body, and comprises two segments connected by a revolute joint
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that can control the vine robot body in two ways. First, it controls robot length by

spooling in or out body material that is connected to a reel on the forward or distal

segment of the SRM. The proximal tip of the vine robot body is reeled on the SRM spool

after passing through the SRM tip as shown in Fig. 3.2A. The remainder of the body

is everted around the exterior of the SRM as shown in Fig. 3.2C. Second, it controls

direction by rotating the two sections of the SRM relative to one another to cause a

bend in the robot body. The steering motor can bend and hold the robot 120◦ in both

directions from the nominal, straight state. This allows point deflections at any point

along the robot, creating two arbitrary length segments provided the overall body length

constraints are satisfied.

Operation of length and direction control with the SRM is as follows. As shown in

Fig. 3.2D, when the internal pressure of the vine robot is low and the spool is fixed,

the SRM remains in place due to a small amount of friction between the SRM and the

inside of the body. As the spool unreels material (Fig. 3.2E), the robot extends while

the SRM remains stationary. When the internal body pressure is increased beyond a

threshold pressure, the body everts and pulls the SRM forward (Fig. 3.2F). The SRM

then uses the steering motor to create a bend in the body and steer around an obstacle

(Fig. 3.2G). Pressure is reduced to keep the SRM in place by friction while the spool

is unreeled to lengthen past the obstacle. To advance the SRM again, the reel is locked

and pressure is increased to overcome friction, allowing body eversion to pull the SRM

toward the tip (Fig. 3.2H). Once the SRM is at a desired location, another turn can be

made (Fig. 3.2I). Finally, the robot can retract by reeling in body material while body

pressure is low (Fig. 3.2J). Via a series of reeling and unreeling behaviors with high or

low pressures, it is possible to achieve any length robot body with the SRM positioned at

any location, and from this location it can retract completely to the base by continuously

reeling in body material.
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The proposed hybrid vine robot concept allows for: i) greater lengths when growing

through tortuous paths—total angle of path is no longer bounded due to tail friction,

and instead by the length of the robot itself, (ii) retraction regardless of length—the

robot can retract at any length when the SRM is moved to the tip, and (iii) a larger

workspace—orientation at a given point grows from a single angle for previous designs

to a continuous range of up to 115 degrees.

3.4 Modeling

This section introduces the mathematics that represent the individual elements of

the presented concept in comparison to previous vine robots. Our modeling is broken

down into three sections: length limitations, retraction, and workspace analysis. This

modeling is used to analyze the elements present in Section 3.5, Design, and verified

experimentally in Section 3.6, Results.

3.4.1 Length Limitations

The length of a vine robot is limited by the length of the body material on its spool

and internal friction. Robots that store body material on a reel at their base pull new

material through their body to extend. In straight growth, friction is relatively low,

however it increases exponentially with total curvature. This friction, known as capstan

friction, is described in [47] as

Fint =
∑
i

Ceµc θi , (3.1)

where C is a configuration tension, µc is the coefficient of friction in curved growth, and θi

is the angle of the ith bend. Due to is exponential nature, this friction is very limiting in
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tortuous paths. The presented concept circumvents this limit by spooling body material

at the tip, but is instead bounded by the amount of material that can be fit on the SRM

for a given robot diameter.

To understand this volume limitation, we model the spooled tail as a simple Archimedes

spiral with a constant rate of radial expansion, described by

r = αa+ b, (3.2)

where r is the distance from the center of the spiral to its outermost edge, α is the total

swept angle of the spiral, a is a constant such that 2πa is the separation between two

layers of the spiral (i.e. folded tail material thickness), and b is the spiral offset (i.e. the

radius of the spooling bar). To understand the limits on robot length, L, we solve for

the arc length of the spiral in terms of r and the parameters a and b, denoted α(r), with

L =

∫
rmax

b

√
(α(r))2 +

(
dα

dr

)2

dr (3.3)

Using the substitution u = r − b, this integral is solved for the maximum length of

the robot, Lmax, as

Lmax =
1

a

[
(rmax − b)

2

√
(rmax − b)2 + 1 +

1

2
ln
(
rmax − b+

√
(rmax − b)2 + 1

)]
(3.4)

where rmax is the radius of the robot body. In our robot, b is much smaller than αa,

meaning the second term of (3.2) will be negligible. We note that (3.4) shows that

L grows with the square of r, yielding nonlinear length increases per unit increase in

diameter. As well, the same formulation given in (3.4) can be applied in terms of α,
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such that the length of the robot can be controlled in closed loop with a retraction motor

encoder.

3.4.2 Retraction, Steering, and SRM Movement

In this section, we first describe the forces required to retract and steer such that we

develop the parameters to guide our choice of reeling and steering motors, as described

in Section 3.5. Then, we describe the conditions that determine whether the SRM moves

or remains stationary.

Force for Retraction

Past retraction work [68] has shown that the force required to invert a vine robot is

equal to one half the force produced by pressurization plus a zero pressure offset term (a

material-dependent constant that represents the force required to invert or evert material,

independent of pressure). Since this new design incorporates an internal component with

mass, we modify the formulation given in [68] to incorporate the friction between the

robot body and the SRM, becoming

FR ≤ PA

2
+ FI + Ffric (3.5)

where P is the internal pressure, A the cross sectional area, FI the material dependent

constant, and Ffric the friction between the SRM and the robot body. Equation (3.5)

is an inequality due to the fact that friction may or may not be present, depending on

the retraction condition (the SRM may not be retracting from the tip, and may not be

moving relative to the robot body).

Using relationships (3.2) and (3.4) to determine the maximum radius of the spool,

rmax, for a given robot length, we can use (3.5) to predict the theoretical maximum
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torque, τR, required to retract the robot, which occurs when the spool is at its largest

and the SRM is at the tip. Assuming orthogonality at the point of spooling, we have

τR = rmax × FR =

(
1

2
PmaxA+ FI + Ffric

)
rmax, (3.6)

where Pmax is the maximum pressure commanded to the robot. This model helps in

sizing the reeling motor.

Limits on Revolute Joint

Similar to Section 3.4.2, we need to understand the forces involved, here for bending

of the body, to develop the specifications for the bending motor. Previous work [59,60]

showed that the internal restoring moment, Mint produced by an inflatable beam under

transverse loading is

Mint = πPr3, (3.7)

where P is internal pressure and r is the beam radius. The torque requirement for the

bending motor is thus

τB ≥ Mint,max = πPmaxr
3 (3.8)

where τB is the minimum bending motor torque for a maximum operational pressure

Pmax. We see in (3.7) that the internal moment is nominally independent of deflection.

This implies that so long as the motor torque exceeds the minimum specification given in

(3.8), the revolute joint can achieve any bending angles the geometry of the SRM allows.
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SRM Movement

Next, we describe the relationships that govern when the SRM moves versus remains

stationary (shown in Fig. 3.2). It is the balance of three primary forces that determines

whether the SRM moves: the tension force on the tail PA/2, the inversion/eversion force

FI , and the friction force between the SRM and the inside of the body Ffric. The last

force can vary depending on the configuration of the SRM, where a straight SRM will

have a lower friction force than a bent one. There are two common ways these forces

relate, either
PA

2
> Ffric + FI , or

PA

2
< Ffric − FI . (3.9)

In the first case, the pressure is relatively high, and the body will evert, pulling the SRM

with it. In the second case, the pressure is relatively low, and the SRM will stay in place

and can retract the body if the tail is reeled. There is a third, less common case for

moderate pressures, in which PA/2 is within ±FI of Ffric. In this case, retraction of the

motor results in motion of the SRM forward, but no retraction of the body.

3.4.3 Workspace Analysis

In this section, we explore the two-dimensional space that this robot can achieve when

using the proposed actuation modality, and compare and contrast that to the workspace

of many previous vine robots that are constrained to a constant curvature of the body.

To date, vine robots have often been actuated by pneumatic artificial muscles (PAMs)

or motor-driven tendons, resulting in continuous, distributed deformation along the

length of the body. Significant work has been focused on modeling the kinematics of

these robots, such as [67,73,74,76]. Most notably, for a given position in the workspace,

these devices are limited to only one approach orientation. This section outlines how the

proposed design improves upon this access.
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Figure 3.3: Geometry of SRM-robot system with (A) and without (B) an obstacle interaction.

Obstacle-free PRP Kinematics

In this investigation, the kinematics are described by a modified prismatic-revolute-

prismatic (PRP) planar rigid robot, as shown in Fig. 3.3. Essentially, our robot can

extend straight from its base, bend at the current location of the SRM, and extend

straight from the mechanism to its tip. Williams and Shelley [77] provide the kinemat-

ics for this class of planar manipulators, and show the PRP combination to be simply

described by

E =
[
x
y

]
= A+ L1e

jθ1 + L2e
jθ2 , (3.10)

where (x, y) represents the global frame position, ϕ = θ1+θ2 represents the tip orientation

in the base frame, A is a global position offset, Li is the length of the ith segment, and

θi its the orientation in the ith frame where i = 1, 2.

We note that, for our robot, θ1 will be zero when there are no obstacles in the

workspace (Fig. 3.3A). With this θ1 known, θ2 is simply the desired tip orientation or

approach angle, ϕ.

The lengths L1 and L2 are subject to constraints determined by the length of the

overall robot, the SRM design, and the robot configuration. Fig. 3.3 shows the kinematic

quantities described in this section, and gives insight into the length constraint. In

the zero or one obstacle case, this constraint is described by L1 ∈ [0, Lmax], and L2 ∈
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[0, (Lmax−L1)/2] such that L1+L2 ≤ Lmax ∀L1, L2. This is due to the fact that at least

one half the remaining total body length must be internal to the vine robot to connect

to the SRM. That is, for a particular L1, the remaining body material is Lmax −L1, but

this material must be split between the everted, external body, and the internal material

attached to the SRM, yielding the constraint L2 ≤ (Lmax − L1)/2.

N Obstacle PRP Kinematics

If the robot instead grows around multiple obstacles successively, the analysis can be

extended to a multi-link robot. Generally, the robot can be described as functionally

having n+ 1 prismatic links, where n is the number of obstacles with which it interacts.

In these cases, the kinematics given in (3.10) can be extended with n links of known

lengths and angles, and the length constraint given above can also be generalized by

cascading the above relationship into n+ 1 segments.

When a single obstacle support occurs, θ1 is known and constant. We then cut L1

into the supported length and the unsupported length, denoted Ls
1 and Lu

1 , respectively,

with L1 = Ls
1 + Lu

1 . The length constraint then becomes L1 ∈ [Ls
1, Lmax] and L2 ∈

[0, (Lmax − L1)/2] (Fig 3.3B). For n obstacles, we recognize θi, i ∈ [1, n], is known and

constant, and that each obstacle interaction defines the length of that link to be Ls
i , i ∈

[1, n−1] (because the uncontrolled links between obstacles will take the shortest possible

path). Thus, we can extend the length constraint to become Ln ∈ [Ls
n +

∑n−1
i=1 Li, Lmax],

Ln+1 ∈ [0, (Lmax − Ln)/2]. Once each prismatic joint length and its associated angle is

defined, the generalized kinematics become

E =
[
x
y

]
= A+

n∑
i=1

Ls
ie

jθi + Ln+1e
jθn+1 . (3.11)

It is important to note here that the robot remains fully defined, as each object
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interaction in a given series can occur at only one angle in the global frame, with the

lengths of each supported link known.

Reachable Workspace

Finally, (3.11) allows us to determine the reachable workspace. The nominal workspace

(i.e. with no obstacles) can be described by W◦ = {(x, y)|θ1 = 0, θ2 ∈ Θ2, L1 + L2 ≤

Lmax}, where Θ2 is set by the robot joint limits. When obstacle support occurs, we

utilize the length and angle constraints given in the previous section. From this formula-

tion we can generalize the obstacle interaction subspaces as Wi = {(x, y)|θi ∈ Θi, θi+1 ∈

Θi+1,
∑i+1

i Li ≤ Lmax}, where Θi is the obstacle support angle in the local frame and

Θi+1 defines the range of joint angles. Finally, we can describe the total workspace, Wt,

as Wt = W◦
⋃n

i=1 Wi.

Fig. 3.4A shows a representative workspace with no obstacles present. The limits of

the motion of the SRM’s bending actuator are set to ±105o, according to the design of

the device, and the total length of the robot material is set to unity with Li described as

a percentage of total length. Interestingly, the further distal the SRM and thus the reel

of material, the further the reach of the robot, as described by the length relationships

above. That is, in the case where L1 = 0 (green), the robot body material must extend

from the reel internally to the tip and back to the base externally. However, for the

case where L1 = 66, the internal material only needs to reach from the SRM to the tip,

as depicted in Fig. 3.3. Fig. 3.4B shows how the workspace changes when the robot

interacts with an obstacle. Since the robot body is able to anchor on an obstacle, the

SRM is able to travel forward while the base angle, θ1, remains locked. This means the

robot can reach further in the direction beyond the obstacle than when the obstacle was

not present.

The robot can also achieve new approach angles when anchored to the obstacle. Fig.
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Obstacles
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L1=33

L1=66 L2=50

L2=33

L2=17.5

L1=100

L1=35

L2=32.5

L1=49
L2=25.5

L1=58
L2=21

Figure 3.4: Theoretical workspace for the robot. While the robot’s actual length is
2.4 m, lengths here are represented as relative percentages. (A) With no obstacles
present, the robot is able to grow forward and make a single turn at various lengths,
L1. The behavior is similar to a PRP planar manipulator. (B) With the addition of
obstacles, the robot can hold a new base angle, θ1, to open up new tip orientations in
the workspace.

3.5 presents the range of tip orientations at each point within the workspace for the case

of one obstacle. While many areas of the workspace can be reached with over ninety

degrees of tip orientations for our robot, we note that a constant curvature robot can

only reach most areas with a single approach angle, besides near the obstacle, where two

discrete angles are possible [73].
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Figure 3.5: Theoretical heatmap of tip orientations for a workspace that includes a
single obstacle.

3.5 Robot Design

3.5.1 Parameter Selection and Scaling

To chose the parameters for our robot, we begin by choosing an arbitrary desired

length, which we set to 2.4m. From this, we used (3.4) to determine that the maximum

spool diameter is required to be 42 mm to hold this amount of material. This recognizes

that the tail material must fold at least once to fit inside the robot because the half

circumference width of a “lay flat" state is wider than the diameter. After including the

dimensions of the drivetrain and SRM frame, we found that the minimum robot diameter

is 68mm. This in turn allowed us to use (3.6) to calculate the required reeling motor

torque to be 0.30 Nm using the value of Ffric reported in Section 3.6.3. We then used

(3.8) to calculate the required steering motor torque to be 0.84 Nm.

More generally, we describe how these parameters scale. First, we note that from

(3.4) we know that the maximum length the robot can achieve grows as the square of

the spool radius. Since the spool must fit inside the robot, this also means length grows

as the square of robot radius. Next, we note that the required motor torque to retract

the robot body grows as the cube of the radius (3.6), and the motor torque required
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to steer the body also scales as the cube of radius (3.8). Since motor torque scales

with volume (∼ r3), these three scaling laws suggest that a larger robot will be able to

grow proportionally longer, and that the required relative size of the internal motors will

remain the same regardless of scale.

3.5.2 Fabrication

With these specifications, we built a hybrid robot, composed of two parts, the soft

robot skin and the rigid SRM that rides inside the robot skin as shown in Fig. 3.2.

The skin is made of a 71 µm thick silicone-urethane impregnated ripstop nylon fabric

(Rockywoods Fabric) tube with an 75 mm diameter, and 2.5 m length. The tube is made

by from a strip of fabric using a lap joint, bonded with room temperature vulcanizing

silicone adhesive (Smooth-on Silpoxy) as in [39]. The 70 mm diameter SRM is made

of two 3D printed Markforged Oynx (chopped carbon fiber-impregnated nylon filament)

frames connected by an actuated hinge joint. The 150 mm long distal segment contains

a reel of up to 3m of vine robot skin and the bending mechanism, while the 80 mm

long proximal segment houses the batteries and wireless transmitter; when assembled,

the entire SRM is 215mm long. The vine body material reel is a 3mm diameter steel

rod mounted to the frame perpendicular to the length of the robot body. Given the

required torque, we chose an XYZrobot Smart Servo a1-16 motor with a rated torque

of 2.5 Nm; its output drives the reel via a small steel chain. The joint of the robot is

rotated by a second, inline XYZrobot Smart Servo a1-16 motor, also rated to 2.5 Nm, and

the joint can achieve rotations up to 120◦ in the positive right-hand direction, and 105◦

in the negative right-hand direction (with the difference due to geometrical constraints

imposed by the actuator’s construction). The motors are powered by three 500mAh,

3.7V lithium-polymer batteries, controlled by an Adafruit Feather M0 interfaced with
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915 MHz radio. When fully assembled SRM has a mass of 337.5g.

3.6 Results

Here we discuss testing of length limitations and the reachable workspace of our robot.

3.6.1 Length Limitations

We first present test results comparing the performance of our robot to a vine robot

with the reel at the base on a tortuous path. Second, we test our model of the relationship

among spool angle, spooled material radius, and robot length.

Increased Length Along Tortuous Paths

From (3.1), for previous vine robot designs with the reel in the base, we expect the

internal pressure to increase exponentially with the total angle of a tortuous path, as the

tail pulls through the inside the curved body. In contrast, for the presented robot, we

predict a near constant pressure across length. To test this, we measured the pressure

to grow for a robot in a serpentine path, constrained by a series of pegs in two rows, 30

cm apart with a peg spacing of 28 cm. Two robots of roughly equal diameter—one with

base spooling, one with an SRM—were tested. Each robot was placed in the test set up

around a given number of pegs, then the pressure was increased until growth occurred.

To bend around the first peg required a turn of 90°, and an additional 180° for every

subsequent peg, up to a total path angle of 630°. The test was repeated five times with

each robot design. The results presented in Fig. 3.6 show that at a 0° path angle, the

pressure required to grow the vine robot with the reel at its base is similar, or slightly

lower, than required for the SRM. As path angle increases, the pressure to grow with

the SRM remains constant, but increases exponentially for the robot with the reel at
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Figure 3.6: Pressure required to grow through tortuous paths. With the body material
reeled at the base, as is common in previous vine robots, the pressure to grow increases
with path angle. In contrast, for the presented robot with the body material reeled in
the SRM, the pressure to grow remains roughly constant when the SRM is near the
tip.

its base, as expected by (3.1). Thus, the presented design is only length-limited by the

constraints imposed in Section 3.4.1.

3.6.2 Spool Geometry

First, we sought to determine the value of a in (3.2), which is nominally the thickness

of material in each wrap of the tail divided by 2π. Since the flat tail material is wider

than the diameter of the robot (equal to half the robot circumference), it must fold at

least once to fit on the reel, meaning a must be at least 4t/2π, with t being the thickness

of one layer of material. In reality, a will be larger than this, due to wrinkling and air

gaps. To determine a experimentally, we reeled the tail while measuring the angle of the

reel and its radius (Fig. 3.7). The actual packing density was 57.2% of the theoretical

limit.

Second, using the measured a, we compared the predicted length versus spool radius

from (3.4) to experimental data (Fig. 3.8). While trends match, the model slightly

underestimates the actual length of material on the reel, possibly because the material
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Figure 3.7: Experimental results used to determine the actual value of a for (3.2). A
best fit line (blue) suggests that the value of a is approximately 57.2% of the theoretical
packing density limit (magenta).

Figure 3.8: Experimental testing of the spiral model (3.4) shown with the expected
curve (blue) using the value of a from Fig. 3.7, as well as the theoretical limit with
perfect packing.

is not perfectly straight on the reel.

3.6.3 SRM Movement

In this section, we determine the bounds on (3.9) in Section 3.4.2 to understand the

expected behavior of the SRM at various pressures. We ran five trials each to determine

Ffric and FI , using a Mark-10 100N push/pull force gauge. To determine Ffric, the SRM

was detached from the vine robot body and pulled along a strip of body material with
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the force gauge just until sliding occurred, with the peak force recorded. The average

value was found to be 0.65N , with a standard deviation of ±0.05N . A similar test was

conducted to determine FI ; with the tail of the material attached to the force gauge, it

was pulled until inversion just began, recording the peak force. The average value was

found to be 0.30± 0.05N .

Applying (3.9), we predicted that the SRM would be pulled to the tip at pressures

exceeding 0.41 kPa. To verify this expectation, tail material was spooled off of the SRM

at zero pressure and it was positioned in the center of the robot body. Pressure was slowly

increased, and the measurement was recorded when sustained movement was observed.

The average pressure across five tests was found to be 0.39± 0.04 kPa.

We note that this pressure limitation greatly slows the operation of the device, and

future work is planned to incorporate a braking device into the design such that this

feature of controllable SRM position and relative motion may be better utilized in the

robot’s operation.

3.6.4 Workspace

To help verify our model of the robot workspace, we grew the robot in a series of

tests while recording position in the plane via an overhead video camera. We first tested

reachable workspace with and without obstacles. The results of these experiments are

shown in Fig. 3.9. While small discrepancies exist, the expected trends are observed:

in the no-obstacle case, lateral reach is reduced as the SRM moves more distally (Fig.

3.9A), and the addition of obstacles extends the workspace in the region beyond the

obstacle (Fig. 3.9B). We then tested the range of tip orientations at three target points

in the workspace for a single obstacle case, with results shown in Fig. 3.10. Again,

the expected trends are observed. Limited tip orientations are found at the extent of
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A

B

Figure 3.9: Experimental validation of theoretical workspace. (A) No obstacles. (B)
With two obstacles. Reachable workspace arcs at each bending position, from (3.11)
are overlaid.

the workspace (bottom right target), close to 80 degrees of tip orientations are available

away from the obstacle (leftmost target), and almost 130 degrees are achievable near the

obstacle (middle target). While the model presented in Fig. 3.5 predicts approximately

110◦, accounting for the asymmetry in the actual device in the model yields exactly the

results observed.
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Figure 3.10: Experimental validation of theoretically achievable tip orientations when
there is a single obstacle in the workspace. A heat map of achievable tip orientations
as modeled in Fig. 3.5 is overlaid.

3.7 Discussion and Conclusion

We have presented a hybrid soft-rigid robot, comprising a compliant vine robot and

a rigid internal steering and reeling mechanism (SRM). This new design overcomes three

key limitations of past constant curvature vine robots with base-mounted reels: length

restrictions due to internal friction, retraction bounds on free robot lengths and poses,

and workspace limitations due to constant curvature kinematics. We have shown that

incorporating an SRM in a vine robot eliminates length restrictions caused by friction,

enables retraction in any pose, and increases the achievable angles of approach by orders

of magnitude.

These improvements may advance the performance of vine robots in real-world ap-

plications. For example, the improved workspace could enable robots to better navigate

difficult archaeology sites [57], aircraft interiors, or nuclear facilities. Reduced internal

friction by tip spooling could also enable vine robots to access more tortuous paths,

such as the small intestine, machinery, or animal burrows. The SRM however, reduces

growth speed and limits the vine robot’s ability to squeeze through gaps smaller than the

diameter of the SRM. The additional weight also makes it more difficult to span gaps.

The development of the SRM offers many opportunities for future work. Adding
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an additional bending actuator in the same SRM would enable three dimensional steer-

ing. Further, with some modification, additional SRMs could be incorporated to create

multiple bends in multiple planes at multiple locations along the body. The thoughtful

introduction of an end effector such as [26,57,78] would also expand the robot’s useful-

ness. In addition, exploring the limits of down scaling the tip spool design would be

useful for small-scale applications.
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In late 2019 I was working to understand the dynamic model of a soft robot, inspired

by the early work of Nathaniel Agharese at Stanford that culminated in [79], that might

enable the closed-loop control of some of the concepts that were under development.

However, after my experience with closed-form modeling in Chapter 2, we began to

realize that pen-and-paper modeling of soft robots was perhaps a sub-par method to

enable control of these sytems in both autonomous and semi-autonomous capacities.

Supported by some collaborators at UCSB, we decided to pursue a data-driven approach

instead of closed-form.

This effort resulted in compelling findings over a multi-year period. First, we showed

that even in open-loop, the Koopman method could provide compelling results. Specif-

ically, we realized that time-delay KOT, even with significantly reduced model order,

was a candidate method for extending the capabilities of soft robotics into new domains

(Sec. 4.2). This inspired us to build a closed-loop system that sought to examine the

limits of what this approach could enable. The end result was a highly data-efficient

algorithm that implemented closed loop control with only a linear-quadratic regulator

(LQR) architecture, simultaneously performing on two arms with notable morphological

differences, and enabling such dynamic tasks as catching and throwing a ball, as shown

in Sec. 4.3.

4.1 Background

Beginning my collaboration with Drs. Michael Banks and Igor Mezić, we collectively

sought to test the capability limits of the burgeoning machine learning method known

as Koopman Operator Theory (KOT), in many ways reinvented by Dr. Mezić in [80,81].

This approach had been shown applicable by Bruder et al. in [82–85], but confined to

small deflections and in closed loop. In our mind, the most important underlying question
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should not be towards the objective of obtaining accurate control, but rather accurate

non-linear, data-driven modeling. If proven capable, and if we understood how to best

develop such a model, then more advanced control capabilities would be likely unlocked.

After constructing the most nonlinear soft arm we could, we showed that time delays

as the only observable could capture the dynamics so well, that highly non-linear pose

reconstruction could be completed with as few as 7 Koopman modes (essentially, the

eigenvectors of the Koopman adjoint).

We then extended this insight into closed-loop control, utilizing a minimized model

and a Static Koopman Operator (as described in [86]) to enable LQR control of the

previous robot arm, as well as another built for this continuation. Ultimately, we showed,

to the best of our knowledge, this architecture produced the first real-time control of

inertial soft robot behaviors in the stabilizable subspace (although, Thuruthel et al.

[87] showed this control in the reachable worspace previously), among other compelling

behaviors.

This chapter synthesizes both works, and thus contains some overlap.

4.2 Early Work

4.2.1 Abstract

Soft robots promise improved safety and capability over rigid robots when deployed

in complex, delicate, and dynamic environments. However the infinite degrees of freedom

and highly nonlinear dynamics of these systems severely complicate their modeling and

control. As a step toward addressing this open challenge, we apply the data-driven, Han-

kel Dynamic Mode Decomposition (HDMD) with time delay observables to the model

identification of a highly inertial, helical soft robotic arm with a high number of under-
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actuated degrees of freedom. We further show that Koopman spectral analysis gives us a

dimensionally reduced basis of modes which decreases computational complexity without

sacrificing predictive power.

4.2.2 Introduction

While soft robotics has garnered significant attention in the past decade and grown

into a standalone research topic, one of the prevailing challenges the field faces is the

problem of modeling and control. The high degrees of freedom, material non-linearity,

underactuation, and inherent hysteresis of many of these technologies has precluded the

development of closed form, dynamic models that easily lend themselves to traditional

control strategies [8,38,48]. Instead, a variety of methods have been introduced in an

attempt to address this challenge.

A majority of investigations to this end have relied on simplifying assumptions, such as

the (piecewise) constant curvature ((P)CC) approach, as found in for example [67,73,74,

88–90]. Most of these approaches focus on developing mappings from the actuator space

(actuator pressure, tendon tension) to the configuration space (curvature, arc length)

and finally to the task space (euclidean position and angle). While this approach is

macroscopically effective at predicting general deformations, it fails to adequately capture

the time evolution of relevant quantities. As such, others have sought to build closed-

form dynamic models, compensated with controllers based on feedback linearization [91],

sliding mode control [92], and domain restriction [93]. However, due to the infinite degrees

of freedom of these systems, closed form models are inherently inaccurate. Moreover, the

intrinsic non-linearity often ensures control systems be domain restricted or themselves

non-linear.

Owing to these difficulties, a number of groups have turned to data-driven approaches
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Muscle 1 Muscle 2 Muscle 3

Muscle 1 & 2 Muscle 2 & 3 Muscle 3 & 1

Initial

Final

Transient

Reference

Figure 4.1: Top: The steady state pose of the helically actuated, inertial soft arm
with an input to individual and pairs of lengthwise artificial muscles. Bottom: With
a linear model constructed via data-driven, Koopman operator theoretic Hankel Dy-
namic Mode Decomposition (HDMD) and reduced in dimensionality to n = 35 using
Koopman mode analysis, we use the Linear Quadratic Regulator (LQR) optimal con-
trol algorithm to control the robot from an initial position (purple) through a dynamic
transient pose (orange) to its final pose (blue), closely aligned with the target position
(red). Plots of the commanded inputs and RMS error are shown, at right.

for producing linear system representations. Numerous attempts to apply various ma-

chine learning methods span the last decade, as in [94–98], for example. In each of these
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investigations, the overarching aim has been to fit a high dimensional linear operator to

the input-output dynamics of a soft robot arm. While they have shown much higher effi-

cacy than many of the closed-form approaches above, they yet require immense amounts

of data to converge, and their models don’t necessarily intuit any physical characteristics

of the system. As such, they often produce very large linear systems with limited do-

mains of applicability. To overcome these limitations, a relatively new attention paid to a

century-old approach in dynamical systems theory has opened new avenues to accurate,

dynamically relevant models. This approach, Koopman Operator Theory (KOT) [99],

has been shown to be more effective than other data-driven methods for soft robotic

modeling and control [84]. However, KOT applied to soft robotics is still in its infancy

and has yet to be utilized to its full theoretical potential.

This work aims to advance the state-of-the-art in KOT applied to soft robotics

through the analysis of Koopman modes. We do so by implementing HDMD on a tip-

loaded, inertial soft robotic arm exhibiting both bending and twisting (Fig. 4.1). Using

the spatial positions of 15 motion tracking points and their time delays as observables,

HDMD captures the fundamental physics of our system [100]. KOT enables us to weigh

the relative importance of each of the system’s fundamental modes to the dynamics we

are interested in. We then project the resulting model onto a reduced basis of the most

important Koopman modes. This approach enables us to substantially reduce the order

of the model without significant loss of controllability. Notably, we do so with no pre-

optimization of observables or extensive data postprocessing, and with training data on

the order of 104 samples.

What follows is a description of our soft robotic arm, an introduction to KOT and the

details of our modeling approach, our experimental setup and data acquisition methods,

and our results.
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4.2.3 Soft Robotic Arm Design

Due to the difficulty of the problem at hand, one approach is to simplify the testbed

to simplify the modeling. Instead, to understand the limitations of the KOT based

modeling, we sought to produce a difficult-to-analyze soft arm. This manifested in the

concurrent objectives of: fast response times, highly non-linear deformation, and a highly

inertial and underactuated system.

We created a pneumatic system capable of generating low-latency, agile actuation

over a wide range of inputs. This design was fabricated with lightweight 50micron

thick silicone-impregnated ripstop nylon (sil-nylon), and actuated via three lengthwise

fabric artificial muscles of the same material, as presented in [39]. The main body was

fabricated to a 2 cm diameter using a silicone adhesive (Smooth-On Sil-poxy) with the

fiber reinforcement aligned axially. The three 1.25 cm diameter muscles were similarly

constructed, however their fiber weave was oriented with a 45◦ offset with respect to the

main body’s axial direction. The mass of the arm with three muscles is a mere 12 g. The

input valves that supply the air to the muscles were chosen to enable at least 60 L/min

of flow at 200 kPa to ensure high power input. Additionally, the exhaust valves through

which the air leaves empty to vacuum to increase the speed of the robot.

To achieve a complicated, non-linear actuation pattern, the muscles were axially

aligned on the body with a slight offset, varying among the muscles, to produce different

helical deformations from each (Fig. 4.1, Top) as described in [40]. To achieve extreme

curvature, the main body was fixtured to a workbench and the muscles were affixed under

pretension.

Finally, to create a highly inertial system with deformations not directly controlled

by the muscles, a 40 g mass was adhered to the tip of the robot.
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4.2.4 Control System Modeling via Koopman Operator Theory

Much of this process is captured in Sec. 4.3.5, but is repeated here for clarity. The

standard method of representing dynamical systems involves defining a state space M

with states x ∈ M that evolve according to the discrete-time dynamical system

x+ = T (x). (4.1)

Here T is the possibly nonlinear state transition function T : M → M .

The non-linearity of soft robot dynamics limits the availability of suitable state-space

control algorithms. We instead turn to an operator-theoretic perspective of dynamics

of observables [99]. Observables are real-valued functions defined on the state space

f : M → R. The set of all possible observables forms a vector space that is usually

infinite dimensional. The Koopman operator K is defined by

Kf := f ◦ T.

This operator describes the evolution of observables as the states move along orbits

dictated by (4.10). Even though the underlying state space system is nonlinear, the

operator K is linear. The process of approximating this operator with a finite dimensional

matrix is described in Section 4.3.5.

We are interested in describing the Koopman operator for systems of the form x+ =

T (x, u) where u ∈ U are user specified inputs. We follow the process outlined in [101]

to build this generalization. The first step is to define the space of all input sequences

l(U) = {(ui)
∞
i=0|ui ∈ U} where U is the set of admissible inputs. The discrete-time

dynamics T now act on the extended state space S = M × l(U). Given observables
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Model
Identification

State
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z = f (x) x = Cz

z+ = Az + Bu

x+ = T (x,u)

Figure 4.2: Description of Koopman lifting process and reduction to a state space
representation. If the (possibly nonlinear) map T (x,u) is known, a state space rep-
resentation can be immediately developed. If not, a linear evolution of observables z
can be projected onto the state space after learning the relationship z+ = Az +Bu.

g : S → R, we now define the corresponding Koopman operator

(Kg)(x, (ui)
∞
i=0) := g(T (x, u0), (ui)

∞
i=0) (4.2)

We seek a finite dimensional linear input/output system which approximates the action

of K on a finite set of chosen observables.

Approximation of Koopman Operators for Control Systems

The Koopman operator in its fully infinite dimensional form is not practically realiz-

able, so we seek a finite dimensional approximation. Under certain conditions, the Hankel

Dynamic Mode Decomposition (HDMD) [100,102] provably converges to the Koopman

operator in the limit of infinitely many observables and data snapshots [103]. The prac-

tical considerations behind our choices of observables and generation of training data are

discussed in 4.2.6. The following exposition on the HDMD algorithm is closely based

on [101], and is shown in Fig 4.2.
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Given K measurements of the system x+
j = T (xj, uj), we build the following data

matrices:

X := [x1 ... xK ], X+ := [x+
1 ... x+

K ], U := [u1 ... uK ]. (4.3)

We then choose a vector of m observables

f(x) = [f1(x) ... fm(x)]
T . (4.4)

Next, we build the lifted data matrices

Xlift := [f(x1) ... f(xK)], X+
lift := [f(x+

1 ) ... f(x
+
K)]. (4.5)

We seek to approximate the action of the extended Koopman operator (4.13) as follows:

X+
lift = AXlift +BU (4.6)

In order to approximate A and B, we recast this equation as a minimization problem

min
A,B

∥X+
lift − AXlift −BU∥F (4.7)

which has the solution

[A B] = X+
lift


Xlift

U




†

(4.8)

where † is the Moore-Penrose pseudoinverse. The A and B matrices form a dynamical

system relevant not to states in the state space but to an extended set of states formed
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by the vector of observables z = f(x). The resulting system is

z+ = Az +Bu. (4.9)

We are often interested in the spectral properties of the Koopman operator because

they give us physical information about the multiple coupled time-dependent processes

inherent to our system. HDMD can be used to approximate the discrete part of this

spectrum [103]. We seek the triplet (λi, ϕi(x),vi) of Koopman eigenvalues, eigenfunc-

tions, and modes, respectively. The eigenvalues and Koopman modes are simply the

eigenvalues and eigenvectors of the HDMD matrix A. The resulting modes also form a

convenient basis onto which we can project our dynamics. Computation of the eigen-

functions requires wi which are the eigenvectors of the conjugate transpose of A. After

these are normalized so that ⟨vi,wj⟩ = δij, the eigenfunctions are given by the complex

inner product ϕi(x) = ⟨x,wi⟩.

4.2.5 Experimental Setup and Methods

Setup and Training

To apply the approach presented in Sec. 4.2.4 to our robot described in Sec. 4.2.3,

we built a 1.8m × 1.8m × 1.5m frame using T-slotted aluminum, with the top face 2/3

covered with plywood to support our robot and driving circuitry. A hole was cut into the

plywood through which a rigid pipe extension was passed, that included through-holes

for the pneumatic tubing. The robot body was affixed to this pipe extension, and tubing

routed to the muscles. The pressurization of the muscles is controlled by six Clippard

DV-2M-12 proportional valves, with three each for input and exhaust, one input-exhaust

pair attached to each muscle. The main body is held at a constant pressure of 100 kPa
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Figure 4.3: Experimental setup, with the robot in an unactuated state.

throughout testing, while the muscles are each controlled in a range of 0-200 kPa.

In order to train our model, we produced inputs that would allow the robot to explore

the entire space of configurations that are relevant to our control scenarios. The training

inputs were required to be within the bounds u ∈ [0.3, 0.85] (values given as a percentage

of duty cycle), which is the active region for the valves. In the first of two training

regimes, 150 randomly generated Gaussians were superimposed to create a smoothly

varying signal that was sufficiently random to guarantee that the robot would explore

the entire state space slowly and without overshoot. In the second regime, step inputs of

random height were commanded to produce massive overshoot and settling to multiple

input-modified equilibria. The exhaust signal, v, was defined by 1 − u. These inputs

were then deployed to a Raspberry Pi Model 4B. A trigger signal was also defined to

68



Data-Driven Modeling, and Control: breakthrough performance of a soft robot arm Chapter 4

synchronize the Raspberry Pi and our motion capture system.

Information about the position and shape of the manipulator is gathered via motion

capture (PhaseSpace Impulse X2E) with fifteen LED trackers and eight cameras. Five

LEDs are attached along the axis of each muscle. This entire process is described in Fig.

4.3.

After 30 minutes of training data were acquired, they were segmented into training

sets and verification sets. The model was trained on half the data, while the other half

was used for reconstruction and validation.

4.2.6 Results

Here we present the results of our application of the modeling described in Sec. 4.2.4

to the soft robot arm introduced in Sec. 4.2.3.

Koopman for Prediction

We perform a convergence study on the reconstruction power of our Koopman models

as a function of the number of snapshots for a range of observables. This process allowed

us to develop a dictionary of observables suitable for our system. Given a particular choice

of observables and number of training samples, we build the corresponding linear input-

output system with A, B, and C matrices. This linear model is applied to N = 27000

samples of verification data. These particular samples are not included in the training

data in order to give us a fair evaluation of the predictive power of our models. The linear

system produced via (4.8) and (4.9) evaluate the evolution of these initial conditions over

a single time step. The single-step reconstruction error is given by

ei =
∥x+, predict

i − x+, actual
i ∥F

∥x+, actual
i − xi∥F

.

69



Data-Driven Modeling, and Control: breakthrough performance of a soft robot arm Chapter 4

Figure 4.4: The error eRMS vs number of time samples for a range of monomial observ-
ables. Here x indicates a column vector of the positions of all 15 motion tracker points.
The extended state z = [x; ...;xi] is formed by stacking the element-wise powers of x
from x1 up to and including xi. We see a decrease in predictive power as the order of
monomials increases.

where x+, actual
i is the evolution of xi measured by the motion capture system and

x+, predict
i is the evolution predicted by the HDMD model. We use the root mean square

(RMS) of the individual ei errors to score our model:

eRMS =

√√√√ 1

N

N∑
i=1

e2i .

Choice of Observables We tested two different choices for observables. First, we used

the set of monomials ranging from order 1-4, as described in [83], as well as additional

monomials up to order 11. We found that these basis functions performed poorly for our

highly inertial, non-linear system (Fig. 4.4). As can be seen, prediction diverges with

increasing monomial power, likely due to the higher order of error propagation.

Second, we tested time delay observables. Fig. 4.5 shows the results of this analysis,

with the opposite trend observed compared to Fig. 4.4. We believe this is due to the
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Figure 4.5: The error eRMS vs number of time samples for a range of time delay observ-
ables. The extended state with i delays is formed by stacking the current time sample
of x on top of the previous i samples. We see a steady increase in predictive power
as the number of time delays increases. Given a certain colored line in this figure, the
corresponding monomial-based model with the same number of observables is given
by the same color in Fig. 4.4. For the rest of the paper, we take 10 time delays.

fact that the momentum of the robot exists in the span of the time delays. We use 10

time delay observables for the rest of our analysis.

Selection of Koopman Modes Fig. 4.6 shows the eigenvalues λi of the resulting

HDMD matrix. These eigenvalues approximate the eigenvalues of the Koopman operator

and are shown with bubble sizes scaled with respect to their respective approximate

Koopman mode powers |ϕi(x)| which are evaluated for every x in the training data and

averaged. The eigenvalues corresponding to low mode power often correspond to modes

associated with measurement noise. Often, these modes can be removed from the model

with the added bonus of reducing the dimension of the model. To do this, we build a

matrix whose column vectors are the N Koopman modes we wish to keep V = [v1 ... vN ].

We then project our state space matrices onto the basis of Koopman modes Ã = V −1AV
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Figure 4.6: Koopman eigenvalues λi scaled by their mode powers |ϕi(z)| averaged
over all of the training data. Top: The entire distribution of Koopman eigenvalues.
Bottom: Zoomed in view of the distribution of eigenvalues. The 35 eigenvalues with
the largest mode power are given in green.

and B̃ = V −1B. The green eigenvalues in Fig. 4.6 represent the 35 modes with the

largest mode power. The corresponding reduced order model produced the controller

that successfully executed the static reference tracking problem in the bottom part of

Fig 4.1.

4.2.7 Discussion

Here we show that Koopman Operator approaches are a viable path of investigation

towards soft robot modeling. We present an approach to produce an approximate, low
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order model with relatively little data, minimal computational cost, and no a priori un-

derstanding of the input-output dynamics of the system. This approach is also amenable

to traditional linear control schemes, such that existing strategies can produce viable con-

trol laws for these highly nonlinear, inertial, and underactuated systems (see Sec. 4.3).

Much work is yet to be done in understanding the optimal, minimal selection of modes

to achieve the desired behavior. The next section seeks to advance the construction of

our models to simultaneously reject noise and capture faster dynamics, and to implement

closed loop control to understand the edges of behaviors this robot can be commanded

to display.
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4.3 Continuation Into Closed-Loop Control

The next logical step from the preceding section is to advance the system into a closed-

loop architecture. This was done over a period of years and on two soft arms instead

of one – the first arm being a more stable version than that previously presented, and

the second arm being recycled from the previous chapter. Using modeling insights from

Sec. 4.2, such as time-delay only observable performance and reduced order modeling

capability, we developed a system that used only two time delays, a static koopman

operator (such as described in [86]), and LQR. The resulting manuscript was published

in Science Robotics [44].

4.3.1 Abstract

Soft robots promise improved safety and capability over rigid robots when deployed

near humans or in complex, delicate, and dynamic environments. However, infinite de-

grees of freedom and the potential for highly nonlinear dynamics severely complicate

their modeling and control. Analytical and machine learning methodologies have been

applied to model soft robots, but with constraints: quasi-static motions, quasi-linear

deflections, or both. Here, we advance the modeling and control of soft robots into the

inertial, nonlinear regime. We control motions of a soft, continuum arm with veloci-

ties ten times larger and accelerations forty times larger than those of previous work,

and do so for high-deflection shapes with over 110 degrees of curvature. We leverage a

data-driven learning approach for modeling, based on Koopman Operator Theory, and

we introduce the concept of the static Koopman operator as a pregain term in optimal

control. Our approach is rapid, requiring less than five minutes of training, is computa-

tionally low-cost, requiring as little as 0.5s to build the model, and is design agnostic,

learning and accurately controlling two morphologically different soft robots. This work
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advances rapid modeling and control for soft robots from the realm of quasi-static to

inertial, laying the groundwork for the next generation of compliant and highly dynamic

robots.

4.3.2 Introduction

The automation and robotics revolution has transformed manufacturing and heavy

industry, leading to higher throughput, repeatability, and quality across numerous sectors

[1,2]. Unfortunately, robots are most often relegated to cages and isolated sections of

manufacturing sites due to the inherent danger they present to human operators through

their fast-moving, heavy, and rigid structures. Efforts towards allowing these robots to

perform safely with human collaborators have focused on software control, but absolute

guarantees of safety are not possible [3–6].

In contrast, soft robots are safe by construction due to their low stiffness and mass,

but modeling and control of these systems is challenging [8–10,12–14]. This is due to

their inherent nonlinearity, high dimensionality, and the imprecise measurement of their

position in space. Past work has sought to overcome these obstacles through a variety

of modeling methods, each of which constrains the design of control implementations.

The majority of these modeling approaches fall into two categories: analytical Reduced

Order Modeling (ROM), and machine learning (ML).

In soft robot ROM for control, the aim is to develop an analytical model based

on simplifying assumptions such as (piecewise) constant curvature ((P)CC) deforma-

tions [97,98,104,105]. For an approximately constant-curvature system, this approach

allows for the accurate prediction of dynamics given appropriate estimation of param-

eters. However, developing these analytical models is nontrivial and labor intensive,

and each model applies only to the single system that was modeled. These models
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tend to be valid only in a neighborhood around the equilibrium point where the system

has been linearized [105]. Controllers based on ROM models have been applied to soft

robots in the past, but these have yet to achieve the real-time control of fast, inertial

motions [87,106,107].

In the ML modeling of soft robot dynamical behaviors, many neural net-based ap-

proaches exist. Most of this work focuses on the development of predictors using neu-

ral nets such as Long Short Term Memory (LSTM) [108,109] or recurrent neural net-

works [87,107]. These methodologies generate highly accurate predictors of the dynamics.

However, training these systems has a high computational cost. Moreover, their structure

is nonlinear, requiring specialized control algorithms [12]. One example is a feedforward

neural net controller which has been successfully coupled to a model-free closed-loop con-

troller and applied to a high-deflection, yet quasi-static soft arm [110,111]. Additionally,

there are approaches which leverage a neural-net-based dynamical model in closed-loop

control [87,106]. However, neural net approaches to soft robot modeling have not yet

resulted in the closed-loop control of high-speed, inertial and nonlinear dynamics.

Koopman Operator Theory (KOT) [99] is an alternative modeling paradigm, intro-

duced to the field of ML and data-driven modeling in the early 2000s [80,112]. KOT-

based ML has two qualities that make it attractive strategy for soft robot control: it

is data-driven, eliminating the need for complicated analytical models, and it identifies

a globally linear model, allowing for fast and efficient control design. The Koopman

operator is a representation of a dynamical system in terms of the evolution of observ-

ables on a function space. Although the evolution of a dynamical system on state space

may be nonlinear, its evolution in function space - described by the potentially infinite

dimensional Koopman operator - is always linear. This is in contrast to a state-space

linearization, which builds a linear approximation of the nonlinear dynamics only valid

in a small region of the workspace. The Koopman methodology has been applied to con-
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trol systems, with the majority of work combining a Koopman operator approximation

method, Dynamic Mode Decomposition, with control (DMDc) [100,102,103,113–115]. In

particular, model predictive control (MPC) is commonly used [101]. When DMDc and

MPC are applied to soft robots, [83–85,116] the control is accurate, but only shown so in

quasi-static control in a low-deflection regime (approx. 18 dergrees of curvature). It is

important to note that simple linearized models are likely to work at these low deflections

because the full nonlinearity of the dynamics may only be explored at high deflections. In

fact, references [83–85] show imperfect yet functional controllers using purely state-space

linear MPC, suggesting the quasi-linearity of these systems.

In addition to MPC, the combination of the Koopman operator and the Linear

Quadratic Regulator (K-LQR) optimal control scheme has shown promise in rigid robot

applications [117,118] and the control of fluid dynamics problems [119]. Notably, Ma-

makoukas et al. [120] show promise in a 1-DoF soft robotic fish application employing a

similar Koopman structure.

Even with these many advances in the field, existing soft arm control implementations

[82–85,120] have yet to be demonstrated in the inertial, non-linear regime. In order to

compare with other works, we introduce the following definitions of the “inertial regime”

and “nonlinear dynamics.” We define the inertial regime for soft arms to be when the

inertial force experienced by the tip Ftip is of the order of its weight Ftip = matip ≈ mg,

meaning atip ≈ g. Here m is the mass of the tip of the arm, atip is the acceleration of

the tip during closed-loop control, and g = 9.81m
s2

. We define nonlinear dynamics to

be motions that fail to be adequately captured by a state-space linearization. Thus, an

open challenge remains: modeling and control of inertial dynamics in highly nonlinear

soft robots.

In this work, we advance modeling and control of soft, continuum arms into the

inertial regime. Previous work has considered quasi-static motions, with accelerations
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Figure 4.7: Inertial, nonlinear soft arm control. Using a combined static and
dynamic Koopman framework, we achieve the closed-loop control of soft robotic arms
exceeding 10x the tip speed, 40x the tip acceleration, and 6x the angular displacement
of existing soft arms. This achievement brings soft robotics into the inertial, nonlinear
regime. Only five minutes of training is required to achieve an optimal controller ca-
pable of high-deflection, high-accuracy closed-loop tracking of a reference (the tip of a
pole moved rapidly by a human). The same methodology is applied to both a low-slen-
derness-ratio, four-muscle arm (Robot #1) and a high-slenderness-ratio, three-muscle
arm (Robot #2). Both arms achieve their highest deflection in under half a second.

below 0.03g. Our work demonstrates movements in closed-loop control with accelera-

tions greater than 1g (see Table 4.1). We control these inertial movements in a highly

nonlinear, high-deflection regime across two variations of our soft arm, each with different

dimensions, numbers of actuators, and workspaces. The first demonstrates curvatures

up to 110 degrees (Robot #1) and the second up to 180 degrees (Robot #2) (Fig. 4.7).

This capability is enabled by the introduction of the static Koopman pregain, which

maps held inputs to converged robot configurations. After being learned from data, we

use it as a pregain term in the LQR implementation. The static Koopman pregain greatly

increases the accuracy of static pointing tasks and improves the stability of dynamic tasks.

We show our approach requires minimal training and low computational cost, both
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for determining the model and controlling the robot. Collecting our training data takes

less than 5 minutes and the computation of the model takes less than a second, as

opposed to the long training times required by many neural net-based approaches. Our

approach estimates both the static and dynamic control Koopman operators, enabling

the use of low latency, efficient optimal control methods; this enables real-time tracking

of fast-moving reference positions, even if field-deployed on a low-power microcontroller.

Table 4.1: Comparison with existing soft, coninuum arms shows advances
in speed, acceleration, and deflection during closed-loop control. This work
demonstrates a 10x increase in reference tracking tip speed [Speed] and a 4x im-
provement in tip deflection angle [Deflection] and advances closed-loop control of
soft robot arms into the inertial regime atip > g = 9.81m

s2
. The acceleration [Accel]

of the soft arm’s tip atip is computed using the centripetal acceleration of soft arms
for which circular reference tracking data is available. The distance from the base to
the tip of each arm is also given [Length]. Note that closed-loop deflection data does
not include the large-deflection open-loop tests present in some works. Acronyms:
LQR - Linear Quadratic Regulator, RNN - Recurrent Neural Network, ROM - (ana-
lytical) Reduced Order Model, PCC - Piecewise Constant Curvature, MPC - Model
Predictive Control, LSTM - Long Short-Term Memory, TRPO - Trust Region Policy
Optimization, GPR - Gaussian Process Regression, TO - Trajectory Optimization,
FFC - feedforward compensator, SM - sliding mode, AF - analytical feedback, R1:
Robot #1, R2: Robot #2.
Robot Length

[m]
Speed
[m
s
]

Accel
[m
s2

]
Deflection

[deg]
Model Control

Method
This
Work

0.37 1.52 11.6 R1: 110
R2: 180

Koopman LQR

[87] 0.4 0.15 21 RNN TO
[111] 0.3 0.12 0.065 45 None NN FFC
[121] 0.3 0.1 0.1 20 ROM SM
[116] 0.15 0.094 0.29 18 Koopman MPC
[98] 0.38 0.09 0.032 27 PCC

ROM
AF

[106] 0.44 0.05 19 LSTM TRPO
[82] 0.25 0.035 0.012 7 Koopman MPC
[85] 0.7 0.03 0.032 8 Koopman MPC
[107] 0.22 0.002 0.0016 11 RNN GPR
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4.3.3 Results

In this section, we first outline our approach that enables modeling and control in

the inertial, nonlinear regime, yet requires relatively little training data and low com-

putational power. Next, we systematically test the speed and accuracy of the resulting

closed-loop controller in a series of circular reference tracking tests. The soft arm is

further tested in a tip-tracking test with a rapidly changing, user-defined reference po-

sition designed to test the soft arm’s responsiveness to changes in commands in real

time. Lastly, we test our methodology on the dynamic catching and throwing of a ball.

This leverages the inertial dynamics of our soft arm to demonstrate its effectiveness in

real-world tasks.

Dynamic and Static Koopman Operator Optimal Control

The successful real-time control of a soft arm in the inertial and nonlinear regime

requires both a model that captures these dynamics and a control methodology that

adapts to the motion of the robot in real time. We achieved this by building a controller

which leverages both the dynamic and static Koopman operators of the soft arm system.

The Koopman operators describe the evolution in time of functions defined on the robot

configurations and inputs. These functions are called observables, and the approximation

of the Koopman operators involves training on data which is augmented by a chosen

basis of observables. The data is collected through a series of training experiments,

performed by commanding step inputs with randomly distributed magnitudes. This

training data is partitioned into dynamic and static components which are used to train

the two separate Koopman operators (see Section 4.3.5). Both the training and model

computation processes are fast, requiring only 5 minutes (approximately 18, 000 samples

at 60Hz collection rate) for training data collection, and the matrix pseudo-inverses used
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in the model construction take less than a second on an ordinary laptop computer.

The observables used to train the dynamic Koopman model are time delayed mea-

surements of the position of motion tracking points placed on the soft arm. This turned

out to be sufficient to build a linear model of its nonlinear dynamics. Previous work

considered adding a single time delay to hundreds of monomials [82]. However, inspired

by the fact that, for ergodic systems, the limit of infinitely many time-delay observables

results in DMD’s convergence to the true Koopman operator [100,102,122], we included

only time-delay observables. Our results show that time-delay-only observables are suf-

ficient to capture the dynamics of this nonlinear system (see Supplementary Fig. A.2),

and that without time delays, the eigenvalues in the high-frequency and dissipative re-

gions of the unit circle and their corresponding Koopman modes are missing (Fig. 4.8).

This time-delay-only approach avoids the added computational cost of many monomial

observables, andalso eliminates the large tails associated with monomials which magnify

noisy measurements far from the origin. We express this dynamic Koopman operator as

a pair of matrices A and B giving the uncontrolled and controlled dynamics, respectively.

These can be used to build the Koopman-LQR controller described in Section 4.3.5.

The resulting feedback controller is able to command the soft arm to follow a fast-

changing reference position, but suffers from steady state error. Introducing integral

control (for example, Linear Quadratic Integral Control) is one of the commonly used

approaches to minimizing steady-state error [123]. This method, however, is sensitive

to measurement noise and requires a trade-off between speed of response and tracking

accuracy. As a consequence, the implementation for our goals of highly inertial tasks

resulted in poor tracking performance outside of the quasi-linear and quasi-static regimes.

Instead, we address the steady state error by introducing a static Koopman pregain, a

control concept we developed for the current work. The static Koopman operator was

first formally described in our recent modeling work [86], but no connection to control
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Figure 4.8: Nonlinear and Inertial Dynamics of the Soft Arm. The eigenvalue
plots for Koopman models with state only (A) and state plus time delay observables
(B) are shown. The dashed radial lines signify sections of the unit circle corresponding
to modes with 1 − 5Hz dynamics. The eigenvalues are shaded corresponding to the
logarithm of their maximum achieved mode power evaluated over the training data (see
Section A.1). Using state-only observables results in a simple linearized model which
does not capture any transient dynamics. The addition of two time delay observables
allows the modeling of dynamics up to 5Hz. This is the model we choose for our
experiments. (C) Presentation of the input-output nonlinearty of the system, which
exhibits a sigmoidal deflection response. Modeling this nonlinearity is essential for
acceptable reference tracking performance in the high-deflection regime.

design was made. Unlike the dynamic Koopman operator, this operator is a map between

functions defined on two different spaces. In our application, the static Koopman operator

is used to map functions defined on the space of inputs to functions defined on the space

of robot configurations. We learn this operator from the static partition of the training

data so that static positions in the workspace of the soft arm correspond to the values

of the inputs required to reach those positions after all transient motions dissipate. This

operator is then used as a pregain term that augments the LQR controller. Sensor

noise is known to cause tracking issues in soft robots attempting to perform real-time

tracking of aggressive control inputs [13]. Our control structure mitigates this problem

by balancing the noise-sensitive dynamic Koopman LQR term with the sensor-agnostic

static Koopman pregain.

The construction of the controller and the computation of the optimal input are also
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fast processes which have low computational overhead. The solution of the Riccati equa-

tion involved in computing the LQR control gain takes less than a second, and computing

the optimal input at a given time step only requires two small matrix multiplications.

This is easily achievable in real-time on a low-cost microcontroller.

Closed-loop circle-tracking in inertial, nonlinear regime

With our control architecture in place, we first sought to characterize the performance

across a range of deflections and soft arm speeds in a planar circular reference tracking

(smooth changes in reference position). We commanded the soft arm’s tip to trace out

circular paths in the X-Y plane with three radii (100mm, 180mm, and 220mm) and six

frequencies (0.1, 0.3, 0.5, 0.7, 0.9, and 1.1Hz), as shown in Fig. 4.9. The same controller

was used for all references, as described in Section 4.3.5.

These results show that the soft arm tracks the reference with consistent performance

throughout the full range of deflections and speeds tested (Fig. 4.9, left, Movie S2). The

fastest and highest deflection circle-tracking result demonstrates a tip speed of 1.5m/s, a

speed-to-length ratio of 3.23s−1, and a tip acceleration of 11.6m/s2 in closed-loop control.

This is approximately an order of magnitude faster and forty times higher acceleration

than any soft continuum arm of which we are aware (see Table 4.1). Importantly, the

system was trained exclusively on step inputs, and as such the model had no a priori

knowledge of the control objective nor had it been trained on circular behaviors.

Additionally, we show that the relative contribution of the dynamic Koopman LQR

input versus the static Koopman pregain increases with increasing speed and deflection

(Fig. 4.9, right). For relatively low speeds and deflections, the dynamic Koopman LQR

input is quite small, and the static Koopman pregain dominates. As accelerations increase

and inertia becomes non-negligible, the dynamic component increases in magnitude to

compensate for the static term’s inability to account for inertial effects. This suggests that
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Figure 4.9: Closed-loop reference tracking experiments show the soft arm’s
ability to track in real-time. The soft arm tracked circular reference trajectories
in the X-Y plane with frequencies ranging from 0.1 to 1.1 Hz (0.2 Hz step) at: (A-B)
high, (C-D) medium, and (E-F) low deflections. Plots A, C, and E show the X
positions (red) over time compared to their respective references (blue). The Y and Z
positions are shown in Supplementary Fig. A.3. Plots B, D, and F show the relative
contributions of the static Koopman pregain (yellow) and dynamic Koopman LQR
(red) to the total input (blue). At quasi-static speeds, only the static Koopman pregain
is required for effective performance (i.e. the quantity x−xref is approximately zero);
as inertial effects increase, the LQR component increases its contribution to maintain
performance. Only the commanded inputs to one of the four side muscles is shown,
but the results are similar for all muscles.

for any soft robot performing a non-inertial task, the incredibly simple static Koopman

pregain could be sufficient for control.

Closed-loop, real-time reference-tracking in inertial, nonlinear regime

We next sought to characterize the controller performance for a less structured and

more challenging control objective: tracking a real-time, user-defined reference. To do

so, we commanded the controller to decrease the euclidean distance between the tip of

the soft arm and a motion tracker point located on the tip of a pole. A human operator
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Figure 4.10: Performance of our controller subjected to a series of arbitrary
reference positions spanning the high-deflection workspace. (A) The X posi-
tion of the soft arm tip is shown as it tracks a moving reference commanded randomly
by an operator. Contact between the green lines and blue band indicates points where
the soft arm is touching the reference marker. (1-3) show images of the soft arm
performing this behavior. Of note, the robot rarely loses contact with the moving
reference.

moved the pole across random trajectories within the reachable workspace of the soft arm.

Throughout the test, the robot remains in contact almost continuously while achieving

speeds exceeding 0.7m/s (as shown in Fig. 4.10 and Movies S1 and S4).

To demonstrate the generalizability of our approach for different soft arms, we also

tested our approach on a morphologically different second arm. The second arm is

longer, more slender, and has three instead of four side muscle. This results in larger

curvatures and a helical actuation pattern, as discussed in Section 4.3.5. Despite these

differences, no changes were needed in the learning and control algorithm, aside from
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updating the number of inputs. This second system was exposed to 5 minutes of step

input training data, the model and controller were calculated and deployed, and the

system was commanded to again track the tip of the user-operated pole. Results of this

test are shown in supplementary materials (Movie S5), and stills from the testing are

shown in Fig. 4.7.

Dynamic Throwing and Catching

With the viability of our method shown in the above characterization tests, we finally

demonstrated how its capabilities translate to sample robotic tasks. We challenged our

soft continuum arm in two ways: first, to catch a ball swinging through the air as we

demonstrate in Fig. 4.11, and second, to receive an object from an operator, and to

throw it into a reference bin as shown in Fig. 4.12. Both tests are shown in Movie S3.

The catching component of this demonstration is similar to the ball catching performed

by a two-link arm with a soft joint [124], but here completed with a fully soft continuum

robot arm.

4.3.4 Discussion

We presented a data-driven framework for the modeling and control of inertial and

nonlinear soft robots. We used Koopman Operator Theory to enable the application

of linear control methods to this highly nonlinear, inertial system. We introduce a

Koopman-LQR with static Koopman pregain capable of accurately controlling two dif-

ferent soft robots that exhibit high deflections and inertial motions. Advancing the state

of the art, the proposed method allows the construction and deployment of both a model

and optimal controller from less than 5 minutes of training data - to the best of the

authors knowledge, the shortest in soft robotics (Fig. 4.13). Compared to existing MPC-
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Figure 4.11: Performance of our controller when attempting to minimize
error on an arbitrary trajectory (catching a swinging ball). (A) The soft arm
stays in the neutral position while the ball is outside the workspace. (B) Once visible,
the soft arm rapidly responds to reach the ball (outlined swinging into the workspace).
(C) The soft arm tip intercepts the ball and catches it (with small magnets on both
the soft arm tip and swinging ball.)

based controllers, K-LQR is computationally less expensive and can be deployed on a

simple microprocessor, enabling cheap and scalable use in a variety of environments out-

side the research laboratory. Despite its simplicity, our controller allows our soft arm
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Figure 4.12: Demonstration of implications of the developed methodology:
completing example tasks (A) The soft arm identifies the objective and approaches
it (operator’s hand). (B) After the operator’s hand is removed and the ball is supported
by the soft arm, the objective changes to the bin (lighted bin in bottom left and
right, respectively). The soft arm now flings the ball at the objective. (C) The ball
successfully enters the bin in two different, arbitrary locations, achievable only by
working in the inertial regime.

to undergo controlled accelerations substantially greater than previous examples, even

exceeding 1g (Table 4.1).

Although the presented demonstration of our modeling and control approach focused
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Figure 4.13: Convergence of the Koopman model and control system. (A)
The dynamic Koopman model requires the addition of five time delay observables and
only one minute of training data to reach minimum prediction error. To determine
this error, the single-step prediction error of the dynamic Koopman model is collected
for all points as the soft arm moves on a circular path in the X-Y plane (inset), and
the root-mean-square (RMS) average is taken. For comparison, a Koopman model
using monomials of the state up to order four gives no improvement over the state
only model. This reconstruction is performed on a model trained on zero sinusoidal
trajectories. (B) In closed-loop control, the combination static/dynamic Koopman
controller requires only five minutes of training data and two time delays to reach
minimum prediction error; accordingly, we use this controller design for every exper-
iment. Each controller was commanded to move the soft arm’s tip to a sequence of
points in the workspace of the soft arm, and the average RMS error for all these points
was calculated. Using zero time delays resulted in the soft arm being unable to stabi-
lize at any reference position, so that line is not shown.

on soft robots, its implications could be much broader. The approach’s ability to explore

the dynamical features of a complex, nonlinear, inertial system could offer advantages

in modeling and control of myriad robotic systems. Further, its speed, versatility, low

computational cost, and ease of use potentially expand the accessibility of robotics to new

user groups. As such, we believe our approach has the potential to make field-deployable,

dynamical, soft robotic systems notably closer to realization.
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4.3.5 Materials and Methods

Here, we first introduce Koopman Operator Theory, the mathematical underpinning

of our modeling effort. In Section 4.3.5, we describe a practical method to build the

model for our control system from data. In Section 4.3.5 we describe how this model is

embedded into a real-time feedback controller. Our modeling and control insight is the

addition of a static Koopman operator pregain described in Section 4.3.5. The design

and fabrication of our soft arms, and a description of the pneumatic circuitry that drive

them is then presented. A block diagram detailing the full training process, modeling,

and control architecture is given in Supplementary Fig. A.4.

Koopman Operator Theory

The state space representation of a dynamical system involves defining an n-dimensional

state space manifold M with states x ∈ M and discrete-time evolution given by

x+ = S(x). (4.10)

Here S is the possibly nonlinear state transition function S : M → M and x+ is the

time-shifted state. In our application, M = Rn.

This nonlinearity is often critical to modeling a system in state space, but it compli-

cates the design of control algorithms. We instead turn to an operator-theoretic perspec-

tive of dynamics of observables [99]. Observables are complex-valued functions defined

on the state space f : M → C. We will restrict ourselves to real-valued observables

f : M → R. The set of all possible observables forms a vector space that is usually

infinite dimensional. The Koopman operator K is defined by

Kf := f ◦ S. (4.11)
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This operator describes the evolution of observables under the action of the dynamics

(4.10). Even though the underlying state space system is nonlinear, the Koopman oper-

ator K is always linear [80,86,99,112]. This is true without restriction on the dynamics

or observables.

We want to exploit this linearity to enable the design of an efficient optimal control

scheme. This requires extending the Koopman framework to systems of the form x+ =

S(x, u) where u ∈ Rp is a p dimensional vector of user-specified inputs. In full generality,

the Koopman operator for systems with input acts on observables of the form f : M×U →

C where U is the space of all control sequences indexed by time ū(·) : N → Rp. We

redefine the state transition function to include inputs S : M × Rp → M and introduce

the left shift operator T : U → U which simply chooses the next input in a sequence

(T ū)(k) = ū(k + 1). When the observables are defined on both the states and inputs,

their Koopman evolution is given by

(Kf)(x, ū(·)) := f(S(x, ū(0)), T ū(·)). (4.12)

Elements of U are infinite dimensional, which puts the observables f : M × U → R

on an infinite dimensional domain, so they cannot be manipulated on a computer. We

introduce the simplifying assumption that knowing only the input at the current time

step is enough to predict the future dynamics. We can now define observables of the

form f : M × Rp → R. This results in a Koopman operator K defined by

(Kf)(x, u) := f(S(x, u), u) (4.13)

We seek a finite dimensional linear input/output system which approximates the action

of K on a finite set of chosen observables. This process is described in Section 4.3.5.
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Approximation of Koopman Operators for Control Systems: DMDc

We follow the process outlined in [101]. The Koopman operator in its fully infinite

dimensional form is not practically realizable, so we seek a finite dimensional approxima-

tion. The first step is to choose some finite dictionary of observables {gj(x, u)}m+p
j=1 . We

choose m observables which are functions of purely the states, p which are functions of

the inputs, and none which are coupled functions of both the states and inputs

{gj(x, u)}m+p
j=1 = {fj(x)}mj=1 ∪ {hj(u)}m+p

j=m+1. (4.14)

It is simple to allow arbitrary input observables, but we only deal with the case where

hj(u) = uj. This decoupling restricts our choices of observables, but it allows us to define

a vector of observables z(x) = [f1(x) · · · fm(x)]T called the lifted state which allows us to

represent our dynamics as a linear input-output system

z+ = Az +Bu. (4.15)

Here A and B are the state transition and input matrices, respectively. This simplification

has the benefit of enabling the later use of the fast and efficient linear optimal control

methods described in Section 4.3.5, while still capturing the dynamics of the system as

demonstrated in Fig. A.2.

The states are retrieved from the observables using the output equation

x = Cz (4.16)

where C is the output matrix.

Here, we outline the approximation of the matrices A, B, and C using a process called
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extended dynamic mode decomposition with control (EDMDc) [101]. When restricted

to time delay observables, we call this Hankel-DMDc or HDMDc. We want to approxi-

mate these matrices using K measurements of the states {x1, ..., xK}, time-shifted states

{x+
1 , ..., x

+
K}, and inputs {u1, ..., uK} collected from experimental data. First, we build

data matrices whose columns are the data vectors

X := [x1 ... xK ], (4.17)

X+ := [x+
1 ... x+

K ], (4.18)

U := [u1 ... uK ]. (4.19)

Next, we build the lifted data matrices using our chosen vector of observables z(x)

Xlift := [z(x1) ... z(xK)], (4.20)

X+
lift := [z(x+

1 ) ... z(x
+
K)]. (4.21)

The desired matrices A and B satisfy the equation

X+
lift = AXlift +BU. (4.22)

In order to approximate A and B, we recast this equation as a minimization problem

min
A,B

∥X+
lift − AXlift −BU∥F (4.23)

which has the solution

[A B] = X+
lift


Xlift

U




†

(4.24)

where † is the Moore-Penrose pseudoinverse. Since we prescribe our first n observables to
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be the states x ∈ M , we can compute the output matrix using a partial identity matrix

C =

 In×n 0n×m−n

0m−n×n 0m−n×m−n

 . (4.25)

The action of the matrices A and B on the lifted state via Equation 4.15 approximates

the action of the Koopman operator K in Equation 4.13. Under certain assumptions, this

representation of the Koopman operator converges to the true Koopman operator [103].

True convergence requires infinite data samples which are uniformly distributed in state

space and a collection of observables which span an invariant subspace of the Koopman

operator’s underlying function space. We discuss our method of generating training data

in Section 4.3.5.

Koopman-LQR (K-LQR)

To date, similar investigations have used model predictive control (MPC) to control

their soft robotic systems [83–85]. Using predictions of the dynamics and a tunable

prediction horizon, this architecture calculates input sequences which move the system

toward a desired reference position. This enables the use of explicit input and state

constraints, but the real-time constrained optimizations involved in this method demand

a high computational overhead.

In our inertial soft arm controller, explicit constraints are less important than keeping

computational cost and latency low. For unconstrained linear optimal control problems

with quadratic cost, the linear quadratic regulator (LQR) provides an analytical solution

which does not require predictions of the dynamics in real time [123]. For our controller,

we begin with the application of LQR to the dynamic Koopman representation of a

dynamical system (previously demonstrated for a robotic fish [120]), and augment it via
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the introduction of the static Koopman term, described in Section 4.3.5.

Here we describe the dynamic Koopman LQR control law. Although originally intro-

duced for linear dynamical systems in state space, LQR can also be applied to a vector

of observables z of a nonlinear control system as long as a linear, finite dimensional

representation of the Koopman operator (A,B) exists. Given the system

z+ = Az +Bu (4.26)

x = Cz, (4.27)

we define the global cost function

J =
K∑
i=1

[
(zi − zref)

TQ(zi − zref) + uT
i Rui

]
(4.28)

where xref = Czref is the desired position and Q and R are diagonal lifted state and input

penalty matrices, respectively.

The computation of the minimizing control input is a classical method in optimal

control [123] and is given by ui = −K(zi − zref) where the matrix K is the LQR gain.

This control law results in steady state errors in much of the soft arm’s workspace. This

is remedied in the next section by the addition of a pregain term based on the static

Koopman operator.

Static Koopman Pregain

Unfortunately, Dynamic Koopman LQR alone resulted in substantial disagreement

between reference positions and the resulting states. This is because the nonzero inputs

required to hold these positions result in a nonzero input penalty term. Any attempt to

decrease the input penalty resulted in system instability. The addition of a pregain term
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is a classical method in control theory that addresses this problem. In this section, we

introduce a data-driven method to compute the pregain using a static Koopman operator,

which we term the static Koopman pregain.

A core assumption of this component of our model is that when held for enough time,

all transient dynamics dissipate, and the robot achieves a static pose. Therefore, the set

of admissible step inputs ustatic corresponds to a set of input-mediated fixed points xstatic.

We seek a mapping from the data matrix of step inputs, Ustatic, to the data matrix of

stationary states, Xstatic. Ideally, this mapping would be linear to enable us to use fast,

optimal control. The Koopman framework usually requires the domain and range to be

the same, but this requirement can be relaxed if we consider the static Koopman operator

[86]. The static Koopman operator contrasts with the dynamic Koopman operator, which

describes the evolution of observables f : M → R under the action of the mapping

T : M → M . If we define observables on the inputs as g : Rp → R, the static Koopman

operator Kstat is defined as

Kstatf(xstat) = g(ustat). (4.29)

We desire to approximate the action of the static Koopman operator with a finite

dimensional matrix G. To do so, we first construct the data matrix Ustatic with unique

step inputs as the columns of the matrix. By feeding these inputs to the system and

allowing transient dynamics to dissipate, we are left with a unique stationary state,

xstatic; these states represent the columns of Xstatic. The matrix G is then computed

using

G = UstaticX
†
static. (4.30)

The matrix G serves as a linear mapping from stationary states to inputs.

Finally, we are ready to bias our control law with the addition of a feedforward pregain
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term Gzref, resulting in

ui = −K(zi − zref) +Gzref.

zi+1 = Azi +Bui

xi = Czi+1.

(4.31)

This signal is the optimal stabilizing solution taking the present initial state to the desired

state, xref.

As shown in Fig. 4.9, the pregain term ustat = Gzref outweighs the dynamic term

udyn = −K(zi− zref) in most tests. This allows the input penalty weights in the dynamic

term to be optimized without fear of sacrificing steady-state error. Also, the static

Koopman term provides enough of a steady input to counter the fluctuations caused by

measurement noise introduced by the state measurements in the dynamic term. This is

the reason our system does not experience the destabilizing effects of noise in fast-moving

reference tests described in [13].

Training and Observables

With the mathematical underpinning of our modeling and control methodology de-

scribed (see Supplementary Fig. A.4), we now turn to the particular choices made to

suit our particular robotic applications. Given the soft arms described in Section 4.3.5

we collect training data through a series of experiments, performed by commanding step

inputs with randomly distributed magnitudes. The only prior knowledge of the soft arm’s

dynamics required is an upper bound for the length of time required for the dissipative

dynamics to die down while inputs are held. Each step input is held for this amount

of time so that the soft arm converges to a steady state, efficiently probing both the

dynamic and static response. The data is separated into training and validation sets,

and the training data is further partitioned into dynamic and static components which
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are used to train dynamic and static Koopman operators (see Section 4.3.3).

Choosing observables is difficult in practice. We choose to implement DMDc with time

delay observables (also known as Hankel DMDc) because of their provable convergence

as the number of time delays goes to infinity under certain assumptions on the dynamics

[100,102,122]. In reality, adding more time delays gives a diminishing return in prediction

accuracy (see Fig. 4.13A). A single time delay with hundreds of monomials is used in [82–

85], but we find that time-delay-only observables offer better results, with improvements

in reconstruction with up to ten observables (See Fig. 4.13A). To create our observables,

we use the current measurement of the X-Y-Z positions of the motion trackers xk and

append two time-delayed versions of the same states zk = [xk xk−1 xk−2]
T . Each time

delay looks 1/60 seconds into the past. This proves to be sufficient for closed-loop control.

For reconstruction, more time delays give further increases to the model’s accuracy, as

shown in Fig. 4.13A.

The synergy of step inputs and time delays allows the discovery of system eigenvalues

in the important 1 to 5Hz range (the span of natural frequencies of the arm), as shown

in Fig. 4.8. Without time delays, these eigenvalues and their corresponding Koopman

modes are missed (Fig. 4.8). For comparison to the Koopman model used in [82], we

tested the addition of monomial observables was tested up to order 4 with no new dynamic

modes of any meaningful mode power learned. Monomial observables also failed to give

any improvement to the reconstruction or closed-loop pointing accuracy of the model

and controller (Fig. 4.13).

With the goal of minimizing training time and model complexity, we found that

up to five time delays and one minute of step input training is best for modeling our

system before considering control, but only two time delays and five minutes of step

input training is ideal when control is considered. We first compared the prediction

ability of different dynamic Koopman models as we varied the number of time delays and
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total training time (Fig. 4.13A). The addition of a single time delay substantially reduced

error, however additional time delays continued to offer marginal improvements up to five

delays. We also found that after only approximately one minute of training, the model

reached its minimum error. Second, we built Koopman-LQR controllers as described in

Section 4.3.5, augmented with a static Koopman operator as a pregain term, with varied

time delays and training time. We then quantified the error with closed-loop control

(Fig. 4.13B). In this case, two time delays outperformed one delay, but was comparable

to three or more, resulting in our decision to use two delays for control. We also found

that after approximately five minutes of training (fifty unique step inputs), the error

converged; we used this amount of training time for the remaining experiments. Note: a

direct linearization of the system was unstable during controlled motions, suggesting the

nonlinearity of the system.

Robot Design

For this investigation, we constructed two distinct soft arms to evaluate the via-

bility of the proposed methodology across nonlinear dynamical systems. For each, we

aimed to meet the following objectives: a) high-deflection, nonlinear dynamics for which

linearization fails; b) inertial dynamics, for which quasi-static approximations fail; c)

enough morphological diversity such that their analytical models would be not readily

transferrable.

To this end, the first arm was designed to have four actuators (two antagonistic

pairs) longitudinally aligned with the main body to produce planar actuation. This

design is behaviorally similar to others present in the literature ( [97,98,125]). When

fabricated with appropriate pretension, this construction allows for approximately 110◦

of curvature when fully actuated. With a length of 45 cm and a maximum diameter (main

body diameter plus the diameter of the fully inflated muscles) of 6.25 cm, the slenderness
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ratio of this device was 7.2 (the ratio of length to max diameter).

The second arm was designed with three actuators, all of which were affixed to the

body such that a torsional deflection would be induced when inflated. This produces a

helical actuation that is markedly different from that of the first embodiment. With a

length of 53 cm and a maximum diameter of 3.8 cm, this device exhibited a slenderness

ratio of 13.9. The muscles were affixed with pretensions such that, when fully actuated,

this device is capable of achieving approximately 180◦ of curvature.

For objective a), with an angle of curvature of at least 110◦ for both arms, the

nonlinearity metric is well achieved (See Fig. 4.8). For objective b), both systems were

fabricated out of airtight fabric, utilizing fabric pneumatic artificial muscles (fPAMs)

as described in [39], which exhibit a fast response time and low hystersis (on the order

of 1%), achieving accelerations in excess of g. For c), the factor of approximately two

difference in slenderness ratios, the change in actuator numbers, and the inclusion of

helical actuation all combine to produce two systems with meaningfully different behavior

(see, for example, the model presented in [40] compared to [104]).

Robot Fabrication

Both arms were constructed out of 30 Denier silicone-polyurethane impregnated rip-

stop nylon (Sil-nylon, Rockywoods Fabrics), actuated by fabric pneumatic artificial mus-

cles (fPAMs) [39] built out of the same material. The main body was fabricated such

that one side of the fabric weave cell was parallel to the longitudinal axis, the other

perpendicular. This orientation makes the soft arm axially and transversely stiff, but

torsionally compliant. The muscles were fabricated such that each side of the cell was

offset by approximately 45◦ with respect to the longitudinal axis, which instead makes the

actuator torsionally stiff but compliant axially and transversely. Moreover, when these

muscles are inflated, they shorten in the longitudinal direction as a McKibben does, up
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to 35% based on the pretensioning induced during adhesion to the main body.

Each of these components was cut from a sheet of fabric, rolled into a tube, and sealed

with a lap joint using RTV silicone adhesive (Smooth-on Silpoxy). Once each component

was fashioned, a jig was produced to hold the main body and pretensioned muscles in

place while the RTV cured. Finally, in between each muscle a fabric sleeve, exhibiting

the same fabric bias as the muscles, was attached to the main body to allow for motion

capture tracker wires to be routed without occluding the view of the LEDs.

Pneumatic Circuit Design

Each soft arm body was held at a constant pressure of approximately 1 bar for the

entirety of testing, supplied by a discrete source. For each muscle of both soft arms,

Festo VEAB-L-26-D2-Q4-V1-1R1 proportional pressure valves were used to command

individual pressures continuously. These three-port valves were chosen for three reasons:

their fast response times (<10ms); accurate response (0.75% full-scale absolute accuracy,

0.4% full-scale repeatability error); and the ability to accept forced exhaust through their

third port. However, this accuracy requires a lower flow rate, which precluded the use in

the much larger main body (due primarily to persistent leaks). Additional information on

the general control circuitry configuration can be found in the Supplemental Information.
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A significant component of my work over the past 5 years has heretofore gone un-

published. Not exactly chronological, this project has gone through fits and starts as I

focused on the preceding chapters. However, while it has traditionally been relegated to

just a side project, it is finally blossoming into its own concern. That concern is soft

robotic medical devices, specifically soft robotic airway management.

5.1 Background

This work began in 2019, when an anesthesiologist from Stanford, Dr. David Drover,

reached out to my Ph.D. Advisor, Elliot Hawkes, with a question: can soft robotics

address a critical unmet need in airway management? This inquiry set into motion an

ongoing collaboration with Dr. Drover, that has led us through every airway mannequin

known to man, drawn us north, south, and east in search of a large sample of cadaver

airways, and ultimately fostered the founding of our small startup, Vine Medical.

While this project is still far from "done," it has gone through a fascinating evolution

from inception to its current embodiment. Of all my projects in graduate school, this is

the first that stacks nonlinearities - both of the system and of the environmental substrate

- with a very small margin for error. Ultimately, it has proven to be my most difficult

challenge yet: attempting to develop a single, semi-autonomous, universal intubation

system that competes with experts in terms of success rates and success times.

This chapter describes the detailed engineering that has gone into the device over the

past 4 years, and describes some of the open questions that are on the horizon.

5.1.1 Abstract

For over a century, medical practitioners have struggled with the challenge of intuba-

tion. Evolution has designed an airway that effectively rejects foreign objects - the glottic
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structure is easily covered by the protective epiglottis, located anterior to the esophagus

and hidden behind the soft palate; and the highly sensitive vocal cords are controlled by

the vagus nerve, reacting to minor stimulus at very low levels on consciousness [126].

As such, proper airway management demands the provider have a simultaneous

breadth and depth of expertise to properly visualize the glottic structure, identify the

cords, and deliver a semi-rigid tube around the nearly 270 degrees of curvature that de-

fines the upper airway. Such a feat can be difficult to achieve in a controlled operating

room, and this difficulty only compounds as the environment becomes more dynamic,

including everything from the emergency department to the battlefield. As such, anes-

thesiologists with decades of experience are widely seen as the airway experts but few

sites of care have access to such skill – in the OR, most first-pass intubation failures occur

during “unanticipated difficult airway” cases (present in ∼3% of cases [127,128]), yet with

lower expertise and less structure outside the OR, failure rates are much higher: approxi-

mately 35% in the prehospital setting and 15-20% in the emergency room (ER) [129–132],

with up to 33% of failed intubations resulting in complications ranging from hypoxia to

cardiac arrest [133–136].

The presented work addresses this problem by leveraging recent innovations on tip-

growing, soft systems, and presents an autonomous, soft, self-contained and self-deploying

endotracheal tube. The Origin ETT to date has: in anatomically-correct mannequins,

achieved a first-pass intubation success rate of 94%, competing with the skill of anes-

thesiologists in the operating room; in fresh-frozen cadavers, achieved 84% first-pass

intubation success rate, rivaling emergency medicine doctors using video laryngoscopy.

Yet critically, it reaches these performance benchmarks in the hands of medical laypeo-

ple. Thus, the presented device for the first time enables the deployment of a definitive

airway, in any circumstance, in the hands of any provider.
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5.2 Introduction

Artificial airways are an integral component of care in both the operating room (OR)

and in emergency medicine. Currently, providers have two choices: a definitive, in-

fraglottic airway (IGA) via an endotracheal tube (ETT) or tracheostomy tube; or a

non-definitive, supraglottic airway (SGA), such as the larnygeal mask airway (LMA) or

laryngeal tube (LT). In most sites of service, the IGA is the "gold standard" of care for

its ability to both prevent aspiration, and deliver reliable ventilation more repeatably

than an SGA. Amongst IGAs, ETT intubation is overwhelmingly preferred due to its

minimally invasive nature compared to tracheostomy and cricothryoidotomy tubes [137].

Current intubation techniques involve visualization and manual guidance of the ETT

into the trachea, but placement requires anatomical knowledge and skill, often only

possessed by anesthesiologists with decades of experience, and is often complicated by

circumstantial difficulties in emergent scenarios [129–131,133,138–140]. In the OR, most

first-pass intubation failures occur during “difficult airway” cases (present in ∼3% of

cases [127,128]), yet in less controlled environments outside the OR, failure rates are much

higher: approximately 35% in the prehospital setting and 15-20% in the emergency room

(ER) [129–132], with up to 33% of failed intubations resulting in complications ranging

from hypoxia to cardiac arrest [133–136]. Even more alarming is the fact that military

medics have largely forsaken intubation, relying on the SGA or invasive airway access to

provide emergency ventilation [141].

Technological attempts to address the challenge of intubation have relied upon im-

proved visualization tools such as the video laryngoscope and the video stylet. But while

these devices aid in improving glottic view, they still require advanced anatomical knowl-

edge and well-honed technique to effectively pass them through the airway to facilitate

intubation. As a consequence, the benefits of such devices tend to befall the experts, not
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the novices [133,139,140].

Such limitations are exactly the motivation for the field of soft robotics. Instead of

rigid devices that, while repeatable, are prone to circumstantial and operator misuse or

failure, soft systems embody a mechanical intelligence that offloads a significant amount

of user skill and fosters resilience. Here, we present the world’s first soft robotic intubation

system. By leveraging vine-inspired tip-growth [26], in which a soft tube extends from

its tip into complex shapes driven only by a low internal air pressure, we have designed a

system that is nearly provider agnostic, showing equivalent performance in the hands of

both anesthesiologists and paramedics. The proposed technology could provide: in the

OR, oxygen to surgical patients with an unexpected difficult airway in seconds; in every

ER, it could serve as a life-saving rescue device when patients are critically in need of

oxygen; in every ambulance, it could supplant existing airway devices (SGAs and BVMs)

that do not intubate.

5.2.1 Soft robotic airway device design requirements

The human airway is unique in that it has been designed by thousands of years

of evolution to reject all foreign objects from entering, even in a significantly injured

individually. The result is a trachea that hides behind the base of the tongue, more than

90 degrees from the oral axis. The larynx includes complex musculature that is controlled

via the most fundamental aspect of the central nervous system (CNS) - the vagal nerve

- that snaps shut with the smallest hint of intrusion. Finally, the pharynx has a variety

of anatomical features to further protect the larynx from foreign materials, including the

epiglottis, which closes from the anterior surface to redirect food and liquids into the

esophagus, and the arytenoid cartilages, which both create a step from the pharyngeal

axis to the laryneal axis and closes from the posterior side to seal off the larynx within
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the closed epiglottis [126].

Airway management capabilities vary wildly depending on site of service (i.e. op-

erating room (OR), non-OR hospital such as emergency department (ED) or intensive

care unit (ICU), or pre-hospital), provider skill (anesthesiologist, emergency medicine

physician, respiratory therapist, paramedic), and the type of health system (Level I-

V trauma center, academic vs community medical center, public vs private emergency

medical services (EMS) agency).

In the operating room (OR), airway management conditions are normally extremely

controlled and routine [137]. Before the procedure the anesthesiologist will do an awake

airway exam, giving them some insight into the anatomical constraints they will face when

intubating. Based on this exam, once in the OR, as many tools as the doctor anticipates

needing are readily available. The patient is positioned in a favorable orientation (supine

with shoulders lifted, head in the sniffing position, table at proper height for the provider)

and preoxygenated. The fasted patient is then anesthetized and sedated, stopping all

respiratory effort with 60+ seconds of oxygen reserve. The anesthesiologist then quickly

advances the ETT into the airway and resumes ventilation. The only time these cases go

awry is when unanticipated difficulties are encountered - anatomical constraints the MD

could not predict from an external evaluation alone (such as an anterior airway, floppy

epiglottis, an airway mass of some sort). With the combination of environmental control

and provider skill, failures only happen ∼3% percent of the time, but correspond to 105%

increase in cost [127,128,142].

In the hospital but outside the OR (i.e. in the emergency department (ED) or inten-

sive care unit (ICU)), circumstances are rarely as favorable. Patients are rarely fasted,

often with blood or vomit in their airway. Their respiratory reserve could be completely

expended, and preoxygenation could be failing. Many times they will be actively undergo-

ing CPR, which bucks the body up, down and side-to-side. The doctor has no opportunity
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to do a pre-procedure examination, and has no idea what they will encounter anatomi-

cally. Luckily, the doctor will likely have multiple nurses available to help, hopefully have

access to multiple tools and technologies, and in the case of Level I and II trauma cen-

ters, should have an anesthesiologist on-site to help. In these environments, success rates

range from 72% to 85% percent first-pass, but correspond to high complication rates of

up to 45% (including hypoxemia, hypotension, cardiac instability) [129,131,133,138].

In the pre-hospital environment, things become even more complicated. Not only does

all the above hold, but lighting will be inconsistent; patient positioning could range from

behind a toilet to upside down in a rolled car; loved ones could be screaming in the next

room; the paramedic and EMT might be the only two providers on-scene. The paramedic

may or may not have access to video laryngoscopy, and may have only trained a few

hours on mannequins this year. With such variability in procedure scenarios, nationally

paramedics can only achieve approximately 65% first-pass success [130,132,140,143].

Finally, in the military environment, medics are subject to even more complicated

circumstances with even less training, while being tasked with providing care to team

members with whom they have deep relationships. There could be gunfire and artillery,

it could be night time, it could be your best friend on the team, and you have the training

of a civilian EMT. Intubation is so fraught with failure in these environments, practice

guidelines (the Tactical Combat Casualty Care (TCCC) manual) recommends either an

SGA placement or invasive airway access - a cricothyroidotomy [141]. Psychologically,

the decision to cut ones neck is often nearly insurmountable. It is for these reasons, that

airway mismanagement is the second leading cause of preventable death in the military,

behind only hemorrhagic death [144–146].

Given the current state of airway management practice, the primary goal of a novel

airway device is to attempt to normalize performance across site of service and provider

skill. Therefore, the design objective should seek to meet or exceed the national average
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for first-pass intubation success regardless of provider skill, with a clinically relevant time

to intubation, while producing no more adverse events than current intubation practice.

That is, the population-level first-pass success (FPS) should achieve the weighted average

for all intubations completed on a national basis, such as is described in (5.1). Clinically

relevant time to intubation is qualitatively set to "as short as possible", with a firm upper

limit of less than 180 seconds (the time it takes for preoxygenated patients to drop below

90% SAO2) [147]. Complication rates follow a similar determination as (5.1), based on

findings in [133,148].

Weighted Average (WA) = PIOR ∗ FPSOR + PIIH ∗ FPSIH + PIOH ∗ FPSOH

= 0.88 ∗ 0.95 + 0.08 ∗ 0.85 + 0.04 ∗ 0.65

= 93% FPS

(5.1)

where PIXX is the percentage of intubations completed in a given environment, with

XX ∈ {OR, IH,OH} describing the Operating Room (OR), in-hospital non-OR (IH),

and out-of-hospital (OH).

5.2.2 Designing for simulant: mannequins

Airway mannequins are the primary method for non-clinical airway management

training, due to their wide availability, relatively low cost, and high variation in the

anatomical representation. Thus, the logical first step in this endeavor was to prototype

and test on mannequins.

Leading providers for these simulators include Ambu (Ballerup, Denmark), Laerdal

Medical (Stravanger, Norway), and TruCorp Ltd (Lurgan, UK). Mannequins from each

provider were acquired, representing 5 different airway anatomies [149–153]. In each, in
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concert with Dr. David Drover (Professor of Anesthesiology, Stanford University), we

identified the primary design variable as the incisor-to-glottic distance (ITG). Supplment-

ing our mental model with the normal variation of the anatomy as presented in [154,155],

we sought to design a system that: (i) datumed against the incisors; (ii) advanced from

the incisors to the oropharynx; (iii) turned inferiorly to access the hypopharynx; (iv)

first extended into the esophagus to block that pathway; (v) branched at the appropriate

depth anteriorly into the trachea (Fig. 5.1A-D. Importantly, step (v) needed to have

sufficient range to cover the vast majority of the adult human population, which we

quantitatively set at three sigma (99.7%)).

Testing was conducted in each of the mannequins previously described, with the

objective of finding the range of depths for which a given device would still effectively

intubate. It was found that, on average, a device could intubate within ±1.5cm of the

tracheal opening. Using the models provided in [154,155], these findings allowed for

the creation of three sizes that effectively covered the adult population to the design

specification described above (as shown in Fig. 5.2).

With the mannequin airway morphology readily known, the design intent was to

optimze the performance in each of the (i)-(v) steps listed above. This included designing

an improved mouthpiece that reliably datumed off the incisors in the appropriate form-

Figure 5.1: Illustration of proposed device. (A) Eversion process explained. (B)
Mouthpiece is placed. (C) With inflation, primary body grows towards pharynx. (D)
Soft primary body conforms to anatomy while pulling soft internal tube. (E) Secondary
body branches anteriorly, passively deforming as necessary to enter trachea and deliver
soft internal tube. After deployment, cuff is inflated to secure airway.
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Figure 5.2: Distribution of normal airway tract lengths, overlaid by sizes selected to
cover 99.7% of adults

factor; identifying the best spline for the primary body (Fig. 5.1C) to account for varying

oropharyngeal depths; defining the optimal branch distance at a given size; and refining

the branch geometry and internal ETT configuration to mitigate the pressure (and as

a consequence, force) required to access the trachea. Such design efforts were driven

by insights gained from Chapter 2; specifically, (2.6) and (2.9) gave force and pressure

insights that informed both the primary body spline and the branch geometry. This

design culminated in that shown in Figs. 5.3 and 5.4.

This design was then tested in each of the mannequins described above. Twenty

tests were performed in each mannequin airway with a single device. After 5 tests in

each mannequin, manufacturer-provided lubricant was reapplied to overcome the non-

realistic friction produced by their silicone construction. Inflation was provided by a

hand pump capable of producing 35 kPa of air pressure. Time to intubation was defined
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Secondary Body

Primary Body

Soft Internal
Tube

Cuff

Mouthpiece

Material 
Storage

Breathing Circuit ConnectorA B
Incisor Datum

Figure 5.3: (A) Render of the device with all critical features shown (fully deployed
state). (B) Sequential deployment of a complete prototype: the primary body first
grows into the esophagus, then the secondary body branches anteriorly into the tra-
chea.

Figure 5.4: (A) The mouthpiece, which houses the body material, is shown. (B) Device
is placed in patient’s mouth. (C) Device is inflated with the included hand pump,
autonomously navigating to the trachea in 6 s. (D) A standard bag resuscitator is
connected to the breathing port, ventilating the patient.

as the time from the introduction of the mouthpiece until full eversion in the trachea;

first-pass success was recorded if the device full everted into the trachea under only the

influence of supplied air pressure. These results are shown in Table 5.1. Of note: while

an in-line pressure gauge was not included for the above testing, all successes occurred

under the 35 kPa limit of the hand pump; additionally, while intubation time was not

tracked, successes occurred in as little as 6 seconds. The next step was to translate this

design to a more representative simulation environment for verification and validation:
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TruCorp
"normal"
airway
( [152])

TruCorp
"difficult"

airway
1 [153]

TruCorp
"difficult"

airway
2 [153]

Laerdal
"normal"
airway
[150]

Laerdal
"difficult"

airway
[151]

Average
first-pass
success

20/20 19/20 18/20 18/20 19/20 94%

Table 5.1: First-pass success rates in various industry-standard training mannequins,
including simulated edema and elongated epiglottis. Average first-pass success rate
across anatomies is 94%.

fresh-frozen, unpreservered cadavers.

5.2.3 Designing for simulant: cadavers

The above-described results were observed in March and April of 2022. While we had

done some initial cadaver testing to confirm our mannequin results, the sample size was

quite small to this point (n = 6). In those tests, we observed reliable success in 4 out of

6 of the specimens, with the other two inconclusive for a variety of reasons (immature

testing protocols, inadequate analytical equipment, etc.). Consequently, in May of 2022,

as we made the conscious decision to validate our mannequin-inspired design, our null

hypothesis was that the device would change marginally over the coming 2-3 months to

maximize performance, and that we would be manufacturing devices by the end of the

year. That hypothesis was wildly incorrect.

In designing for mannequins, we went through the process of identifying key variables,

implementing model-based design to hit certain specifications, tested and iterated. This

design cycle resulted in a highly reliable system, but the key assumptions were wrong:

mannequin anatomy and tissue dynamics are not representative of human tissue, except

as a proxy for laryngoscopy. This realization sent us back to the top of the design water-

fall. This process is shown visually in Figure 5.5, as new components began incorporation

into the device.

The most important differences between mannequins and cadavers are two-fold: 1)
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Figure 5.5: Design iterations as a function of additional cadaver results. From top left:
fully soft system slowly incorporating more rigid features to defeat the epiglottis and
properly index in the anatomy. Bottom right: early version of the near-final design.

in mannequins, the anatomy from oral cavity to esophagus is wide open; in cadavers,

the anatomy collapses against the pharynx. 2) in mannequins, the airway anatomy (e.g.

epiglottis, arytenoid cartilages, vocal cords) is quite rigid; in cadavers, these are all signif-

icantly more flexible, and vary significantly in their size, shape, and stiffness. Moreover,

the size and shape of the upper airway can change drastically across heights, sexes, and

BMIs – features that are inadequately captured by the mannequin environment. Thus,

the effort restarted to identify key variables and understand tissue dynamics, to design

concepts capable of navigating the airway effectively, and to iterate across a statistically

significant sample of unique cadaver airways.

The primary design difficulty in developing a highly reliable, higly robust, semi-

autonomous, universal intubation system is the fact that the airway is at an unknown

distance, at an unknown height, hidden behind an epiglottis of unknown length and

unknown mechanical characteristics. This effort led us to seek anatomical landmarks

115



Ongoing Projects: Semi-autonomous, Soft Robotic Airway Management Chapter 5

Figure 5.6: Four-step deployment of the current design. First, the introducer is ad-
vanced to the oropharynx, where it naturally stops. Second, the bi-stable assembly
is advanced until it engages with the vallecula. Third, the toroidal ETT sheath is
advanced into the tracheal. Fourth, the cuff is inflated and the introducer is removed.

against which we could reliably datum, and from which other anatomical features would

be reliably distributed. Ultimately, this resulted in a significant design update: the

mouthpiece morphed into an "introducer" that indexes against the oropharnygeal wall

instead of the incisors; the primary body evolved into a bi-stable assembly that datums

against the vallecula and glossoepiglottic folds; and the intubating vine no longer includes

an esophageal branch, but instead a vestigial nub on its posterior side. These steps are

shown in Fig. 5.6.

The result, shown in Fig. 5.7, describes a device that enables: (i) a one-size-fits-all

constructions, where the plunger throw accounts for the entire oral tract length distribu-

tion shown in Fig. 5.2; (ii) a three-step deployment, which early usability studies have

shown are easily interpretable to both highly skilled anesthesiologists and paramedics,

and that takes an average of less than 30 seconds to deploy; and (iii) a detachable design,

116



Ongoing Projects: Semi-autonomous, Soft Robotic Airway Management Chapter 5

Figure 5.7: Render of new product

that enables the introducer to be removed after intubation leaving only the ETT and the

vine overtube / pneumatic sheath in place.

5.2.4 Preliminary results

While testing has been completed in approximately 50 cadavers to date, much of

that testing had been done on iterations so obsolete that they have little relevance to

the current performance of the device. That said, the previous approximately 20 speci-

mens have been used for a highly similar embodiment to the current state-of-the-art, for

which performance has been tracked. A few caveats: 1) with the device still undergoing

modifications, the definition of success has been broadened to include failures for which

small modifications then enable success 2) the tracheal access mechanism has changed

significantly since May, but the previous tracheal access mechanism is treated similarly.
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Specimen Type Successful
Specimens

Total Specimens

Full-body cadavers 16 18

2/15/23 3 3

2/17/23 2 2

5/5/23 2 2

5/31/23 5 6

6/12/23 4 5

8/22/23 4 4

Cadaver "busts" 2 3

Cadaver heads 5 6

Total 27 31

Table 5.2: Overall success rates in 31 unique cadaver specimens. Success rate is
currently estimated to be 87% as of 8/22/23

Results are reported in Table 5.2, showing approximately 84% overall success across 26

specimens. This corresponds to the average first-pass success of an emergency medicine

doctor, and is something we are actively working to improve. Ongoing work is focused on

increasing the range of operation (on both tails of the distributions), improving tracheal

access mechanism performance, and bettering the user experience features to minimize

procedure time.

5.2.5 Limitations of simulation environment

As is described above, the transition from mannequins to cadavers unearthed sig-

nificant translation error due to a low resolution simulation environment. This is still

expected to be true in the case of cadavers to live humans, but to a significantly lower

degree.

The primary limitation of the cadaveric environment is the lack of tissue perfusion.
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In a live human, blood pressure and flow produce good skin turgor – the ability for the

tissue to return to its original state after force application. This is obviously absent in the

cadaver model, and applied force results in a progressive "draining" of the fluid within

the tissue that gives it structure. In particular, the tongue gets progressively flattened

as more and more blood is emptied during intubation attempts, with both the described

device and with traditional tools. Ultimately, there is a threshold beyond which the

tissue is no longer a realistic representation of the live human case, and this complicates

failure mode analysis and the subsequent design iteration. Luckily, there exist methods

to simulate perfusion in the cadaver model, which we plan to include in the upcoming

cadaver trial, as described in Section 5.2.6.

Additionally, a significant number of our design specimens have been dissected cephala

that only include a few c-spine vertebra (between c-4 and c-7). These dissections were

chosen for their lower price than full bodies, and the ease with which they could be stored,

thawed, and tested. Unfortunately, the airway cuts eliminate some level or anatomical

constraints that would otherwise be present between the larynx and surrounding tissue.

This complicates the understanding of how forces applied at the device level translate to

tissue interaction. With this in mind, recent testing has been confined to full bodies or

cadaver busts, which have been dissected at approximately the nipple line.

Rigor mortis is another issue with the cadaver model. After expiration, muscle tissue

becomes effectively locked in place and requires excessive force to mobilize it compared

to a live person. This results in limited head and neck mobility of our models, and thus

complicates intubation. However, of all the limitations, we believe this aspect actually

serves to improve the resiliency of the design, and that performance will improve when

rigor mortis is no longer a feature.

119



Ongoing Projects: Semi-autonomous, Soft Robotic Airway Management Chapter 5

5.2.6 Future work: head-to-head cadaver trial

While this device has a long road to clinical and commercial significance, the next

step on the journey is quite clear: complete a protocol-controlled, head-to-head cadaver

study that seeks to show the expected value proposition: expert-level performance in a

provider-agnostic package. To that end, we have designed a study protocol that aims to

capture the challenge of intubation at the upper and lower ends of the skill spectrum.

Anesthesiologists are the airway experts, and while they primarily intubate in the

controlled OR, they are regularly called to assist in emergent intubations in the emergency

department and ICU. Paramedics are tasked with intubating when circumstances indicate

it, which could range from a cardiac arrest in the back of an ambulance to the side of

the road after a car accident. Thus, the two cases we seek to recreate in a simulated

environment are: Case 1 - an unsoiled, controlled airway similar to the OR or a cardiac

arrest; Case 2 - a soiled, emergent airway similar to a severe trauma event. The protocol

for said test is as follows:

1. Provider selection: Four skilled anesthesiologists to represent the highest level

of performance. Four novice paramedics to represent the low end of the skill spec-

trum. Desired endpoint: performance normalization (even if that is reduction

in performance by anesthesiologist in some cases).

2. Cadaver selection: Certain externally identifiable characteristics capture the

span of humans, and serve as a proxy for “variable anatomy". We then seek to

select cadavers that satisfy the below combinatorics shown in Table 5.3. Ideally,

we acquire an even split of: male / female; over / under 5’7”; over / under 30 BMI;

over / under 50 years old. Minimally, we require: 60/40 male / female split; 70/30

BMI split (over/under 30 BMI, can be split in said proportion on either side), e.g.

16 cadavers that satisfy male/female, tall/short, high/low BMI, old/young. With
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soiled / unsoiled, we have 32 combinations from 16 cadavers.

Specimen Male Tall Hi BMI Old
1 X X X X
2 X X X
3 X X X
4 X X X
5 X X X
6 X X
7 X X
8 X X
9 X X
10 X X
11 X X
12 X
13 X
14 X
15 X
16

Table 5.3: Combinations of variables of interest. Note: not male = female; not tall =
short; not Hi BMI = low BMI; not old = young

3. Protocols: We will have each provider intubate using traditional methods on 2

cadavers with clean airways (with anesthesiologist grading the airway), followed

by two cadavers with soiled airways and C-collars (using vomit found in [156]

with slight modifications). In both cases, we will measure FPS, overall success,

time to intubate, perceived difficulty. This is followed with intubations using the

subject device, tracking the same elements. This corresponds to 32 attempts with

traditional methods, 32 with the subject device. Methods:

(a) Each cadaver will be given a number. For each testing group, we will randomly

select four cadavers, omitting cadavers that have already been used.

(b) We will construct four groups of two providers, one doctor and one medic in

each. Each set of four providers (4 anesthesiologists and 4 paramedics) will

be randomly assigned to one of four groups.
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(c) We will do testing across two days, with four sessions. On each day will be a

morning / afternoon session, with one group per session.

(d) Sequence of cadavers (clean vs dirty airway ordering) will be randomized for

the group beforehand. Clean cadavers will be lightly suctioned prior to test

initiation; soiled cadavers will have 300cc of artificial vomit added via the

mouth, and a c-collar affixed. Option: Scenario based test for each cadaver,

including a surgical scenario and a trauma scenario

(e) The following traditional tools will be made available: "Macintosh" and "Miller"

direct laryngoscopy blades; Uescope video laryngoscope with 3 and 4 blade

sizes; bougies and stylets; 7mm ID standard ETT.

(f) Providers will intubate each specimen with traditional methods first, followed

by the subject device for all 4.

(g) Measured quantities: airway grade, time to intubate, number of devices used,

number of attempts, likeart scale questionnaire.

Definitions:

i. First-pass success: The first pass starts upon entering the mouth with

any airway device. The first pass ends with a removal of any device

from the mouth before trying again, or with the exchange of devices (e.g.

exchanging an ETT with stylet with a bougie)

ii. Time to intubate: The time to intubate will be defined as the time

between first entering the airway, and the final forward motion of the

ETT.

iii. Airway grade: We will use the Cormack-Lehane grading system for

evaluating the airway
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5.3 Discussion

While there is yet more work to be done, these initial results provide an exciting

foundation upon which one future of these systems could and should build. All to often,

the practice of medical device development seeks to produce incremental benefit to the

expert provider at a steeper cost, ultimately only serving to increase the cost and limit the

availability of care. Soft robotics offer a compelling alternative to this paradigm, wherein

"smart" devices enable comparable performance at a fraction of the cost in non-expert

hands.

If successful, this effort will create a model upon which future soft robotic medical

devices may be built. In the case of airway management, this newfound capability of

expert performance in novice hands may have the effect of saving innumerable lives,

mitigating the rate of adverse events and complications, and reducing the cost burden

of providing expert-level care in a broader range of environments. Such a paradigm may

have similar effects in endovascular, pulmonological, and gastroenterological applications.
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6.1 Project impacts and future directions

On the timescales of human progress, soft robotics as a field is still in its infancy.

As such, the whitespace that exists for novel applications is presently indeterminant,

and consequently extraordinarily exciting. As a technologist, the opportunities ahead

abound, and I will share some thoughts on how each of the preceding chapters have

constructed my academic identity, as well as provide some ideas for future directions on

each of the presented topics.

Chapter 2 Analytical Modeling: extracting design insights from closed-form solutions:

This project was important for setting the stage for the remainder of my Ph.D., and

is to this day a very useful first-pass analysis tool when designing new vine robots. As the

first effort to understand what design variables apply to the functional performance of

vine robots, in many ways it is a roadmap to the initial design space of most of my ongoing

projects. That said, a model is only as useful as its composition of utility and detail –

that is, the order of magnitude of its detail often constrains the order of magnitude of its

utility as a design tool. There is quite a bit more to be done on the physical modeling of

soft and vine robots, which can likely unearth many additional insights.

Chapter 3 Design: applying modeling insights towards novel capabilities:

This work developed an additional design avenue for vine robot fabrication that

switches the paradigm from fully soft to a hybrid design via the SRM – hopefully en-

abling the synthesis of the best of both worlds in robotics. In theory, this work can be

extended to multiple different SRMs that individually control different axes of motion,

and various lengths of vine robot tail. However, many of the design features represent

design tradeoffs instead of design solutions. Hopefully, this effort unlocks future design

directions, which might enable miniaturization and and extension in the total length of

125



Conclusion Chapter 6

the body that can be so controlled.

Chapter 4 Data-Driven Modeling, and Control: breakthrough performance of a soft

robot arm:

This work showed that the Koopman formalism could be effectively applied well into

the regime of non-linear dynamics, and while it took about 3 times as many years as I

originally predicted, it certainly paid off in terms of its implications for soft robot mod-

eling and control and its feature in Science Robotics. In many ways, I believe that the

Koopman approach to modeling and control will prove to be a more data-efficient and

performative method than traditional machine learning techniques. This little-known

method could enable performance such that soft robots may one day be capable of per-

forming useful tasks directly alongside humans. I believe that improvements in end

effectors, and inclusion of length change, are the logical next steps for this project, and

I am excited to see what comes next.

Chapter 5 Ongoing Projects: Semi-autonomous, Soft Robotic Airway Management:

This effort is getting very close to unlocking a currently unimaginable capability for

EMS medical providers – delivering an endotracheal tube on the same order of success

as a medical doctor in the hospital via vine-inspired airway management. Moreover,

if successful, this current work will be the first soft robotic medical device (and will

vindicate the title of Veritasium’s viral YouTube video “This unstoppable robot could

save your life"). While there is much yet to be done, this work is certainly a fitting

culmination of my Ph.D. work – developing novel solutions to facilitate new capabilities

in under-defined environments. I believe this work will be the foundation of soft robotics

in medicine, and I hope to remain at the forefront of that development effort.
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6.2 Final thoughts

The past 5 years of my life has been the most trying, defeating, embarrassing, in-

spiring, exciting, and gratifying chapter of my 31-year life thus far. Of course I see the

contradiction of what I just said, as in many ways this has been an incredibly manic

period of my life, characterized in no small part by terrible imposter syndrome and an

unshakeable sense of inadequacy. However, from those depths, with the willingness to

suspend my disbelief in my own capabilities, coupled with the support of my family, my

friends, my labmates, and collaborators, I am concluding this chapter with nothing but

assurance I took the absolutely necessary and appropriate step in my life to pursue the

unknown.

My background does not readily admit graduate school as a tried-and-true path to

achieving my career goals. Aside from some lawyers here and there, I am the only person

in my family to pursue an advanced degree. In truth, at age 18, I thought I would be

graduating business school with job prospects in real estate or consulting 4 years hence,

just like my father did. Fast forward 13 years, and I am just emerging from nearly a

decade worth of focus on a completely different set of topics. The only thing I can tell

you about a pro forma at this point is that I don’t really know how to make one.

However, I do now fully believe that regardless of the topic area, I have developed the

fundamental capability to step into a world of unknowns and understand how the pieces

fit together, whether it is machine learning, medical devices, or a pro forma. This is

the lasting legacy of a graduate degree in the sciences that is hard effectively convey. In

fact, I don’t think that I would be adequately prepared for the world beyond grad school

had I not viscerally experienced the terror of facing uncertainty, in a manner that truly

tested my capabilities as a thinker and as a doer, for the years on end that characterize

grad school. For that, I can’t recommend a Ph.D. enough to those for whom such an
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experience brings you a sense of wonder and intrigue instead of fear and contempt.

Today, I realize that everything breaks, and that the stability margin between ad-

vanced civilization and the stone age is leaner than we often realize. And yet, most

importantly, I believe the future is bright, provided we all seek to expand that margin

of stability through whatever means we have available. Cheers to all that are willing to

join me on this mission.
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A.1 Supplementary Materials From Data-Driven Mod-

eling, and Control: breakthrough performance of

a soft robot arm
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Testing Apparatus The experiments conducted in the framework of the study are

performed on an experimental system shown in Fig. A.1.

A 1.8x1.8x1.5 m 80/20 frame was assembled to support the testing apparatus. To

this frame the motion capture cameras, soft arm, and control hardware were affixed.

Information about the position and shape of the manipulator is gathered via motion

capture (PhaseSpace Inc. Impulse X2E). This investigation utilized the motion capture

system with 8 detectors (cameras) and 4 sets of trackers evenly spaced along the backbone

of the soft arm; four LEDs are attached along the axis of each muscle. The same motion

capture system was used for both data collection used in offline model construction and

for closed-loop position feedback in control experiments. In closed-loop experiments that

are performed without predefined trajectory, additional four LED trackers are mounted

on an external object (a pole), their coordinates are averaged in real-time in order to

determine the central point, which then served as an arbitrary reference generator.

Festo VEAB-L-26-D2-Q4-V1-1R1 proportional pressure regulators with 0.01 to 2 bar

output range and approximately 15 liters/min of flow at 1 bar pressure, are used to

control the pressure in the arm’s muscles. The body is held to a constant pressure of

approximately 1.5 bar

The software used for running the system was LabVIEW 2019 with myRIO toolkit

and real-time module, whereas LabVIEW Python node is used to acquire the real-time

data from motion capture system. These information is then fed trough the fast network

protocol to a myRIO 1900 control hardware. The same control hardware is also used to

drive the pressure valves whereas an additional circuitry based on operational amplifiers

is used to adjust 0-5V voltage levels generated by MyRIO hardware to be compatible

with used proportional valves whose input range is 0-10V. Exhaust air ports of the valves

are connected to vacuum so as to improve the dynamical response of the system.
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Model Performance Metrics We perform a convergence study on the reconstruction

power of our Koopman models as a function of the number of snapshots for a range of

observables. This process allowed us to develop a dictionary of observables suitable for

our system. Given a particular choice of observables and number of training samples,

we build the corresponding linear input-output system with A, B, and C matrices. This

linear model is applied to N = 8000 samples of sinusoidal verification data over a range

of deflection amplitudes and speeds. These particular samples are not included in the

training data in order to give us a fair evaluation of the predictive power of our models.

The linear system produced via (4.24) and (4.15) evaluate the evolution of these initial

conditions over a single time step. The single-step reconstruction error is given by

ei =
∥x+, predict

i − x+, actual
i ∥2

L
. (A.1)

where x+, actual
i is the evolution of xi measured by the motion capture system, x+, predict

i

is the evolution predicted by the DMD model, and L is the length of the soft arm. We

use the root mean square (RMS) of the individual ei errors to score our model:

eRMS = 100

√√√√ 1

N

N∑
i=1

e2i . (A.2)

Koopman Spectral Quantities We are often interested in the spectral properties of

the Koopman operator because they give us physical information about the multiple cou-

pled time-dependent processes inherent to our system. DMD can be used to approximate

the discrete part of this spectrum [103]. We seek the triplet (λi, ϕi(z(x)),vi) of Koop-

man eigenvalues, eigenfunctions, and modes, respectively. The eigenvalues and Koopman

modes are simply the eigenvalues and eigenvectors of the DMD matrix A. The Koopman

modes in Fig. 4.8 are added to the time average mode associated with λ = 1 to give an
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impression of the effect of the mode on the soft arm. Computation of the eigenfunctions

requires wi which are the eigenvectors of the conjugate transpose of A. After these are

normalized so that ⟨vi,wj⟩ = δij, the eigenfunctions are given by the complex inner

product ϕi(z(x)) = ⟨z(x),wi⟩. The eigenfunctions are shown here as functions of the

lifted state z(x). Their magnitude |ϕi(z(x))| is called the “mode power” and gives the

relative importance of the ith Koopman mode to the dynamics when the state is x. In

order to compare the influences of the Koopman modes to the dynamics, their colorings

in Fig. 4.8 are shown scaled to the maximum value of the mode power attained over the

entire training data set.

Reconstruction of sinusoidally forced motion After choosing time delay observ-

ables, we attempted to reconstruct the movement of the soft arm under a sinusoidal

inputs with six different frequencies (0.1, 0.2, 0.4, 0.8, 1, and 1.1Hz). We begin this pro-

cess by providing a step input to the muscles that corresponds to a static position on the

sinusoid with an arbitrary phase, and then complete two revolutions at a given frequency

before incrementing up in speed. The position of the physical system was recorded via

motion capture system, and these inputs were provided to our above-developed model.

This process was repeated for low (similar to [82–84], approximately 15◦), medium (sim-

ilar to [104,105], approximately 25◦), and high deflection (the single-actuator maximum

of our system (robot 1), approximately 110◦), with results reported in Fig. A.2.

Disturbance Rejection Finally, to evaluate the disturbance rejection capabilities of

our system and to further distinguish the contribution of the static Koopman pregain, G,

and the dynamic Koopman LQR gain, K, we commanded both stationary and circular

references for the soft arm tip and subjected the system to disturbances. The control

effort was recorded and compared to the control effort expected from the pregain term
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alone. Given a static reference, the control effort from the pregain alone is constant in

time. The results of the tests are shown in Fig. A.5, capturing the contribution of K,

proportional to the disturbance.

Supplementary Figures

Motion capture
cameras

Robot backbone

LED trackers

Test superstructure

Pneumatic muscles

Control circuitry

Figure A.1: Schematic representation of the experimental setup and its com-
ponents. The soft arm is mounted from above to the test superstructure. The soft
arm backbone provides stiffness and the pneumatic muscles generate movement. Four
layers of LED trackers are tracked by motion capture cameras positions around the
arm.

133



Supplementary Materials Chapter A

� � �� �� �� �� �� ��
����������

����

�

���
�����������������

����

�

���

��
��

��

��

��
��

�
� ��������������������

����

�

���

������
����������

	���������������������

� � �� �� �� �� �� ��

� � �� �� �� �� �� ��

Figure A.2: Koopman reconstruction of circular motion. The dynamic Koop-
man model is given a collection of sinusoidal inputs with a range of amplitudes and
speeds and is tasked with reconstructing the motion of the soft arm. The true trajec-
tories are shown in dashed blue, and the high (A), medium (B), and low (C) deflection
reconstructions are given in red, yellow, and purple, respectively. The reconstruction
is restarted every time the frequency changes. The reconstruction agrees with the
true frequency, but is missing some of the amplitude in the fast regime. The static
Koopman operator and feedback control account for the improvement in performance
between this plot and Fig. 4.9
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Figure A.3: Y and Z components of the real-time closed-loop reference track-
ing experiments. The soft arm tracked circular reference trajectories in the X-Y
plane with frequencies ranging from 0.1 to 1.1 Hz (0.2Hz step) at: (A,D) high, (B,E)
medium, and (C,F) low deflection magnitudes. Plots show the Y (left column) and
Z (right column) positions over time compared to their respective references. The
commanded references are dashed lines and the control results are solid lines.
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Reference
EDMDc

Motion 
Capture
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Soft Robot System
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Lifting

Control in Lifted Space
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Figure A.4: Block diagram of the system, training method and K-LQR con-
trol approach. Training inputs representing voltage signals are fed into pressure
valves and 3D positions of the soft arm are measured by using a motion capture
system. The lifting procedure of the position data provides the inputs needed to de-
termine the Koopman model of the system and to calculate optimal lifted controller
parameters. The position of the soft arm is finally controlled in 3D space by using
obtained K-LQR.
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Figure A.5: Demonstration of our controller’s ability to reject impulse dis-
turbances in real-time. A) The position over time of the end effector is shown
relative to a predefined reference. The soft arm returns to the reference position after
three large disturbances are applied. B) The magnitude of the commanded control
effort is shown. Note that the static Koopman input component comes from the pre-
gain term and is constant because the static reference doesn’t change. The dynamic
Koopman input adapts in real time to the disturbances.

135



Supplementary Materials Chapter A

Supplementary Movies All Supplementary Movies can be found at the following

URL: https://doi.org/10.5281/zenodo.8184777.

Movie S1: Movie S1 shows the performance of Robot 1 commanded to follow an

arbitrary trajectory throughout the workspace, ranging from low to high deflection.

Movie S2: Movie S2 shows the performance of Robot 1 commanded to follow a

series of sinusoidal trajectories at increasing speeds (0.1−1.1Hz frequency) and increasing

deflections, as shown in Figures 4.9 and A.3.

Movie S3: Movie S3 shows our system completing two real-world tasks: first, catch-

ing a swinging ball that enters the workspace from two different directions; second, throw-

ing a ball into a bin positioned at two different locations in the workspace.

Movie S4: Movie S4 shows our training, modeling, and control sequence for Robot

1. This sequence uses 5 minutes of step inputs, approximately 3 seconds of model and

controller computation, followed by arbitrary reference tracking.

Movie S5: Movie S5 shows our training, modeling, and control sequence for Robot

2. The same sequence is provided as in Movie S4, but with a robot capable of nearly

180◦ of deflection. Arbitrary reference tracking is successful across the entire range of

deflections.
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